100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Thierry Gallay

Le bâtiment de l'Institut Fourier est à nouveau accessible par badge ou code, de 6h30 à 21h30, du lundi au vendredi. Il reste toutefois fermé et sous alarme les week-ends et jours fériés. La bibliothèque du laboratoire est actuellement fermée, mais un service de prêt et de retour d'ouvrages a été mis en place. La cafétéria du second étage est en travaux, pour une longue période. Pour des raisons de traçabilité, les membres du laboratoire sont priés de signaler leurs jours de présence en remplissant le sondage envoyé par la direction. Pour de plus amples informations, consulter l'intranet du laboratoire.
 
---------------------------------------------------------------------------------
 
 

Nicolas Juillet

Résolution du problème de Monge sur la droite réelle pour des exposants compris entre 0 et 1
Mercredi, 4 Mars, 2020 - 14:30
Résumé : 

Soit $\alpha>0$. Soient $\mu$ et $\nu$ deux probabilités sur $\mathbf{R}$ ayant un moment d'ordre $\alpha$. Le problème de Monge consiste à chercher les lois des couples $(X,Y)$ de lois marginales $\mu$ et $\nu$ qui minimisent l'espérance de $|X-Y|^\alpha$.

Si $\alpha>1$, il y a une solution unique : le couplage croissant. Si $\alpha>1$, il y a plusieurs solutions parmi lesquelles figure le couplage croissant. On s'intéresse au cas où $\alpha<1$ et à la limite quand $\alpha$ tend vers $1$ par valeurs inférieures.

Institution de l'orateur : 
IRMA Strasbourg
Thème de recherche : 
Probabilités
Salle : 
04
logo uga logo cnrs