UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Marion Boucrot

Marion Boucrot [1]

The 27 lines on a cubic surface
Jeudi, 2 Février, 2023 - 17:00
Résumé : 

In 1849, G.Salmon proved that any nonsingular cubic surface in the projective space of dimension 3 of an algebraically closed field contains exactly 27 lines. 

A. Cayley had already shown that there are only finitely many lines on such surfaces.
In this talk, I will present an elementary proof of this result, written by S.Lazarus.
I will also explain why the three hypothesis are necessary, using counter examples, and present the work of L. Schläfli on the case of real cubic surfaces.
Institution de l'oratrice / orateur: 
Institut Fourier
Thème de recherche : 
Compréhensible
Salle : 
4

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/marion-boucrot

Liens
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/marion-boucrot