100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

Strictly nef divisors and Calabi-Yau threefolds.

Vendredi, 8 Décembre, 2006 - 10:00
Prénom de l'orateur : 
Thomas
Nom de l'orateur : 
PETERNELL
Résumé : 

A line bundle L is strictly nef if it is ample on every curve. It is classically known that L might not be ample. However a conjecture of Serrano says that K_X + tL is ample for t > dim X + 1.
I discuss this conjecture, indicate a proof in dimension three unless X is Calabi-Yau and study the Calabi-Yau case in more detail.

Institution de l'orateur : 
Université de Bayreuth
Thème de recherche : 
Algèbre et géométries
Salle : 
04
logo uga logo cnrs