UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Misha Verbitsky

Misha Verbitsky [1]

Ergodic complex structures and Kobayashi metric
Tuesday, 21 January, 2014 - 13:30
Résumé : 

Let M be a compact manifold.
Consider the action of the diffeomorphism group
Diff(M) on the (infinite-dimensional) space Comp(M)
of complex structures. A complex structure is called
ergodic if its Diff(M)-orbit is dense in the connected
component of Comp(M). I will show that on a hyperkaehler
manifold or a compact torus, a complex structure is
ergodic unless its Picard rank is maximal. This result
has many geometric consequences; for instance, it
follows that the Kobayashi pseudometric on any K3
surface or on the deformations of its Hilbert scheme
vanishes, solving a longstanding conjecture by Kobayashi.

Institution de l'oratrice / orateur: 
HSE, Moscou
Thème de recherche : 
Algèbre et géométries
Salle : 
amphi chabauty

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=en/content/misha-verbitsky

Links
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=en/content/misha-verbitsky