
Jordan Normal and Rational Normal Form
Algorithms

Bernard Parisse, Morgane Vaughan
Institut Fourier

CNRS-UMR 5582
100 rue des Maths

Université de Grenoble I
38402 St Martin d’Hères Cédex

Résumé
In this paper, we present a determinist Jordan normal form algorithms based

on the Fadeev formula :

(λ · I −A) ·B(λ) = P (λ) · I

whereB(λ) is (λ · I − A)’s comatrix andP (λ) isA’s characteristic polynomial.
This rational Jordan normal form algorithm differs from usual algorithms since it
is not based on the Frobenius/Smith normal form but rather on the idea already
remarked in Gantmacher that the non-zero column vectors ofB(λ0) are eigenvec-
tors ofA associated toλ0 for any rootλ0 of the characteristical polynomial. The
complexity of the algorithm isO(n4) field operations if we know the factoriza-
tion of the characteristic polynomial (orO(n5 ln(n)) operations for a matrix of
integers of fixed size). This algorithm has been implemented using the Maple and
Giac/Xcas computer algebra systems.

1 Introduction

Let’s remember that the Jordan normal form of a matrix is :

A =



λ1 0 0 . . . 0 0
? λ2 0 . . . 0 0
0 ? λ3 . . . 0 0
0 0 ? . . . 0 0
.
.
0 0 0 . . ? λn−1 0
0 0 0 . . . ? λn


where there are 1 or 0 instead of the ?. It corresponds to a full factorization of the cha-
racteristical polynomial. If the field of coefficients is not algebraically closed, this Jor-
dan form can only be achieved by adding a field extension. The Jordan rational normal

1

form is the best diagonal block form that can be achieved over the field of coefficients, it
corresponds to the factorization of the characteristic polynomial in irreductible factors
without adding any field extension.

In this paper, we first present a complex Jordan normal form algorithm. This part
does not provide an improvement per se, but it gives, in a simpler case, a taste of
the rational Jordan Normal form algorithm. More precisely we will present a similar
algorithm that provides a rational normal form maximizing the number of 0s. This is
not a rational Jordan form since the non-diagonal block part does not commute with
the block-diagonal part, but we show that it is fairly easy to convert it to the rational
Jordan form.

This algorithm is not based on the Frobenius form (see e.g. Ozello), and assumes
that the characteristic polynomial can be fully factorized (see e.g. Fortuna-Gianni for
rational normal forms corresponding to square-free or other partial factorization). It
might be combined with rational form algorithm after the Frobenius step, but it can
be used standalone. It has the same complexity as other deterministic algorithms (e.g.
Steel), is relatively easy to implement using basic matrix operations, and could there-
fore benefit from parallelism (see also Kaltofen et al. on this topic).

The algorithm of these articles have been implemented in Maple language, they
work under Maple V.5 or under Xcas 0.5 in Maple compatibility mode. They are also
natively implemented in Giac/Xcas. Please refer to section 4 to download these imple-
mentations.

2 The complex normal Jordan form

2.1 A simplified case

LetA be a matrix andB(λ) be(λ ·I−A)’s comatrix. If every eigenvalue is simple,
we consider one :λ0. Then we can write

(λ0 · I −A) ·B(λ0) = P (λ0) · I = 0

The columns ofB(λ0) areA eigenvectors for the eigenvalueλ0. To have a base ofA’s
characteristic space for the eigenvalueλ0, we just have to calculate the matrixB(λ0)
(using Hörner’s method for example becauseB(λ) is a matrices’ polynomial) and to
reduce the matrix in columns to find one that is not null.

Our goal is now to find a similar method when we have higher eigenvalues multi-
plicity.

2.2 Fadeev Algorithm

First, we need an efficient method to calculate the matrices polynomialB(λ).
Fadeev’s algorithm makes it possible to calculate both the characteristic polynomial

(P (λ) = det(λI−A)) coefficients (pi (i = 0..n)) and the matrices coefficientsBi (i =
0 . . n− 1) of the matrices polynomial giving(λ · I −A)’s comatrixB(λ).

2

(λI −A)B(λ) = (λI −A)
∑

k≤n−1

Bkλ
k = (

∑
k≤n

pkλ
k)I = P (λ)I (1)

By identifying the coefficients ofλ’s powers, we find the recurrence relations :

Bn−1 = pnI = I, Bk −ABk+1 = pk+1I

But we still miss a relation betweenpk andBk, it is given by the :

Theorem 1 (Cohen thm)
The derivative of the characteristic polynomialP ′(λ), equals the(λI − A) comatrix
trace.

tr(B(λ)) = P ′(λ)

The theorem gives tr(Bk) = (k+1)pk+1. If we take the trace in the recurrence relations
above, we find :

tr(Bn−1) = npn, (k + 1)pk+1 − tr(ABk+1) = npk+1

Hence if the field of coefficients is of characteristic 0 (or greater thann) we compute
pk+1 in function ofBk+1 and thenBk :

pk+1 =
tr(ABk+1)
k + 1− n

, Bk = ABk+1 + pk+1I

Let’s reorderP andB’s coefficients :

P (λ) = λn + p1λ
n−1 + p2λ

n−2...+ pn

B(λ) = λn−1I + λn−2B1 + ...+Bn−1

We have proved that :

A1 = A, p1 = −tr(A), B1 = A1 + p1I

A2 = AB1, p2 = −1
2

tr(A2), B2 = A2 + p2I

...
...

...

Ak = ABk−1, pk = −1
k

tr(Ak), Bk = Ak + pkI

We can now easily program this algorithm to compute the coefficientsBi and
pi. The number of operations isO(n4) field operations using classical matrix multi-
plication, or betterO(nω+1) using Strassen-like matrix multiplication (for large va-
lues ofn). For matrices with bounded integers coefficients, the complexity would be
O(n5 ln(n)) orO(nω+2 ln(n)) since the size of the coefficients ofBk isO(k ln(k)).

Remark
If the field has non-zero characteristic,P (λ) should be computed first, e.g. using Hes-
senberg reduction (anO(n3) field operations), thenB(λ) can be computed using Hor-
ner division ofP (λ) by λI − A (anO(n4) field operation using standard matrix mul-
tiplication).

3

2.3 Jordan cycles

Jordan cycles are cycles of vectors associated to an eigenvalue and giving a basis
of the characteristic space. In a cycle associated toλ0, giving a vectorv of the cycle,
you can find the next one by multiplying(A− λ0 · I) by v and the sum of the sizes of
the cycles associated to an eigenvalue is its multiplicity.

For example, ifλ0 has multiplicity 5, with one cycle of length 3 and one of length
2, the block associated toλ0 in the Jordan basis of the matrix will be :

λ0 0 0 0 0
1 λ0 0 0 0
0 1 λ0 0 0
0 0 0 λ0 0
0 0 0 1 λ0


We are looking for vectors giving bases of characteristic spaces associated to each

eigenvalue ofA, and these vectors must form Jordan cycles.

2.4 Taylor expansion and the characteristic space.

Let (λi, ni) be the eigenvalues counted with their multiplicities. If the field has
characteristic 0, we make a Taylor development at the pointλi (cf. equation (1) p. 3) :

−P (λ)I = (A− λI)
(
B(λi) +B1(λi)(λ− λi) + ...+Bn−1(λi)(λ− λi)n−1

)
= −(λ− λi)ni

∏
j 6=i

(λ− λj)njI

whereBk is thek-th derivative ofB divided byk!.
If the characteristic of the field of coefficients is not 0, the same expansion holds,

since the family((λ − λi)k)k is a basis of the vector space of polynomials of degree
less or equal ton− 1. In this case (but also in the former case), the value ofBk can be
computed using several Horner division ofB(λ) by λ− λ0.

AsA− λI = A− λiI − (λ− λi)I, we have for theni first powers ofλ− λi :

(A− λiI)B(λi) = 0 (2)

(A− λiI)B1(λi) = B(λi) (3)

... (4)

(A− λiI)Bni−1(λi) = Bni−2(λi) (5)

(A− λiI)Bni(λi)−Bni−1(λi) = −
∏
j 6=i

(λi − λj)njI (6)

Theorem 2 The characteristic space associated toλi is equal to the image ofBni−1(λi).

Proof :
We first show thatBni−1(λi)’s image is included in the characteristic space asso-
ciated toλi using the fourth equation and the ones before. Letv be a vector,v ∈

4

Im(Bni−1(λi)), then∃ u so thatv = Bni−1(λi) · u

(A− λi · I)ni · v = (A− λi · I)ni−1 ·Bni−2(λi) · u
= (A− λi · I)ni−2 ·Bni−3(λi) · u
.

.

.

= (A− λi · I) ·B(λi) · u
= 0

Now we want to prove that every vectorv in the characteristic space is also in
Bni−1(λi)’s image. We show it by a recurrence on the smallest integerm verifying
(A− λi)mv = 0.

Form = 0,it’s obvious becausev = 0.
Let’s suppose the casem is true and prove the casem + 1. With the equation(6),

we just have to show that :

w = (A− λi)Bni(λi)v
= Bni−1(λi) · v −

∏
j 6=i

(λi − λj)nj · v

is in Bni−1(λi)’s image, becauseBni−1(λi) · v is in Bni−1(λi)’s image and thus if

we prove thatw is also in, we’ll get that
∏
j 6=i

(λi − λj)nj · v is in andv is in.

AsBni(λi) commutes withA (because it’s a polynomial inA) :

(A− λi)mw = Bni(λi)(A− λi)m+1v = 0

We can now apply the recurrence hypothesis tow. We now know thatw ∈ Bni−1(λi).
And so doesv.

2.5 Algorithm

To find the Jordan cycles, we apply a Gauss reduction on the columns of the ma-
tricesB(k)(λi) wherek < ni. Doing that at the same time for all the matrices allow us
to keep the relations (2) to (6) between them after reduction.

Let’s think of the matrices one under another, columns aligned. We reduce the
matrixB(λi) and werewrite the elementary operations on columns done toB(λi) on
all the matricesBk(λi) to keep the relations between them.

Once the matrixB(λi) is reduced, if we havek columns not null then we know that
we already havek ni-long Jordan cycles, taking thek chains ofni vectors associated
to the considered column. (In factk is 0 or 1 at the first step, see the last paragraph in
this section).

If we don’t yet have enough vectors to make a base of the characteristic space
associated toλi, for each chain of columns of theBk(λi) corresponding to a column

5

of B(λi) that isn’t null, we shift by one matrix down all the columns. This process
keeps the relations between the matrices.

Again, We reduce, collect theni − 1-long Jordan cycles and shift the non-null
columns. And again as long as we still need vectors to make a basis.

Remark:
If there are still columns that are not null after the reduction ofB(λi), there is really
only one because oneni-long cycle already gives a base ofλi’s characteristic space if
λi’s multiplicity is ni. If there are more than one cycle associated toλi,B(λi) must be
null and we can take care ofB(1)(λi), etc..

2.6 Implementation

We present here the maple langage implementation.

2.6.1 Useful functions

Before implementing this Jordan normal form algorithm, we have implemented the
Fadeev algorithm to calculate theBi and the characteristic polynomial’s coefficients,
then the Hörner algorithm to calculate theB(λi).

– fadeev(A,Bliste,pliste) takes a matrixA and put theB(λ) and cha-
racteristic polynomial’s coefficients,inBliste and inpliste respectively,ordered
by increasing powers to make it easier to program a polynomial derivation. This
step requiresO(nω+1) field operations (ω = 3 for classical matrix multiplica-
tion).

– evalpolymat(l,a) takes a list of matrices, considered as a polynomial’s co-
efficients ordered like before, and a numbera, and gives back the matrix calculed
by the Hörner’s method. Each evaluation requiresO(n3) field operations (expect
n evaluations for a generic matrix with complex coefficients).

Then a few utilities :
– derive_listemat(liste) takes a list as inevalpolymat and gives

back the derivated list.
– construction_colonneB(Bliste,pliste) takes what is calulated by

fadeev and gives back a list ofp lists if the characteristic polynomial hasp
roots. In each list, there is first a couple giving an eigenvalue and its multiplicity
and then the matrix of theB(k)(λi)/k! for k from 0 to (λi’s multiplicity)−1
stuck one under another.

– construction(l,n) makes the matrix of the eigenvectors using a list of
eigenvalues and associated cycles.n is the size of the matrix we are studying.
(see the Algorithm part for more details on the list used by this function).

The previous section showed that the algorithm requires a reduction in columns
of the matrix. Maple has a function, calledgaussjord , that makes reduction but
in rows, not columns, so after constructing the column matrix, we will work with its
transposed matrix. To work with it, we needed a few more functions :

– test_ligne_nulle(B,i) takes a matrix that doen’t have to be square, for
example a matrix withn rows andm columns (we just have to consider matrices

6

wheren ≤ m). The function returns1 if the n first coefficients of thei-th rows
are null, 0 if not.

– decalage_ligne(B,i) takes the partiali-th row (with n coefficients) and
shifts it right byn.

– coupe_matrice(B) If the matrix hasn rows andm columns (n ≤ m), this
function removes the first blocknxn.

2.6.2 The Jordan normal form function

Splitting the work with all the small functions listed before makes thefinal pro-
gram quite simple. There are three embedded loops, one loops over all eigenvalues,
it constructs the list of matricesBk associated to the eigenvalue, the second loop is
a while loop that stops when all characteristic vectors for the current eigenvalue have
been found, the third (inner) loop corresponds to a fixed length of the cycles that we
are finding.

The program creates a list ofp lists if the matrix hasp eigenvalues that are all
different, each of thesep lists contains an eigenvalue and the list of associated Jordan
cycles. Then with the function described above :construction(l,n) the main
program returns the matrix of eigenvectors and the Jordan normal form of the matrix
A.

2.6.3 Tests matrices

A =

 3 −1 1
2 0 1
1 −1 2


B =

 3 2 −2
−1 0 1
1 1 0


A has two eigenvalues : 2 (multiplcity 2) and 1 (multiplicity 1).B has only one eigen-
value : 1 (multiplicity 3). UnlikeA, the second matrix has two cycles associated to only
one eigenvalue, it revealed an error in a previous version of the program : in the “while”
loop, the stop test was inefficient because we could collect linearly dependent vectors
(because the Maple function “gaussjord” making the reduction changes the order of
the matrix rows). Hence the test function looking if the vector (and the corresponding
Jordan cycle we’re about to collect) is independent of the vectors already collected (by
making a matrix with all these vectors and searching the rank).

Once the program showed right for these two examples, it was tested successfully
on Jordan matrices constructed with JordanBlock and BlockDiagonal, moved to ano-
ther basis by a random matrix conjugation.

2.6.4 Limits of the implementation

The first version of the program was not really complete because it worked only
with matrices whose characteristic polynomial, “factors” could factor completely (e.g.

7

integer matrices with rational eigenvalues, but not integer matrices with algebraic ei-
genvalues). Since “solve” also finds algebraic eigenvalues, a “solve”-answer-like to
“factors”-answer-like converter was added. Hence this Jordan normal form program is
successfull if and only if “solve” is able to find the roots of the characteristic polyno-
mial.

3 The Jordan rational normal form

In the previous section, we sometimes had to introduce an algebraic extension of the
coefficients field (e.g.Q) to be able to compute the characteristic polynomial’s roots,
in this section we will find a basis in the coefficient field where the endomorphism
matrix has the best almost diagonal block form, theJordan rational normal form. The
diagonal blocks will be companion matrices (corresponding to irreducible factors of
the characteristical polynomial), and the 1 of the complex Jordan normal form will be
replaced by identity block matrices.

We are first going to compute a normal form with as many zeros as possible, and
from this form, we will compute the Jordan rational form.

3.1 Pseudo rational Jordan form

3.1.1 Algorithm

The method we’re going to use is based on an algorithm similar to the one used
before. LetQ(λ) = q0 + ... + qd · λd be an irreducible factor of the characteristic
polynomial in the field of coefficients of multiplicityq and degreed of the characteristic
polynomialP . Note thatqd = 1 sinceQ divides the characteristic polynomialP , hence
the euclidean division algorithm of a polynomial byQ does not require any coefficient
division.

The characteristic space corresponding to the roots ofQ will be replaced by a ra-
tional characteristic space of dimensiond · q made of “rational Jordan cycles”. Recall
that :

(λI −A) ·
∑

k≤n−1

Bkλ
k = P (λ)I

SinceQ(λ) · I −Q(A) is divisible byλ · I −A, there exists a matrixM(λ) such that :

(Q(λ)I −Q(A))(
∑

k≤n−1

Bkλ
k) = Q(λ)qM(λ) (7)

Now expandB(λ) with respect to increasing powers ofQ(λ) by euclidean division by
Q :

B(λ) =
∑
k

Ck(λ)Q(λ)k, deg(Ck) < q

Replacing in (7) and observing that the matrix coefficients of order less thand vanish,
we get :

Q(A) · C0 = 0, Ck = Q(A) · Ck+1

8

This is similar to the case where the eigenvalue is rational, we get a chain of polynomial
matrices that are images of the preceding one byQ(A) :

Cq−1 → Cq−2...→ C0 → 0

We will find the rational Jordan cycles by constructing Jordan cycles ofQ(A). Note
that if we find a Jordan cycle of lengthk for Q(A) we can constructd− 1 other Jordan
cycles by multiplying the cycle byAi for i = 1..d− 1.

All these vectors are independent, indeed if∑
i,j

λi,jA
iQ(A)jv = 0, Q(A)kv = 0, Q(A)k−1v 6= 0

by multiplying byQ(A)k−1 we get :

(
∑
i

λi,k−1A
i)Q(A)k−1v = 0

henceλi,k−1 = 0 for all is sinceQ(A)k−1v 6= 0 andQ(A) is irreducible. Multiplying
further byQ(A)k−2, ..., identity, it follows that allλi,j are zero.

Once we have collected thesekd vectors, we search for another cycle in the vectors
of theCj matrices that are linearly independant to allAiQ(A)k−1v starting fromC0

and increasingj. If we find a new end cycle vectorQ(A)k
′−1w such thatQ(A)k

′
w =

0 andQ(A)k
′−1w is independent of the preceding end-cycle vectors, then we can

form k′d vectorsAiQ(A)jw. We will show that these vectors are independent of the
AiQ(A)jv sinceQ(λ) = q0 + .. + qd · λd is irreducible. Indeed if we had a relation
like ∑

i,j

λi,jA
iQ(A)jv + µi,jA

iQ(A)jw = 0,

If j > k′ thenλi,j = 0 by multiplication byQ(A)j for decreasingj > k′. Now
we multiply byQ(A)k

′−1 and we get two polynomialsP andR of degree less than
degree(Q) such that :

P (A)Q(A)k−1v +R(A)Q(A)k
′−1w = 0

SinceQ is irreducible, it is prime withR if R 6= 0. Hence ifR 6= 0, by applying
Bézout’s theorem, we could invertR moduloQ and expressw as a linear combination
of AiQ(A)k−1v. ThereforeR = 0 andP = 0 andµi,k′−1 = λi,k′−1 = 0.

Let (vk−1)→ (vk−2)→ ...→ (v0)→ (0) be a cycle ofQ(A), we have :

(vk−1, Avk−1, ..., A
d−1vk−1)→ ...→ (v0, Av0, ..., A

d−1v0)→ (0, ..., 0)

where the arrow means “image byQ(A)”.

9

Let’s write the matrixA in the basev0, Av0, .., A
d−1v0, .., vk−1, .., A

d−1vk−1 : we
find an “almost Jordan rational blockl”, its size isk · d :

0 0 ... −q0 0 0 ... 1 ...
1 0 ... −q1 0 0 ... 0 ...
0 1 ... −q2 0 0 ... 0 ...
...

... ...
...

...
... ...

... ...
0 0 ... −qd−1 0 0 ... 0 ...
0 0 ... 0 0 0 ... −q0 ...
0 0 ... 0 1 0 ... −q1 ...
...

... ...
...

...
... ...

... ...


Indeedv0 image byA isA · v0 the second vector basis, etc. toAd−1 · v0 whose image
byA is :

Ad · v0 = (Q(A)− q0 − q1 ·A− ...− qd−1 ·Ad−1) · v0

SinceQ(A) · v0 = 0 (v0 ends a Jordan cycle ofQ(A)), we get the first block of the
matrix in the new basis.

For the second block, we get the firstd − 1 columns in a similar way. For the last
one :

Ad · v1 = (Q(A)− q0 − q1 ·A− ...− qd−1 ·Ad−1) · v1

SinceQ(A) · v1 = v0, we get the above matrix part. By applying the same method to
the rest of the cycle we get the matrix.

3.1.2 Complexity

Each euclidean division requiresO(n3d) field operations (d is the degree of the
irreducible factor). There areq euclidean divisions of a polynomial of degree less than
n with n, n matrices coefficients by a polynomial of degreed, hence computing theCj
requiresO(n3dq) operations, adding for all irreducible factors, we get a complexity of
O(n4) for the division part.

Let r1d, ..., rqd be the number of Jordan cycles ofQ(A) of lengthq, ..., 1. We have :

r1q + r2(q − 1) + ...+ rq = q

The first step of the reduction part requires reducing an, nq matrix of rankr1d. Then
we will reduce ar1d + n, n(q − 1) matrix of rank(r1 + r2)d such that ther1d first
rows are already reduced and independant (hencer2d new independent rows in then
last rows remain to be extracted), etc., then a(r1 + ... + ri)d + n, n(q − i) matrix of
rank(r1 + ...+ ri+1)d with first (r1 + ...+ ri)d independent reduced rows andri+1d
new independent rows in then last rows to extract, etc. We will have to makenrid
row operations on the i-th matrix. Hence we will makeO(nridn(q− i)) operations on
the i-th matrix. Adding all reduction steps, we will makeO(n2dq) field operations for
each irreducible factor, henceO(n3) field operations for all irreducible factors.

The complexity of the whole pseudo-rational form is thereforeO(n4) field opera-
tions and is dominated by theCi computation (sinceB can be computed inO(nω+1)
field operations).

10

3.1.3 Example

A =



1 −2 4 −2 5 −4

0 1
5
2

−7
2

2 −5
2

1 −5
2

2 −1
2

5
2

−3

0 −1
9
2

−7
2

3 −7
2

0 0 2 −2 3 −1

1 −3
2

−1
2

1
3
2

1
2


The characteristic polynomial ofA is (x− 2)2(x2 − 2)2. Forλ = 2 there are 2 eigen-
vectors : 

1 0

0 1

−26
9
−5

9

−25
9
−1

9

55
9

4
9

53
9

−4
9


Forx2 − 2 of multiplicity 2, we find a cycle of length2 for Q(A) = A2 − 2 · I :

(0, 0, 0,−1,−1,−1)→ (1, 0, 0,−1,−1,−1)→ (0, 0, 0, 0, 0, 0)

After multiplication byA, we get :

((0, 0, 0,−1,−1,−1), (1, 4, 1, 4, 0,−3))→ ((1, 0, 0,−1,−1,−1), (2, 4, 2, 4, 0,−2))→ 0

11

The matrixP is therefore :

P =



1 2 0 1 0 1

0 4 0 4 1 0

0 2 0 1 −5
9

−26
9

−1 4 −1 4 −1
9

−25
9

−1 0 −1 0
4
9

55
9

−1 −2 −1 −3 −4
9

53
9


AndA becomes :

P−1AP =


0 2 0 1 0 0
1 0 0 0 0 0
0 0 0 2 0 0
0 0 1 0 0 0
0 0 0 0 2 0
0 0 0 0 0 2


To obtain the rational normal form, we must replace the block

(
0 1
0 0

)
by(

0 1
1 0

)
.

3.2 From pseudo-rational to rational Jordan form

The pseudo rational form has unfortunately not the commutation property, the block
diagonal part does not commute with the remainder, hence we will compute the rational
Jordan form from the pseudo rational form.

We now assume that we are in a basis where the endomorphism is in pseudo rational

form, and we want to compute a new basis so that the

 ... 0 1
... 0 0
...

 blocks are repla-

ced by identity matrices. Let’s assume that we have made the firstj blocks (each of size
d) indexed from 0 toj−1 corresponding to the family of vectors(v0,0, ..., v0,d−1, ..., vj−1,d−1).
We want to find a vectorvj,0 to begin the next block. Thevj,l will be defined in function
of vj,l−1 using the relationAvj,l−1 = vj,l + vj−1,l−1. Hencevj,0 must satisfy :

Avj,d−1 = −q0vj,0 − ...− qd−1vj,d−1 + vj−1,d−1 (8)

Applying the previous recurrence relations, we determineQ(A)vj,0 with respect to
vj′,l (with j′ < j, l < d). SinceQ(A) is a shift ofd indices to the left, we will let

12

vj,0 be the shift ofd indices ofQ(A)vj,0 to the right (if we stay in the original basis,
“inverting” Q(A) can be done using the pseudo-rational basis).

More precisely, let’s computevj,l in terms of thevj,0 andvj′,l′ (j′ < j). We de-
note the binomial coefficients by

(
l
m

)
(they can be computed efficiently using Pascal’s

triangle rule). A straightforward recurrence gives :

vj,l = Alvj,0 −
inf(l,j)∑
m=1

(
l
m

)
vj−m,l−m (9)

Replacing in (8), we get :

Advj,0 −
inf(d,j)∑
m=1

(
d
m

)
vj−m,d−m +

d−1∑
l=0

ql(Alvj,0 −
inf(l,j)∑
m=1

(
l
m

)
vj−m,l−m) = 0

eventually :

Q(A)vj,0 =
d∑
l=1

ql

inf(l,j)∑
m=1

(
l
m

)
vj−m,l−m (10)

Application to the example :
We stay in the original basis for the coordinates. Herev0,0 = (4, 24, 12, 32, 8,−4)
andv0,1 = Avj,0. A preimage byQ(A) is given byw1,0 = (0, 4,−4, 8, 4,−4) and
w1,1 = Aw1,0. Applying (10), andq1 = 0, q2 = 1 we must satisfy :

Q(A)v1,0 =
2∑
l=1

ql

inf(l,1)∑
m=1

(
l
m

)
v1−m,l−m = 2v0,1

hence :

v1,0 = 2A(0, 4,−4, 8, 4,−4) = (−8,−32, 0,−48,−16, 16)
v1,1 = Av1,0 − v0,0 = (4, 40,−4, 64, 24,−20)

We have indeedAv1,1 = 2v1,0 + v0,1.

3.3 Maple implementation

In the first part, we were working with matrices polynomials and not polynomial
matrices, so the first thing to do was to create atraduction function (which takes
the list of the matrices that areB’s coefficients,B given by Fadeev algorithm) to make
the euclidean divisions onB(λ) coefficient by coefficient (nouvelle_ecriture
function, arguments areB the polynomialQ we want to divide by, andQ’s multi-
plicity). Then we collect the cycles ofQ(A) as in the complex Jordan form case,
by gluing theCi matrices vertically and transposing the result for Gauss-Jordan re-
ductions. The main changes are that we generate cycles ofA by multiplication by
I,A, ..., Ad−1 (fabriq_cycles function) and we must take care that a new end-
cycle vector must be independent not only of a previous end-cycle vectorvi but also of
its images{A · vi, ..., Ad−1 · vi}.

The structure of the main rational Jordan form functionJordan2 is :

13

– A call to demarrage that will return a list of [[irreducible polynomial, multi-
plicity],[cycles]].

– For first order irreducible polynomials, the functions of the complex normal form
are called

– For each irreducible polynomial, conversion from pseudo-rational Jordan form
to rational Jordan form

– a call toconstruction_special to build the passage matrix.

4 “User guide”

The Giac/Xcas free computer algebra system is available at :
www-fourier.ujf-grenoble.fr/~parisse/giac.html
The functionsjordan andrat_jordan implement the Jordan normal form and the
rational Jordan normal form.

The maple implementation of this algorithm is available at :
www-fourier.ujf-grenoble.fr/~parisse/jordan.map
Once the Maple session is opened, run the commandread("jordan.map") . Then
three programs are available :

– TER_Jordan takes a matrixA and returns the matrix of eigenvectors and the
Jordan normal form ofA.

– final takes a matrixA and returns the matrix of eigenvectors and the pseudo-
rational form, calculated with a hybrid method combining the two programs
above.

– Jordan2 takes the matrixA and returns the rational form.
Note that in the current version, there is a small inconsistency, since for the rational
roots of the characteristical polynomial, the Jordan 1 are not on the same side of the
diagonal than the Jordan identity blocs for irreducible factors of degree larger than 1.

This Maple implementation can also be run under Xcas, but it is of course much
faster to call the native Xcas functions.

5 References

– H. Cohen, A Course in Computational Algebraic Number Theory, Springer.
– Elisabetta Fortuna, Patrizia Gianni Square-free decomposition in finite characte-

ristic : an application to Jordon Form computation, ACM SIGSAM Bulletin, v.
33 (4), p. 14-32, 1999

– F.R. Gantmacher. The theory of matrices. Chelsea Pub. Co., New York, 1959.
– Mark Giesbrecht, Nearly Optimal Algorithms For Canonical Matrix Forms, SIAM

Journal on Computing, v.24 n.5, p.948-969, Oct. 1995
– E. Kaltofen, M.S. Krishnamoorthy, and B.D. Saunders. Parallel algorithms for

matrix normal forms. Linear Algebras and its Appl., 136 :189-208, 1990.
– T.M.L. Mulders, A.H.M. Levelt, normform Maple package, 1993 www.maths.warwick.ac.uk/ bjs/normform
– P. Ozello. Calcul exact des formes de Jordan et de Frobenius d’une matrice. PhD

thesis, Univ. Scientifique et Médicale de Grenoble, Grenoble, France, 1987.

14

– Allan Steel, A new algorithm for the computation of canonical forms of matrices
over fields, Journal of Symbolic Computation, v.24 n.3-4, p.409-432, Sept./Oct.
1997

15

