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Abstract

In this note, we fill a gap in the proof of the heuristic GCD in the multivariate
case made by Char, Geddes and Gonnet ([1]) and give some additionnal informa-
tion on this method.

1 Context

The heuristic gcd algorithm is used to computed the gcd of two polynomialsP andQ
with integer coefficients in one or a few variables : the main idea is to evaluate one of
the variableXk at a sufficient large integerz, compute the gcd of the evaluations re-
cursively or as integers and reconstruct a candidate gcd from the gcd of the evaluations
using the representation of coefficients in basisz with symmetric representation. It was
introduced 15 years ago and is used intensively in popular CAS like Maple or MuPAD,
see [3] for more details on the efficiency of this algorithm.

The proof given in the paper of Char, Geddes and Gonnet is correct in one dimen-
sion but is wrong in the multivariate case. Indeed, in the proof of lemma 2 (p.37),
the authors applies the univariate case demonstration to a polynomial they callP (1) at
a pointα that fullfills the hypothesis (6) of lemma 2 for the polynomialP , but they
don’t check thatα fullfills this hypothesis (6) for the polynomialP (1). And there is no
reason forα to fullfill it since P (1) is obtained by evaluation of all but one variable at
integers that sometimes must be non-zero or might even be very large (the keypoint for
the evaluation point of the other variables is that the main coefficient ofP with respect
to theXk variable does not evaluate to zero which implies that the main coefficient of
Q also does not evaluate to zero). Correcting the lemma with the same proof would
require for example that hypothesis (6) would be replaced by :

|α| ≥ 1 + |P (1)|
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whereP (1) can be any evaluation ofP for the variablesXj 6= Xk at integers so that
the degree ofP (1) is the same as the degree ofP with respect toXk. This has three
problems :

• it can increase the size ofα (which will reduce the efficiency of the algorithm)

• it requires an additional step of evaluation of a polynomial at non-zero values.

• it would require fixing the code in CAS using it

Fortunately, we will give an alternative proof of the correctness of the algorithm
as it is implemented in most CAS, extend the ring to the Gaussian integers, and give
another lower bound for the evaluation point that insures we get the gcd (this lower
bound has probably only a theoretical interest)

Theorem 1 LetP andQ be two polynomials depending on the variablesX1, . . . ., Xk,
with integer coefficients or with Gaussian integer coefficients. We use the notation :

P (z) := P (X1, . . . ., Xk−1, z)

Let z be any integer such that|z| ≥ 2 ∗ min(|P |, |Q|) + 2, where|P | denotes the
largest norm of all the coefficients ofP . Assume that the primitive partG of thez-adic
symmetric reconstruction ofgcd(P (z), Q(z)) divides bothP andQ.

ThenG is the gcd ofP andQ. The assumption thatG dividesP andQ is always
true forz sufficiently large.

2 Proof of theorem 1.

Let g = gcd(P (z), Q(z)). From the definition ofG, if α is the integer content of the
z-adic symmetric reconstruction ofg, we have :

g = αG(z), |α| ≤ |z|
2

(1)

If D is the polynomial gcd ofP andQ, thenD(z) divides bothP (z) andQ(z), there-
fore

g = βD(z), β ∈ Z[X1, ..., Xk−1] (2)

If G dividesP andQ,G dividesD, hence there exists a polynomialC such that :

D = CG⇒ D(z) = C(z)G(z) (3)

Combining (1), (2) and (3), we get :

αG(z) = βC(z)G(z) (4)

We want to prove thatC is a constant polynomial. We have the relation

α = βC(z) whereβ ∈ Z,|α| ≤ |z|
2

(5)
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ThereforeC(z) does not depend on the variablesX1, . . . ., Xk−1. More precisely, there
is a polynomialC ′ with integer coefficients such that :

C = C(z) + (Xk − z)C ′ (6)

We want to prove thatC ′ is zero. Assume thatC ′ 6= 0.
We begin by showing thatC ′ can not depend onX1, . . . ., Xk−1 (this is the new

multivariate step). Indeed, ifC ′ has degreed1 6= 0 with respect toX1 for example,
then the highest degree term ofC ′ with respect toX1 is c1(X2, . . . ., Xk)Xd1

1 , hence
the highest degree term ofC with respect toX1 is (Xk − z)c1Xd1

1 . SinceC divides
both P andQ, this highest degree term(Xk − z)c1Xd1

1 divides the highest degree
termp1X

dP,1
1 of P andq1X

dQ,1
1 of Q with respect toX1. ThereforeXk − z divides

p1(X2, . . . ., Xk) andq1(X2, . . . ., Xk). Now we look at the lowest non-zero degree
term ofp1 andq1 with respect toXk: these polynomials of the variablesX2, . . . ., Xk−1

are divisible byz. Since they are not zero, we conclude that at least one non-zero
coefficient ofP andQ is divisible by z. This is a contradiction to the hypothesis
|z| ≥ 2 ∗min(|P |, |Q|) + 2.

We are now reduced to prove the unidimensionnal case sinceC depends only on the
variableXk and the proof of the original article applies, for the sake of completness,
let us recall briefly this proof (see also [2] for a proof in dimension 1). The idea is to
factorC overC :

C(Xk) = ck

degree(C)∏
j=1

(Xk − zj) (7)

SinceC dividesP , C(Xk) dividesP (0, . . . ., 0, Xk), therefore the rootszj of C are
also roots ofP (0, . . . ., 0, Xk). Same forQ. Therefore, there exists a subset of coeffi-
cients ofP or ofQ, therefore bounded bymin(|P |, |Q|), such that

m∑
l=0

alx
l = 0, for x = zj (8)

It is well known that (8) implies :

|x| < A

|am|
+ 1, A = max

0≤i≤m−1
(|ai|) (9)

Indeed, if|x| ≤ 1, (9) is trivial (becauseA = 0 impliesx = 0). Otherwise :

|amxm| = | −
m−1∑
i=0

aix
i| ≤ A

m−1∑
i=0

|x|i = A
|x|m − 1
|x| − 1

therefore, since|x| − 1 > 0 :

|am||x|m(|x| − 1) ≤ A|x|m < A|x|m

which implies (9).
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Now equation (9) gives the bound|zj | < |z|/2 for all j. Applying this bound to
(7), we get :

|C(z)| ≥ |ck|
degree(C)∏

j=1

(|z| − |zj |) >
(
|z|
2

)degree(C)

which contradicts (5). This ends the proof thatG is the gcd ofP andQ.
Note that during the whole proof, we can replace the coefficient ringZ by Z[i]

without any changes : the gcdheu algorithm works if the coefficients are Gaussian
integers.

We finish by giving a theoretical lower bound onz such thatG will always divide
P andQ. This bound will involve the extended gcd algorithm (Bzout identity) onP
andQ. Let us assume first than we are in dimension 1. Sincegcd(P,Q) = D, there
exists an integerγ and polynomialsU andV with integer coefficients such that :

PU +QV = γD (10)

At the pointz, we get thatγD(z) is in the ideal< P (z), Q(z) >=< g >, henceg
dividesγD(z). We already know from (2) thatg = βD(z) whereβ is an integer in the
univariate case. Thereforeβ dividesγ. Now assume that

|z| > 2|D||γ| (11)

where the lower bound depends only of the original polynomialsP andQ. If this
assumption is fullfilled, then|z| > 2|D||β| and the symmetricz-adic representation of
g = βD(z) is the polynomialβD. The primitive part ofβD isD, henceG = D. In
dimension greater than one, trying to apply the same idea will work but with a small
modification. Indeedβ andγ are now polynomials of the variablesX1, ..., Xk−1. To
conclude, we have two choices :

• we accept a denominator depending onX1, .., Xk−1 during the division test of
P andQ by G. In this case, the lower bound (11) on|z| should be2|D| times
the Landau-Mignotte bound on coefficients of the factors ofP andQ,

• we remove the gcd of the coefficients ofP andQ viewed as polynomials inXk

with coefficients inZ[X1, ..., Xk−1]. Thenβ is an integer dividing the polyno-
mial γ and the lower bound (11) is correct.
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