UJF 2011-2012 UE MAT237

Contrôle continu du 2 novembre 2010 de 10h45 à 12h45

Calculettes, documents et portable interdits. Une feuille A4 recto-verso de résumé de cours autorisée. Le barème n'est qu'indicatif de l'importance relative des exercices.

Exercice 1 (5pts) Soit la spirale d'Archimède C d'équation polaire $r(\theta) = \theta$ avec $\theta \in \mathbb{R}$.

On note $h(\theta) = \theta e^{i\theta} \in \mathbb{C}$ l'affixe du point $P(\theta)$ de C de paramètre θ .

- 1) Calculer $h'(\theta)$ puis la longueur de C entre les points P(0) et P(1) [changement de variable $\theta = \operatorname{sh} x$ conseillé].
- 2) Déterminer l'angle φ entre $\overrightarrow{OP}(\theta)$ et $\frac{d\overrightarrow{OP}}{dt}(\theta)$.
- 3) Déterminer le repère de Frenet $(\vec{t}(\theta), \vec{n}(\theta))$ de C au point $P(\theta)$. Donner une construction géométrique du repère $(\vec{t}(1), \vec{n}(1))$.

Exercice 2 (14pts) Soit la courbe Γ paramétrée $t \in [-\pi, \pi] \mapsto M(t) = (x(t), y(t))$ avec

$$\begin{cases} x(t) = (4\cos^2 t + 5)\sin t \\ y(t) = (4\sin^2 t - 1)\cos t \end{cases}$$

On notera $f(t) = x(t) + iy(t) \in \mathbb{C}$ l'affixe du point M(t)

- 1) Calculer x'(t) et y'(t). Vérifier que $f'(t) = 3(4\cos^2 t 1)e^{it}$.
- 2) En déduire la longueur d'arc L entre les points de paramètre 0 et $\pi/4$.
- 3) Déterminer les paramètres des points singuliers de la courbe Γ .
- 4) Calculer f''(t) = x''(t) + iy''(t). En déduire la courbure signée $\kappa(t)$ en un point non singulier de paramètre t.
- 5) Indiquer les symétries de la courbe Γ qui permettent de ramener son tracé à celui de l'arc Γ' des points de paramètres $t \in [0, \pi/2]$.
- 6) Vérifier que le point $f(\pi/3)$ est le seul point singulier de l'arc Γ' . Déterminer la tangente à la courbe en ce point. Montrer que $f'''(\pi/3)$ est linéairement indépendant de $f''(\pi/3)$, en déduire la nature du point singulier $f(\pi/3)$.
- 7) Dresser un tableau de variation pour $t \in [0, \pi/2]$. En déduire un tracé de Γ' puis de Γ grâce à ses symétries.
- 8) Déterminer une paramétrisation $t \in [-\pi, \pi] \to O(t)$ de la développée D de Γ . Que reconnaît-on?

Exercice 3 (6pts) Soit ω la forme différentielle définie sur $\Omega = \mathbb{R}^2 \setminus \{0\}$ par $\omega = \frac{x+y}{x^2+y^2}dx + \frac{x-y}{x^2+y^2}dy$.

- 1) La forme ω est-elle fermée? exacte?
- 2) Calculer l'intégrale curviligne $I_1 = \int_{\gamma_1} \omega$ où γ_1 est le quart de cercle paramétré par $t \in [0, \pi/2] \mapsto (\cos t, \sin t)$.
- 3) Calculer l'intégrale curviligne $I_2 = \int_{\gamma_2} \omega$ où γ_2 est le segment paramétré par $t \in [0,1] \mapsto (1-t,t)$. [on pourra remarquer que $\frac{1}{2t^2-2t+1} = \frac{2}{(2t-1)^2+1}$]

- 4) Comparer les résultats. Que retrouve-t-on?
- 5) Que représente la fonction $f(x,y) = x^2 + y^2$ pour la forme ω ?

Corrigé du contrôle continu du 2 novembre 2010

Exercice 1.

1) $h'(\theta) = e^{i\theta} + \theta i e^{i\theta}$. Comme les vecteurs $\vec{u}(\theta)$ et $\vec{v}(\theta)$ d'affixes $e^{i\theta}$ et $i e^{i\theta}$ sont orthogonaux et unitaires, on a $||P'(\theta)|| = \sqrt{1 + \theta^2}$ et donc la longueur L de C entre les points P(0) et P(1) est avec $a = \operatorname{argsh} 1 = \ln(1 + \sqrt{2})$:

$$L = \int_0^1 \sqrt{1+\theta^2} d\theta = \int_0^a \sqrt{1+\sinh^2 x} \operatorname{ch} x dx = \int_0^a \frac{1}{2} (\operatorname{ch} 2x+1) du = \left[\frac{1}{4} \operatorname{sh} 2x + \frac{x}{2} \right]_0^a = \frac{\sqrt{2}}{2} + \frac{\ln(1+\sqrt{2})}{2} \cdot \frac{\ln(1+\sqrt{2})}{2}$$

[changement de variable $\theta = \sinh x$].

- 2) Toujours dans le repère orthonormé $(\vec{u}(\theta), \vec{v}(\theta))$, la pente du vecteur $\frac{d\overrightarrow{OP}}{dt}(\theta)$ est $\tan \varphi = \theta$ et donc $\varphi = \arctan \theta$.
- 3) Le vecteur $\vec{t}(\theta)$ est d'affixe $h'(\theta)/\sqrt{1+\theta^2}$ et $\vec{n}(\theta)$ celui d'affixe $ih'(\theta)/\sqrt{1+\theta^2}$. Construction géométrique du repère $(\vec{t}(1), \vec{n}(1))$: il s'obtient du repère $(\vec{u}(1), \vec{v}(1))$ en tournant de $\varphi = \arctan 1 = \pi/4$.

Exercice 2.

1) On a $x(t) = (4\cos^2 t + 5)\sin t$ et $y(t) = (4\sin^2 t - 1)\cos t$.

Le calcul donne $x'(t) = 3(4\cos^2 t - 1)\cos t$ et $y'(t) = 3(4\cos^2 t - 1)\sin t$ et donc

$$f'(t) = x'(t) + iy'(t) = 3(4\cos^2 t - 1)e^{it}.$$

2)
$$L = \int_0^{\pi/4} 3(4\cos^2 t - 1)dt = \int_0^{\pi/4} 3(2\cos 2t + 1)dt = \left[3\sin 2t + 3t\right]_0^{\pi/4} = 3(1 + \pi/4).$$

- 3) Les paramètres t des points singuliers de la courbe Γ sont ceux qui vérifient $4\cos^2 t 1 = (2\cos t 1)(2\cos t + 1) = 0$ c'est-à-dire $t = \pm \pi/3$ ou $t = \pm 2\pi/3$.
- 4) On a

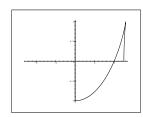
$$f''(t) = (f'(t))' = -24(\sin t \cos t)e^{it} + 3(4\cos^2 t - 1)ie^{it}$$

et donc la courbure signée $\kappa(t) = \det(f'(t), f''(t))/|f'(t)|^3 = (3(4\cos^2 t - 1))^2/|3(4\cos^2 t - 1)|^3 = 1/|3(4\cos^2 t - 1)|$ en un point non singulier de paramètre t.

- 5) Le point M(-t) est le symétrique de M(t) par rapport à l'axe Oy et $M(\pi t)$ est le symétrique de M(t) par rapport à l'axe Ox. Pour tracer la courbe Γ , il suffit donc de tracer l'arc Γ' des points de paramètres $t \in [0, \pi/2]$. En ajoutant à Γ' le symétrique de Γ' par rapport à l'axe Ox, on obtient l'arc Γ'' des points de paramètres $t \in [0, \pi]$ et en ajoutant le symétrique de Γ'' par rapport à l'axe Oy, on obtient la courbe Γ tout entière.
- 6) Le point $f(\pi/3)$ est le seul point singulier de l'arc Γ' d'après 3). En ce point, on a $f''(\pi/3) = -6\sqrt{3}e^{i\pi/3} \neq 0$ donc le vecteur d'affixe $f''(\pi/3) = -6\sqrt{3}e^{i\pi/3}$ dirige la tangente à la courbe en ce point. On a $f'''(t) = a(t)e^{it} + (3(4\cos^2t 1) 24\sin t\cos t)ie^{it}$ et donc $f'''(\pi/3)$ a une composante non nulle selon $ie^{i\pi/3}$. Les deux vecteurs d'affixes $f''(\pi/3)$ et $f'''(\pi/3)$ sont linéairement indépendants donc p=2 et q=3: le point singulier $f(\pi/3)$ est un point de rebroussement de 1ère espèce.
- 7) Tableau de variation pour $t \in [0, \pi/2]$:

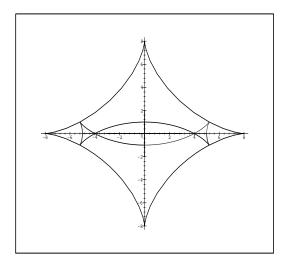
t	0		$\pi/3$		$\pi/2$
x'	9	+	0	_	0
x	0	7	$3\sqrt{3}$	\searrow	5
y'	0	+	0	_	-3
y	-1	7	1	×	0

Tracé de l'arc Γ' correspondant :



8) Le calcul donne $O(t) = M(t) + \rho(t)\vec{n}(t) = (8\cos^3 t, 8\sin^3 t)$. La développée D est une astroïde.

Tracé de Γ et de sa développée D



Exercice 3 Soit ω la forme différentielle définie sur $\Omega = \mathbb{R}^2 \setminus \{0\}$ par $\omega = \frac{x+y}{x^2+y^2}dx + \frac{x-y}{x^2+y^2}dy$.

1) ω n'est pas fermée car

$$\frac{\partial}{\partial y} \frac{x+y}{x^2+y^2} = \frac{x^2-y^2-2xy}{(x^2+y^2)^2} \neq \frac{y^2-x^2+2xy}{(x^2+y^2)^2} = \frac{\partial}{\partial x} \frac{x+y}{x^2+y^2}.$$

ce qui implique que ω n'est pas exacte non plus.

- 2) On a $I_1 = \int_{\gamma_1} \omega = \int_0^{\pi/2} (\cos t + \sin t) d(\cos t) + (\cos t \sin t) d(\sin t) = \int_0^{\pi/2} (\cos 2t \sin 2t) dt = -1 \text{ si } \gamma_1 \text{ est}$ le quart de cercle paramétré par $t \in [0, \pi/2] \mapsto (\cos t, \sin t)$.
- 3) On a $I_2 = \int_{\gamma_2} \omega = \int_0^1 \frac{1}{2t^2 2t + 1} d(1 t) \frac{2t 1}{2t^2 2t + 1} dt = \int_0^1 \left(-\frac{2}{(2t 1)^2 + 1} \frac{1}{2} \frac{(2t^2 2t + 1)'}{2t^2 2t + 1} \right) dt = \left[\arctan(1 2t) \frac{1}{2} \ln(2t^2 2t + 1) \right]_0^1 = -\pi/2 \text{ si } \gamma_2 \text{ est le segment paramétré par } t \in [0, 1] \mapsto (1 t, t).$
- 4) Comme $\int_{\gamma_1} \omega \neq \int_{\gamma_2} \omega$ alors que les chemins γ_1 et γ_2 ont même origine et même extrémité, on retrouve que ω n'est pas exacte.
- 5) Comme $(x^2+y^2)\omega=(x+y)dx+(x-y)dy=d\left(\frac{x^2}{2}+xy-\frac{y^2}{2}\right)$, la fonction $f(x,y)=x^2+y^2$ est un facteur intégrant pour la forme ω .
