

2018-QCM2 — Feuille de réponse

	← Ne coder pas votre numéro d'étudian ci-contre. Ecrivez votre nom et groupe dans l case ci-dessous.
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3	
4 4 4 4 4 4 4 5 5 5 5 5 5 5	
6 6 6 6 6 6 7 7 7 7 7 7	
9 9 9 9 9 9 9	

Question 1 : A B C D E

Question 2 : $\begin{tabular}{lll} A & B & C & D & E & F \end{tabular}$

Question 3 : A B C D E

Question 4 : $\boxed{\mathbf{A}} \ \boxed{\mathbf{B}} \ \boxed{\mathbf{C}} \ \boxed{\mathbf{D}} \ \boxed{\mathbf{E}}$

Question 5: A B C D

2018-QCM2

Pour une question, plusieurs réponses sont possibles.

Question 1 (3.5 pts) On considère la courbe paramétrée polaire $r(\theta) = \cos(\theta)$. Parmi les affirmations suivantes, lesquelles sont vraies ?

- A Le tracer de la courbe est obtenu en prenant $\theta \in [-\pi; \pi]$.
- \blacksquare La courbe admet une symétrie d'axe (Oy).
- C La courbe admet une tangente verticale en $\theta = \pi/2$.
- $\boxed{\mathrm{D}}$ La courbe est entièrement contenue dans le demi-plan $y \geq 0$.
- E La courbe admet au moins un point singulier.

Question 2 (4.5 pts) On considère la courbe paramétrée polaire $r(\theta) = 1/\theta$. Parmi les affirmations suivantes, lesquelles sont vraies ?

- $\boxed{\mathbf{A}}$ La courbe est entièrement contenue dans le demi-plan $y \geq 0$.
- B Le tracer de la courbe est obtenu en prenant $\theta \in [0; +\infty[$.
- $\boxed{\mathbf{C}}$ La courbe admet pour asymptote la droite d'équation y = 0.
- \square La courbe admet une symétrie d'axe (Oy).
- [E] La courbe ne change pas de convexité pour $\theta \in [0; +\infty[$.
- $\boxed{\mathbf{F}}$ La courbe tend en spiralant vers le point (0,0).

Question 3 (2 pts)

Parmi les intégrales suivantes, lesquelles correspondent à une longueur d'arc?

- \triangle $\int_{t_0}^{t_1} \sqrt{(x'(t))^2 + (y'(t))^2} dt$
- $\boxed{\mathbf{C}} \int_{\theta_0}^{\theta_1} \sqrt{(r'(\theta))^2 + (r(\theta))^2} d\theta$
- $\boxed{\mathbf{E}} \int_{t_0}^{t_1} \sqrt{x'(t) + y'(t)} dt$

Question 4 (7 pts) On considère la courbe paramétrée $f(t) = (x(t), y(t)) = (t \cdot \sin(t), t^4)$. Parmi les affirmations suivantes, lesquelles sont vraies?

- $\boxed{\mathbf{A}}$ f admet une tangente horizontale au point t=0.
- $\boxed{\mathrm{B}}$ Le point t=0 est un point régulier.
- $\overline{\mathbb{C}}$ Le point t=0 est un point de rebroussement.
- $\boxed{\mathrm{D}}$ Pour tout entier k, f admet un point singulier en $t = k\pi$.
- [E] Le point $t = \pi$ est un point d'inflexion.

Question 5 (3 pts)

Pour la courbe paramétrique $(x(t), y(t)) = (\ln t, t^2)$ (t > 0), quel est le repère de Frénet?

$$\vec{A}$$
 $\vec{T} = \frac{1}{\sqrt{1+4t^4}}(1,2t^2)$ et $\vec{N} = \frac{1}{\sqrt{1+4t^4}}(-2t^2,1)$

$$\boxed{\mathbf{B}} \ \vec{T} = (\frac{1}{t}, 2t) \text{ et } \vec{N} = (2t, -\frac{1}{t})$$

$$\boxed{\mathbf{C}}$$
 $\vec{T} = (-2t, \frac{1}{t})$ et $\vec{N} = (\frac{1}{t}, 2t)$

$$\boxed{\mathbf{D}} \ \vec{T} = \frac{1}{\sqrt{1+4t^4}} (\frac{1}{t},2t)$$
et $\vec{N} = \frac{1}{\sqrt{1+4t^4}} (-2t,\frac{1}{t})$