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6.7 LCM of one or several integers: lcm 121 
6.7.1 Bezout identity: iegcd 121 
6.7.2 Solve 𝒂𝒖 + 𝒃𝒗 = 𝒄 in ℤ: iabcuv 121 

6.8 Primality 122 
6.8.1 Check whether a number is prime: isPrime isprime 122 
6.8.2 The N-th prime number: ithprime 122 
6.8.3 nextprime 122 
6.8.4 prevprime 123 
6.8.5 Euler’s totient: euler 123 
6.8.6 Legendre symbole: legendre_symbol 123 
6.8.7 Jacobi symbol: jacobi_symbol 124 
6.8.8 Solve 𝒂𝟐 +  𝒂𝒃𝟐 =  𝒑 in ℤ: pa2b2 125 

6.9 Division 125 
6.9.1 Quotient of the Euclidean division: iquo 125 
6.9.2 Remainder of the Euclidean division: irem 125 
6.9.3 Quotient and remainder of the Euclidean division: iquorem 126 
6.9.4 Chinese remainder for integers: ichinrem 126 
6.9.5 Calculation of 𝒂𝒏 𝐦𝐨𝐝 𝒑: powmod 127 

6.10 Modular calculus in ℤ /𝒑 ℤ or in ℤ /𝒑 ℤ [𝒙] 127 
6.10.1 Expand and factorise: normal 127 
6.10.2 Addition in ℤ /𝒑 ℤ or in ℤ /𝒑ℤ[𝒙]: + 128 
6.10.3 Substraction in ℤ /𝒑 ℤ or in ℤ /𝒑ℤ[𝒙]: - 128 
6.10.4 Multiplication in ℤ /𝒑 ℤ or ℤ /𝒑 ℤ [𝒙]: * 129 
6.10.5 Quotient: quo 129 
6.10.6 Remainder: rem 129 
6.10.7 Quotient and remainder: quorem 130 
6.10.8 Division in ℤ /𝒑 ℤ or ℤ /𝒑 ℤ [𝒙]: / 130 
6.10.9 Power in ℤ /𝒑 ℤ or ℤ /𝒑 ℤ [𝒙]: ˆ 131 
6.10.10 Calculation of 𝒂𝒏 𝐦𝐨𝐝 𝒑 or of 𝑨(𝒙)𝒏  𝒎𝒐𝒅 ¶(𝒙), 𝒑: powmod 131 
6.10.11 Inverse in ℤ /𝒑 ℤ: inv or / 132 
6.10.12 Transform an integer into its fraction modulus 𝒑: fracmod 133 
6.10.13 GCD in ℤ /𝒑 ℤ [𝒙]: gcd 133 
6.10.14 Factorization in ℤ /𝒑 ℤ [𝒙]: factor 134 
6.10.15 Determinant of a matrix of ℤ /𝒑 ℤ: det 134 
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6.10.16 Inverse of a matrix of ℤ /𝒑 ℤ: inv 134 
6.10.17 Solve a linear system of ℤ /𝒑 ℤ: rref 134 
6.10.18 Creation of a Galois field: GF 135 
6.10.19 Factorization of a polynomial with coefficients in a Galois field: factor 137 

6.11 Arithmetic of polynomials 137 
6.11.1 List of divisors of a polynomial: divis 137 
6.11.2 Euclidean quotient of two polynomials: quo 138 
6.11.3 Euclidean remainder of two polynomials: rem 139 
6.11.4 Quotient and Euclidean remainder: quorem 140 
6.11.5 GCD of polynomials by Euclid’s algorithm: gcd igcd 141 
6.11.6 Choose the algorithm of the GCD of two polynomials: ezgcd modgcd 143 
6.11.7 LCM of two polynomials: lcm 144 
6.11.8 Bezout identity: egcd 145 
6.11.9 Solve polynomial of the form 𝒂𝒖 + 𝒃𝒗 = 𝒄: abcuv 146 
6.11.10 Chinese remainder: chinrem 146 

CHAPTER 7 MENU POLYNOMIAL 148 

7.1 Canonical form: canonical_form 148 

7.2 Numerical roots of a polynomial: proot 148 

7.3 Roots exact of a polynomial 149 
7.3.1 Exact boundaries of complex roots of a polynomial: complexroot 149 
7.3.2 Exact values of complex rational roots of a polynomial: crationalroot 149 

7.4 Fraction rational, its roots and its exact poles 150 
7.4.1 Roots and exact poles of a rational fraction: froot 150 

7.5 Writing in powers of (𝒙 − 𝒂): ptayl 150 

7.6 Calculation with the exact roots of a polynomial: rootof 151 

7.7 Coefficients of a polynomial: coeff 152 

7.8 Coefficients of a polynomial defined by its roots: pcoeff pcoef 153 

7.9 Truncation of order n: truncate 153 

7.10 List of divisors of a polynomial: divis 153 

7.11 List of factors of a polynomial: factors 154 

7.12 GCD of polynomials by Euclid’s algorithm: gcd 154 

7.13 LCM of two polynomials: lcm 156 

7.14 Create 157 
7.14.1 Transform a polynomial into a list (internal recursive dense format): symb2poly 157 
7.14.2 Transform the internal sparse distributed format of the polynomial into a polynomial writting: 
poly2symb 158 
7.14.3 Coefficients of a polynomial defined by its roots: pcoeff pcoef 158 
7.14.4 Coefficients of a rational fraction defined by its roots and its poles: fcoeff 159 
7.14.5 Coefficients of the term of highest degree of a polynomial: lcoeff 159 
7.14.6 Evaluation of a polynomial: polyEval 159 
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7.14.7 Minimal polynomial: pmin 160 
7.14.8 Companion matrix of a polynomial: companion 161 
7.14.9 Random polynomials: randpoly randPoly 161 
7.14.10 Change the order of variables: reorder 162 

7.15 Algebra 162 
7.15.1 Euclidean quotient of two polynomials: quo 162 
7.15.2 Euclidean remainder of two polynomials: rem 163 
7.15.3 Degree of a polynomial: degree 164 
7.15.4 Valuation of a polynomial: valuation 165 
7.15.5 Coefficient of the term of highest degree of a polynomial: lcoeff 165 
7.15.6 Put in factor of 𝒙𝒏 in a polynomial: factor_xn 166 
7.15.7 GCD of coefficients of a polynomial: content 166 
7.15.8 Primitive part of a polynomial: primpart 166 
7.15.9 Sturm sequence and number of changes of the sign of P on ]𝒂;  𝒃]: sturm 166 
7.15.10 Number of changes of sign on ]𝒂;  𝒃]: sturmab 167 
7.15.11 Sequence of Sturm: sturmseq 168 
7.15.12 Sylvester matrix of two polynomials: sylvester 169 
7.15.13 Resultant of two polynomials: resultant 169 
7.15.14 Chinese remainder: chinrem 172 

7.16 Special 173 
7.16.1 Cyclotomic polynomial: cyclotomic 173 
7.16.2 Groebner basis: gbasis 174 
7.16.3 Reduction according to a Groebner basis: greduce 175 
7.16.4 Hermite polynomial: hermite 175 
7.16.5 Lagrange interpolation: lagrange 176 
7.16.6 Natural splines: spline 177 
7.16.7 Laguerre polynomial: laguerre 179 
7.16.8 Legendre polynomial: legendre 180 
7.16.9 Tchebyshev polynomial of first kind: tchebyshev1 180 
7.16.10 Tchebyshev polynomial of second kind: tchebyshev2 181 

CHAPTER 8 MENU PLOT 182 

8.1 Plot of a function: plotfunc 182 

8.2 Parametric curve: plotparam 182 

8.3 Polar curve: plotpolar 183 

8.4 Plot of a recurrent sequence: plotseq 184 

8.5 Implicit plot in 2D: plotimplicit 184 

8.6 Plot of a function by colors levels: plotdensity 185 

8.7 The field of tangents: plotfield 185 

8.8 Level curves: plotcontour 187 

8.9 Plot of solutions of a differential equation: plotode 187 

8.10 Polygonal line: plotlist 188 

 THE MENU MATH OF THE TOOLBOX KEY 190 
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CHAPTER 9 FUNCTIONS ON REALS 191 

9.1 HOME constants 191 

9.2 The symbolic constants of the CAS: e pi i infinity inf euler_gamma 191 

9.3 Booleans 191 
9.3.1 Boolean values: true false 191 
9.3.2 Tests:  ==  !=  >  >=  <  <= 191 
9.3.3 Boolean operators: or xor and not 192 

9.4 Bit to bit operators 193 
9.4.1 operators bitor, bitxor, bitand 193 
9.4.2 Bit to bit Hamming distance of: hamdist 194 

9.5 Usual functions 194 

9.6 The smallest integer greater than or equal to the argument: CEILING ceiling 194 

9.7 Integer part of a real: FLOOR floor 195 

9.8 Argument without its fractional part: IP 195 

9.9 Fractional part: FP 196 

9.10 Round a real or a complex to 𝒏 decimal places: ROUND round 196 

9.11 Truncate a real or a complex to 𝒏 decimal places: TRUNCATE trunc 198 

9.12 The fractional part of a real: frac 199 

9.13 The real without its fractional part: iPart 199 

9.14 Mantissa of a real: MANT 199 

9.15 Integer part of the logarithm basis 10 of a real: XPON 200 

CHAPTER 10 ARITHMETIC 201 

10.1 Maximum of two or several values: MAX max 201 

10.2 Minimum of two or several values: MIN min 201 

10.3 MOD 201 

10.4 FNROOT 202 

10.5 N-th root: NTHROOT surd 202 

10.6 % 203 

10.7 Complex 203 
10.7.1 The key i 203 
10.7.2 Argument: ARG arg 204 
10.7.3 Conjugate: CONJ conj 204 
10.7.4 Imaginary part: IM im 204 
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10.7.5 Real part: RE re 204 
10.7.6 Sign: SIGN sign 205 
10.7.7 The key Shift +/−: ABS abs 205 
10.7.8 Write of complex in the form of 𝐫𝐞(𝒛) + 𝒊 ∗ 𝐢𝐦(𝒛): evalc 205 
10.7.9 Multiply by the complex conjugate: mult_c_conjugate 206 

10.8 Exponential and Logarithms 206 
10.8.1 Function neperian logarithm: LN ln log 206 
10.8.2 Function logarithm basis 10: LOG log10 207 
10.8.3 Function logarithm basis 𝒃: logb 207 
10.8.4 Function antilogarithm: ALOG alog10 208 
10.8.5 Function exponential: EXP exp 208 
10.8.6 Function EXPM1 209 
10.8.7 Function LNP1 209 

CHAPTER 11 TRIGONOMETRIC FUNCTIONS 211 

11.1 The keys of trigonometric functions 211 

11.2 Cosecant: CSC csc 212 

11.3 Arccosecant: ACSC acsc 212 

11.4 Secant: SEC sec 213 

11.5 Arcsecant: ASEC asec 213 

11.6 Cotangent: COT cot 213 

11.7 Arccotangent: ACOT acot 214 

CHAPTER 12 HYPERBOLIC FUNCTIONS 215 

12.1 Hyperbolic sine: SINH sinh 215 

12.2 Hyperbolic arc sine: ASINH asinh 215 

12.3 Hyperbolic cosine: COSH cosh 215 

12.4 Hyperbolic arc cosine: ACOSH acosh 216 

12.5 Hyperbolic tangent: TANH tanh 216 

12.6 Hyperbolic arc tangent: ATANH atanh 216 

12.7 Other functions 217 
12.7.1 List of variables: lname 217 
12.7.2 List of variables and expressions: lvar 217 
12.7.3 List of variables and algebraic expressions: algvar 218 
12.7.4 Testing the presence of a variable in an expression: has 218 
12.7.5 Evaluate an expression: eval 219 
12.7.6 Not evaluating an expression: QUOTE quote ’ 220 
12.7.7 Numerical evaluation: evalf approx 220 
12.7.8 Rational approximation: exact 221 
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CHAPTER 13 PROBABILITY FUNCTIONS 222 

13.1 Factorial: factorial ! 222 

13.2 Number of combinations of p objects among 𝒏: COMB comb 222 

13.3 Number of permutations of p objects among n: PERM perm 222 

13.4 Random numbers 223 
13.4.1 Random number (real or integer): RANDOM 223 
13.4.2 Random integer: RANDINT 224 
13.4.3 Rand function of the CAS: rand 224 
13.4.4 Random permutation: randperm 227 
13.4.5 Generating a random list: randvector 227 
13.4.6 Draw according to a multinomial law with programs 229 
13.4.7 Draw according to a normal distribution: RANDNORM randNorm 230 
13.4.8 Draw according to an exponential law: randexp 230 
13.4.9 Initializing the series of random numbers: RANDSEED RandSeed srand 231 
13.4.10 Function UTPC 231 
13.4.11 Function UTPF 231 
13.4.12 Function UTPN 231 
13.4.13 Function UTPT 232 

13.5 Density of probability 232 
13.5.1 Density of probability of the normal distribution: NORMALD normald 232 
13.5.2 Density of probability of the Student law: STUDENT student 233 
13.5.3 Density of probability of the χ2: CHISQUARE chisquare 233 
13.5.4 Density of probability of the Fisher law: FISHER fisher snedecor 233 
13.5.5 Density of probability of the binomial law: BINOMIAL binomial 233 
13.5.6 Density of probability of the Poisson law: POISSON poisson 234 

13.6 Function of distribution 234 
13.6.1 Function of distribution of the normal distribution: NORMALD_CDF normald_cdf 234 
13.6.2 Function of distribution of the Student law: STUDENT_CDF student_cdf 235 
13.6.3 Function of distribution of the 𝝌𝟐 law: CHISQUARE_CDF chisquare_cdf 236 
13.6.4 The function of distribution of the Fisher-Snedecor law: FISHER_CDF fisher_cdf 
snedecor_cdf 236 
13.6.5 Function of distribution of the binomial law: BINOMIAL_CDF binomial_cdf 237 
13.6.6 Function of distribution of the Poisson law: POISSON_CDF poisson_cdf 238 

13.7 Inverse distribution function 238 
13.7.1 Inverse normal distribution function: NORMALD_ICDF normald_icdf 238 
13.7.2 Inverse distribution Student’s function: STUDENT_ICDF student_icdf 239 
13.7.3 Inverse function of the function of distribution of the 𝝌𝟐 law: CHISQUARE_ICDF 
chisquare_icdf 240 
13.7.4 Inverse of the function of distribution of the Fisher-Snedecor law: FISHER_ICDF 
fisher_icdf snedecor_icdf 240 
13.7.5 Inverse distribution function of the binomial law: BINOMIAL_ICDF binomial_icdf 240 
13.7.6 Inverse distribution function of Poisson: POISSON_ICDF poisson_icdf 241 

CHAPTER 14 STATISTICS FUNCTIONS 242 

14.1 Statistics functions at one variable 242 
14.1.1 The mean: mean 242 
14.1.2 The standard deviation: stddev 243 
14.1.3 The standard deviation of the population: stddevp stdDev 243 
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14.1.4 The variance: variance 244 
14.1.5 The median: median 245 
14.1.6 Different statistics values: quartiles 245 
14.1.7 The first quartile: quartile1 246 
14.1.8 The third quartile: quartile3 246 
14.1.9 The quantile: quantile 246 
14.1.10 The histogram: histogram 247 
14.1.11 The covariance: covariance 248 
14.1.12 The correlation: correlation 250 
14.1.13 Covariance and correlation: covariance_correlation 251 
14.1.14 Polygonal line: polygonplot 252 
14.1.15 Polygonal line: plotlist 252 
14.1.16 Polygonal line and cloud of plots: polygonscatterplot 253 
14.1.17 Linear interpolation: linear_interpolate 253 
14.1.18 Linear regression: linear_regression 254 
14.1.19 Exponential regression: exponential_regression 255 
14.1.20 Logarithmic regression: logarithmic_regression 255 
14.1.21 Polynomial regression: polynomial_regression 257 
14.1.22 Power regression: power_regression 257 
14.1.23 Logistic regression: logistic_regression 258 

CHAPTER 15 STATISTICS 261 

15.1 Statistics functions on a list: mean, variance, stddev, stddevp, median, quantile, 
quartiles, quartile1, quartile3 261 

15.1.1 Statistics functions on the columns of a matrix: mean, stddev, variance, median, 
quantile, quartiles 263 

15.2 Tables indexed by two strings: table 265 

CHAPTER 16 LISTS 267 

16.1 Function MAKELIST makelist 267 

16.2 Function SORT sort 268 

16.3 Function REVERSE 268 

16.4 Concatenate: CONCAT concat 268 
16.4.1 Add an element at the end of a list: append 270 
16.4.2 Add an element at the beginning of a list: prepend 270 

16.5 Position in a list: POS 271 

16.6 Function DIM dim SIZE size length 271 
16.6.1 Get the reversed list: revlist 272 
16.6.2 Get the list swapped starting from its n-th element: rotate 273 
16.6.3 Get the list shifted starting from its n-th element: shift 273 
16.6.4 Removing an element from a list: suppress 274 
16.6.5 Get the list without its first element: tail 274 
16.6.6 Removing elements from a list: remove 274 
16.6.7 Right and left part straight of a list: right, left 275 
16.6.8 Checking whether an element is in a list: member 275 
16.6.9 Checkin whether an element is in a list: contains 276 
16.6.10 Counting the elements of a list or of a matrix such as a property: count 276 
16.6.11 Select elements of a list: select 278 
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16.7 List of differrences between consecutive terms: ΔLIST deltalist 279 

16.8 Sum of the elements of a list: ΣLIST sum 279 

16.9 Product of the elements of a list: ΠLIST product 280 
16.9.1 Apply a function of one variable to the elements of a list: map apply 280 
16.9.2 Apply a function of two variables to elements of two lists: zip 282 

16.10 Convert a list to a matrix: list2mat 283 

16.11 Convert a matrix to a list: mat2list 283 

16.12 Useful functions for the lists and the components of a vector 283 
16.12.1 Norms of a vector: maxnorm l1norm l2norm norm 283 
16.12.2 Normalizing the components of a vector: normalize 284 
16.12.3 Cumulated sums of the elements of a list: cumSum 285 
16.12.4 Term by term sum of two lists: + .+ 285 
16.12.5 Term by term difference of two lists: - .- 286 
16.12.6 Term by term product of two lists: .* 287 
16.12.7 Quotient term by term of two lists: ./ 287 

CHAPTER 17 STRINGS OF CHARACTERS 288 

17.1 Write a string or a character: " 288 
17.1.1 To concatenate two numbers and strings: cat + 289 
17.1.2 Concatenating a sequence of words: cumSum 289 
17.1.3 Finding a character in a string: INSTRING inString 290 

17.2 ASCII codes: ASC asc 290 

17.3 Character from ASCII code: CHAR char 291 
17.3.1 Converting a real or an integer into a string: string 291 

17.4 Use a string as a number or a command: expr 292 
17.4.1 Use a string as a number 292 
17.4.2 Use a string as a command name 293 

17.5 Evaluate an expression in the form of a string: string 293 

17.6 inString 294 

17.7 Left part of a string: left 294 

17.8 Right part of a string: right 294 

17.9 Mid part of a string: mid 295 

17.10 Rotate last character: rotate 295 

17.11 Length of a string: dim DIM size SIZE length 295 

17.12 Concatenate two strings: + 296 

17.13 Get the list or the string without its first element: tail 297 

17.14 First element of a list or of a string: head 297 
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CHAPTER 18 POLYNOMIALS 298 

18.1 Coefficients of a polynomial: POLYCOEF 298 

18.2 Polynomial from coefficients: POLYEVAL 298 

18.3 Expand a polynomial: POLYFORM 299 

18.4 Roots of a polynomial from its coefficients: POLYROOT 301 

CHAPTER 19 RECURRENT SEQUENCES 302 

19.1 Values of a recurrent sequence or of a system of recurrent sequences: seqsolve 302 

19.2 Values of a recurrent sequence or of a system of recurrent sequences: rsolve 304 

CHAPTER 20 MATRICES 307 

20.1 Generalities 307 

20.2 Definition 307 
20.2.1 Dimension of a matrix: dim 307 
20.2.2 Number of rows: rowDim 308 
20.2.3 Number of columns: colDim 308 

20.3 Operations on rows and columns useful in programming 308 
20.3.1 Add a column to a matrix: ADDCOL 308 
20.3.2 Swap rows: SWAPROW rowSwap 309 
20.3.3 Swap columns: SWAPCOL colSwap 309 
20.3.4 Extract rows from a matrix: row 310 
20.3.5 Extract columns from a matrix: col 310 
20.3.6 Remove columns from a matrix: DELCOL delcols 310 
20.3.7 Remove rows from a matrix: DELROW delrows 311 
20.3.8 Extract a sub-matrix from a matrix: SUB subMat 312 
20.3.9 Redimension a matrix or a vector: REDIM 313 
20.3.10 Replace a portion of a matrix or of a vector: REPLACE 313 
20.3.11 Add a row to a matrix: ADDROW 314 
20.3.12 Add a row to another: rowAdd 314 
20.3.13 Multiply a row by an expression: SCALE mRow 315 
20.3.14 Add k times a row to another: SCALEADD mRowAdd 315 

20.4 Creation and arithmetic of matrices 315 
20.4.1 Addition and substraction of matrices: + - .+ .- 315 
20.4.2 Multiplication of matrices: * &* 316 
20.4.3 Rising a matrix to an integer power: ˆ &ˆ 316 
20.4.4 Hadamard product (infix version): .* 317 
20.4.5 Hadamard division (infix version): ./ 317 
20.4.6 Hadamard power (infix version): .ˆ 317 

20.5 Transpose matrix: transpose 317 

20.6 Conjugate transpose matrix: TRN trn 317 

20.7 Determinant: DET det 318 
20.7.1 Characteristic polynomial: charpoly 318 
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20.8 Vectorial field and linear applications 320 
20.8.1 Basis of a vectorial subspace: basis 320 
20.8.2 Intersection basis of two vectorial subspaces: ibasis 320 
20.8.3 Image of a linear application: image 320 
20.8.4 Kernel of a linear application: ker 320 

20.9 Solve a linear system: RREF rref 321 
20.9.1 Solve of 𝑨 ∗ 𝑿 = 𝑩: simult 322 

20.10 Make matrices 323 
20.10.1 Make a matrix from an expression: MAKEMAT makemat 323 
20.10.2 Matrix of zeros: matrix 323 
20.10.3 Matrix identity: IDENMAT identity 323 
20.10.4 Matrix random: RANDMAT randMat randmatrix ramn 324 
20.10.5 Jordan block: JordanBlock 325 
20.10.6 N-th Hilbert matrix: hilbert 325 
20.10.7 Matrix of an isometry: mkisom 325 
20.10.8 Vandermonde matrix: vandermonde 326 

20.11 Basics 326 
20.11.1 Schur norm or Frobenius norm of a matrix: ABS 326 
20.11.2 Maximum of the norms of the rows of a matrix: ROWNORM rownorm 327 
20.11.3 Maximum of matrix norms of matrix columns of a matrix: COLNORM colnorm 328 
20.11.4 Spectral norm of a matrix: SPECNORM 329 
20.11.5 Spectral radius of a square matrix: SPECRAD 329 
20.11.6 Condition number of an invertible square matrix: COND cond 330 
20.11.7 Rank of a matrix: RANK rank 331 
20.11.8 Step of the Gauss-Jordan reduction of a matrix: pivot 332 
20.11.9 Trace of a square matrix: TRACE trace 332 

20.12 Advanced 333 
20.12.1 Eigenvalues: EIGENVAL eigenvals 333 
20.12.2 Eigenvectors: EIGENVV eigenvects 334 
20.12.3 Jordan matrix: eigVl 334 
20.12.4 Jordan matrix and its transfer matrix: jordan 335 
20.12.5 Power n of a square matrix: matpow 335 
20.12.6 Diagonal matrix and its diagonal: diag 336 
20.12.7 Cholesky matrix: cholesky 336 
20.12.8 Hermite normal form of a matrix: ihermite 336 
20.12.9 Matrix reduction to Hessenberg form: hessenberg 336 
20.12.10 Smith normal form of a matrix: ismith 338 

20.13 Factorization 338 
20.13.1 LQ decomposition of a matrix: LQ 338 
20.13.2 Minimal norm of the linear system 𝑨 ∗ 𝑿 = 𝑩: LSQ 339 
20.13.3 LU decomposition of a square matrix: LU 340 
20.13.4 LU decomposition: lu 341 
20.13.5 QR decomposition of a square matrix: QR qr 342 
20.13.6 Matrix reduction to Hessenberg form: SCHUR schur 343 
20.13.7 Singular value decomposition: SVD svd 343 
20.13.8 Singular values: SVL svl 345 

20.14 Vector 346 
20.14.1 Cross product: CROSS cross 346 
20.14.2 Dot product: DOT dot 346 
20.14.3 Norm l2: l2norm 347 
20.14.4 Norm 𝒍𝟏: l1norm 347 
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20.14.5 Norm of the maximum: maxnorm 348 

CHAPTER 21 SPECIAL FUNCTIONS 349 

21.1 𝜷 function: Beta 349 

21.2 𝚪 function: Gamma 350 

21.3 Derivatives of the DiGamma function: Psi 351 

21.4 The ζ function: Zeta 352 

21.5 𝒆𝒓𝒇 function: erf 352 

21.6 erfc function: erfc 353 

21.7 Exponential integral function: Ei 354 

21.8 Sine integral function: Si 355 

21.9 Cosine integral function: Ci 356 

21.10 𝑯𝒆𝒂𝒗𝒊𝒔𝒊𝒅𝒆 function: Heaviside 356 

21.11 𝑫𝒊𝒓𝒂𝒄 distribution: Dirac 357 

CHAPTER 22 CONSTANTS AND CALCULATIONS WITH UNITS 358 

22.1 Shifted key Units 358 

22.2 Units 358 
22.2.1 Notation of units 358 
22.2.2 Avalaible prefixes for units names 358 
22.2.3 Calculations with units 359 

22.3 Tools 360 
22.3.1 Conversion of a unit object to another unit: convert => 360 
22.3.2 Units conversion to MKSA units: mksa 361 
22.3.3 Factorize a unit in a unit object: ufactor 361 
22.3.4 Simplify a unit: usimplify 362 

22.4 Physics constants 362 

22.5 Units 362 
22.5.1 Units notation 362 
22.5.2 Calculations with units 362 
22.5.3 Conversion of a unit object into another unit: convert => 363 
22.5.4 Units conversion to MKSA units: mksa 365 
22.5.5 Conversions between degree Celsius and Fahrenheit: Celsius2Fahrenheit 
Fahrenheit2Celsius 365 
22.5.6 Factorization of a unit: ufactor 366 
22.5.7 Simplify a unit: usimplify 366 

22.6 Constants 366 
22.6.1 Notation of chemical, physics or quantum mechanics constants. 366 
22.6.2 Physics constants library 367 
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CHAPTER 23 FUNCTIONS OF 3D GEOMETRY 368 

23.1 Common perpendicular to two 3D lines: common_perpendicular 368 

 THE APPLICATIONS AND THE APPS KEY 369 

CHAPTER 24 THE MENU GEOMETRY 370 

24.1 Generalities 370 

24.2 Point 371 
24.2.1 Point defined as barycenter of n points: barycenter 371 
24.2.2 Point in geometry: point 372 
24.2.3 Midpoint of a segment: midpoint 373 
24.2.4 Isobarycenter of n points: isobarycenter 374 
24.2.5 Randomly define a 2D point: point2d 374 
24.2.6 Polar point in plane geometry: polar_point 375 
24.2.7 One of the intersection points of two geometrical objects: single_inter 375 
24.2.8 All intersection points of two geometrical objects: inter 376 
24.2.9 Orthocenter of a triangle: orthocenter 377 
24.2.10 Vertices of a polygon: vertices 377 
24.2.11 Vertices of a polygon: vertices_abca 378 
24.2.12 Point on a geometrical object: element 378 
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Generalities 

With the HP Prime calculator you have two calculators in one: one to do symbolic and exact 
computation (key CAS), the other to do approximate calculation (key HOME). This is the fruit of the 
union in the calculator of two softwares; Giac/Xcas for the CAS and the software developed by HP for 
their scientific and graphic calculators in HOME. These two logics are often contradictory, which 

required a huge effort of consistency to allow the use of HOME data in the CAS and reciprocally, 
which effort being still continued up to today. 
Then, the logic of a symbolic computation software is to not have pre-assigned variable and to allow to 
store any kind of data in a variable which name is free (in particular a name of variable may be more 
than one letter long) whereas the logic of calculators HP38/39/40 was to have pre-assigned variables 
which name is a letter or a letter followed by a digit, and storing one kind only of data: A, B..Z for reals, 
Z0, ..Z9 for complex, L0, L1..L9 for lists, M0, M1..M9 for vectors or matrices etc., .... This has of course 
major consequences, if we write ab in the CAS, this designates a variable with a two-letter name, 
whereas AB in HOME designates the product (implicit multiplication) of variables A and B. 
To avoid confusion, it is advised to use names of variables in lower case in the CAS, names of CAS 
commands being in lower case (exceptions aside), while names of command in HOME are in upper 
case. This choice is eased by the lock of alphabetic keyboard in lower case in the CAS an in upper 
case in HOME. Many commands exist in the two versions (HOME in upper case, CAS in lower case), 
most of the time they do the same thing, but, unfortunately there are exceptions, for example size 
and SIZE (see below). 
Please also note that in HOME, there is a difference between the lists (L1:={1,2,3}) and the 
vectors (M1:=[1,2,3]) and the notion of sequence does not exist, whereas in the CAS there is no 
difference between lists and vectors (v:=[1,2,3] or v:={1,2,3}) and we may work with a 
sequence (s:=1,2,3). 
More to say, warning! The history does not always reflect what has been typed in, in the history of 
HOME the lower case letters are changed into upper case letters whereas in the history of CAS, it 
depends on whether Textbook is checked or not in General Setting (Shift (Settings)). 
 
Example: 
In HOME screen or in the CAS screen, we enter: 
SIZE(1,2,3) or size(1,2,3) 
We get in the history SIZE(1,2,3) and as a result: 3 
In HOME screen, we enter: 
SIZE([1,2,3]) or size([1,2,3]) 
We get in the history SIZE([1,2,3]) and as a result: {3} 
In the CAS screen, we enter: 
SIZE([1,2,3]) or size([1,2,3]) 
We get in the history (if we did not check Textbook): 
SIZE([1,2,3]) or size([1,2,3]) and as a result: 3 
In HOME screen, we enter: 
SIZE([[1,2,3],[4,5,6]]) or size([[1,2,3],[4,5,6]]) 
We get in the history SIZE([[1,2,3],[4,5,6]]) and as a result: {2,3} 
In the CAS screen, we enter: 
size([[1,2,3],[4,5,6]]) 

We get in the history (if we did not check Textbook): 
size([[1,2,3],[4,5,6]]) 

and as a result: 2 
but if we enter in the CAS: 
SIZE([[1,2,3],[4,5,6]]) 

We get in the history (if we did not check Textbook): 
SIZE([[1,2,3],[4,5,6]]) and as a result: [2,3] 
ADVICE: make your choice: either you always work in HOME, either in the CAS because commands 
with same name not returning the same thing in HOME or in CAS quickly becomes a true brain teaser! 
Note for the users of Xcas: the getting started phase of the calculator mode CAS should be quick. 
However, please note what follows: 
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– some commands are not available, as HP did not wish to implement them (for example all the 
commands on permutations) 

– some synonyms are not available, and unfortunately HP did not make the choice of Xcas 
native commands in lower case but the choice of mixte commands with a mixte name with an 
upper case letter in the middle of the command name. 

– interface for the use of the programming language of Xcas is still perfectible (for example the 
alphabetic keyboard is locked in upper case even if we select a CAS program, the interface of 
the function of debugging debug is experimental...) 

CAS and HOME keys 

With the HP Prime calculator you can choose of working in exact mode or in approximate mode: there 
are two screens, one to do the exact calculation it is the CAS screen, the other to do the approximate 
calculation, it is the HOME screen. 
In CAS screen, we can also do approximate calculation for example 1/2 is an exact number and 
evalf(1/2)=0.5 is an approximate number. If in one expression there is an approximate number 

the result will be approximate, for example: 1/2 + 1/3 returns 5/6 whereas 0.5 + 1/3 returns 

0.833333333333. 
In CAS screen, commands are in lower case whereas they are in upper case in HOME screen. If you 
press on CAS, you work in exact mode, if you press on HOME you work in approximate mode. 
What does this change ? 

For example, we will consider 2 sequences u and v defined by: 

𝑢0 =
2

3
, 𝑢𝑛+1 = 2𝑢𝑛 −

2

3
(𝑛 ≥ 0) 

and 

𝑣0 =
2

3
, 𝑣𝑛+1 = 2(𝑢𝑛 −

1

3
)(𝑛 ≥ 0) 

 
In the CAS screen 

We press CAS and we enter to get the first terms of u: 
2/3 then Enter and we get 2/3. 
We enter: 
2*Ans-2/3 then Enter, Enter, ... 
and we get 2/3, 2/3, 2/3... 

In exact mode, i.e. in the CAS screen, the sequence u is then stationnary and equals 
2

3
. 

In this case the result is in accordance with the theoretical result. 

Still in the CAS, to get the first terms of v, we enter: 
2/3 then Enter and we get 2/3. 
We enter: 
2*(Ans-1/3) then Enter,Enter... 
and we get 2/3, 2/3, 2/3... 

In exact mode, i.e. in the CAS screen, the series v is then stationnary and equals 
2

3
. 

The result, here, is still in accordance with the theoretical result. 
 
In HOME screen 

Now we press HOME and to get the first terms of u, we enter the value of 𝑢0: 
2/3 then Enter and we get 0.666666666667 then we enter: 
2*Ans-2/3 then Enter, Enter, Enter... 
and we get 0.666666666663,0.666666666663... 
The result is here almost in accordance with the theoretical result. 
In approximate mode i.e. in HOME screen (key ), the sequence u is then stationary starting from n > 0 

and equals 0.666666666663. 

Still in HOME (key ), we enter to get the first terms of v: 
2/3 then Enter and we get 0.666666666667. 
We enter: 
2*(Ans-1/3) then Enter, Enter, Enter, ... 
and we get 
v1 =0.666666666668, 
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v2 =0.666666666670, 

v3 =0.666666666674, 
then 
0.666666666682, 

0.666666666682, 

0.666666666698, 

0.666666666730, 

0.666666666794, 

0.666666666922 

etc., ... 
and after having pressed Enter 51 or 52 times, we get: 
v40 = 1.76617829443 and v50 =2 252.46648036 etc.. In approximate mode, i.e. in HOME screen 

(key ), the series v then tends to +∞. 
We clearly see that, in approximate mode, calculations errors accumulate themselves and that the 
results displayed are not always in accordance with the theroretical results! 
 
How the calculations are performed in HOME. 
In HOME, the real numbers are displayed with at most 12 significative digits but the calculations are 

performed with more digits and then rounded to be displayed, for example: 
1/3 will be represented by 0.333333333333 (with 12 times the digit 3) 

2/3 will be represented by 0.666666666667 (with 11 times the digit 6 and a 7) 

4/3 will be represented by 1.33333333333 (with 1 then 11 times the digit 3) 

2*0.666666666667 or 2*0.666666666663 will be represented by 1.33333333333 (with 1 then 11 times 
the digit 3) 
For the calculation of u we enter u0: 
2/3 we get 0.666666666667 then, 
2*Ans-2/3 we get 1.33333333333-0.666666666667=0.666666666663 then, 

2*Ans-2/3 we get because 1.33333333333-0.666666666667=0.666666666663 

etc., ... The sequence u is then stationary for n > 0 and equals 0.666666666663. 

For the sequence v the calculation is done once 2 has been put in factor. 
We enter v0: 
2/3 we get 0.666666666667 then, 2*(Ans-1/3) in the different operations one always has 12 
decimal places, we get: 
2*(0.666666666667-0.333333333333)=2*0.333333333334=0.666666666668. 

Then, we have: 

If A:= 0.666666666666 and B:= 0.333333333333, we have A == 2 ∗ B and B ==A − B but, 2/3 = A + 10−12 
and 1/3 = B 
Then, we have: 

𝑣0  =  
2

3
 =  𝐴 + 10−12 

𝑣1  =  2 ∗ ( 𝐴 + 10
−12 − 𝐵) = 2 ∗ (𝐵 + 10−12) = 𝐴 + 2 ∗ 10−12 

then 

𝑣2  =  2 ∗ ( 𝐴 + 2 ∗ 10
−12 − 𝐵) = 2 ∗ (𝐵 + 10−12) = 𝐴 + 22 ∗ 10−12 

then... 

𝑣38  =  𝐴 + 2
38 ∗ 10−12 = 0.94154457361  

𝑣39  =  𝐴 + 2
39 ∗ 10−12 = 1.21642248055 

𝑣40  =  𝐴 + 2
40 ∗ 10−12 = 1.76617829445 

… 

𝑣50  =  𝐴 + 2
50 ∗ 10−12 = 1126.56657351 

𝑣51  =  𝐴 + 2
38 ∗ 10−12 = 2252.46648036 

 
then the formula might not be true anymore due to rounding errors... 
If we use the command ITERATE which iterates, starting by the value 2/3, 90 times the function 
which to X matches 2*(X-1/3), we enter: 
ITERATE(2*(X-1/3),x,2/3,90) 
we get: 
1.23794003934E15 

and 
ITERATE(2*(X-1/3),x,2/3,91) 
we get: 
2.4758800788=2*1.23794003934E15 
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So 𝑣𝑛 = 2
𝑛−90 ∗ 𝑢90 and when n tends to the infinite  𝑣𝑛 = 2

𝑛−90 ∗ 𝑢90 tends to the infinite. 

Reset and clear 

To reset the calculator: 
– Press the keys F O C (not in ALPHA mode), 
– Perform a reset with a paper clip by keeping the keys pressed, 
– Release the keys then choose 4 FLS Utility, then 3 Format Disk C, then Esc then 9 Reset. 

To clear: 
– the last character entered, press Del (the big black arrow). 
– the entry line, press ON 
– the last result or the last command of the history, press Shift-Del 
– all the history, press Shift-Esc (Clear). 

Tactile screen 

We notice that the menus at the bottom of the screen (here named push buttons) can only be 
accessed by touching with the finger: there are no soft keys F1...F6 anymore! 
The screen is tactile and this allows to easily copy a entry line or an answer to the history, or read or 
re-read a too long answer, to select a menu then a command of the key . 
For this: 

– it is enough to look for the command or the answer to be copied by scrolling in the history with 
a finger, then to select the command or the answer to be copied still with a digit and press 
Copy on the push buttons when the line is hightlighted or to press twice quickly with the finger 
on the line to be copied, 

– to read a too long answer it is enough to sweep the line of the answer with a finger 
– we open a menu with a finger or by its number, we do the same if there is a sub-menu, then 

we select the function with a finger or with its number and that causes the function to be 
written at left of the entry line: all that is left is to enter the parameters of this function and to 
make with Enter . The result is then written at the right. 

Keys 

– CAS 
You must press the key CAS to do the symbolic computation. The letters in lower case can 
then be accessed in ALPHA mode and the key xtθn allows to directly get x. 

– HOME 
You must press the key HOME to quit the symbolic computation and do numerical calculation. 

– Apps 
You must press the key Apps to use the different Application which have, each one, 3 views: a 
Symbolic view which stores the commands that were called (key Symb ), a Plot view which 
executes the graphical commands (key Plot ) and a Numeric view for the numerical results 
(key Num). 

– Menu 
The key Menu returns a specific menu depending on what we are doing. For instance, from the CAS 
or from HOME you can exchange data between the CAS screen and the HOME screen, from the Plot 
screen of the geometry application you can change the color of objects or do filled figures with the 
Options command (push buttons) or by filling with color, in the Symbolic view, the square located 
between the cell used to set and the name of the object (by touching this square one opens the color 
palet). 

– Help 
The key Help gives help on the different commands that are in the Cmds menu (push buttons) 
or in the menu of the key: 
You must highlight this command with the arrows then press Help or we enter this command 
and we press Help. 

– Esc 
The key Esc allows to cancel the command in progress 
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General settings 

We opens the screen of the general setting with Shift-HOME. 
You can for example choose: 

– to enter the commands in 2D (choose Entry: Textbook), 
– to get the answers in 2D (check Textbook Display), 
– to have the menus displaying the name of the commands rather than a theme (set Display 

Menu), 
– to set the calculator in exam mode 

CAS settings: Shift CAS 

We enter: Shift CAS (Settings). 
To be in complex mode you must check i. 
To use of complex variables you must check Complex. 
For instance: 
solve(x^3+2*x^2+x+2=0,x) returns [-2] in real mode 
solve(x^3+2*x^2+x+2=0,x) returns [-2,-i,i] in complex mode 
To use square roots in a factorization you must check: 

Use √ 
For instance: 

factor(x^2+x-1) returns x^2+x-1 if Use √ is not checked 
factor(x^2+x-1) returns (x+(-(sqrt(5))+1)/2)*(x+(sqrt(5)+1)/2) if Use √ is checked 

Calculator settings: Shift HOME 

The key Shift HOME (Settings) allows to do the settings of the calculator. 
To get in the menus or the sub-menus the names of the commands, Display Menu must not be 
checked. 
If Display Menu is checked, the menus and the sub-menus describe the commands and returns the 
command when a menu or a sub-menu is selected. 

Symbolic computation functions 

We access functions of symbolic computation by pressing the key . 
These functions are sorted by category. 
Use Shift (Settings) and uncheck Display Menu to get the name of the functions and not the 
description of these functions. 
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 Menu CAS of the Toolbox key 
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Chapter 1 Generalities 

 

1.1 Calculations in the CAS 

With the CAS, we do exact calculation. 
With the CAS we can use the variables of Home which have as a name one of the upper case letters 
and which have by default the value 0 but also variables which have as names a string of lower case 
letters or of digits starting by a lettre. These variables have by default no value: these variables are 
symbolic (without value) as long as we do not affect one to them. 
In CAS, the commands are in general in lower case, it is why the key ALPHA allows to enter a lower 
case and ALPHA, ALPHA locks the keyboard in lower case (no need to press Shift). 
With the CAS, the simplifications are not done automatically, only the useless parentheses are 
removed and the fractions are simplified. To get the simplified form of an expression, you must use the 
command simplify. 
We notice that the answer can be provided in an equation editor. 

1.2 Priority of operators 

The four following operations are infix operators. 
+ designates the addition, 
- designates the substraction, 
* designates the multiplication, 
/ designates the division. 
The raising to power is obtained with the key x^y and is written with ^ in the history. 
To do the calculations: 

– we do the calculations between the parentheses, 
– we do the raising to powers, 
– we do the multiplications and the divitions in the order from left to right, 
– we do the additions and the substractions in the order from left to right. 

1.3 Implicit multiplication 

In CAS, to do a multiplication, the sign * can be omitted when we do the multiplication of a number by 
a variable. It is allowed to write 2x but you must write a*b to do the product of the variable a by b, 
because ab is also a name of variable. 
We can write for example: 
2x+3i+4pi 

We cannot write: 
(2)x, (2)(x+y), (2x+3)(x+y) 

We must write: 
2x or 2*(x+y) or (2x+3)*(x+y) 
 
Warning! x2 and xy designate the name of a variable and f(x+1) is the value of the function f at 
x+1. 

1.4 Duration of a calculation: time 

The evaluation of the duration of a long calculation is written in blue. 
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This evaluation of the duration is approximate, if you want more precision on the duration of your 
calculation, you must use the command time which returns the time taken for the evaluation in 
seconds. 
time takes as argument a command and returns the time counted in seconds. 
We enter:  

time(factor(x^10-1)) 

We get in real mode: 

0.0045 

We enter: 

time(factor(x^100-1)) 

We get in real mode: 

0.0092 

We enter: 

time(factor(x^10-1)) 

We get in complex mode (set i in the CAS Settings): 

0.272 

We enter: 

time(factor(x^100-1)) 

We get in complex mode: 

29.794 

1.5 Lists and sequences in the CAS 

With the CAS, the lists (resp. the vectors) are put between brackets by { } or by [] and the indeces are 
put between brackets or between parentheses. 
All indices start at 1. 
For instance, we enter: 

l:=[1,2,3,4]; 

ll:={1,2,3,4}; l[2] or ll[2] returns 2 

l(2) or ll(2) returns 2 

With the CAS, the type sequence is also available, which is a series of objects. The indices of a 
sequence also start at 1. 
For instance, we enter: 

s:=1,2,3,4 

s[2] or s(2) returns 2. 

With this type sequence, the concatenation is easy. 
To define the emtpy sequence, we enter: 

s:=NULL; 

If we did not check Textbook or Algebraic in the general setting (Shift HOME), we get: 

NULL 
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Then, we enter: 

s:=s,1,2 

We get: 

seq[1,2] 

We enter: 

s[1]) 

We get: 

2 

Whereas with the type list, to define the emtpy list, we enter: 

l:=[]; 

Then, we enter: 

l:=concat(l,[1,2]) 

We get: 

[1,2] 

We enter: 

l[1]) 

We get: 

2 

To transform a list into a sequence; we use the operator op. 
We enter: 

op(l) 

We get: 

seq[1,2] 

To transform a sequence into a list, it is enough to put the sequence between []. 
We enter: 

[s]) 

We get: 

[1,2] 

1.6 Difference between expressions and functions 

You must clearly distinguish expression and function. 
An expression is a series of terms separated by the sign of an operation. 
A term is a number, or a name of variable, or a product, or a pair of parentheses containing an 
expression. 
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Convention: the multiplication and the division have priority over the addition and the substraction. 
The sign ∗  is sometimes omitted in the writting, for example one writes: 2x instead of 2∗x. 
A real function f defined on I part of R is an application which at each number x of I maps an 
expression f(x). The value of the function in one point x is then given by an expression. 
Example 
With HP Prime we enter in the CAS: 
xpr:=3*x+2 
We then define the expression xpr 
We enter: 

f(x):=3*x+2 

We then define the function f 
We enter: 

subst(xpr,x=1) and we get 5 

We enter: 

f(1) and we get 5 

We enter: 

plotfunc(3*x+2) or, plotfunc(xpr) or, plotfunc(f(x)) 

we get one single graph which is the graph of the function f. 
 
Note: 
The plot of most of the commands starting by plot is working well from the CAS screen: then, it is 
better to use the geometry application to do the graphs related to these commands. 

1.6.1 Defining a function by an expression 

To define f(x) =  x sin(x) we enter: 

f(x):=x*sin(x) 

We enter: 

f(1) 

We get: 

sin(1) 

but, take care, if we enter: 

xpr:=x*sin(x) 

then: 

g(x):=xpr 

this is not correct, because the variable x does not appear in xpr. 
You must enter: 

g:=unapply(xpr,x) 

We enter: 

g(1) 

We get: 

sin(1) 
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The command unapply returns a function which is defined by an expression and a variable: for 
example here unapply(xpr,x) designates the function: 

x →  x ∗ sin(x) 

1.6.2 Definition of a function of one or several variables 

Definition of a function of ℝ𝒑 in ℝ 

To define the function f(x)  →    x ∗  sin(x) : 
we enter: 

f(x):=x*sin(x) 

Or we enter: 

f:=x->x*sin(x) 

We get: 

(x)->x*sin(x) 

To define the function f ∶  (x, y) →  x ∗  sin(y) 
we enter: 

f(x,y):=x*sin(y) 

Or we enter: 

f:=(x,y)->x*sin(y) 

We get: 

(x,y)->x*sin(y) 

Warning! What is after → is not evaluated. 
 
Definition of a function of ℝ𝒑 in ℝ𝒒 

To define the function h ∶  (x, y) → (x ∗  cos(y), x ∗ sin(y)) : 
we enter: 

h(x,y):=(x*cos(y),x*sin(y)) 

To define the function h ∶  (x, y) → [[x ∗  cos(y), x ∗ sin(y)] 

we enter: 

h(x,y):=[x*cos(y),x*sin(y)]; 

Or we enter: 

h:=(x,y)->[x*cos(y),x*sin(y)]; 

Or we enter: 

h(x,y):={[x*cos(y),x*sin(y)]}; 

Or we enter: 

h:=(x,y)->return[x*cos(y),x*sin(y)]; 
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Or we enter 

h(x,y):={return [x*cos(y),x*sin(y)];} 

We get: 

(x,y)->{return([x*cos(y),x*sin(y)]);} 

Warning! What is after → is not evaluated. 
 

Definition of a function of ℝ𝒑−𝟏 in ℝ𝒒 from a function of ℝ𝒑 in ℝ𝒒 

We define the function f ∶  (x, y) →  x ∗  sin(y), then we want to define the family of functions depending 

on the parameter t by 𝑔(𝑡)(𝑦):= 𝑓(𝑡, 𝑦). 
Since what is after → is not evaluated, we cannot define 𝑔(𝑡) by g(t):=y->f(t,y) and we must use 
the command unapply. 
To define the functions f(x, y) =  x ∗  sin(y) and 𝑔(𝑡) = 𝑦 → 𝑓(𝑡, 𝑦), we enter: 

f(x,y):=x*sin(y);g(t):=unapply(f(t,y),y) 

We get: 

((x,y)->x*sin(y), (t)->unapply(f(t,y),y)) 

We enter: 

g(2) 

We get: 

y->2· sin(y) 

We enter: 

g(2)(1) 

We get: 

2·sin(1) 

We define the function h ∶  (x, y) → (x ∗  cos(y), x ∗ sin(y)), then we want to define the family of 

functions depending on the parameter t by 𝑘(𝑡)(𝑦): = ℎ(𝑡, 𝑦). 
Since what is after → is not evaluated, we cannot define k(t) by 𝑘(𝑡): = 𝑦 → ℎ(𝑥, 𝑦) and we must use 
the command unapply. 

To define the function h(x, y), we enter: 

h(x,y):=(x*cos(y),x*sin(y)) 

To define the function k(t), we enter: 

k(t):=unapply(h(x,t),x) 

We get: 

 (t)->unapply(h(x,t),x) 

We enter: 

k(2) 

We get: 
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(x)->(x*cos(2),x*sin(2)) 

We enter: 

k(2)(1) 

We get: 

(2*cos(1),2*sin(1)) 

Or else we define the function h ∶  (x, y) → [[x ∗  cos(y), x ∗ sin(y)], then we want to define the family of 

functions depending on the parameter t by 𝑘(𝑡)(𝑦): = ℎ(𝑡, 𝑦). 
Since what is after → is not evaluated, we cannot define k(t) by 𝑘(𝑡): = 𝑦 → ℎ(𝑥, 𝑦) and we must use 
the command unapply. 

To define the function h(x, y), we enter: 

h(x,y):={[x*cos(y),x*sin(y)]} 

To define the function k(t), we enter: 

k(t):=unapply(h(x,t),x) 

We get: 

(t)->unapply(h(x,t),x) 

We enter: 

k(2) 

We get: 

(x)->{[x*cos(2),x*sin(2)];} 

We enter: 

k(2)(1) 

We get: 

[2· cos(1),2· sin(1)] 

1.6.3 To define a function by two expressions: when 

We enter: g(x):=when (x>0,x,-x) 

g(-2) returns 2 

g(-2) returns 2 

1.6.4 Defining a function by n values: PIECEWISE piecewise 

For instance, to define the function g which equals -1 if x < −1, 0 if −1 ≤ x ≤ 1 and 1 if x > 1, we enter: 

g(x):=piecewise(x<-1,-1,x<=1,0,1) 

piecewise uses pairs condition/value where value is returned if condition is true, which implies that 
the previous conditions are false. If the number of arguments is odd, the last value is the default value 
(as in switch). 
piecewise is the generalization of when. 
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To define the function f which equals -2 if x < −2, 3x + 4 if −2 ≤ x < −1, 1 if −1 ≤ x < 0 and x + 1 if x ≥ 0, we 
enter: 

f(x):=piecewise(x<-2,-2,x<-1,3x+4,x<0,1,x+1) 

Then, we can do the graph of f by entering: 

plotfunc(f(x)) 

1.6.5 Exercise on expressions 

Here are 6 expressions formed from T = 1 − x ∗ 2 + x by adding parentheses: 

A = (1 − x) ∗ 2 + x 

B = 1 − (x ∗ 2) + x 

C = 1 − x ∗ (2 + x) 

D = (1 − x ∗ 2) + x 

F = 1 − (x ∗ 2 + x) 

G = (1 − x) ∗ (2 + x) 

 

1) Is there one (or several) expression(s) equals to T ? 
If so, why ? 

2) Calculate the values of these expressions for 𝑥 = 1 and for 𝑥 = −1. 

3) Among the expressions A, B, C, D, F, G: 
– Which are a sum of two terms? 
– Which are a difference of two terms? 
– Which are an algebraic sum of 3 terms? 
– Which are a product of two terms? 
– Which are equal? 

4) Simplify the expressions A, B, C, D, F, G. 

5) Write all the expressions formed from 𝑆 = 1 +
𝑥

2∗𝑥
 by adding parentheses. 

 
Let us check with HP Prime. We enter: 

T:=1-x*2+x 

A:=(1-x)*2+x 

B:=1-(x*2)+x 

C:=1-x*(2+x) 

D:=(1-x*2)+x 

F:=1-(x*2+x) 

G:=(1-x)*(2+x) 

Then, we enter to check which expression equals T: 

A==T, B==T, etc., ... 

We find out that the answer to A==T is 0 which means that the expression A is different from T. 
We find out that the answer to B==T is 1 which means that the expression B is identical to T, etc., ... 

1.6.6 Exercise on the functions (to be followed)  

1) Define 6 functions having for respective values the expressions A, B, C, D, F, G. 
2) Plot the graphs of these functions and look at them on the same graphical representation. 
3) Among these graphs there are lines and parabolae. Recognize the graph of each function. Let 

us check with HP Prime. To define the 6 functions, we enter: 

a(x):=(1-x)*2+x 

b(x):=1-(x*2)+x 

c(x):=1-x*(2+x) 

d(x):=(1-x*2)+x 
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f(x):=1-(x*2+x) 

g(x):=(1-x)*(2+x) 

Then, we enter to display the graphs: 

plotfunc([a(x),b(x),c(x),d(x),f(x),g(x)]) 

We get only 5 curves of different colors. 
We can enter successively: 

plotfunc([a(x)]), plotfunc([a(x),b(x)]), etc., ... 

Then, we notice that: 
– the graph of a is the black line, 
– the graph of b is the red line, 
– the graph of c is the green parabola, 
– the graph of d is the yellow line which overlaps the red line, 
– the graph of f is the blue line, and 
– the graph of g is the green parabola. 
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Chapter 2 Menu Algebra 

 

2.1 Simplifying an expression: simplify 

simplify simplifies an expression in an automatic way. 
We enter: 

simplify(x^5+1/((x-1)*4)+1/((x+1)*4)+1/((x+i)*4)+1/((x-i)*4)) 

We get: 

(x^9-x^5+x^3)/(x^4-1) 

We enter: 

simplify(3-54*sqrt(1/162)) 

We get: 

-3*sqrt(2)+3 

Warning! simplify is more efficient when to simplify trigonometric expressions when being in 
radian: for this reason, we check radian in the CAS configuration. 
We enter: 

simplify((sin(3*x)+sin(7*x))/sin(5*x)) 

We get: 

4*(cos(x))^2-2 

2.2 Factorizing a polynomial on the integers: collect 

collect takes as parameter a polynomial or a list of polynomials and eventually sqrt(n). 
collect factors the polynomial (or the polynomials of the list) on the integers when the coefficients of 

the polynomial are integers or one ℚ(√(𝑛)), if the coefficients of the polynomial are in ℚ(√(𝑛)) or if 

sqrt(n) is the second argument. 
We enter: 

collect(x^3-2*x^2+1) 

We get: 

(x-1)*(x^2-x-1) 

We enter: 

collect(x^3-2*x^2+1,sqrt(5)) 

We get: 

(x+(-(sqrt(5))-1)/2)*(x-1)*(x+(sqrt(5)-1)/2) 
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See also factor depending on we have checked or not √ in the CAS configuration. 

2.3 Regrouping and simplifying: regroup 

regroup takes as parameter an expression. 
regroup does the obvious simplifications on an expression by grouping terms. 
We enter: 

regroup(x+3*x+5*4/x) 

We get: 

20/x+4*x 

2.4 Expanding and simplifying: normal 

normal takes as parameter an expression. 
normal returns the developed and simplified expression. 
We enter: 

normal(x+3*x+5*4/x) 

We get: 

(4*x^2+20)/x 

We enter: 

normal((x-1)*(x+1)) 

We get: 

x^2-1 

Warning! normal is less efficient than simplify and, sometimes, it might be necessary to invoque 
several times the command normal. 
We enter: 

normal(3-54*sqrt(1/162)) 

We get: 

(-9*sqrt(2)+9)/3 

We enter: 

normal((-9*sqrt(2)+9)/3) 

We get: 

-(3*sqrt(2))+3 

2.5 Expanding an expression: expand 

expand applies on an expression the distributive of the multiplication over the addition. 
We enter: 
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expand((x+1)*(x+2)) 

We get: 

x^2+3*x+2 

We enter: 

expand((a+b)^5) 

We get: 

5*a^4*b+10*a^3*b^2+10*a^2*b^3+5*a*b^4+b^5+a^5 

2.6 Multiply by the conjugate quantity: mult_conjugate 

mult_conjugate takes as argument an expression with a denominator or a numerator comprising 
square roots: 

– mult_conjugate takes as argument an expression with a denominator comprising square 
roots. 
mult_conjugate multiplies the numerator and the denominator of this expression by the 
conjugate quantity of the denominator. 

– mult_conjugate takes as argument an expression with a denominator not comprising 
square roots. 
mult_conjugate multiplies the numerator and the denominator of this expression by the 
conjugate quantity of the numerator. 

We enter: 

mult_conjugate((2+sqrt(2))/(2+sqrt(3))) 

We get: 

(2+sqrt(2))*(2-sqrt(3))/((2+sqrt(3))*(2-sqrt(3))) 

We enter: 

mult_conjugate((2+sqrt(2))/(sqrt(2)+sqrt(3))) 

We get: 

(2+sqrt(2))*(-sqrt(2)+sqrt(3))/ 

((sqrt(2)+sqrt(3))*(-sqrt(2)+sqrt(3))) 

We enter: 

mult_conjugate((2+sqrt(2))/2) 

We get: 

(2+sqrt(2))*(2-sqrt(2))/(2*(2-sqrt(2))) 

2.7 Factorizing an expression: factor 

We enter: 

factor(x^6-1) 

We get in real mode: 
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(x-1)*(x+1)*(x^2-x+1)*(x^2+x+1) 

We enter: 

factor(x^6+1) 

We get in real mode: 

(x^2+1)*(x^4-x^2+1) 

We get in complex mode with √ not checked: 

(x+i)*(x-i)*(x^2+(i)*x-1)*(x^2+(-i)*x-1) 

We get in complex mode with √ checked: 

(x+i)*(x-i)*(x+(-(sqrt(3))-i)/2)*(x+(-(sqrt(3))+i)/2)*(x+(sqrt(3)-

i)/2)*(x+(sqrt(3)+i)/2) 

We enter: 

factor(x^6+1,sqrt(3)) 

We get in complex mode with √ checked or not: 

(x+i)*(x-i)*(x+(-(sqrt(3))-i)/2)*(x+(-(sqrt(3))+i)/2)*(x+(sqrt(3)-

i)/2)*(x+(sqrt(3)+i)/2) 

We enter: 

factor(x^3-2*x^2+1) 

We get, if we have not checked √ in the CAS configuration: 

(x-1)*(x^2-x-1) 

We enter: 

factor(x^3-2*x^2+1) 

We get, if we have checked √ in the CAS configuration: 

(x+(-(sqrt(5))-1)/2)*(x-1)*(x+(sqrt(5)-1)/2) 

We enter: 

factor(expexpand(exp(5*x))-exp(x)) 

We get in complex mode: 

exp(x)*(-1+exp(x))*(1+exp(x))*(i+exp(x))*(-i+exp(x)) 

2.8 Factorization without square factor: sqrfree 

sqrfree takes as parameter a polynomial. 
sqrfree factors this polynomial by grouping the terms having the same exponent. 
We enter: 

sqrfree((x^2-1)*(x-1)*(x+2)) 
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We get: 

(x^2+3*x+2)*(x-1)^2 

We enter: 

sqrfree((x^2-1)^2*(x-1)*(x+2)^2) 

We get: 

(x^2+3*x+2)*(x-1)^3 

2.9 Factorization in ℂ: cFactor cfactor 

cFactor or cfactor takes as parameter the expression we want to factor in the complex field 
without being in complex mode. 
When there are more than two variables, the factorization is performed on Gauss integers. 
 
Examples 

1. Factorizing in ℂ: 

𝑥4 − 1 
 We enter: 

cFactor(x^4-1) 

 We get: 

((x+-i)*((-i)*x+1)*((-i)*x+i)*(x+1)) 

2. Factorizing in ℂ: 
𝑥4 + 1 

 We enter: 

cfactor(x^4+1) 

 We get: 

(x^2+i)*(x^2+-i) 

 Then, we enter: 

cfactor(sqrt(2)*(x^2+i))*cFactor(sqrt(2)*(x^2+-i)) 

 We get: 

sqrt(2)*1/2*(sqrt(2)*x+1-i)*(sqrt(2)*x-

1+i)*sqrt(2)*1/2*(sqrt(2)*x+1+i)*(sqrt(2)*x-1-i) 

 but if we enter,: 

cfactor(sqrt(2)*(x^4+1)) 

 We get: 

sqrt(2)*(x^2+sqrt(2)*x+1)*(x^2+(-(sqrt(2)))*x+1) 
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2.10 Substituting a variable by a value: subst 

subst takes two or three arguments: an expression depending on a parameter and an equality 
(parameter=substitution value) or an expression depending on a parameter, the parameter and the 
substitution value. 
subst does the requested substitution in the expression provided that the parameter is not assigned 
because subst first evaluates the expression and then replaces the parameter (if it has been assigned) 
by its value without taking into account the substitution value supplied by the second parameter. 
 
We enter: 

subst(a^2+1,a=3) 

We get: 

10 

We enter: 

a:=2;subst(a^2+1,a=3) 

We get: 

(2,5) 

We enter: 

a:=2;purge(a);subst(a^2+1,a=3) 

We get: 

(2,2,10) 

2.11 Fractions 

2.11.1 Decompose into simple elements: partfrac 

partfrac takes as argument a rational fraction. 
partfrac returns its decomposition into simple elements. 
 
We enter: 

partfrac(x^5+x^3/(x^4-1)) 

We get: 

x^5+1/((x-1)*4)+1/((x+1)*4)+x/((x^2+1)*2) 

We enter: 

partfrac(x^5+x^3/(x^4-1)) 

We get: 

x^5+1/((x-1)*4)+1/((x+1)*4)+1/((x+i)*4)+1/((x-i)*4) 

2.11.2 Decomposition in simple elements on ℂ: cpartfrac 

cpartfrac takes as argument a rational fraction. 
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cpartfrac returns its decomposition into simple elements on C be it in real mode or complex mode. 
 
Example: 
Decompose into simple elements the rational fraction: 

𝑥5 − 2𝑥3 + 1

𝑥4 − 2𝑥3 + 2𝑥2 − 2𝑥 + 1
 

We use the command cpartfrac. 
We enter: 

cpartfrac((x^5-2*x^3+1)/(x^4-2*x^3+2*x^2-2*x+1)) 

We get in real mode or in complex mode: 

x+2+(-1+2*i)/((2-2*i)*((i)*x+1))+1/(2*(-x+1))+(-1-2*i)/((2-

2*i)*(x+i)) 

 

2.11.3 Put to common denominator: comDenom 

comDenom takes as parameter a sum of rational fractions. 
comDenom returns this sum as a rational fraction, that is to say returns this sum once the rational 
fractions it is composed with have been put to common denominator. 
 
We enter: 

comDenom(x-1/(x-1)-1/(x^2-1)) 

We get: 

(x^3+-2*x-2)/(x^2-1) 

 

2.11.4 Integer part and fractional part: propfrac 

propfrac takes as argument a rational fraction. 
propfrac returns this rational fraction written in a way that brings out its integer part. 

propfrac(A(x)/B(x)) writes the rational fraction 
𝐴(𝑥)

𝐵(𝑥)
 

after simplification 
in the form of: 

𝑄(𝑥) +
𝑅(𝑥)

𝐵(𝑥)
 

with R(x) = 0 or 0 ≤ degree(R(x)) < degree(B(x)). 
 
We enter: 

propfrac((5*x+3)*(x-1)/(x+2)) 

We get: 

5*x-12+21/(x+2) 
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2.12 Extract 

2.12.1 Numerator of a fraction after simplifiation: numer 

numer takes as argument a fraction or a rational fraction and returns the numerator of this simplified 
fraction. 
 
We enter: 

numer(42/12) 

We get: 

7 

We enter: 

numer(x^5+x^3/(x^4-1)) 

We get: 

x^9-x^5+x^3 

2.12.2 Denominator of a fraction after simplification: ofnom 

denom takes as argument a fraction or a rational fraction and returns the denominator of this simplified 
fraction. 
 
We enter: 

denom(42/12) 

We get: 

2 

We enter: 

denom(x^5+1/((x-1)*4)+1/((x+1)*4)+x/((x^2+1)*2)) 

We get: 

x^4-1 

2.12.3 Numerator and denominator: f2nd 

f2nd takes as argument a fraction or a rational fraction and returns the list formed by the numerator 
and the denominator of this simplified fraction. 
 
We enter: 

f2nd(42/12) 

We get: 

[7,2] 

We enter: 

f2nd((x^2-1)/(x-1)) 
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We get: 

[x+1,1] 

We enter: 

f2nd((x^2+2*x+1)/(x^2-1)) 

We get: 

[x+1,x-1] 

2.12.4 Get the left member of an equation: left 

left takes as parameter an equation or an interval. 
left returns the left member of the equation or the left boundary of the interval. 
 
We enter: 

left(a=3) 

We get: 

a 

We enter: 

left(a..2*a+1) 

We get: 

a 

2.12.5 Get the right member of an equation: right 

right takes as parameter an equation or an interval. 
right returns the right member of the equation or the right boundaryof the interval. 
 
We enter: 

right(a=3) 

We get: 

3 

We enter: 

right(a..2*a+1) 

We get: 

2*a+1 

2.12.6 Center of an interval: interval2center 

interval2center takes as argument an interval or a list of intervals. 
interval2center returns the center of the interval or the list of centers of these intervals. 
 
We enter: 
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interval2center(3..5) 

We get: 

4 

We enter: 

interval2center([2..4,4..6,6..10]) 

We get: 

[3,5,8] 

2.12.7 Signature of a permutation: signature 

signature takes as argument a permutation. 
signature returns the signature of the permutation supplied as argument. 
The signature of a permutation equals: 

– 1 if it can be decomposed into an even product of transpositions, 
– -1 if it can be decomposed into an odd product of transpositions. 

The signature of a cycle of order k is: (−1)𝑘+1. 
 
We enter: 

signature(3,4,5,2,1) 

We get: 

-1 

Indeed, this permutation is decomposed into the cycles: 
(1,3,5) and (2,4) that is to say in 3 transpositions: 
(1,3), (3,5) and (2,4).  
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Chapter 3 Menu Calculus 

 

3.1 Definition of a function: := and →(Sto) 

To define for example the function f which at x maps x^3+ln(x), we enter: 

f:=x-> x^3+ln(x) 

or we enter: 

f(x):= x^3+ln(x) 

3.2 Maximum and minimum of an expression: fMax fMin 

fMax and fMin have as argument: an expression of one variable and the name of this variable (by 
default x). 
fMax returns the abscissa of the main solution of the maximum of the expression. 
fMin returns the abscissa of the main solution of the minimum of the expression. 
 
We enter: 

fMax(sin(x),x) 

Or we enter: 

fMax(sin(x)) 

Or we enter: 

fMax(sin(y),y) 

We get: 

pi/2 

We enter: 

fMin(sin(x),x) 

Or we enter: 

fMin(sin(x)) 

Or we enter: 

fMin(sin(y),y) 

We get: 

-pi/2 

We enter: 

fMin(sin(x)^2,x) 
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We get: 

0 

3.3 Differentiate 

3.3.1 Derivative function of a function: function_diff 

function_diff takes as argument a function. 
function_diff returns the derivative function of this function. 
 
We enter: 

function_diff(sin) 

We get: 

(‘ x‘)->cos(‘ x‘) 

We enter: 

function_diff(sin)(x) 

We get: 

cos(x) 

We enter: 

f(x):=x^2+x*cos(x) 

function_diff(f) 

We get: 

(‘ x‘)->2*‘ x‘+cos(‘ x‘)+‘ x‘*(-(sin(‘ x‘))) 

We enter: 

function_diff(f)(x) 

We get: 

cos(x)+x*(-(sin(x)))+2*x 

 

3.3.2 Differentiate : ∂ diff ’ ‘’ 

diff or ’ returns the derivative of an expression or of a function of a variable and returns also the 
partial derivatives of an expression of several variables. 
We can also use the key showing letter C and use: 
𝜕

𝜕
 

and if we have checked the display configuration in Textbook mode (cf. Settings of HOME), it is 
enough to fill in the two . 

 
– Derivative of an expression of one variable 

We enter: 
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diff(x^3+ln(x)) 

Or we enter (’ is obtained with Shift-() (’’) by clearing a ’): 

(x^3+ln(x))’ 

We get the expression of the derivative of x^3+ln(x) according to x: 

3*x^2+1/x 

We enter: 

diff(y^3+ln(y),y) 

Or we enter (’ is obtained with Shift-() (’’) by clearing a ’): 

(y^3+ln(y),y)’ 

We get the expression of the derivative of y^3+ln(y) according to y: 

3*y^2+1/y 

– Second derivative (or Nth) of an expression of one variable 
 
We enter: 

diff(diff(x^3+ln(x))) 

Or we enter (’’ is obtained with Shift-()): 

(x^3+ln(x))’’ 

We get the expression of the second derivative of x^3+ln(x) according to x: 

3*2*x-1/x^2 

We enter: 

diff(diff(diff(diff(x^3+ln(x))))) 

Or we enter (’’’’ is obtained with Shift-() Shift-()): 

(x^3+ln(x))’’’’ 

We get the expression of the 4th derivative of x^3+ln(x) according to x: 

-2*3/x^4 

– Partial derivative of an expression of several variables. 
 
We enter: 

diff(x*y*z,{x,y,z}) 

We get the expression of the partial derivative according to x, according to y and according to 
z, of x*y*z: 

{y*z,x*z,x*y} 

– Derivative of a function 
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To define the function f, we enter: 

f(x):= x^3+ln(x) 

We get: 

(x)->x^3+ln(x) 

We enter: 

g:=diff(f) 

Or we enter (’ is obtained with Shift-() (’’) by clearing a ’): 

g:=f’ 

We get the function g which is the derivative function of f: 

x->3*x^2+1/x 

– Second derivative (or Nth) of a function 
 
To define the function f, we enter: 

f(x):= x^3+ln(x) 

We get 

(x)->x^3+ln(x) 

We enter: 

h:=diff(diff(f)) 

Or we enter (’’ is obtained with Shift-()): 

h:=f’’ 

We get the function h which is the second derivative function of f: 

x->3*2*x-1/x^2 

3.3.3 Approximate calculation of the derivative number: nDeriv 

nDeriv takes as arguments: an expression Xpr, the name of the variable of this expression (by 
default x), and h (by default h=0.001). 
nDeriv(f(x),x,h) calculates, in an approximate way, the value of the derivative of the expression 
f(x) at point x and returns: 

(f(x+h)-f(x+h))/2*h. 

We enter: 

nDeriv(x^ 2,x) 

We get: 

((x+0.001)^2-(x+-0.001)^2)*500.0 

We enter: 
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subst(nDeriv(x^ 2,x),x=1) 

We get: 

2 

3.4 Integration 

3.4.1 Primitive: int 

int allows to calculate a primitive of an expression or of a function or a definite integral. 
We can also use the key showing letter C and use: 

∫  ∂



  

and if we have chosen the Textbook mode as display configuration (cf. Settings of HOME), it is 
enough to fill in the boxes. 
 

– Primitive of an expression 
 
We enter: 

int(x^3+ln(x)) 

We get a primitive of x^3+ln(x) according to x: 

x*ln(x)-x+x^4/4 

We enter: 

int(y^3+ln(y),y) 

We get a primitive of y^3+ln(y) according to y: 

y*ln(y)-y+y^4/4 

– Primitive of a function 
 
To define the function f, we enter: 

f(x):= x^3+ln(x) 

We get: 

(x)->x^3+ln(x) 

We enter: 

g:=int(f) 

We get the function g which is a primitive of f: 

(x)->x*ln(x)-x+x^4/4 

– Definite integral 
 
We enter: 

int(x^3+ln(x),x,1,2) 

Or we enter: 
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int(x^3+ln(x),x=1..2) 

Or we enter: 

int(y^3+ln(y),y=1..2) 

Or we enter when f(x):= x^3+ln(x) and g:=int(f): 

preval(g(x),1,2) 

We get the value of ∫  
2

1
x^3+ln(x)dx: 

2*ln(2)-(-3/4 

3.4.2 Evaluate a primitive: preval 

preval has three parameters: an expression F(x) depending on the variable x, and two expressions 
a and b. 
preval does F(b)-F(a). 
preval is useful to calculate a definite integral by a primitive: we calculate a primitive, then one 
evaluates this primitive between the boundaries of the integral. 
 
We enter: 

preval(x^2+x,2,3) 

We get: 

6 

3.4.3 Approximate calculation of integrals with the Romberg method: romberg 

romberg takes as arguments: an expression Xpr, the name of the variable of this expression (by 
default x), and two values a, b. 

romberg(Xpr,x,a,b) returns the approximate integral ∫ 𝑋𝑝𝑟 𝑑𝑥
𝑏

𝑎
 by the Romberg method. 

 
We enter: 

romberg(exp(x^2),x,0,1) 

We get: 

1.46265174591 

 

3.5 Limites: limit 

Provided we are in radians, limit allows to calculate the limit of an expression in a finite point (or 
infinite). 
By means of an additional parameter, we can tell if we look for a limit by greater values or by lower 
values (1 to tell " by greater values " and -1 to tell " by lower values "). 
limit takes three or four arguments: 
an expression, the name of the variable (for example x), the limit point (for example a) and an optional 
argument which tells if the limit is unidirectional or bidirectional (by default 0). This argument equals -
1 as left limit (x<a) or equals 1 as right limit (x>a) or equals 0 for a limit. 
The optional argument is then used when we want to calculate right limit (+1) or a left limit(-1). 
limit returns the requested limit (if any). 
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When we use limit from the menus and and if we have chosen the Textbook mode as display 
configuration (cf HOME Settings) it is diplayed on the entry line: lim

→
 () and it is enough to fill in 

the . 
For example, we get limit in the menu CAS CalculusLimit: 
limx→01 abs(x)/x 

 
We get in the history: 

limit(abs(x)/x,x,0,1) 

and the answer: 

1 

We enter: 

limit(sin(x)+ln(x))/x,x,1 

We get: 

sin(1) 

We enter: 

limit(1/x,x,0) 

We get: 

infinity 

this means that abs(1/x) tends to +∞ when x tends to 0. 
 
We enter: 

limit(1/x,x,0,1) 

We get: 

+infinity 

We enter: 

limit(1/x,x,0,-1) 

We get: 

-infinity 

Note: 
if we enter limit((-1)^n,n=inf), then the CAS returns bounded_function(5) which means 
that the function is bounded but has no limit at the infinite. 
 
We enter: 

limit(sin(x),x,inf) 

We get: 

bounded_function(2) 

We enter: 



 66 

limit(cos(x),x,inf) 

We get: 

bounded_function(7) 

 
Exercises: 

– Find for n > 2, the limit when x tends to 0 of: 
𝑛 tan(𝑥) − tan(𝑛𝑥)

sin(𝑛𝑥) − 𝑛 sin(𝑥)
 

We enter: 

limit((n*tan(x)-tan(n*x))/(sin(n*x)-n*sin(x)),x=0) 

We get: 

2 

– Find the limit when x tends to +∞ of: 

√𝑥 + √𝑥 + √𝑥 − √𝑥 

We enter: 

limit(sqrt(x+sqrt(x+sqrt(x)))-sqrt(x),x=+infinity) 

We get: 

1/2 

– Find the limit when x tends to 0 of: 

√1 + 𝑥 +
𝑥2

2
− 𝑒

𝑥
2

(1 − cos(𝑥)) sin(𝑥)
 

We enter: 

limit((sqrt(1+x+x^2/2)-exp(x/2))/((1-cos(x))*sin(x)),x,0) 

We get: 

-1/6 

Sometimes, to calculate limits more easily, it can be judicious to quote the first argument. 
By example, we enter: 

limit(’(2*x-1)*exp(1/(x-1))’,x=+infinity) 

We notice that we have quoted here the first argument so that it is not evaluated, that is to say 
so that it is not simplified. 
We get: 

+(infinity) 

3.6 Limit and integral 

We give here some examples: 

– Determinate the limit when a tends to the infinite of: 
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∫
1

𝑥2

𝑎

2

𝑑𝑥 

We enter: 

limit(int(1/(x^2),x,2,a),a,+(infinity)) 

We get (check that a is formal otherwise do purge(a)): 
1/2 

Indeed ∫
1

𝑥2

𝑎

2
𝑑𝑥 =

1

2
−
1

𝑎
 

 

Thus ∫
1

𝑥2

𝑎

2
𝑑𝑥 tends to 

1

2
 when a tends to the infinite. 

– Determinate the limit when a tends to the infinite of: 

∫ (
𝑥

𝑥2 − 1
+ ln (

𝑥 + 1

𝑥 − 1
))

𝑎

2

𝑑𝑥 

We enter: 

limit(int(x/(x^2-1)+ln((x+1)/(x-1)),x,2,a), a,+(infinity)) 

We get (check that a is formal otherwise do purge(a)): 

+(infinity) 

Indeed: 

∫
𝑥

𝑥2 − 1

𝑎

2

𝑑𝑥 =
1

2
(ln(𝑎2 − 1) − ln(3)) 

and 

∫ 𝑙𝑛 (
𝑥 + 1

𝑥 − 1
)𝑑𝑥 = ln(𝑎 + 1) + ln(𝑎 − 1) + 𝑎 ∗ ln (

𝑎 + 1

𝑎 − 1
)

𝑎

2

− 3ln(3) 

So when a tends to +∞ the integral tends to +∞. 

– Determinate the limit when a tends to 0 of: 

∫
cos(𝑥)

𝑥

3𝑎

𝑎

𝑑𝑥 

limit(int(cos(x)/x,x,a,3a),a,0) 

We get (check that a is formal otherwise do purge(a)): 

ln(3) 

To find this limit, we boundary
cos(𝑥)

𝑥
 because we do not know the primitive of 

cos(𝑥)

𝑥
. 

Knowing that: 

1 − 2𝑠𝑖𝑛2
𝑥

2
= cos(𝑥) ≤ 1 and 𝑠𝑖𝑛2

𝑥

2
≤
𝑥2

4
 thus,1 −

𝑥2

2
= cos(𝑥) ≤ 1 and 

 
1

𝑥
−
𝑥

2
≤
cos(𝑥)

𝑥
≤
1

𝑥
 

Thus: 

∫ (
1

𝑥
−
𝑥

2
)

3𝑎

𝑎

𝑑𝑥 ≤ ∫
cos(𝑥)

𝑥

3𝑎

𝑎

𝑑𝑥 ≤ ∫
1

𝑥

3𝑎

𝑎

𝑑𝑥 

ln(3) −
9𝑎2

4
+
𝑎2

4
≤ ∫

cos(𝑥)

𝑥

3𝑎

𝑎

𝑑𝑥 ≤ ln (3) 

Thus ∫
cos(𝑥)

𝑥

3𝑎

𝑎
𝑑𝑥 tends to ln(3) when a tends to 0. 



 68 

3.7 Series: series 

series allows to do the series expansion of an expression of the variable Var in Var=0 (by default in 
x=0) at a supplied order (by default 5). 
 
We enter: 

series(tan(x)) 

We get: 

x+1/3*x^3+2/15*x^5+x^6*order_size(x) 

order_size designates a function so that, regardless than r positive: 
x^r*order_size(x) tends to zero when x tends to zero. 
So, when we have in the answer (x-a)^n*order_size(x-a), this means that we have a series 
expansion at order n − 1 in the vicinity of x=a. 

 
We enter: 

series(tan(x),x=0,9) 

We get: 

x+1/3*x^3+2/15*x^5+17/315*x^7+62/2835*x^9+x^10*order_size(x) 

We enter: 

series(atan(x),x=+infinity,5) 

We get: 

1/2*pi-1/x+1/3*(1/x)^3-1/5*(1/x)^5+(1/x)^6*order_size(1/x) 

here (1/x)^6*order_size(1/x) means that we have a series expansion at order 6 − 1 = 5 in the 

vicinity of 
1

𝑥
= 0 i.e. in the vicinity of +∞ 

 
We enter: 

series(atan(x),x=-infinity,5) 

We get: 

-1/2*pi-1/x-1/3*(-1/x)^3+1/5*(-1/x)^5+(-1/x)^6*order_size(-1/x) 

here (-1/x)^6*order_size(-1/x) means that we have a series expansion at order 6 − 1 = 5 in 

the vicinity of 
1

𝑥
= 0  i.e. in the vicinity of −∞ 

3.8 Residue of an expression in a point: residue 

residue takes as argument an expression depending on a variable, the name of this variable and a 
complex a or else an expression depending on a variable and the equality: name_of_variable=a. 

residue returns the residue of this expression at point a. 
 
We enter: 

residue(cos(x)/x^3,x,0) 
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Or we enter: 

residue(cos(x)/x^3,x=0) 

We get: 

(-1)/2 

We enter: 

int(exp(i*t)/(2*exp(i*t)-1),t=0..2*pi) 

We get: 

Searching int of 1/(2 ∗ t − 1) where t is on the unit circle, using residues 

(2*pi)/2 

We enter: 

int(exp(2*i*t)/(2*exp(i*t)-1))^2,t=0..2*pi) 

We get: 

Searching int of t/(4 ∗ t2 − 4 ∗ t + 1) where t is on the unit circle, using residues 

(2*pi)/4 

3.9 Pade approximation: pade 

pade has four arguments: 
– an expression, 
– the name of the used variable, 

– an integer n or a polynomial N, 

– an integer p. 
pade returns a rational fraction P/Q (with the order of P < p) which has, in the vicinity of 0, the same 

Taylor series expansion at order n as the expression, or which equals the expression modulus 
𝑥𝑛+1(resp. modulus N). 
 
We enter: 

pade(exp(x),x,5,3) 

Or we enter: 

pade(exp(x),x,x^6,3) 

We get: 

(3*x^2+24*x+60)/(-x^3+9*x^2-36*x+60) 

We check by entering: 

taylor((3*x^2+24*x+60)/(-x^3+9*x^2-36*x+60)) 

We get: 

1+x+1/2*x^2+1/6*x^3+1/24*x^4+1/120*x^5+x^6*order_size(x) 

We recognize the Taylor series expansion at order 5 of exp(x) in the vicinity of 0. 
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We enter: 

pade((x^15+x+1)/(x^12+1),x,12,3) 

Or we enter: 

pade((x^15+x+1)/(x^12+1),x,x^13,3) 

We get: 

x+1 

We enter: 

pade((x^15+x+1)/(x^12+1),x,14,4) 

Or we enter: 

pade((x^15+x+1)/(x^12+1),x,x^15,4) 

We get: 

(-2*x^3-1)/(-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3-x^2+x-1) 

We check by entering: 

series(ans(),x=0,15) 

We get: 

1+x-x^12-x^13+2x^15+x^16*order_size(x) 

then by entering: 

series((x^15+x+1)/(x^12+1),x=0,15) 

We get: 

1+x-x^12-x^13+x^15+x^16*order_size(x) 

Both expressions have the same Taylor series expansion at order 14 in the vicinity of 0. 
 

3.10 Indexed finite and infinite sum and discrete primitive: sum 

sum does the finite summation and infinite summation or returns the discrete primitive of an 
expression. 
sum also does the sum of the elements of a list (see 16.8). 

– sum of a list or of a sequence 
 
We enter: 

l:=[1,2,3,4,5,6,7,8] 

Or we enter: 

l:=1,2,3,4,5,6,7,8 

Then, we enter: 
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sum(l) 

We get the sum 1+2+..+8=8*9/2: 

36 

– indexed finite sum 
 
We enter: 

sum(k,k=1..8) 

Or we enter: 

sum(k,k,1,8) 

We get: 

36 

– indexed infinite sum 
 
We enter: 

sum(1/2^k,k,0,inf) 

We get: 

2 

 
– discrete primitive of an expression 

 

The discrete primitive of the expression f(x) is the function G which makes: 
G(x + 1) − G(x) = f(x) 
Then sum has two arguments: an expression of one variable (for example f(x)) and the 

variable (for example x): 
 
We enter: 

sum(x,x) 

We get: 

(x^2-x)/2 

Thus: 

4 + 5 + ...19 = G(20) − G(4) = 190 − 6 = 184 
Check that: sum(k,k=4..19) returns 184 
We enter: 

sum(1/(x*(x+1)),x) 

We get: 

-1/x 

Thus: 

1/(1 ∗ 2) + 1/(2 ∗ 3) + ...1/(9 ∗ 10) = −1/10 + 1 = 9/10 

We check that: sum(seq(1/(k*(k+1)),k,1,9)) returns 9/10 
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3.11 Differential 

3.11.1 Rotational curl: curl 

curl has two parameters: an expression F depending on three real variables and a vector dimension 
3 storing the name of these variables. 
curl designates the rotational curl of F. 
 
We enter: 

curl([x*z,-y^2,2*x^y],[x,y,z]) 

We get: 

[2*ln(x)*x^y,x-2*y*x^(y-1),0] 

Indeed: 

diff(2*x^y,y)-diff(-y^2,z) returns 2*ln(x)*x^y 

diff(x*z,z)-diff(2*x^y,x) returns x-2*y*x^(y-1) 

diff(-y^2,x)-diff(x*z,y) returns 0 

We enter: 

curl([x*y*z,-y^2,2*x],[x,y,z]) 

We get: 

[0,x*y-2,-x*z] 

3.11.2 Divergence: divergence 

divergence has two parameters: an expression F depending on n real variables and a dimension n 
vector storing the name of these variables. 
divergence designates the divergence of F. 
 
We enter: 

divergence([x^2+y,x+z+y,z^3+x^2],[x,y,z]) 

We get: 

2*x+3*z^2+1 

Indeed: 
diff(x^2+y,x)+diff(x+z+y,y)+diff(z^3+x^2,z) returns 2*x+1+3*z^2 

3.11.3 Gradient: grad 

grad has two parameters: an expression F depending on n real real variables and a dimension n 
vector storing the name of these variables. 
derive returns the gradient of F. 
 
We enter: 

grad(2*x^2*y-x*z^3,[x,y,z]) 

We get: 

[2*2*x*y-z^3,2*x^2,-x*3*z^2] 
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Indeed: 

diff(2*x^2*y-x*z^3,x) returns 4*x*y-z^3 

diff(2*x^2*y-x*z^3,y) returns 2*x^2 

diff(2*x^2*y-x*z^3,z) returns -3*x*z^2 

 
 

3.11.4 Hessian matrix: hessian 

hessian has two parameters: an expression F depending on n real variables and a dimension n 
vector storing the name of these variables. 

hessian returns the Hessian of F which is the matrix of derivatives of degree two namely 
diff(diff(F,[x,y,z]),[x,y,z]). 
 
We enter: 

hessian(2*x^2*y-x*z,[x,y,z]) 

We get: 

[[4*y,4*x,-1],[2*2*x,0,0],[-1,0,0]] 

Indeed: 

diff(diff(2*x^2*y-x*z,x),[x,y,z]) returns [4*y,4x,-1] 

diff(diff(2*x^2*y-x*z,y),[x,y,z]) returns [4x,0,0] 

diff(diff(2*x^2*y-x*z,z),[x,y,z]) returns [-1,0,0] 

 
Note: 
To get the Hessian at critical points, we look for the critical points. 
 
We enter: 

solve(diff(2*x^2*y-x*z^3,[x,y,z]),[x,y,z]) 

We get: 

[[0,y,0]] 

Then, we calculate the Hessian at these points. 
 
We enter: 

subst([[4*y,4*x,-(3*z^2)],[2*2*x,0,0], [-

(3*z^2),0,6*x*z]],[x,y,z],[0,y,0]) 

We get: 

[[4*y,4*0,-(3*0^2)],[4*0,0,0],[-(3*0^2),0,6*0*0]] 

and after simplification: 

[[4*y,0,0],[0,0,0],[0,0,0]] 

3.11.5 Laplacian: laplacian 

laplacian has two parameters: an expression F depending on n real variables and a dimension n 
vector storing the name of these variables. 
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laplacian returns the laplacian of 𝐹 (∇2(𝐹) =
𝜕2𝐹

𝜕𝑥2
+
𝜕2𝐹

𝜕𝑦2
+
𝜕2𝐹

𝜕𝑧2
 𝑖𝑓 𝑛 = 3). 

 
Example 

Determinate the laplacian of 𝐹(𝑥, 𝑦, 𝑧) = 2𝑥2𝑦 − 𝑥𝑧3. 
 
We enter: 

laplacian(2*x^2*y-x*z^3,[x,y,z]) 

We get: 

4*y+-6*x*z 

3.11.6 Potential: potential 

potential has two arguments: a vector 𝑉⃗  of ℝ𝑛 depending on n variables and the vector storing the 
name of these variables. 

potential returns a function U so that 𝒢𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑈) = 𝑉⃗  

when possible. Then, the potential U will return 𝑉⃗ .  
The general solution is the sum of a particular solution and a constant. 

We know that a vector 𝑉⃗  is a gradient if and only if its rotational curl is null: 
in other words if curl(V)=0. 
potential is the reciprocal function of derive. 
 
We enter: 

potential([2*x*y+3,x^2-4*z,-4*y],[x,y,z]) 

We get: 

2*y*x^2/2+3*x+(x^2-4*z-2*x^2/2)*y 

3.11.7 Conservative vector field: vpotential 

vpotential has two arguments: a vector 𝑉⃗  of ℝ𝑛 depending on n variables and the vector storing 
the name of these variables. 

vpotential returns a vector 𝑈⃗⃗  such as 𝑅𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗(𝑈⃗⃗ ) = 𝑉⃗  when possible. Then, we say that 𝑉⃗  is a 

conservative vector field or a solenoidal field. 
The general solution is the sum of a particular solution and the gradient of an arbitrary function, the 
calculator returns the particular solution vector whose first component is null. 

One knows that a vector 𝑉⃗  is a rotational curl if and only if its divergence is null: in other words if 
divergence(V)=0. 
In electromagnetism science, we have: 

𝑉⃗ = 𝐵⃗ = the magnetic field and 

𝑈⃗⃗ = 𝐴 = the potential vector. 
vpotential is the reciprocal function of curl. 
 
We enter: 

vpotential([2*x*y+3,x^2-4*z,-2*y*z],[x,y,z]) 

We get: 

[0,(-(2*y))*z*x,-x^3/3-(-(4*z))*x+3*y] 
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3.12 Integral 

3.12.1 Primitive and definite integral: integrate 

integrate (or int) allows to calculate a primitive or a definite integral. 
 
We enter: 

int(exp(x),x,0,1)) 

or 

integrate(exp(x),x,0,1) 

We get: 

exp(1)-1) 

We enter: 

evalf(integrate(exp(x^2),x,0,1)) 

Or we enter: 

evalf(int(exp(x^2),x,0,1)) 

We get: 

1.46265174591 

integrate (or int) has one, two or four arguments. 
 

– with an argument which is an expression of the variable x, (resp. a function). 
integrate (or int) then returns an expression which is a primitive of the expression 
according to the variable x (resp. returns a primitive function of the function supplied as 
argument) 
 
We enter: 

integrate(x^2) 

We get: 

x^3/3 

We enter: 

f(t):=t^2 

g:=integrate(f) 

We get: 

(t)->t^3/3 

– with two arguments which are: 
an expression and a variable, integrate (or int) then returns a primitive of the expression 
according to the variable supplied as second parameter. 
We enter: 
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integrate(x^2) 

We get: 

x^3/3 

We enter: 

integrate(t^2,t) 

We get: 

t^3/3 

– with four arguments which are: 
an expression, a variable and the boundaries of the definite integral, integrate (or int) 
then returns the value of the definite integral. 
 
We enter: 

integrate(x^2,x,1,2) 

We get: 

7/3 

We enter: 

integrate(1/(sin(x)+2),x,0,2*pi) 

We get after simplification (thanks to simplify): 

2*pi*sqrt(3)/3 

Exercise 1 
Let 

𝑓(𝑥) =
𝑥

𝑥2 − 1
+ ln (

𝑥 + 1

𝑥 − 1
) 

Calculate a primitive of f. 
 
We enter: 

int(x/(x^2-1)+ln((x+1)/(x-1))) 

We find: 

x*log((x+1)/(x-1))+log(x^2-1)+1/2*log(2*x^2/2-1) 

Or else, we define the function f by entering: 

f(x):=x/(x^2-1)+ln((x+1)/(x-1)) 

then we enter: 

int(f(x)) 

We get, of course, the same result. 
Warning! 
In CAS, log is similar to ln (neperian logarithm), and log10 is the logarithm in basis 10. 
 
Exercise 2 
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Calculate: 

∫
2

𝑥6 + 2 ∙ 𝑥4 + 𝑥2
𝑑𝑥 

We enter: 

int(2/(x^6+2*x^4+x^2)) 

We find: 

2*((3*x^2+2)/(-(2*(x^3+x)))+-3/2*atan(x)) 

Exercise 3 
Calculate: 

∫
1

sin(𝑥) + sin(2 ∙ 𝑥)
𝑑𝑥 

We enter: 

integrate(1/(sin(x)+sin(2*x ))) 

We find: 

(1/-3*log((tan(x/2))^2-3)+1/12*log((tan(x/2))^2))*2 

3.12.2 Integration by parts: ibpdv 

ibpdv allows to look for a primitive (or to calculate a definite integral) of an expression of the form 
𝑢(𝑥) ∙ 𝑣′(𝑥). 
ibpdv has two parameters for the primitives and five parameters for the integrals defined: 

– either an expression of the form 𝑢(𝑥) ∙ 𝑣′(𝑥) and 𝑣(𝑥) (or a list of two expressions 
[𝐹(𝑥), 𝑢(𝑥)  ∗  𝑣(𝑥)] and 𝑣(𝑥)), 

– either an expression of the form g(x) and 0 (or a list of two expressions [𝐹(𝑥), 𝑔(𝑥)] and 0). 
– for the defined integrals, three other parameters must be added: the name of the variable and 

the boundaries. 
 
Value returned by ibpdv depending on its parameters: 

– ibpdv(u(x).v’(x),v(x)) (resp. ibpdv([F(x),u(x).v’(x)],v(x))) returns: 
if 𝑣(𝑥)  ≠  0, a list formed of 𝑢(𝑥). 𝑣(𝑥) and −𝑣(𝑥). 𝑢’(𝑥) (resp. a list formed of 𝐹(𝑥)  +
 𝑢(𝑥). 𝑣(𝑥) and −𝑣(𝑥). 𝑢’(𝑥)), 

– ibpdv(g(x),0) (resp. ibpdv([F(x),g(x)],0)) returns: 
a primitive G(x) of g(x) (resp. 𝐹(𝑥)  +  𝐺(𝑥)) where diff(G(x))=g(x). 

– ibpdv(u(x)*v’(x),v(x),x,a,b) (resp. ibpdv([F(x),u(x)*v’(x)],v(x),x,a,b)) 
returns: 

– if 𝑣(𝑥)  ≠  0, a list formed of 𝑢(𝑏). 𝑣(𝑏)  −  𝑢(𝑎). 𝑣(𝑎) and −𝑣(𝑥). 𝑢’(𝑥) 
(resp. a list formed of 𝐹(𝑏)  +  𝑢(𝑏). 𝑣(𝑏)  −  𝐹(𝑎)  −  𝑢(𝑎). 𝑣(𝑎) and −𝑣(𝑥). 𝑢’(𝑥)), 

– if the second argument is null, ibpdv(g(x),0,x,a,b) returns: 
𝐺(𝑏)  −  𝐺(𝑎) where 𝐺(𝑥) is a primitive of the first argument 𝑔(𝑥) 
(resp. ibpdv([F(x),g(x)],0,x,a,b) returns 𝐹(𝑥)  +  𝐺(𝑏)  −  𝐺(𝑎) where 
𝐺(𝑥) is a primitive of 𝑔(𝑥)). 

 
We enter: 

ibpdv(ln(x),x) 

We get: 

[x.ln(x),-1] 

then we enter 

ibpdv([x.ln(x),-1],0) 
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We get: 

-x+x.ln(x) 

We enter: 

ibpdv(ln(x),x,x,1,2) 

We get: 

[2*ln(2),-1] 

We enter: 

ibpdv(ln(x),x,x,2,3) 

We get: 

[3*ln(3)-2*ln(2),-1] 

then we enter: 

ibpdv([3*ln(3)-2*ln(2),-1],0,x,2,3) 

We get: 

-1+3*ln(3)-2*ln(2) 

3.12.3 Integration by parts: ibpu 

ibpu allows to look for a primitive (or to calculate a definite integral) of an expression of the form 
𝑢(𝑥). 𝑣’(𝑥). 
ibpu has two parameters for the primitives and five parameters for the integrals defined: 

– either an expression of the form 𝑢(𝑥). 𝑣’(𝑥) and 𝑢(𝑥) (or a list of two expressions 

[𝐹(𝑥), 𝑢(𝑥)  ∗  𝑣’(𝑥)] and 𝑢(𝑥)), 
– either an expression of the form 𝑔(𝑥) and 0 (or a list of expressions [𝐹(𝑥), 𝑔(𝑥)] and 0). 
– for the defined integrals, three other parameters must be added: the name of the variable and 

the boundaries. 
 
Value returned by ibpu according to its parameters: 

– ibpu(u(x).v’(x),u(x)) (resp. ibpu([F(x),u(x).v’(x)],u(x))) returns: 
if 𝑢(𝑥)  ≠  0, a list formed of 𝑢(𝑥). 𝑣(𝑥) and −𝑣(𝑥). 𝑢’(𝑥) (resp. a list formed of 𝐹(𝑥) +
 𝑢(𝑥). 𝑣(𝑥) and −𝑣(𝑥). 𝑢’(𝑥)), 

– ibpu(g(x),0) (resp. ibpu([F(x),g(x)],0)) returns: 
𝐺(𝑥) a primitive of 𝑔(𝑥) (resp. 𝐹(𝑥)  +  𝐺(𝑥) where diff(G(x))=g(x)). 

– ibpu(u(x)*v’(x),u(x),x,a,b) (resp. ibpu([F(x),u(x)*v’(x)],u(x),x,a,b)) 
returns: 

– if 𝑢(𝑥)  ≠  0, a list formed of 𝑢(𝑏). 𝑣(𝑏)  −  𝑢(𝑎). 𝑣(𝑎) and −𝑣(𝑥). 𝑢’(𝑥) 
(resp. a list formed of 𝐹(𝑏)  +  𝑢(𝑏). 𝑣(𝑏)  −  𝐹(𝑎)  −  𝑢(𝑎). 𝑣(𝑎) and −𝑣(𝑥). 𝑢’(𝑥)), 

– if the second argument is null, ibpu(g(x),0,x,a,b) returns: 
𝐺(𝑏)  −  𝐺(𝑎) where 𝐺(𝑥) a primitive of 𝑔(𝑥) (resp. 𝐹(𝑥)  +  𝐺(𝑏)  −  𝐺(𝑎) where 𝐺(𝑥) is a 
primitive of 𝑔(𝑥)). 

 
We enter: 

ibpu(ln(x),ln(x)) 

We get: 

[x.ln(x),-1] 
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then we enter: 

ibpu([x.ln(x),-1],0) 

We get: 

-x+x.ln(x) 

We enter: 

ibpu(ln(x),ln(x),x,2,3) 

We get: 

[3*ln(3)-2*ln(2),-1] 

then we enter: 

ibpu([3*ln(3)-2*ln(2),-1],0,x,2,3) 

We get: 

-1+3*ln(3)-2*ln(2) 

3.12.4 Evaluate a primitive: preval 

preval has three parameters: an expression F(x) depending on the variable x, and two expressions a 
and b. 
preval does F(b)-F(a). 
preval is useful to calculate a definite integral by a primitive: we calculate a primitive, then one 
evaluates this primitive between the two boundaries of the integral. 
 
We enter: 

preval(x^2+x,2,3) 

We get: 

6 

We enter: 

int(ln(x)) 

We get: 

x*ln(x)-x 

We enter: 

preval(x*ln(x)-x,2,3) 

We get: 

3*ln(3)-3-2*ln(2)+2 
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3.13 Limits 

3.13.1 Riemann sum: sum_riemann 

sum_riemann has two arguments: an expression Xpr depending on two variables and the list of 
names of these two variables. 
sum_riemann(Xpr(n,k),[n,k]) returns an equivalent, in the vicinity of n =+∞, of ∑ 𝑋𝑝𝑟(𝑛, 𝑘)𝑛

𝑘=1  

or of ∑ 𝑋𝑝𝑟(𝑛, 𝑘)𝑛−1
𝑘=0  or of ∑ 𝑋𝑝𝑟(𝑛, 𝑘)𝑛−1

𝑘=1 , when the sum considered is a Riemann sum associated to a 

function continuous on [0,1] or, when the search was unsucessfull, returns "This is probably 
not a Riemann sum" . 
 
Let 

𝑆𝑛 =∑
𝑘2

𝑛3

𝑛

𝑘=1

 

 
Calculate 
lim
𝑛→+∞

𝑆𝑛 

 
We enter: 

sum_riemann(k^2/n^3,[n,k]) 

We get: 

1/3 

because: 

∑
𝑘2

𝑛3

𝑛

𝑘=1

=
1

𝑛
∑

𝑘2

𝑛2

𝑛

𝑘=1

 

is the Riemann sum associated to: 

∫ 𝑥2𝑑𝑥 =
1

3

1

0

 

Let  

𝑆𝑛 =∑
𝑘3

𝑛4

𝑛

𝑘=1

 

 
Calculate  

lim
𝑛→+∞

𝑆𝑛 

 
We enter: 

sum_riemann(k^3/n^4,[n,k]) 

We get: 

1/4 

because: 

∑
𝑘3

𝑛4

𝑛

𝑘=1

=
1

𝑛
∑

𝑘3

𝑛3

𝑛

𝑘=1

 

 
is the Riemann sum associated to: 

∫ 𝑥3𝑑𝑥 =
1

4

1

0

 

Let 
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𝑆𝑛 =∑
32𝑛3

16𝑛4 − 𝑘4

𝑛

𝑘=1

 

 
Calculate 

lim
𝑛→+∞

𝑆𝑛 

 
We enter: 

sum_riemann(32*n^3/(16*n^4-k^4),[n,k]) 

We get: 

2*atan(1/2)+log(3) 

because: 

∑
32𝑛3

16𝑛4 − 𝑘4

𝑛

𝑘=1

=∑
32

16 − (
𝑘
𝑛
)
4

𝑛

𝑘=1

 

is the Riemann sum associated to: 

∫
32

16 − 𝑥4
𝑑𝑥 = ∫

1

𝑥 + 2
−

1

𝑥 − 2

4

𝑥2 + 4

1

0

1

0

 

which then equals ln(3) − ln(2) + ln(2) − ln(1) + 2 atan (1/2) = ln(3) + 2 atan (1/2) 
 
Calculate  

lim
𝑛→+∞

(
1

𝑛 + 1
+

1

𝑛 + 2
+⋯+

1

𝑛 + 𝑛
) 

 
We enter: 

sum_riemann(1/(n+k),[n,k]) 

We get: 

ln(2) 

because: 

∑
1

𝑛 + 𝑘

𝑛

𝑘=1

=
1

𝑛
∑

1

1 + (
𝑘
𝑛
)

𝑛

𝑘=1

 

is the Riemann sum associated to: 

∫
1

1 + 𝑥
𝑑𝑥 = ln(1 + 1) = ln (2)

1

0

 

Calculate  

lim
𝑛→+∞

(
𝑛

𝑛2 + 12
+

𝑛

𝑛2 + 22
+⋯+

𝑛

𝑛2 + 𝑛2
) 

 
We enter: 

sum_riemann(n/(n^2+k^2),[n,k]) 

We get: 

pi/4 

because: 
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∑
𝑛

𝑛2 − 𝑘2

𝑛

𝑘=1

=
1

𝑛
∑

1

1 + (
𝑘
𝑛
)
2

𝑛

𝑘=1

 

is the Riemann sum associated to: 

∫
1

1 − 𝑥2
𝑑𝑥 = atan(1) =

𝜋

4

1

0

 

Calculate 

lim
𝑛→+∞

(
1

√𝑛2 + 12
+

1

√𝑛2 + 212
+⋯+

1

√𝑛2 + 𝑛2
) 

 
We enter: 

sum_riemann(1/sqrt(n^2+k^2),[n,k]) 

We get: 

-ln(sqrt(2)-1) 

because: 

∑
𝑛

√𝑛2 − 𝑘2

𝑛

𝑘=1

=
1

𝑛
∑

1

√1 + (
𝑘
𝑛
)
2

𝑛

𝑘=1

 

is the Riemann sum associated to: 

∫
1

√1 − 𝑥2
𝑑𝑥 = ln (1 + √1 + 12)

1

0

− ln (0 + √1 + 02) = ln (1 + √2) 

3.13.2 Series expansion: taylor 

taylor has one to four parameters: 
the expression to be developped, x=a (by default x=0), the order of development (by default 5), or: 
the expression to be developped, x, the order of development (by default 5) and the point in the 
vicinity of which we want the development (by default 0). 
Note: we can also put x,a,n instead of x=a,n 
taylor returns a polynomial in x-a, plus a rest that the calculator writes: 
(x-a)^n*order_size(x-a) 

This means that we have a series expansion at order n−1 (or at order p < n). 
Indeed, order_size designates a function so that, regardless r positive: 
x^r*order_size(x) tends to zero when x tends to zero. 
For instance, the constant functions, the log (or ln) function, are order_size functions. 
 
We enter: 

taylor(sin(x),x=1,2) 

Or we enter (mind the order of arguments!): 

taylor(sin(x),x,2,1) 

We get: 

sin(1)+cos(1)*(x-1)-(sin(1)/2)*(x-1)^2+(x-1)^3*order_size(x-1) 
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3.13.3 Division by increasing power order: divpc 

divpc has three arguments: two polynomials A(x), B(x) (with 𝐵(0)  ≠  0) and an integer n. 

divpc returns the quotient Q(x) of the division of A(x) by B(x) by increasing power order with 
degree(𝑄)  ≤  𝑛 or 𝑄 =  0. 

𝑄(𝑥) is then the series expansion order n of 
𝐴(𝑥)

𝐵(𝑥)
 in the vicinity of 𝑥 =  0. 

 
We enter: 

divpc(1+x^2+x^3,1+x^2,5) 

We get: 

-x^5+x^3+1 

Warning! This command does not work if the polynomials are written with the list of their coefficients. 

3.14 Transform 

3.14.1 Laplace transform: laplace 

laplace has one, two or three arguments: 
the expression to be transformed and eventually the name of one or two variables. 

The expression is an expression of the current variable (here x) or the expression to be transformed is 
an expression of the supplied variable as second argument. 
laplace is the Laplace transform of the expression supplied as argument . 
The result of laplace is an expression of variable: the third argument, or by default the second 

argument, or by default x. 
 
We enter: 

laplace(sin(x)) 

We get: 

1/(x^2+1) 

Or we enter: 

laplace(sin(t),t) 

We get: 

1/(t^2+1) 

Or we enter: 

laplace(sin(x),x,t) 

We get: 

1/(t^2+1) 

Or we enter: 

laplace(sin(t),t,s) 

We get: 
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1/(s^2+1) 

 
 

3.14.2 Laplace transform inverse: invlaplace 

invlaplace (or ilaplace) has one, two or three arguments: 
the expression to be transformed and eventually the name of one or two variables. 
The expression is an expression of the current variable (here x) or the expression to be transformed is 
an expression of the supplied variable as second argument. 
invlaplace is the inverse Laplace transform of the expression supplied as argument. The result of 
invlaplace is an expression of variable: the third argument, or by default the second argument, or by 

default x. 
 
We enter: 

invlaplace(1/(x^2+1)) 

We get: 

sin(x) 

Or we enter: 

invlaplace(1/(t^2+1),t) 

We get: 

sin(t) 

Or we enter: 

invlaplace(1/(t^2+1),t,x) 

We get: 

sin(x) 

Note: 
We use the Laplace transform (laplace) and the inverse Laplace transform (ilaplace or 
invlaplace) to solve differential equations linear at constant coefficients, for example: 

𝑦’’ +  𝑝. 𝑦’ +  𝑞. 𝑦 =  𝑓(𝑥) 
𝑦(0)  =  𝑎 𝑦’(0)  =  𝑏 

By noting ℒ the Laplace transform, we have the following relations: 

ℒ(𝑦)(𝑥) = ∫ 𝑒−𝑥.𝑢𝑦(𝑢)𝑑𝑢
+∞

0

 

ℒ−1(𝑔)(𝑥) =
1

2𝑖𝜋
∫𝑒𝑧.𝑥𝑔(𝑧)𝑑𝑧
 

𝒞

 

where 𝒞 is a closed curve containing the poles of g. 
 
Example: 
Solve: 

𝑦’’ −  6. 𝑦’ +  9. 𝑦 =  𝑥. 𝑒3.𝑥, 𝑦(0) =  𝑐0, 𝑦’(0)  =  𝑐_1 
Here, 𝑝 =  −6, 𝑞 =  9. 
 
We enter: 

laplace(x*exp(3*x)) 
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We get: 

1/(x^ 2-6*x+9) 

We enter: 

ilaplace((1/(x^2-6*x+9)+(x-6)*c_0+c_1)/(x^2-6*x+9)) 

We get 

(216*x^3-3888*x*c_0+1296*x*c_1+1296*c_0)*exp(3*x)/1296 

after simplification and factorization (command factor) the solution reads: 

(-18*c_0*x+6*c_0+x^3+6*x*c_1)*exp(3*x)/6 

One can, of course, press directly: 

desolve(y’’-6*y’+9*y=x*exp(3*x),y) 

We get: 

exp(3*x)*(-18*c_0*x+6*c_0+x^3+6*x*c_1)/6 

3.14.3 Fast Fourier transform: fft 

fft takes as argument a list (or a sequence) [𝑎0, . . 𝑎𝑁−1 ] where N is a power of two. 

fft returns the list [𝑏0, . . 𝑏𝑁−1 ] such as for k=0..N-1 such as: 
fft([a0, ..aN−1 ])[k] 

=  bk = ∑ 𝑥𝑗𝜔𝑁
−𝑘.𝑗

𝑁−1

𝑗=0

 

with 𝜔𝑁 N-th root of the unity. 
 
We enter: 

fft(0,1,1,0) 

We get: 

[2., -1-i, 0., -1+i] 

Note: we can also work on a field ℤ /𝑝 ℤ, by giving an N-th primitive root of unity as second argument 

and 𝑝 as third argument of fft. 

3.14.4 inverse of the fast Fourier transform: ifft 

ifft takes as argument a list or a sequence [𝑏0, . . 𝑏𝑁−1 ] where N is a power of two. 

ifft returns the list [𝑎0, . . 𝑎𝑁−1 ] such as: 

fft([𝑎0, . . 𝑎𝑁−1 ])= [𝑏0, . . 𝑏𝑁−1 ]. 
 
We enter: 

ifft([2,-1-i,0,-1+i]) 

Or we enter: 

ifft(2,-1-i,0,-1+i) 

We get: 
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[0., 1., 1., 0.] 

Note: we can also work on a field ℤ /𝑝 ℤ, by giving an N-th primitive root of unity as second argument 

and 𝑝 as third argument of ifft. 
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Chapter 4 Menu Solve 

4.1 Solve equations: solve 

solve allows to solve an equation or a set of polynomial equations. 
solve takes one or two arguments which are an expression xpr in x or an expression 

xpr of a variable var and the name of this variable var. 

solve solves xpr = 0, the unknown value being x or var 
Warning! The second variable can specify an interval, for example 𝑥 =  𝑎. . 𝑏, to only have the 

solutions in the interval [𝑎; 𝑏] but in this case the solutions will be numerical and solve is then similar 
to fsolve, for example: 
solve(t^2-2,t=0..2) or fsolve(t^2-2,t=0..2) returns [1.41421356237] 
whereas solve(t^2-2,t) returns [-(sqrt(2)),sqrt(2)]. 
 
We enter: 

solve(x^2-3*x+2=0) 

We get: 

{1,2} 

We enter: 

solve(x^4-1=0) 

We get: 

{-sqrt(2),sqrt(2)} 

We enter: 

solve([x+y=3,x*y=2],[x,y]) 

Or we enter: 

solve({x+y=3,x*y=2},{x,y}) 

We get: 

{[1,2],[2,1]} 

We enter: 

solve([-x^2+y=2,x^2+y=0],[x,y]) 

Or we enter: 

solve({-x^2+y=2,x^2+y=0},{x,y}) 

We get: 

{} 
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4.2 Zeros of an expression: zeros 

zeros takes as parameter an expression. 
zeros returns the list of elements which cause the expression to vanish. 
Depending on the chosen mode, if we are in real mode (complex_mode:=0 or if i is not checked in 
the CAS Settings) the zero will be real and if we are in complex mode (complex_mode:=1 or if i is 
checked in the CAS Settings)) the zero will be complex. 
 
We enter: 

zeros(x^2-3*x+2) 

We get: 

[2,1] 

We enter: 

zeros(x^4-1) 

We get: 

[1,-1] 

We enter: 

zeros([x+y-3,x*y-2],[x,y]) 

Or we enter: 

zeros({x+y-3,x*y-2},{x,y}) 

We get: 

[[1,2],[2,1]] 

We enter: 

zeros([-x^2+y-2,x^2+y],[x,y]) 

Or we enter: 

zeros({-x^2+y-2,x^2+y},{x,y}) 

We get: 

[] 

4.3 Complex Zeros of an expression: cZeros 

cZeros takes as parameter an expression. 
cZeros returns the list of complex elements which make the expression equals zero. 
Note: 
Difference between zeros and cZeros: in complex mode, zeros returns the same result as cZeros 
(as far as cZeros is concerned, being in complex mode or real mode does not matter much). Thus, if 
we do not want that the result depends on the mode, it is better to use cZeros to get the complex 
solutions. 
We enter in real or complex mode: 
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cZeros(x^2+4) 

We get: 

[-2*i,2*i] 

We enter: 

cZeros(ln(x)^2-2) 

We get: 

[exp(sqrt(2)),exp(-(sqrt(2)))] 

We enter: 

cZeros(ln(y)^2-2,y) 

We get: 

[exp(sqrt(2)),exp(-(sqrt(2)))] 

We enter: 

cZeros(x*(exp(x))^2-2*x-2*(exp(x))^2+4) 

We get: 

[[log(sqrt(2)),log(-sqrt(2)),2]] 

4.4 Solve equations in ℂ: cSolve csolve 

cSolve or csolve solves an equation or a set of polynomial equations in ℂ without needing to be in 
complex mode. 
Note: 
Difference between solve and csolve: in complex mode solve returns the same result as csolve 
(as far as csolve is concerned, being in complex mode or real mode does not matter much). Thus, if 
we do not want that the result depends on the mode, for it is better to use csolve to get the complex 
solutions. 
 
We enter in real or complex mode: 

cSolve(x^4-1=3) 

or 

csolve(x^4-1=3) 

We get: 

[sqrt(2),-sqrt(2),sqrt(2)*i,-sqrt(2)*i] 

We enter: 

cSolve([-x^2+y=2,x^2+y=0],[x,y]) 

Or we enter: 

cSolve({-x^2+y=2,x^2+y=0},{x,y}) 
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We get: 

{[i,1],[-i,1]} 

4.5 Complex zeros of an expression: cZeros 

cZeros takes as parameter an expression. 
cZeros returns the list of complex elements which make the expression equals zero. 
Note: 
Difference between zeros and cZeros: in complex mode zeros returns the same result as cZeros 
(as far as cZeros is concerned, being in complex mode or real mode does not matter much). Thus, if 
we do not want that the result depends on the mode, it is better to use cZeros to get the complex 
solutions. 
 
We enter in real or complex mode: 

cZeros(x^4-1) 

We get: 

[1,-1,-i,i] 

We enter: 

cZeros([-x^2+y-2,x^2+y],[x,y]) 

Or we enter: 

cZeros({-x^2+y-2,x^2+y},{x,y}) 

We get: 

[[-i,1],[i,1]] 

4.6 Differential equations 

For the numerical calculation of solutions of differential equations please refer to odesolve and for 
the graphical representation of solutions of differential equations please refer to plotfield, 
plotode. 
 

4.6.1 Solve differential equations: deSolve desolve 

deSolve or desolve allows to solve: 
– the linear differential equations with constant coefficients of order one or order two, 
– the linear differential equations of order one, 

– the differential equations of order one incomplete in y, 

– the differential equations of order one incomplete in x, 
– the differential equations of order one of separate variables, 
– the differential equations of order one homogeneous (𝑦’ =  𝐹(𝑦/𝑥)), 
– the differential equations of order one having one integrating factor, 
– the differential equations of Bernoulli (𝑎(𝑥)𝑦’ +  𝑏(𝑥)𝑦 =  𝑐(𝑥)𝑦𝑛), 
– the differential equations of Clairaut (𝑦 =  𝑥 ∗  𝑦’ +  𝑓(𝑦’)). 

 
Parameters of desolve: 

– when the differential equation is of order one, the variable is x and the unknown value is y, the 
parameters are: 
the differential equation or 
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the differential equation followed by the list [𝑥0, 𝑦0] which sets as initial condition 𝑦(𝑥0)  =  𝑦0. 
 

– when the variable is x, the parameters are: the differential equation (or the list formed by the 

differential equation and the initial conditions) and the unknown y. 

In the differential equation y reads y, y’ reads y’, y” reads y”, because we derivate according to 

the variable x. For instance: desolve(y’’+2*y’+y,y) and 
desolve([y’’+2*y’+y,y(0)=1,y’(0)=0],y). 

– when the variable is not x (for example t), the parameters are: the differential equation (or the 
list formed by the differential equation and the initial conditions), the variable t and the 
unknown y or the unknown 𝑦(𝑡) (the variable is then 𝑡 and the unknown is 𝑦). 

In the differential equation 𝑦 reads 𝑦(𝑡) and 𝑦’ reads diff(y(t),t), 𝑦’’ reads 
diff(y(t),t$2). 
For instance: 
deSolve(diff(y(t),t$2)+2*diff(y(t),t)+y(t),y(t));  
or 
deSolve(diff(y(t),t$2)+2*diff(y(t),t)+y(t),t,y); 

and 
deSolve([diff(y(t),t$2)+2*diff(y(t),t)+y(t),  y(0)=1,y’(0)=0],y(t)); 
or 
deSolve([diff(y(t),t$2)+2*diff(y(t),t)+y(t), y(0)=1,y’(0)=0],t,y); 

 

We enter (by pressing Shift-() for ”): 

deSolve(y’’+y=cos(x),y) 

or else: 

deSolve((diff(diff(y))+y)=(cos(x)),y) 

We find: 

G_0*cos(x)+(x+2*G_1)/2*sin(x) 

c_0, c_1 are the integration constants: y(0)=c_0 and y’(0)=c_1. 

We enter, if we want the solutions that make 𝑦(0)  =  1: 

deSolve([y’’+y=cos(x),y(0)=1],y) 

We get 

[cos(x)+(x+2*c_1)/2*sin(x)] 

the components of this vector are solutions (here we have one single component because we get one 
single solution depending on the constant c_1). 
 
Exercise 
Find the differentiable functions f which make: 

𝑓’(𝑥)  =  𝑓(−𝑥). 

The function 𝑓’ is then differentiable and we have: 

𝑓’’(𝑥)  =  −𝑓’(−𝑥)  =  −𝑓(𝑥). 

𝑓 then makes the differential equation 𝑦’’ +  𝑦 =  0 which is easy to integrate. 

So 𝑓 is solution of the differential equation: 𝑦’’ +  𝑦 =  0. 
 
We enter: 

desolve(y’’+y=0) 

We get: 

c_0*cos(x)+c_1*sin(x) 

So f(x) is of the form c_0*cos(x)+c_1*sin(x) 
Let us look for the values of c_0 and c_1 to get f’(x)-f(-x)=0 for all the values of x. 
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We enter: 

f(x):=c_0*cos(x)+c_1*sin(x) 

factor(f’(x)-f(-x)) 

We get: 

(-sin(x)-cos(x))*(c_0-c_1) 

So c_0=c_1 
So the differentiable functions 𝑓 which make 𝑓’(𝑥)  =  𝑓(−𝑥) are the functions equal to: 

𝑐 ∗  (𝑐𝑜𝑠(𝑥)  +  𝑠𝑖𝑛(𝑥)) where 𝑐 is an arbitrary constant. 

Or 𝑓(𝑥)  =  𝑘 𝑐𝑜𝑠(𝑥 −  𝜋/4) where 𝑘 is an arbitrary constant. 
 
We check by entering: 

(cos(x)+sin(x))’-(cos(-x)+sin(-x)) 

or by entering 

cos(x-pi/4)’-cos(-x-pi/4) 

We get 

0 

Similar exercise 

Find the differentiable functions 𝑓 of ℝ+ in ℝ which make: 

𝑓’(𝑥)  =  𝑓(1/𝑥). 

The function 𝑓’ of ℝ∗∗ in ℝ is then differentiable and we have: 

𝑓’’(𝑥)  =  −𝑓’(1/𝑥)/𝑥2 = −𝑓(𝑥)/𝑥2 

So 𝑓 then makes the differential equation 𝑥2𝑦’’ +  𝑦 =  0 which is more difficult to integrate. 
 
We enter: 

factor(desolve(x^2*y’’+y=0)) 

We get: 

sqrt(x)*(c_0*cos(2*sqrt(3)*ln(x)/4)+c_1*sin(2*sqrt(3)*ln(x)/4)) 

 
Let us look for the values of c_0 and c_1 so that 𝑓 makes: 

f’(x)-f(1/x)=0 for all the values of x. 

We enter: 

f(x):=sqrt(x)*(c_0*cos(sqrt(3)*ln(x)/2)+c_1*sin(sqrt(3)*ln(x)/2)) 

factor(f’(x)-f(1/x)) 

We get: 

sqrt(x)*(cos(sqrt(3)*ln(x)/2)+sqrt(3)*sin(sqrt(3)*ln(x)/2))*(-c_0-(-

(sqrt(3))) 

So (-c_0-(-(sqrt(3)))*c_1)=0 that is to say -c_0=c_1*sqrt(3). 
So the differentiable functions 𝑓 which make 𝑓’(𝑥)  =  𝑓(1/𝑥) are the functions equal to: 

𝑐 ∗  (√3 cos(𝑥)  +  sin(𝑥)) where 𝑐 is an arbitrary constat. 
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We check by entering: 

f(x):=sqrt(x)*(sqrt(3)*cos(sqrt(3)*ln(x)/2)+sin(sqrt(3)*ln(x)/2)) 

Then, simplify(f’(x)-f(1/x)) returns 0. 
 
To do the integration by hand, we consider 𝑡 =  𝑙𝑛(𝑥) i.e. 𝑥 =  𝑒𝑡. 
We have: 

𝑦𝑥
′ = 𝑦𝑡

′/𝑥 and 𝑦𝑥
′′ = 𝑦𝑡2

′′  /𝑥2 – 𝑦𝑡
′/𝑥2 =  1/𝑥2(𝑦𝑡2

′′  –  𝑦𝑡
′) 

So 𝑔(𝑡)  =  𝑓(𝑒𝑡) checks the differential equation: 

𝑦𝑡2
′′  –  𝑦𝑡

′ +  𝑦 =  0 whose characteristic equation is 𝑟2  −  𝑟 +  1 =  0. Thus 𝑔(𝑡)  =  𝑓(𝑒𝑡) is of the form: 

𝑒
𝑡
2 (𝑎 cos (

√3 ln(𝑥)

2
) + 𝑏 sin (

√3 ln(𝑥)

2
)

 
) 

i.e. 𝑓(𝑥) is of the form: 

𝑓(𝑥) = 𝑒
ln (𝑥)
2 (𝑎 cos (

√3 ln(𝑥)

2
) + 𝑏 sin (

√3 ln(𝑥)

2
)

 
) 

Let us look for the values of a and b to get: 
𝑓‘(𝑥)  =  𝑓(1/𝑥). 

𝑓‘(𝑥) = 𝑒
ln (𝑥)
2

(𝑎 (−√3 sin (
√3 ln(𝑥)

2
) + cos (

√3 ln(𝑥)
2

)) + 𝑏 (sin (
√3 ln(𝑥)

2
)+√3cos (

√3 ln(𝑥)
2

)))

2𝑥
 

and 

𝑓’(𝑥)  −  𝑓(1/𝑥)  =  0 causes: 

 (−𝑎 +  𝑏√3)  =  0 then 𝑎 =  𝑏√3. 

If we look for the differentiable functions 𝑓 of ℝ∗ in ℝ which makes: 

𝑓’(𝑥)  =  𝑓(1/𝑥). 

You must consider for 𝑥 <  0: 𝑥 =  − exp(𝑡). 
We get the same differential equation but the relation 𝑦’(𝑥)  =  𝑦(1/𝑥) gives as condition 

𝑐1 =  −𝑐0√3. 

Then, we consider: 

f(x):=exp(ln(abs(x))/2)*(sqrt(3)*cos(sqrt(3)/2*ln(abs(x)))+sin(sqrt(3)/2*ln

(abs(x)))) 

g(x):=exp(ln(abs(x))/2)*(cos(sqrt(3)/2*ln(abs(x)))-

sqrt(3)*sin(sqrt(3)/2*ln(abs(x)))) 

Then: 

h(x):=ifte(x>0,f(x),g(x)) 

k(x):=ifte(x>0,f’(x),g’(x)) 

because if we enter k(x):=h’(x) we have as a result: 

ifte: impossible to perform the test Error: Incorrect Argument Value. 

or we enter: 
h(x):=when(x>0,f(x),g(x)) and k(x):=h’(x) because ifte performs the test, but not 
when, or the expression is evaluated to derivate. 
The functions c*h(x) where c is an arbitrary constant make c*h’(x)=c*k(x)= 
c*h(1/x) 

We enter: 
plotfunc(h(x)) 

 
We get: 
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We notice that: 

limit(f(x),x,0,1) returns 0 and 

limit(g(x),x,0,-1) returns 0 so 

h(0)=0 but h is not differentiable in 0 because limit(h(x)/x,x,0) equals the infinite. 
We enter: 

plotfunc([k(x),h(1/x)]) 

We get one single curve: 

 

4.6.2 Laplace transform and inverse Laplace transform: /laplace ilaplace 
invlaplace 

laplace and ilaplace (or invlaplace) have one, two or three arguments: 
the expression to be transformed and eventually the name of two variables. 
The expression is an expression of the current variable (here x) or the expression that we transform is 
an expression of the supplied variable as second argument. 
laplace is the Laplace transform of the expression supplied as argument and ilaplace (or 
invlaplace) is the inverse Laplace transform of the expression supplied as argument . The result of 
laplace and ilaplace (or invlaplace) is an expression of variable the third argument, or by 
default the second argument, or by default x. 
Warning! The second argument is the name of the variable of the first argument and is also the name 
of the variable of the result when there is no third argument, by example: laplace(sin(x),t) 
returns sin(x)/t 
We use the Laplace transform (laplace) and the Laplace inverse transform (ilaplace or 
invlaplace) to solve linear differential equations at constant coefficients, for example: 
 

𝑦’’ +  𝑝. 𝑦0 +  𝑞. 𝑦 =  𝑓(𝑥) 
𝑦(0)  =  𝑎 𝑦’(0)  =  𝑏 

By noting ℒ the Laplace transform, we have the following relations: 

ℒ(𝑦)(𝑥) = ∫ 𝑒−𝑥.𝑢𝑦(𝑢)𝑑𝑢
+∞

0
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ℒ−1(𝑔)(𝑥) =
1

2𝑖𝜋
∫ 𝑒𝑧.𝑥𝑔(𝑧)𝑑𝑧
𝒞

 

 
where 𝐶 is a closed curve containing the poles of g. 
laplace: 

 
We enter: 

laplace(sin(x)) 

here we do not specify the variable, then the expression to be transformed (here 𝑠𝑖𝑛(𝑥)) is an 

expression of the current variable (here 𝑥) and the transform will also be a function of the variable 𝑥. 
 
We get: 

1/(x^2+1) 

Or we enter: 

laplace(sin(t),t) 

here we specify the name of the variable of the function to be transformed (here 𝑡) and this name of 
variable will be used for the Laplace transform. 
 
We get: 

1/(t^2+1) 

Or we enter: 

laplace(sin(t),t,s) 

here we specify the name of the variable of the function to be transformed (here 𝑡) and the name of 

the variable that the we wish to get for the Laplace transform (here 𝑠). 
 
We get: 

1/(s^2+1) 

ilaplace or invlaplace: 
We enter: 

ilaplace(1/(x^2+1)) 

We get: 

sin(x) 

We enter: 

ilaplace(1/(t^2+1),t) 

We get: 

sin(t) 

We enter: 

ilaplace(1/(t^2+1),t,x) 
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We get: 

sin(x) 

We use the following properties: 

ℒ(𝑦’)(𝑥)  =   −𝑦(0)  +  𝑥. ℒ(𝑦)(𝑥) 

ℒ(𝑦’’)(𝑥)  =   −𝑦’(0)  +  𝑥. ℒ(𝑦0)(𝑥) 

=   −𝑦’(0)  −  𝑥. 𝑦(0)  + 𝑥2. ℒ(𝑦)(𝑥) 

We have then if 𝑦’’(𝑥)  +  𝑝. 𝑦’(𝑥)  +  𝑞. 𝑦(𝑥)  =  𝑓(𝑥): 

ℒ(𝑓)(𝑥)  =  ℒ(𝑦’’ +  𝑝. 𝑦’ +  𝑞. 𝑦)(𝑥) 

=  −𝑦’(0)  −  𝑥. 𝑦(0)  +  𝑥2. ℒ(𝑦)(𝑥)  −  𝑝. 𝑦(0)  +  𝑝. 𝑥. ℒ(𝑦)(𝑥))  +  𝑞. ℒ(𝑦)(𝑥) 

=  (𝑥2 +  𝑝. 𝑥 +  𝑞). ℒ(𝑦)(𝑥) –  𝑦’(0)  − (𝑥 +  𝑝). 𝑦(0) 

soit, if 𝑎 =  𝑦(0) and 𝑏 =  𝑦’(0): 

ℒ(𝑓)(𝑥)  =  (𝑥2 +  𝑝. 𝑥 +  𝑞). ℒ(𝑦)(𝑥)  − (𝑥 +  𝑝). 𝑎 −  𝑏 

The solution is then: 

𝑦(𝑥)  =  ℒ−1((ℒ(𝑓)(𝑥)  +  (𝑥 +  𝑝). 𝑎 +  𝑏)/(𝑥2 +  𝑝. 𝑥 +  𝑞)) 

 
Example: 
Solve: 

𝑦’’ −  6. 𝑦’ +  9. 𝑦 =  𝑥. 𝑒3. 𝑥, 𝑦(0)  =  𝑐_0, 𝑦’(0)  =  𝑐_1 
Here, 𝑝 =  −6, 𝑞 =  9. 
 
We enter: 

laplace(x*exp(3*x)) 

We get: 

1/(x^ 2-6*x+9) 

We enter: 

ilaplace((1/(x^2-6*x+9)+(x-6)*c_0+c_1)/(x^2-6*x+9)) 

We get 

 (216*x^3-3888*x*c_0+1296*x*c_1+1296*c_0)*exp(3*x)/1296 

after simplification and factorization (command factor) the solution reads: 

(-18*c_0*x+6*c_0+x^3+6*x*c_1)*exp(3*x)/6 

We can, of course, press directly: 

desolve(y’’-6*y’+9*y=x*exp(3*x),y) 

We get: 

exp(3*x)*(-18*c_0*x+6*c_0+x^3+6*x*c_1)/6 

4.7 Approximate solution of 𝒚’ = 𝒇(𝒕, 𝒚): odesolve 

Be 𝑓 a function of ℝ2 𝑦’ = 𝑓(𝑡, 𝑦) in ℝ . 
odesolve returns the approximate value 𝑦(𝑡1) of the solution of the differential equation 𝑦’ =  𝑓(𝑡, 𝑦) 
when 𝑦(𝑡0)  =  𝑦0. 
odesolve takes as parameters: 
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– odesolve(f(t,y),[t,y],[t0,y0],t1) or 
odesolve(f(t,y),t=t0..t1,y,y0) or 
odesolve(t0..t1,f,y0) or 
odesolve(t0..t1,(t,y)->f(t,y),y0) 

returns the approximate value of 𝑦(𝑡1)  when 𝑦(𝑡) is the solution of 𝑦’(𝑡)  = 𝑓(𝑡, 𝑦(𝑡)) which checks 
𝑦(𝑡0)  =  𝑦0. 
– We can add an optional parameter for tell the wished discretization in time (tstep=value). This 
value is not necessarily respected by the solver. 
– We can add curve as optional parameter to get the list of [𝑡, [𝑦(𝑡)]] calculated instead of the only 

value of 𝑦(𝑡1). 
 
We enter: 

odesolve(sin(t*y),[t,y],[0,1],2) 

or: 

odesolve(sin(t*y),t=0..2,y,1) 

or: 

odesolve(0..2,(t,y)->sin(t*y),1) 

or else we define the function: 

f(t,y):=sin(t*y) 

and we enter: 

odesolve(0..2,f,1) 

We get: 

[1.82241255674] 

then we enter: 

odesolve(0..2,f,1,tstep=0.3) 

We get: 

[1.82241255675] 

We enter: 

odesolve(sin(t*y),t=0..2,y,1,tstep=0.5) 

We get: 

[1.82241255675] 

We enter: 

odesolve(sin(t*y),t=0..2,y,1,tstep=0.5,curve) 

We get: 

[[0.0,[1.0]],[0.3906,[1.07811817892]],[0.760963058921,[1.30972370161]], 

[1.07086790074,[1.60476137064]],[1.39334557444,[1.86417104883]], 

[1.78645581533,[1.90374891395]],[2.0,[1.82241253071]]] 

We enter: 
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odesolve(sin(t*y),t=0..2,y,1,curve) 

Or we enter: 

odesolve(sin(t*y),t=0..2,y,1,tstep=0.3,curve) 

We get: 

[[0.0,[1.0]],[0.3781,[1.07309655677]],[0.6781,[1.24392692452]], 

[0.9781,[1.51224777765]],[1.2781,[1.7904830809]],[1.5781,[1.92164503333]], 

[1.8781,[1.87481063533]],[2.0,[1.82241255617]]] 

 

4.8 z transform and z inverse transform 

4.8.1 𝒛 transform of a series: ztrans 

ztrans has one or three arguments: 
– a sequence supplied by its general term 𝑎𝑥: the used variable to define the general term is 𝑥 and 𝑥 
will also be the name of the used variable in the function returned by ztrans 
– a sequence supplied by its general term 𝑎𝑛, the name of the used variable to define this general 

term (here 𝑛) and the name of the used variable in the function returned by ztrans (for example 𝑧). 
ztrans returns the z transform of the series supplied as argument. 
 
We have by definition: 
if 𝑓(𝑥)  =  𝑧𝑡𝑟𝑎𝑛𝑠(𝑎𝑥) we have 

𝑓(𝑥) = ∑
𝑎𝑛
𝑥𝑛

∞

𝑛=0

 

if 𝑓(𝑧)  =  𝑧𝑡𝑟𝑎𝑛𝑠(𝑎𝑛, 𝑛, 𝑧) we have 

𝑓(𝑧) = ∑
𝑎𝑛
𝑧𝑛

∞

𝑛=0

 

 
We enter: 

ztrans(1) 

We get: 

x/(x-1) 

We have indeed: 

∑
1

𝑥𝑛
=

1

1 −
1
𝑥

=
𝑥

𝑥 − 1

∞

𝑛=0

 

We enter: 

ztrans(1,n,z) 

We get: 

z/(z-1) 

We have indeed: 

1 +
1

𝑧
+
1

𝑧2
+
1

𝑧3
+
1

𝑧4
+⋯ =∑

1

𝑧𝑛
=

1

1 −
1
𝑧

=
𝑧

𝑧 − 1

∞

𝑛=0
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We enter: 

ztrans(x) 

We get: 

x/(x^2-2*x+1) 

We enter: 

ztrans(n,n,z) 

We get: 

z/(z^2-2*z+1) 

We have indeed: 

1

𝑧 − 1
= ∑

𝑛

𝑧𝑛−1

∞

𝑛=1

 

1

(𝑧 − 1)2
= −(

1

𝑧 − 1
) ′ = ∑

𝑛

𝑧𝑛−1

∞

𝑛=1

 

 
Thus 

𝑧

(𝑧 − 1)2
= ∑

𝑛

𝑧𝑛

∞

𝑛=1

 

 

4.8.2 z transform inverse of a rational fraction: invztrans 

invztrans has one or three arguments: 

– a rational fraction supplied by its expression by using the variable x and x will also be the 
name of the used variable in the function returned by ztrans, 

– three arguments: a rational fraction supplied by its expression, the name of the used variable 

to define this expression (for example the variable z), and the name of the used variable in the 

function returned by invztrans (for example n). 
invztrans returns the z inverse transform of the rational fraction supplied as argument. 
 
We have by definition: 
if 𝑖𝑛𝑣𝑧𝑡𝑟𝑎𝑛𝑠(𝑅𝑥)  =  𝑎𝑥 we have 

𝑅𝑥 =∑
𝑎𝑛
𝑥𝑛

∞

𝑛=0

 

if 𝑎𝑛  =  𝑖𝑛𝑣𝑧𝑡𝑟𝑎𝑛𝑠(𝑅𝑧 , 𝑧, 𝑛) we have 

𝑅𝑧 = ∑
𝑎𝑛
𝑧𝑛

∞

𝑛=0

 

 
We enter: 

invztrans(x/(x-1)) 

We get: 

1 

We enter: 

invztrans(z/(z-1),z,n) 



 100 

We get: 

1 

We have indeed: 

𝑧

𝑧 − 1
=

1

1 −
1
𝑧

= 1 +
1

𝑧
+
1

𝑧2
+
1

𝑧3
+
1

𝑧4
+⋯ =∑

1

𝑧𝑛

∞

𝑛=0

 

 
We enter: 

invztrans(x/(x-1)^2) 

We get: 

x 

We enter: 

invztrans(z/(z-1)^2,z,n) 

We get: 

n 

 

4.9 Solve numerical equations: nSolve 

nSolve allows to solve numerically non polynomial equations: 
𝑓(𝑥)  =  0 for 𝑥 ∈]𝑎, 𝑏[. 
The parameters of nSsolve are f(x)=0, x=x0 where x0 is a point of ]𝑎, 𝑏[. 
 
We enter: 

nSolve(x^2-2=0,x=1) 

We get: 

1.41421356237 

We enter: 

nSolvex^2-2=0,x=-1) 

We get: 

-1.41421356237 

4.10 Solve equations with fsolve 

fsolve allows to solve numerically non polynomial equations: 
𝑓(𝑥)  =  0 for 𝑥 ∈]𝑎, 𝑏[. 
fsolve takes as arguments 𝑓(𝑥)  =  0 and 𝑥 =  𝑎. . 𝑏 or 𝑓(𝑥)  =  0, 𝑥 and 𝑎. . 𝑏. 
 
We enter: 

fsolve(sin(x)=0,x=0..10) 
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Or we enter: 

fsolve(sin(x)=0,x,0..10) 

We get: 

[0.0,3.14159265359,6.28318530718,9.42477796077] 

We can add as last argument the value of the sample by specifying the value of xstep or the value of 
nstep (step of the interval ]𝑎, 𝑏[). 
 
We enter: 

fsolve(sin(x)=0,x=0..10,xstep=1 ) 

We get: 

[0.0,3.14159265359,6.28318530718,9.42477796077] 

We enter: 

fsolve(sin(x)=0,x=0..10,nstep=10) 

We get: 

[0.0,3.14159265359,6.28318530718,9.42477796077] 

4.11 Linear systems 

4.11.1 Solve a linear system: linsolve 

linsolve allows to solve a linear equations system where each equation is of the form 𝑋𝑝𝑟 =  0 

where 𝑋𝑝𝑟 is an expression. 
linsolve takes as parameters the list of equations and the list of variables. 
linsolve returns a list which is a solution of the equations system. 
linsolve allows to solve also a linear equations system in ℤ /𝑛 ℤ . 
 
We enter: 

linsolve([2*x+y+z=1,x+y+2*z=1,x+2*y+z=4],[x,y,z]) 

We get: 

[1/-2,5/2,1/-2] 

so 

𝑥 =  −
1

2
, 𝑦 =

5

2
, 𝑧 =  −

1

2
 

is the solution of the linear system: 

{

2x +  y +  z =  1
x +  y +  2z =  1
x +  2y +  z =  4

 

4.11.2 Gauss reduction of a matrix: ref 

ref allows to solve a linear equations system that we write under matrix form: 

A*X=B 
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The parameter of ref is the "expanded matrix" of the system (the one formed by the matrix A of the 
system and having as last column vector the second member B). 
The result is a matrix [A1,B1]: A1 has two zeros below its diagonal and the solutions of: 

A1*X=B1 

are the same as those of: 

A*X=B 

ref may work in ℤ /𝑝 ℤ . 
For instance, be the system in ℝ and in ℤ /5 ℤ to be solved: 

{
3𝑥 +  𝑦 =  −2
3𝑥 +  2𝑦 =  2

  

To solve the system in ℝ, we enter: 

ref([[3,1,-2],[3,2,2]]) 

We get: 

[[1,1/3,-2/3],[0,1,4]] 

so this means: 
𝑦 =  4 and 𝑥 =  −2 are solutions of the system. To solve the system in ℤ /5 ℤ, we enter: 

ref([[3,1,-2],[3,2,2]]%5) 

We get: 

[[1 % 5,2 % 5,1 % 5],[0 % 5,1 % 5,-1 % 5]] 

so this means: 
𝑦 =  −1%5 and 𝑥 =  3%5 are solutions of the system. 
Note: 
When the number of columns equals the number of lines +1 ref does not divide by the pivot of the last 
column, for example, we enter: 

ref([[1,1,0,0,-a1],[0,1,1,0,-a2],[0,0,1,1,-a3],[1,0,0,1,-a4]]) 

We get: 

[[1,1,0,0,-a1],[0,1,1,0,-a2],[0,0,1,1,-a3],[0,0,0,0,a1-a2+a3-a4]] 

So one learns that if a1-a2+a3-a4 is not null, there is no solution. 

4.12 Quadratic forms 

4.12.1 Matrix of a quadratic form: q2a 

q2a has two arguments: a quadratic form q and the vector whose components the used variables. 
q2a returns the matrix 𝐴 associated to 𝑞. 
 
We enter: 

q2a(2*x*y,[x,y]) 

We get: 
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[[0,1],[1,0]] 

4.12.2 Transform a matrix in a quadratic form: a2q 

a2q has two arguments: a symmetric matrix 𝐴 representing a quadratic form q and the vector whose 
components are the used variables. 
a2q returns the quadratic form 𝑞. 
 
We enter: 

a2q([[0,1],[1,0]],[x,y]) 

We get: 

2*x*y 

We enter: 

a2q([[1,2],[2,4]],[x,y]) 

We get: 

x^2+4*x*y+4*y^2 

4.12.3 Gauss method: gauss 

gauss has two arguments: a quadratic form 𝑞 and the vector whose components are the used 
variables. 
gauss returns the writting of 𝑞 under the form of a sum and difference of squares. 
 
We enter: 

gauss(2*x*y,[x,y]) 

We get: 

(y+x)^2/2+(-(y-x)^2)/2 

4.12.4 Gramschmidt process: gramschmidt 

gramschmidt has one or two parameters: 
– a matrix seen as a list of row vectors, the dot product of being the canonical scalar product, or 
– a vector containing the basis of a vector subspace and a function which defines a scalar 

product. 
gramschmidt gives a orthonormal basis according to this scalar product. 
 
We enter: 

normal(gramschmidt([[1,1,1],[0,0,1],[0,1,0]])) 

Or we enter: 

normal(gramschmidt([[1,1,1],[0,0,1],[0,1,0]],dot)) 

We get: 

[[(sqrt(3))/3,(sqrt(3))/3,(sqrt(3))/3], 

[(-(sqrt(6)))/6,(-(sqrt(6)))/6,(sqrt(6))/3], 
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[(-(sqrt(2)))/2,(sqrt(2))/2,0]] 

Example 

For the polynomials of degree < 𝑛, we consider the dot product defined by: 

𝑃. 𝑄 = ∫ 𝑃(𝑥). 𝑄(𝑥)𝑑𝑥
1

−1

 

 
We enter: 

gramschmidt([1,1+x],(p,q)->integrate(p*q,x,-1,1)) 

Or we write the function p_scal, we enter: 

p_scal(p,q):=integrate(p*q,x,-1,1) 

and we enter: 

gramschmidt([1,1+x],p_scal) 

We get: 

[1/(sqrt(2)),(1+x-1)/sqrt(2/3)] 

4.13 Conics 

4.13.1 Plot of a conic: conic 

conic takes as argument the expression of a conic. 
conic plots the conic having for equation the argument equals zero. 
 
We enter: 

conic(2*x^2+2*x*y+2*y^2+6*x) 

We get: 

the plot of the ellipse of center -2+i and equation 

2*x^2+2*x*y+2*y^2+6*x=0 

Note: 
Use reduced_conic to get the parametric equation of the conic. 

4.13.2 Reduction of a conic: reduced_conic 

reduced_conic takes one or two arguments: the expression of a conic and the vector whose 
components are the used variables if it is different from [𝑥, 𝑦]. 
reduced_conic returns a list of elements: 

– the origin of the conic, 
– the matrix of a basis in which the conic is reduced, 
– 0 or 1 to tell whether the conic is degenerate or not, 
– the reduced equation of the conic in this basis, 
– a vector containing its parametric equation or its parametrics equations when the conic is 

multi-napped. 
 
We enter: 

reduced_conic(2*x^2+2*x*y+2*y^2+5*x+3,[x,y]) 
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We get: 

[[-5/3,5/6],[[-1/(sqrt(2)),1/(sqrt(2))],[-1/(sqrt(2)), 

-1/(sqrt(2))]],1,3*x^2+y^2+-7/6,[[(-10+5*i)/6+(1/(sqrt(2))+ 

(i)/(sqrt(2)))*((sqrt(14)*cos(‘ t‘))/6+ 

((i)*sqrt(42)*sin(t))/6),t,0,2*pi,(2*pi)/60]]] 

The conic is not degenerate and its reduced equation is: 

3𝑥2 + 𝑦2 − 
7

6
 =  0 

in the origin basis −5/3 +  5 ∗  𝑖/6 and with axis parallel to vectors (−1, 1) 
and (−1,−1). 
Its parametric equation is: 

−
10 +  5 ∗  𝑖

6
+
1 +  𝑖

√2
∗
√14 ∗ cos(𝑡)  +  𝑖 ∗ √42 ∗ sin(𝑡)

6
 

and for the plot, the parameter 𝑡 varies from 0 to 2𝜋 by step tstep=2𝜋/60. 
Note: 
When the conic is degenerate in one or two line(s), each line is not supplied by its parametric equation 
but by the list constituted by a vector normal to the line and a point of the line. 
 
We enter: 

reduced_conic(x^2-y^2+3*x+y+2) 

We get: 

[[(-3)/2,1/2],[[1,0],[0,1]],0,x^2-y^2, [[(-1+2*i)/(1-i),(1+2*i)/(1-

i)], [(-1+2*i)/(1-i),(-1)/(1-i)]]] 

We get: 

(2*sqrt(5*23297^2*126757^*21302293^2))/62906903119301897 

That is to say: 

2*sqrt(5) 

We enter: 

H1:=projection(D1,M) 

length(M,F1)/length(M,H1) 

We get: 

(2^14*3*13*17*89*311*521*563*769*2609* 

sqrt(2*3*49409^2*112249^2*126757^2* 

21302293^2*568000439^2*6789838247809^2))/ 

(2^14*3^2*13*17*89*311*521*563*769* 

2609*49409*112249*126757*21302293*568000439*6789838247809) 

That is to say: 

(sqrt(6))/3 
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Chapter 5 Menu Rewrite 

 
 

5.1 Collect the logarithms: lncollect 

lncollect takes as argument an expression containing logarithms. 
lncollect collects the terms in logarithms. It is better to use it on a factorized expression (by using 
factor). 
 
We enter: 

lncollect(ln(x+1)+ln(x-1)) 

We get: 

ln((x+1)*(x-1)) 

We enter: 

lncollect(exp(ln(x+1)+ln(x-1))) 

We get: 

(x+1)*(x-1) 

5.2 Expand the logarithms: lnexpand 

lnexpand takes as argument an expression containing logarithms. 
lnexpand expands this expression. 
 
We enter: 

lnexpand(ln(3*x^2)+ln(2*x+2)) 

We get: 

ln(3)+2*ln(x)+ln(2)+ln(x+1) 

5.3 Linearize the exponentials: lin 

lin takes as argument an expression containing exponentials. 
lin linearizes this expression (rewrites it according to 𝑒𝑥𝑝(𝑛. 𝑥)). 
Examples 

– We enter: 

lin(sinh(x)^2) 

We get: 

1/4*exp(2*x)+1/-2+1/4*exp(-(2*x)) 
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– We enter: 

lin((exp(x)+1)^3) 

We get: 

exp(3*x)+3*exp(2*x)+3*exp(x)+1 

5.4 Transform a power in product of powers: powexpand 

powexpand allows to transformer a power in a product of powers. 
 
We enter: 

powexpand(a^(x+y)) 

We get: 

a^x*a^y 

 

5.5 Transform the trigonometric and hyperbolic expressions in 𝐭𝐚𝐧(𝒙/𝟐) and 

in 𝒆𝒙: halftan_hyp2exp 

halftan_hyp2exp takes as argument a trigonometric or hyperbolic expression. 

halftan_hyp2exp transforms the sin(𝑥), cos(𝑥) and tan(𝑥) of the expression in terms of tan (
𝑥

2
)  and 

𝑒𝑥. 
 
We enter: 

halftan_hyp2exp(tan(x)+tanh(x)) 

We get: 

(2*tan(x/2))/((1-(tan(x/2))^2))+(((exp(x))^2-1))/(((exp(x))^2+1)) 

We enter: 

halftan_hyp2exp(sin(x)^2+cos(x)^2-sinh(x)^2+cosh(x)^2) 

We get, after simplification with normal(ans(): 

2 

5.6 Expand a transcendantal and trigonometric expression: texpand 

texpand takes as argument a transcendantal and trigonometric expression. 
texpand is the generalization of expexpand, lnexpand and trigexpand because it expands the 
transcendantal and trigonometric expressions. 

For example, txpand allows to transform ln(𝑥𝑛) in 𝑛 ln(𝑥), 𝑒𝑥
𝑛
 in 𝑒𝑛𝑥, and sin(2𝑥) in 2sin(𝑥) cos(𝑥). 

 
– texpand takes as argument a transcendantal and trigonometric expression. 

Example: 

Expand exp(𝑥 +  𝑦)  +  cos(𝑥 +  𝑦)  +  ln(3𝑥2). 
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We enter: 

texpand(exp(x+y)+cos(x+y)+ln(3*x^2)) 

We get: 

cos(x)*cos(y)-sin(x)*sin(y)+exp(x)*exp(y)+ln(3)+2*ln(x) 

– texpand takes as argument a trigonometric expression. 
texpand expands this expression in term of sin(𝑥) and cos(𝑥). 
 
Examples 

1. Expand cos(𝑥 +  𝑦). 
 
We enter: 

texpand(cos(x+y)) 

We get: 

cos(x)*cos(y)-sin(x)*sin(y) 

2. Expand cos(3𝑥). 
 
We enter: 

texpand(cos(3*x)) 

We get: 

4*(cos(x))^ 3-3*cos(x) 

3. Expand 
sin(3 ∗ 𝑥) + sin(7 ∗ 𝑥)

sin(5 ∗ 𝑥)
. 

 
We enter: 

texpand((sin(3*x)+sin(7*x))/sin(5*x)) 

We get 

(4*(cos(x))^2-1)*(sin(x)/(16*(cos(x))^4 

-12*(cos(x))^2+1))/sin(x)+(64*(cos(x))^6 

-80*(cos(x))^4+24*(cos(x))^2- 1)*sin(x)/ 

(16*(cos(x))^4-12*(cos(x))^2+1)/sin(x) 

And, after simplification by entering simplify(Ans), we get: 

4*(cos(x))^2-2 

– texpand takes as argument a transcendantal expression. 
texpand expands this expression. 
 
Examples 

1. Expand 𝑒𝑥𝑝(𝑥 +  𝑦). 
 
We enter: 
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texpand(exp(x+y)) 

We get: 

exp(x)*exp(y) 

2. Expand 𝑙𝑛(𝑥 +  𝑦). 
 
We enter: 

texpand(log(x*y)) 

We get: 

log(x)+log(y) 

3. Expand 𝑙𝑛(𝑥𝑛). * 
 
We enter: 

texpand(ln(x^n)) 

We get: 

n*ln(x) 

4. Expand 𝑙𝑛((𝑒2)  +  𝑒𝑥𝑝(2 ∗  𝑙𝑛(2))  +  𝑒𝑥𝑝(𝑙𝑛(3)  +  𝑙𝑛(2))). 
 
We enter: 

texpand(log(e^2)+exp(2*log(2))+exp(log(3)+log(2))) 

We get: 

6+3*2 

Or we enter: 

texpand(log(e^2)+exp(2*log(2)))+lncollect(exp(log(3)+log(2))) 

We get: 

12 

5.7 Exp & Ln 

5.7.1 Transform 𝒆𝒙𝒑(𝒏 ∗ 𝒍𝒏(𝒙)) in power: exp2pow 

exp2pow allows to transform an expression of the form exp(n∗ ln(x)) into a power of x. 

 
We enter: 

exp2pow(exp(n*ln(x))) 

We get: 

x^n 

Please note the difference with lncollect: 
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lncollect(exp(n*ln(x))) = exp(n*ln(x)) 

lncollect(exp(2*ln(x))) = exp(2*ln(x)) 

exp2pow(exp(2*ln(x)))= x^2 

But: 

lncollect(exp(ln(x)+ln(x))) = x^2 

exp2pow(exp(ln(x)+ln(x))) = x^(1+1) 

5.7.2 Transform a power into an exponential: pow2exp 

pow2exp allows to transform a power into exponential. 
 
We enter: 

pow2exp(a^(x+y)) 

We get: 

exp((x+y)*ln(a)) 

 

5.7.3 Transform the complex exponentials into sin and cos: sincos exp2trig 

sincos or exp2trig takes as argument an expression containing complex exponentials. 
sincos or exp2trig transforms this expression in term of sin(𝑥) and cos(𝑥). 
 
We enter: 

sincos(exp(i*x)) 

or 

exp2trig(exp(i*x)) 

We get, if Complex is not checked in the CAS configuration (Shift-CAS): 

cos(x)+i*sin(x) 

We get, if Complex is checked in the CAS configuration: 

exp(im(x))*(cos(re(x))+(i)*sin(re(x))) 

We enter: 

sincos(exp(i*x)+exp(-i*x)) 

or 

exp2trig(exp(i*x)+exp(-i*x)) 

We get: 

cos(x)+i*sin(x)+cos(x)-i*sin(x) 

then we select this answer and we press simplify. We get: 

2*cos(x) 
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5.7.4 Transform the functions hyperbolic in exponentials: hyp2exp 

hyp2exp takes as argument an hyperbolic expression. 
hyp2exp transforms the hyperbolic functions hyperbolic in exponentials 
WITHOUT linearizing. 
 
We enter: 

hyp2exp(sinh(x)) 

We get: 

(exp(x)-1/(exp(x)))/2 

5.7.5 Write with complex exponentials: tsimplify 

tsimplify simplifies all the expressions by transforming them into complex exponentials. 

We do use tsimplify as last resort only. 
 
We enter: 

tsimplify((sin(7*x)+sin(3*x))/sin(5*x)) 

We get: 

((exp((i)*x))^4+1)/(exp((i)*x))^2 

5.7.6 Expand the exponentials: expexpand 

expexpand takes as argument an expression containing exponentials. 
expexpand expands this expression. 
 
We enter: 

expexpand(exp(3*x)) 

We get: 

exp(x)^3 

We enter: 

expexpand(exp(3*x)+exp(2*x+2)) 

We get: 

exp(x)^3+exp(x)^2*exp(2) 

5.8 Sine 

5.8.1 Transform the arcsin into arccos: asin2acos 

asin2acos takes as argument a trigonometric expression. 
asin2acos transforms this expression by replacing: 

arcsin(𝑥) by 
𝜋

2
−  arccos(𝑥). 

 
We enter: 
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asin2acos(acos(x)+asin(x)) 

We get after simplification: 

pi/2 

5.8.2 Transform the arcsin in arctan: asin2atan 

asin2atan takes as argument a trigonometric expression. 
asin2atan transforms this expression by replacing: 

arcsin(𝑥) by arctan(
𝑥

√1 – 𝑥2
). 

 
We enter: 

asin2atan(asin(x)) 

We get: 

atan(x/sqrt(1-x^2)) 

5.8.3 Transform sin(x) in cos(x)*tan(x): sin2costan 

sin2costan takes as argument a trigonometric expression. 
sin2costan transforms this expression by replacing: 
sin(𝑥) by cos(𝑥)  ∗  tan(𝑥). 
 
We enter: 

sin2costan(sin(2*x)) 

We get: 

cos(2*x)*tan(2*x) 

5.9 Cosine 

5.9.1 Transform the arccos into arcsin: acos2asin 

acos2asin takes as argument a trigonometric expression. 
acos2asin transforms this expression by replacing: 

arccos(𝑥) by 
𝜋

2
−  arcsin(𝑥). 

 
We enter: 

acos2asin(acos(x)+asin(x)) 

We get after simplification: 

pi/2 

5.9.2 Transform the arccos into arctan: acos2atan 

acos2atan takes as argument a trigonometric expression. 
acos2atan transforms this expression by replacing: 
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arccos(𝑥) by 
𝜋

2
−  arctan(

𝑥

√1 – 𝑥2
). 

 
We enter: 

acos2atan(acos(x)) 

We get: 

pi/2-atan(x/sqrt(1-x^2)) 

5.9.3 Transform cos(x) into sin(x)/tan(x): cos2sintan 

cos2sintan takes as argument a trigonometric expression. 
cos2sintan transforms this expression by replacing: 

cos(𝑥) by 
sin(𝑥)

tan(𝑥)
. 

 
We enter: 

cos2sintan(cos(2*x)) 

We get: 

sin(2*x)/tan(2*x) 

5.10 Tangent 

5.10.1 Transform tan(x) with sin(2x) and cos(2x): tan2sincos2 

tan2sincos2 takes as argument a trigonometric expression. 
tan2sincos2 transforms this expression by replacing: 

tan(𝑥) by 
sin(2.𝑥)

1+cos(2.𝑥)
. 

 
We enter: 

tan2sincos2(tan(x)) 

We get: 

sin(2*x)/(1+cos(2*x)) 

5.10.2 Transform the arctan into arcsin: atan2asin 

atan2asin takes as argument a trigonometric expression. 
atan2asin transforms this expression by replacing: 

𝑎𝑟𝑐𝑡𝑎𝑛(𝑥) by arcsin (
𝑥

√1+ 𝑥2
). 

 
We enter: 

atan2asin(atan(x)) 

We get: 

asin(x/sqrt(1+x^2)) 
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5.10.3 Transform the arctan into arccos: atan2acos 

atan2acos takes as argument a trigonometric expression. 
atan2acos transforms this expression by replacing: 

arctan(𝑥) by 
𝜋

2
−  arccos (

𝑥

√1+ 𝑥2
). 

 
We enter: 

atan2acos(atan(x)) 

We get: 

pi/2-acos(x/sqrt(1+x^2)) 

5.10.4 Transform tan(x) into sin(x)/cos(x): tan2sincos 

tan2sincos takes as argument a trigonometric expression. 
tan2sincos transforms this expression by replacing: 

tan(𝑥) by 
sin(𝑥)

cos(𝑥)
. 

 
We enter: 

tan2sincos(tan(2*x)) 

We get: 

sin(2*x)/cos(2*x) 

5.10.5 Transform a trigonometric expression in term of tan(x/2): halftan 

halftan takes as argument a trigonometric expression. 

halftan transforms the sin(𝑥), cos(𝑥) and tan(𝑥) of the expression in term of tan(
𝑥

2
). 

 
We enter: 

halftan(sin(x)) 

We get: 

2*tan(x/2)/(1+tan(x/2)^2) 

We enter: 

halftan(sin(2*x)/(1+cos(2*x))) 

We get: 

2*tan(2*x/2)/((tan(2*x/2))^2+1)/(1+(1-

(tan(2*x/2))^2)/((tan(2*x/2))^2+1)) 

And, after simplification with simplify(Ans), we get: 

tan(x) 
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5.11 Trigonometry 

5.11.1 Simplify by privileging sine: trigsin 

trigsin takes as argument a trigonometric expression. 
trigsin simplifies this expression using formulas: 

sin(𝑥)2 +  cos(𝑥)2 =  1, tan(𝑥)  =
sin(𝑥)

cos(𝑥)
 and by privileging sine. 

 
We enter: 

trigsin(cos(x)^2+1) 

We get: 

-sin(x)^2+2 

5.11.2 Simplify by privileging cosine: trigcos 

trigcos takes as argument a trigonometric expression. 
trigcos simplifies this expression using formulas: 

sin(𝑥)2 +  cos(𝑥)2 =  1, tan(𝑥)  =
sin(𝑥)

cos(𝑥)
  and by privileging cosine. 

 
We enter: 

trigcos(sin(x)^4+2) 

We get: 

cos(x)^4-2*cos(x)^2+3 

5.11.3 Transform trigonometric inverse functions to logarithms: atrig2ln 

atrig2ln rewrites the expression containing trigonometric inverse functions with logarithms. 
 
We enter: 

atrig2ln(asin(x)) 

We get: 

i*ln(x+sqrt(x^2-1))+pi/2 

5.11.4 Simplify by privileging tangent: trigtan 

trigtan takes as argument a trigonometric expression. 
trigtan simplifies this expression using formulas: 

sin(𝑥)2 +  cos(𝑥)2 =  1, tan(𝑥)  =
sin(𝑥)

cos(𝑥)
 and by privileging tangent. 

 
We enter: 

trigtan(sin(x)^4+cos(x)^2+1) 

We get: 

((tan(x))^2/(1+(tan(x))^2))^2+1/(1+(tan(x)^2)+1 

and after simplification with simplify(Ans), we have: 
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(2*tan(x)^4+3*tan(x)^2+2)/(tan(x)^4+2*tan(x))^2+1) 

5.11.5 Linearize a trigonometric expression: tlin 

tlin takes as argument a trigonometric expression. 
tlin linearizes this expression in term of 𝑠𝑖𝑛(𝑛. 𝑥) 𝑎𝑛𝑑 𝑐𝑜𝑠(𝑛. 𝑥). 
 
Examples 

– Linearize 𝑐𝑜𝑠(𝑥)  ∗  𝑐𝑜𝑠(𝑦). 
 
We enter: 

tlin(cos(x)*cos(y)) 

We get: 

1/2*cos(x-y)+1/2*cos(x+y) 

– Linearize 𝑐𝑜𝑠(𝑥)3. 
 
We enter: 

tlin(cos(x)^3) 

We get: 

3/4*cos(x)+1/4*cos(3*x) 

– Linearize 4 𝑐𝑜𝑠(𝑥)2  −  2. 
 
We enter: 

tlin(4*cos(x)^2-2) 

We get: 

2*cos(2*x) 

5.11.6 Shift the phase by 
𝝅

𝟐
 in trigonometric expressions: shift_phase 

shift_phase takes as argument a trigonometric expression. 

shift_phase allows to shift the phase by 
𝜋

2
 in trigonometric expressions once the automatic 

simplification has been performed. 
 
We enter: 

shift_phase(x+sin(x)) 

We get: 

x-cos((pi+2*x)/2) 

We enter: 

shift_phase(x+cos(x)) 

We get: 

x-+sin((pi+2*x)/2) 
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We enter: 

shift_phase(x+tan(x)) 

We get: 

x+1/(tan((pi+2*x)/2)) 

Should the expression not be evaluated (i.e. no automatic simplification), just quote the argument. 
 
We enter: 

shift_phase(’sin(x+pi/2)’) 

We get: 

-(cos(pi+x)) 

but if we enter without quoting the sine: 

shift_phase(sin(x+pi/2)) 

We get: 

sin((pi+2*x)/2) 

because sin(x+pi/2) is evaluated (i.e. simplified) into cos(x) before the command shift_phase 
is called and then shift_phase(cos(x)) returns sin((pi+2*x)/2). 
 
Exercise 
Calculate 

∑
sin(𝑛 ∗ 𝑥)

𝑛

+∞

𝑛=1

 

 
We enter: 

normal(sum((sin(n*x))/n,n=1..+infinity)) 

We get: 

-atan((sin(x))/(cos(x)-1)) 

We enter: 

normal(shift_phase(halftan(atan(sin(x)/(-cos(x)+1))))) 

We get: 

pi*floor(((pi+x)/2)/pi+1/2)+(-1)/2*pi+(-1)/2*x 

if we enter: 

tsimplify(atan((sin(x))/(-cos(x)+1))) 

Because tsimplify is not rigorous with respect to 2𝑘𝜋, we get: 

-1/2*pi-1/2*x 
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5.11.7 Collect the sine and cosine of a same angle: tcollect 

tcollect takes as argument a trigonometric expression. 
tcollect linearizes this expression in term of sin(𝑛. 𝑥) and cos(𝑛. 𝑥) then collects the sine and cosine 
of same angle. 
 
We enter: 

tcollect(sin(x)+cos(x)) 

We get: 

sqrt(2)*cos(x-pi/4) 

We enter: 

tcollect(2*sin(x)*cos(x)+cos(2*x)) 

We get: 

sqrt(2)*cos(2*x-pi/4) 

5.11.8 Expand a trigonometric expression: trigexpand 

trigexpand takes as argument a trigonometric expression. 
trigexpand expands this expression in term of sin(𝑥) and cos(𝑥). 
We enter: 

trigexpand(cos(x+y)) 

We get: 

cos(x)*cos(y)-sin(x)*sin(y) 

5.11.9 Transform a trigonometric expression into complex exponentials: trig2exp 

trig2exp takes as argument a trigonometric expression. 
trig2exp transforms the trigonometric functions into complex exponentials WITHOUT linearizing. 
 
We enter: 

trig2exp(tan(x)) 

We get: 

((exp((i)*x))^2-1)/((i)*((exp((i)*x))^2+1)) 

We enter: 

trig2exp(sin(x)) 

We get: 

(exp((i)*x)-1/(exp((i)*x)))/(2*i) 



 119 

Chapter 6 Menu Integer 

 
 

6.1 Test of parity: even 

even takes as argument an integer n. 
even returns 1 if n is even and 0 if n is odd. 
 
We enter: 

even(148) 

We get: 

1 

We enter: 

even(149) 

We get: 

0 

6.2 Test of non parity: odd 

odd takes as argument an integer n. 
odd returns 1 if n is odd and 0 if n is even. 
 
We enter: 

odd(148) 

We get: 

0 

We enter: 

odd(149) 

We get: 

1 

6.3 Divisors of an integer: idivis 

idivis returns the vector whose components are the divisors of an integer. 
 
We enter: 

idivis(45) 



 120 

We get: 

[1,3,9,5,15,45] 

6.4 Prime factors decomposition of an integer: ifactor 

ifactor returns the prime factors decomposition of an integer. 
 
We enter: 

ifactor(20!) 

We get: 

2^18*3^8*5^4*7^2*11*13*17*19 

6.5 List of prime factors and their multiplicity: ifactors 

ifactors returns the list of prime factors of an integer with their multiplicity. 
 
We enter: 

ifactors(45) 

We get: 

[3,2,5,1] 

indeed 45 = 32 ∗  5^1 

6.6 GCD of one or several integers: gcd 

gcd returns the greatest common divisor of one or several integers (see 7.12 for the GCD of 
polynomials). 
 
We enter: 

gcd(45,10) 

We get: 

5 

We enter: 

gcd(40,12,16,24) 

We get: 

4 

6.6.1 GCD of a list of integers: lgcd 

lgcd designates the GCD of the elements of a list of integers (or of a list of polynomials). 
 
We enter: 
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lgcd([18,15,21,36]) 

We get: 

3 

6.7 LCM of one or several integers: lcm 

lcm returns the lowest common multiple of two or several integers. 
 
We enter: 

lcm(45,10) 

We get: 

90 

We enter: 

lcm(45,10,25,30) 

We get: 

450 

6.7.1 Bezout identity: iegcd 

iegcd(a,b) designates the extended GCD (Bezout identity ) of two integers. 
iegcd(a,b) returns [u,v,d] that make au+bv=d and such as d=gcd(a,b). 
 
We enter: 

iegcd(48,30) 

We get: 

[2,-3,6] 

Indeed: 

2 · 48 + (−3) · 30 = 6 

6.7.2 Solve 𝒂𝒖 + 𝒃𝒗 = 𝒄 in ℤ: iabcuv 

iabcuv(a,b,c) gives [u,v] that make au+bv=c. 
Of course, c has to be a multiple of gcd(a,b) to get a solution. 
 
We enter: 

iabcuv(48,30,18) 

We get: 

[6,-9] 
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6.8 Primality 

6.8.1 Check whether a number is prime: isPrime isprime 

isPrime(n) or isprime returns true if n is prime and false otherwise. 
 
We enter: 

isPrime(1234567) 

We get: 

false 

We enter: 

isPrime(1234547) 

We get: 

true 

6.8.2 The N-th prime number: ithprime 

ithprime(n) returns the N-th prime number. 
 
We enter: 

ithprime(10) 

We get: 

29 

Indeed, the ten first prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. 
 
We enter: 

ithprime(100) 

We get: 

541 

541 is then the 100-nth prime number. 

6.8.3  nextprime 

nextprime(n) returns the prime number p which is juste after n (p>n). 
 
We enter: 

nextprime(11) 

We get: 

13 

We enter: 
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nextprime(1234567) 

We get: 

1234577 

6.8.4 prevprime 

prevprime(n) returns the prime number p which is just before n (p<n). 
 
We enter: 

prevprime(11) 

We get: 

7 

We enter: 

prevprime(1234567) 

We get: 

1234547 

6.8.5 Euler’s totient: euler 

euler(n) returns the cardinal of the set of numbers lower than n which are relatively prime to n. 
euler(n) designates then the Euler’s totient of the integer n. 
 
We enter: 

euler(18) 

We get: 

6 

Indeed, the set: 
𝐸 = {5,7,11,13,15,17} corresponds to numbers lower than 18 which are prime to 18, and 𝐸 takes as 

cardinal 6. With the euler function, we have the generalization of the Fermat’s theorem (which says 
that "if n is prime and if a is prime to n then 𝑎𝑛−1  =  1 𝑚𝑜𝑑 𝑛. ") 

The generalization is (because if 𝑛 is prime, 𝑒𝑢𝑙𝑒𝑟(𝑛)  =  𝑛 −  1): 

𝑎𝑒𝑢𝑙𝑒𝑟(𝑛) =  1 𝑚𝑜𝑑 𝑛 if 𝑎 and 𝑛 are prime to each other. 
 
We enter: 

powmod(5,6,18) 

We get: 

1 

6.8.6 Legendre symbole: legendre_symbol 

When 𝑛 is prime, we define the Legendre symbol of 𝑎 written (
𝑎

𝑛
) by: 
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(
𝑎

𝑛
) = {

0 if 𝑎 =  0 mod 𝑛                                     
    1 if 𝑎 ≠  0 mod 𝑛 and if 𝑎 =  b2 mod 𝑛
−1 if 𝑎 ≠  0 mod 𝑛 and if a ≠  b2 mod 𝑛

 

 
Some properties 

– if 𝑛 is prime: 

𝑎
𝑛−1
2  = (

𝑎

𝑛
)  𝑚𝑜𝑑 𝑛 

– (
𝑝

𝑞
) . (

𝑞

𝑝
) =  (−1)

𝑝−1

2  . (−1)
𝑞−1

2  if 𝑝 and 𝑞 are odd and positive 

(
2

𝑝
) =  (−1)

𝑝2−1
8  

(
−1

𝑝
) =  (−1)

𝑝−1
2  

legendre_symbol has two parameters 𝑎 and 𝑛 and returns the Legendre symbol  (
𝑎

𝑛
). 

 
We enter: 

legendre_symbol(26,17) 

We get: 

1 

We enter: 

legendre_symbol(27,17) 

We get: 

-1 

We enter: 

legendre_symbol(34,17) 

We get: 

0 

6.8.7 Jacobi symbol: jacobi_symbol 

When n is not prime, we define the Jacobi symbol of a, also written (
𝑎

𝑛
), from the Legendre symbol 

and the decomposition of 𝑛 in prime factor. 
Let 

𝑛 =  𝑝1
𝛼1 . . 𝑝𝑘1

𝛼𝑘 

where 𝑝𝑗 is prime and α𝑗 is an integer for 𝑗 =  1. . 𝑘. The Jacobi symbol of 𝑎 is defined by: 

(
𝑎

𝑛
) = (

𝑎

𝑝1
)
𝛼1

. . (
𝑎

𝑝𝑘
)
𝛼𝑘

 

jacobi_symbol has two parameters 𝑎 and 𝑛 and returns the symbol of Jacobi (
𝑎

𝑛
). 

 
We enter: 

jacobi_symbol(25,12) 

We get: 

1 



 125 

We enter: 

jacobi_symbol(35,12) 

We get: 

-1 

We enter: 

jacobi_symbol(33,12) 

We get: 

0 

6.8.8 Solve 𝒂𝟐  +  𝒂𝒃𝟐  =  𝒑 in ℤ: pa2b2 

pa2b2 decomposes a prime integer p, congruent to 1 modulus 4, in the sum of two squares: 𝑝 = 𝑎2 +
𝑏2. 
The result is supplied as a list. 
 
We enter: 

pa2b2(17) 

We get: 

[4,1] 

indeed 17 =  42 + 12 

6.9 Division 

6.9.1 Quotient of the Euclidean division: iquo 

iquo(a,b) returns the quotient of the Euclidean division of a by b when a and b are integers. 
 
We enter: 

iquo(45,10) 

We get: 

4 

indeed 45 =  4 ∗  10 +  5 

6.9.2 Remainder of the Euclidean division: irem 

irem(a,b) returns the remainder of the Euclidean division of a by b when a and b 
are integers. 
 
We enter: 

irem(45,10) 

We get: 
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5 

indeed 45 = 4 ∗  10 + 5 

6.9.3 Quotient and remainder of the Euclidean division: iquorem 

iquorem gives the list of the quotient q and the integer remainder r of the Euclidean division of the 
integers a and b supplied as argument (𝑎 =  𝑏 ∗  𝑞 +  𝑟 with 0 ≤  𝑟 <  𝑏). 
 
We enter: 

iquorem(148,5) 

We get: 

[29,3] 

6.9.4 Chinese remainder for integers: ichinrem 

ichinrem([a,n],[b,p]) returns the vector [c,lcm(p,q)] formed of two integers. 
The first number c is such as 

∀𝑘 ∈  ℤ, 𝑑 =  𝑐 +  𝑘 ×  lcm(𝑝, 𝑞) 
𝑙 checks 

𝑑 =  𝑎 (mod 𝑝), 𝑑 =  𝑏 (mod 𝑞) 
If n and p are prime then there is always a solution and q=n*p 
 
Example: 
Find the solutions of: 

{
𝑥 =  3 (mod 5)
𝑥 =  9 (mod 13)

 

 
We enter: 

ichinrem([3,5],[9,13]) 

Or we enter: 

ichinrem({[3,5},{9,13}) 

We get: 

[-17,65] 

So the solutions are x=-17+k*65 with 𝑘 ∈  ℤ . 
We have indeed −17 =  −5 ∗  4 +  3 =  3 mod 5 and −17 =  −2 ∗  13 +  9 =  9 mod 13 
ichinrem returns the Chinese remainder for integers. 
 
We enter: 

ichinrem({2,7},{3,5}) 

Or we enter: 

ichinrem([2,7],[3,5]) 

We get: 

[-12,35] 

We do have −12 +  35𝑘 =  2 mod 7 and −12 +  35𝑘 =  3 mod 5 for 𝑘 ∈  ℤ 
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6.9.5 Calculation of 𝒂𝒏 𝐦𝐨𝐝 𝒑: powmod 

powmod(a,n,p) returns 𝑎𝑛 modulus 𝑝 with the method of the fast exponentiation. 
 
We enter: 

powmod(5,21,13) 

We get: 

5 

52 =  25 =  −1 𝑚𝑜𝑑 13 then 521 =  5 ∗  520 =  5 mod 13 
 
We enter: 

powmod(37,25,11) 

We get: 

1 

indeed 37 =  4 𝑚𝑜𝑑 11 and 45 = 42  ∗  42  ∗  4 =  25 ∗  4 =  1 𝑚𝑜𝑑 11 

6.10 Modular calculus in ℤ /𝒑 ℤ or in ℤ /𝒑 ℤ [𝒙] 

We can perform calculations modulus p that is to say in ℤ /𝑝 ℤ or in ℤ /𝑝 ℤ  [𝑥]. 
The numbers 𝑛 of ℤ /𝑝 ℤ are written n% p. 
 
Examples of notation 

– an integer n of ℤ /13 ℤ   
n:=12% 13. 

– a vector V of coordinates in ℤ /13 ℤ   
V:=[1,2,3]% 13 or V:=[1% 13,2% 13,3% 13]. 

– a matrix A of coefficients in ℤ /13 ℤ   
A:=[[1,2,3],[2,3,4]]% 13 
or 
A:=[[1% 13,2% 13,3% 13],[2% 13,3% 13,4% 13]]. 

– a polynomial A of ℤ /13 ℤ   [𝑥] in symbolic notation 
A:=(2*x^2+3*x-1)%13 

or 
A:=2%13*x^2+3%13*x-1%13. 

– a polynomial A of ℤ /13 ℤ   [𝑥]  represented with a list 
A:=poly1[1,2,3]%13 

or 
A:=poly1[1%13,2%13,3%13]. 

 
To transform an object o of modular coefficients into an object of integer coefficients, press: 
o % 0. For instance, if we enter o:=4% 7 then o% 0, we get 
-3. 
Notes 

– For some commands in ℤ /𝑝 ℤor in ℤ /𝑝 ℤ [𝑥], we have to choose a number p which is prime. 
– The chosen representation is the symmetrical representation: 

11%13 = -2%13 

6.10.1 Expand and factorise: normal 

normal takes as argument a polynomial expression. 
normal expands and factors this expression in ℤ/𝑝ℤ[𝑥]. 
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We enter: 

normal(((2*x^2+12)*( 5*x-4))% 13) 

We get: 

(-3% 13)*x^3+(5% 13)*x^2+(-5%13)*x+4% 13 

6.10.2 Addition in ℤ /𝒑 ℤ or in ℤ /𝒑ℤ[𝒙]: + 

To perform an addition in ℤ/𝑝ℤ, we use the usual + and, for polynomials of ℤ/𝑝ℤ[𝑥], we use the usual 
+ and the command normal to simplify. 
 
For the integers in ℤ/𝑝ℤ, we enter: 

3% 13+10% 13 

We get: 

0%13 

For the polynomials with coefficients in ℤ/𝑝ℤ, we enter: 

normal(11% 13*x+5% 13+8% 13*x+6% 13) 

or else 

normal((11*x+5 )% 13+(8*x+6)% 13) 

We get: 

(6%13)*x+-2% 13 

6.10.3 Substraction in ℤ /𝒑 ℤ or in ℤ /𝒑ℤ[𝒙]: - 

To perform a substraction in ℤ/𝑝ℤ, we use the usual - and, for polynomials of ℤ/𝑝ℤ[𝑥], we use the 
usual - and the command normal to simplify. 
 
For the integers in ℤ/𝑝ℤ, we enter: 

31% 13-10% 13 

We get: 

-5% 13 

For the polynomials with coefficients in ℤ/𝑝ℤ, we enter: 

normal(11% 13*x+5% 13-8% 13*x+6% 13) 

or else 

normal((11*x+5)% 13-(8*x+6)% 13) 

We get: 

(3% 13)*x+-1% 13 
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6.10.4 Multiplication in ℤ /𝒑 ℤ or ℤ /𝒑 ℤ [𝒙]: * 

To perform a multiplication in ℤ/𝑝ℤ, we use the usual * and, for polynomials of ℤ/𝑝ℤ[𝑥], we use the 
usual * then the command normal to simplify. 
 
For the integers in ℤ/𝑝ℤ, we enter: 

31% 13*10% 13 

We get: 

-2% 13 

For the polynomials with coefficients in ℤ/𝑝ℤ, we enter: 

normal((11% 13*x+5% 13)*(8% 13*x+6% 13)) 

or else we enter: 

normal((11*x+5)% 13*(8*x+6 )% 13) 

We get: 

(-3% 13)*x^2+(2% 13)*x+4% 13 

6.10.5 Quotient: quo 

quo takes as arguments two polynomials 𝐴 and 𝐵 with coefficients in ℤ/𝑝ℤ. 𝐴 and 𝐵 may be supplied 

by a symbolic polynomial expression (of 𝑥 or of the name of the variable supplied as third argument) 
or by the list of their coefficients. 

quo returns the quotient of the Euclidean division of 𝐴 by 𝐵 in ℤ/𝑝ℤ[𝑥]. 
 
We enter: 

quo((x^3+x^2+1)% 13,(2*x^2+4)% 13) 

Or we enter: 

quo((x^3+x^2+1,2*x^2+4)% 13) 

We get: 

(-6% 13)*x+-6% 13 

indeed 𝑥3 + 𝑥2 +  1 =  (2𝑥2 +  4) (
𝑥 +1

2
) +

5𝑥 –4

4
  

and −3 ∗  4 =  −6 ∗  2 =  1 mod 13 

6.10.6 Remainder: rem 

rem takes as arguments two polynomials 𝐴 and 𝐵 with coefficients in ℤ/𝑝ℤ. 𝐴 and 𝐵 

may be supplied by a symbolic polynomial expression (of 𝑥 or of the name of the variable supplied as 
third argument) or by the list of their coefficients. 
rem returns the remainder of the Euclidean division of 𝐴 by 𝐵 in ℤ/𝑝ℤ[𝑥]. 
 
We enter: 

rem((x^3+x^2+1)% 13,(2*x^2+4)% 13) 

Or we enter: 
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rem((x^3+x^2+1,2*x^2+4)% 13) 

We get: 

(-2% 13)*x+-1% 13 

indeed 𝑥3 + 𝑥2 +  1 =  (2𝑥2 +  4) (
𝑥 +1

2
) +

5𝑥 –4

4
 

and −3 ∗  4 =  −6 ∗  2 =  1 mod 13 

6.10.7 Quotient and remainder: quorem 

quorem takes as arguments two polynomials 𝐴 and 𝐵 with coefficients in ℤ/𝑝ℤ. 

𝐴 and 𝐵 may be supplied by a symbolic polynomial expression (of 𝑥 or of the name of variable 
supplied as third argument) or by the list of their coefficients. 

quorem returns the list of the quotient and the remainder of the Euclidean division of 𝐴 by 𝐵 in 

ℤ/𝑝ℤ[𝑥] (see also 6.9.3 and 6.11.4). 
 
We enter: 

quorem(5% 13,2% 13) 

Or we enter: 

quorem((5,2)% 13) 

and because 2 ∗  −4 =  5 −  13 
We get: 

[-4% 13,0] 

We enter: 

quorem((x^3+x^2+1)% 13,(2*x^2+4)% 13) 

Or we enter: 

quorem((x^3+x^2+1,2*x^2+4)% 13) 

because 𝑥3 + 𝑥2 +  1 =  (2𝑥2 +  4) (
𝑥 +1

2
)  +

5𝑥 –4

4
 

and −3 ∗  4 =  −6 ∗  2 =  1 mod 13 
We get: 

[(-6% 13)*x+-6% 13,(-2% 13)*x+-1% 13] 

6.10.8 Division in ℤ /𝒑 ℤ or ℤ /𝒑 ℤ [𝒙]: / 

/ divides of two integers in ℤ/𝑝ℤ, or divides two polynomials 𝐴 and 𝐵 in ℤ/𝑝ℤ[𝑥]. 

For the polynomials, the result is the rational fraction 
𝐴

𝐵
 simplified in ℤ/𝑝ℤ[𝑥]. 

 
For integers in ℤ/𝑝ℤ, we enter: 

5% 13/2% 13 

We get: 

-4% 13 

because 2 is invertible in ℤ/13ℤ. 
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For the polynomials with coefficients in ℤ/𝑝ℤ. 

We enter: 

(2*x^2+5)% 13/(5*x^2+2*x-3)% 13 

We get: 

((6% 13)*x+1% 13)/((2% 13)*x+2% 13) 

6.10.9 Power in ℤ /𝒑 ℤ or ℤ /𝒑 ℤ [𝒙]: ˆ 

To calculate a at the power n in ℤ/𝑝ℤ we use the operator ^. 
 
We enter: 

(5% 13)^2) 

We get: 

-1% 13 

To calculate A at the power n in ℤ/𝑝ℤ[𝑥] we use the operator ^ and the command normal. 
We enter: 

normal(((2*x+1)% 13)^5) 

We get: 

(6% 13)*x^5+(2% 13)*x^4+(2% 13)*x^3+(1% 13)*x^2+(-3%13)*x+1% 13 

because: 
10 =  −3 (mod 13) 40 =  1 (mod 13) 80 =  2 (mod 13) 32 =  6 (mod 13). 

6.10.10 Calculation of 𝒂𝒏 𝐦𝐨𝐝 𝒑 or of 𝑨(𝒙)𝒏  𝒎𝒐𝒅 ¶(𝒙), 𝒑: powmod 

– To calculate in [0;  𝑝 − 1] 𝑎𝑛 𝑚𝑜𝑑 𝑝 we use the command powmod or powermod with as 

argument 𝑎, 𝑛, 𝑝. 
 

We enter: 

powmod(5,21,13) 

We get: 

5 

We enter: 

powmod(5,21,8) 

We get: 

5 

– To calculate 𝐴(𝑥)𝑛  mod ¶(𝑥), 𝑝 with as a result a polynomial with coefficients in ℤ (which will 

be symmetrical remainders of division by 𝑝), we use the command powmod or powermod with 

as argument 𝐴(𝑥), 𝑛, 𝑝, 𝑃(𝑥). 
 
We enter: 
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powmod(x+1,17,5,x^4+x+1) 

We get: 

-x^3-x^2 

We have indeed: 

rem((x+1)^17,x^4+x+1) 

which returns: 

29144*x^3+36519*x^2+12270*x-4185 

and 

(29144*x^3+36519*x^2+12270*x-4185)% 5 

which returns: 

(-1 % 5)*x^3+(-1 % 5)*x^2 

and 

((-1 % 5)*x^3+(-1 % 5)*x^2)% 0 

which returns: 

-x^3-x^2 

Note (cf section 6.10.9) 

If we can calculate a power in ℤ /𝑝 ℤ we enter for example: 

(5% 13)^21) 

We get: 

5% 13 

We enter: 

(5% 8)^21) 

We get: 

-3% 8 

6.10.11 Inverse in ℤ /𝒑 ℤ: inv or / 

We calculate the inverse of an integer n in ℤ /𝑝 ℤ by entering 1/n% p or inv(n%p) or inverse(n% 
p). 
 
We enter: 

inv(3% 13) 

We get: 

-4% 13 

Indeed: 3 × −4 = −12 = 1 (mod 13) 
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6.10.12 Transform an integer into its fraction modulus 𝒑: fracmod 

fracmod has two arguments, an integer n (or an integer expression) and an integer p. 
fracmod returns a fraction a/b such as: 

−
√𝑝

2
<  𝑎 ≤

√𝑝

2
, 0 ≤  𝑏 <

√𝑝

2
, 𝑛 ×  𝑏 =  𝑎 (mod 𝑝) 

In other words 𝑛 =  
𝑎

𝑏
 (mod 𝑝). 

 
We enter: 

fracmod(3,13) 

We get: 

-1/4 

Indeed: 3 ∗  −4 =  −12 =  1 (mod 13) then 3 = −1/4% 13. 

We enter: 

fracmod(13,121) 

We get: 

-4/9 

Indeed: 13 ×  −9 =  −117 =  4 (mod 121) then 13 = −4/9% 13. 

6.10.13 GCD in ℤ /𝒑 ℤ [𝒙]: gcd 

When gcd has two polynomials with coefficients in ℤ /𝑝 ℤ as arguments (p must be prime), gcd 

returns the GCD of the two polynomials in ℤ /𝑝 ℤ [𝑥] (see also 7.12 for polynomials with non modular 
coefficients). 
 
We enter: 

gcd((2*x^2+5)% 13,(5*x^2+2*x-3)% 13) 

We get: 

(-4% 13)*x+5% 13 

We enter: 

gcd(x^2+2*x+1,x^2-1) mod 5 

We get: 

1 

but if we enter: 

gcd((x^2+2*x+1,x^2-1)) mod 5) 

gcd is calculatedin ℤ [𝑥] then the modular calculus is performed, we get: 

x% 5 
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6.10.14 Factorization in ℤ /𝒑 ℤ [𝒙]: factor 

factor takes as argument a polynomial with coefficients in ℤ /𝑝 ℤ  . 
factor factors this polynomial in ℤ /𝑝 ℤ [𝑥] (𝑝 must be prime). 
 
We enter: 

factor((-3*x^3+5*x^2-5*x+4)% 13) 

We get: 

((1% 13)*x+-6% 13)*((-3% 13)*x^2+-5% 13) 

6.10.15 Determinant of a matrix of ℤ /𝒑 ℤ: det 

det takes as argument a matrix 𝐴 with coefficients in ℤ /𝑝 ℤ. 

det returns the determinant of this matrix 𝐴. 
 
We enter: 

det([[1,2,9]% 13,[3,10,0]% 13,[3,11,1]% 13]) 

Or we enter: 

det([[1,2,9],[3,10,0],[3,11,1]]% 13) 

We get: 

5% 13 

thus, in ℤ /13 ℤ, the determinant of the matrix 𝐴 =  [[1, 2, 9], [3, 10, 0], [3, 11, 1]] 
is 5% 13 (on a det(A)=31). 

6.10.16 Inverse of a matrix of ℤ /𝒑 ℤ: inv 

inverse (or inv) takes as argument a matrix 𝐴 with coefficients in ℤ /𝑝 ℤ  . 
inv returns the inverse of the matrix 𝐴 in ℤ /𝑝 ℤ. 
 
We enter: 

inv([[1,2,9]% 13,[3,10,0]% 13,[3,11,1]% 13]) 

Or we enter: 

inv([[1,2,9],[3,10,0],[3,11,1]]% 13) 

We get: 

[[2% 13,-4% 13,-5% 13],[2% 13,0% 13,-5% 13], [-2%13,-1% 13,6% 13]] 

It is the inverse of the matrix 𝐴 = [[1, 2, 9], [3, 10, 0], [3, 11, 1]] in ℤ /13 ℤ. 

6.10.17 Solve a linear system of ℤ /𝒑 ℤ: rref 

rref allows to solve, in ℤ /𝑝 ℤ, a linear equation system of the form: 𝐴𝑥 =  𝐵 (see also 20.9). 

The argument is a matrix formed by 𝐴 combined with 𝐵 as the last column vector. The result is a 

matrix formed of 𝐴1 and 𝐵1 where 𝐴1 has two zeros from either side of the diagonal, and where the 
system 𝐴1𝑥 =  𝐵1 is equivalent to 𝐴𝑥 =  𝐵. 
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Solve in ℤ /13 ℤ 

{
       𝑥  +    2 ·  𝑦 =  9
3 ·  𝑥 +  10 ·  𝑦 =  0

 

 
We enter: 

rref([[1, 2, 9]% 13,[3,10,0]% 13]) 

Or we enter: 

rref([[1, 2, 9],[3,10,0]])%13 

We get: 

[[1% 13,0% 13,3% 13],[0% 13,1% 13,3% 13]] 

which means that x=3% 13 and y=3% 13. 

6.10.18 Creation of a Galois field: GF 

In its simplest form, GF takes as arguments a prime number 𝑝 and an integer 𝑛 >  1 or the power of a 

prime number 𝑝𝑛 and an optional argument which is the name of variable chosen for the generator of 
the field (the variable must be purged first). 
GF creates a Galois field of characteristic 𝑝 and having 𝑝𝑛 elements, the elements of the field are then 
0 and the powers from 0 to 𝑝𝑛  −  2 of the generator. The field itself is stored in a free variable (by 

default 𝐾, this variable is displayed by the system, at the same time as the names of the generator 

and the free variable, by default 𝑘, used to represent the elements of the field such as the quotient 
ℤ /𝑝 ℤ [𝑘]/𝑃(𝑘) where 𝑃 is a irreducible polynomial and primitive). 
For instance: 

– GF(3,5) or GF(3^5) creates a field having 35 elements whose generator is g (or h, ... if 
g is assigned). We can create an element of the field by taking a polynomial in term of 𝑔, for 

example 𝑔10 +  5𝑔 +  1. 

– GF(2,8,a) creates a field having 28 elements, and uses the variable a to designate the 
generator (Warning, do purge(a) first if necessary). 

– The command pmin allows knowing the minimal polynomial of an element of the field. 
 
We can then create polynomials or matrices having coefficients in the field, and handle them with the 
usual instructions + - * / inv, sqrt, quo, rem, quorem, diff, factor, gcd, 

egcd,... for example: 
– GF(3,5,b); A:=[[1,b],[b,1]]; inv(A) returns the inverse of a matrix with 

coefficients in the field of 35 elements 
– GF(5,3,c); p:=x^2-c-1; factor(p) factors the polynomial p as polynomial with 

coefficients in the field at 53 elements, we deduce from it a value of square root of 𝑐 +  1. 
– p:=randpoly(x,5,g); q:=diff(p); gcd(p,q) generates a polynomial with random 

coefficients, then returns its derivative and the GCD, which allows to know if p has multiples 
roots. 

 
There are still limitations due to the incomplete implementation of some algorithms (for example 
factorization with several variables when the polynomial is not unitary). 
In its most comprehensive form (but more difficult to handle and less legible), the elements of this field 
and the field itself are represented by GF(...) where ... is a sequence composed of: 

– the characteristic 𝑝 (𝑝𝑥 =  0), 
– the minimal irreducible polynomial (primitive if created by the CAS) generating an ideal 𝐼 in 

ℤ /𝑝 ℤ [𝑋], the Galois field is then the quotient of ℤ /𝑝 ℤ [𝑋] by 𝐼,  
– the name of the variable of the polynomial, by default x, 
– a polynomial (a remainder modulus the minimal polynomial) to designate an element of the 

field (These elements have an additive representation) or undef to designate the whole field 
which is the quotient of polynomials with coefficients in ℤ /𝑝 ℤ  by 𝐼. 
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Usually, we give a name to the created field (for example G:=GF(p,n)), in order to build a particular 
element of the groupe from a polynomial of ℤ /𝑝 ℤ [𝑋], by writing for example G(x^3+x). Note that 
G(x) is a generator of the multiplicative group 𝐺∗ when the minimal polynomial is generated by the 
CAS. 
 
We enter: 

G:=GF(2,8) 

We get (for example): 

GF(2,k^8-k^7-k^6-k-1,k,undef) 

The field 𝐺 has 28 =  256 elements and 𝑔 =  𝐺(𝑘) generates the multiplicative group of this field 

({1, 𝑔, 𝑔2, . . . , 𝑔254}). 
 
We enter: 

K(k^9) 

We get: 

g^6+g^2+1) 

We enter: 

K(k)^255 

We get 

1 

As you notice on the previous examples, when we work with the same field, the answers content 
redundant informations. This is why the definition of a field may have a third argument: the name of 
the generator or a list containing two or three names of formal variables, (the name of the 
undetermined of the irreducible polynomial and the name of the Galois field that has to be quoted so 
that these variables are not evaluated as well as the name of the generator). This allows to get a more 
compact display of the elements of the field. 
 
We enter: 

G:=GF(2,2,[’w’,’G’]):; G(w^2) 

We get: 

Done, G(w+1) 

We enter: 

G(w^3) 

We get: 

G(1) 

The elements of GF(2,2) are then: 0,1,w,w^2=w+1. 
We can then tell which irreducible polynomial we wish to use, by mentioning it as second parameter 
(instead of n), for example: 

G:=GF(2,w^8+w^6+w^3+w^2+1,[’w’,’G’]) 
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If we give a non primitive irreducible polynomial, the calculator tells it and proposes a replacement by 
a primitive polynomial, for example: 

G:=GF(2,w^8+w^7+w^5+w+1,[’w’,’G’]) 

We get: 

G:=GF(2,w^8-w^6-w^3-w^2-1,[’w’,’G’],undef) 

6.10.19 Factorization of a polynomial with coefficients in a Galois field: 

factor 

We can factorize a polynomial with coefficients in a Galois field with factor. 
 
By example, to get 𝐺 = 𝔽4, we enter: 

GF(2,2,a) 

We get: 

GF(2,k^2+k+1,[k,K,a],undef) 

By example, we enter: 

factor(a^2*x^2+1)) 

We get: 

(a+1)*(x+a+1)^2 

6.11 Arithmetic of polynomials 

Polynomials are represented by expressions or by the list of their coefficients listed with decreasing 
powers. In the first case the variable used by default is 𝑥. For the polynomials with coefficients in 

ℤ /𝑛 ℤ, apply % n to the expression or to each coefficient of the list. 

6.11.1 List of divisors of a polynomial: divis 

divis takes as argument a symbolic polynomial (or a list of polynomials) and returns the list of 
divisors. 
 
We enter: 

divis(x^2-1) 

We get: 

 [1,x-1,x+1,(x-1)*(x+1)] 

We enter: 

divis(t^2-1) 

We get: 

[1,t-1,t+1,(t-1)*(t+1)] 

We enter: 
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divis(x^4-1) 

Or we enter: 

divis(poly2symb([1,0,0,0,-1],x)) 

We get: 

[1,x^2+1,x+1,(x^2+1)*(x+1),x-1,(x^2+1)*(x-1), (x+1)*(x-

1),(x^2+1)*(x+1)*(x-1)] 

We enter: 

divis([t^2,x^2-1]) 

We get: 

[[1,t,t^2],[1,x+1,x-1,(x+1)*(x-1)]] 

6.11.2 Euclidean quotient of two polynomials: quo 

quo gives the quotient of the Euclidean division of polynomials (division by decreasing power order). 
We can enter the polynomials either by the list of their coefficients by decreasing power order, either 
under symbolic forms, and in this case the variable must be added as third argument (by default the 
variable is x). 
 
We enter: 

quo(x^2+2x+1,x+3) 

We get: 

x-1 

We enter: 

quo(t^2+2t+1,t+3,t) 

We get: 

t-1 

or we enter: 

quo([1,2,1],[1,3]) 

We get: 

[] 1,-1 [] 

that is to say the polynomial poly1[1,-1]. 
To get the quotient of 𝑥3 +  2𝑥 +  4 by 𝑥2 +  𝑥 +  2, we enter: 

quo(x^3+2x+4,x^2+x+2) 

We get: 

x-1 

Or we enter: 
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quo([1,0,2,4],[1,1,2]) 

We get: 

[] 1,-1 [] 

that is to say the polynomial poly1[1,-1] or the polynomial x-1. 
We enter: 

quo(t^3+2t+4,t^2+t+2,t) 

We get: 

t-1 

If we do not put the variable 𝑡 as last argument, we enter: 

quo(t^3+2t+4,t^2+t+2) 

We get: 

(t^3+2*t+4)/(t^2+t+2) 

6.11.3 Euclidean remainder of two polynomials: rem 

rem gives the remainder of the Euclidean division of two polynomials (division by decreasing power 
order). 
We can enter the polynomials either by the list of their coefficients by decreasing power order, either 
under symbolic forms, and in this case the variable must be added as third argument (by default the 
variable is x). 
 
We enter: 

rem(x^3-1,x^2-1) 

We get: 

x-1 

We enter: 

rem(t^3-1,t^2-1,t) 

We get: 

t-1 

We enter: 

rem(x^2+2x+1,x+3) 

Or we enter: 

rem(t^2+2t+1,t+3,t) 

We get: 

4 

or we enter: 
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rem([1,2,1],[1,3]) 

We get: 

[] 4 

that is to say the polynomial poly1[4] or else the polynomial 4. 

To get the remainder of x, we enter 𝑥3 +  2𝑥 +  4 by 𝑥2 +  𝑥 +  2: 

rem(x^3+2x+4,x^2+x+2) 

We get: 

x+6 

Or we enter: 

rem([1,0,2,4],[1,1,2]) 

We get: 

[] 1,6[] 

that is to say the polynomial poly1[1,6] or the polynomial x+6. 
We enter: 

rem(t^3+2t+4,t^2+t+2,t) 

We get: 

t+6 

We enter, if we do not put the variable 𝑡 as last argument: 

rem(t^3+2t+4,t^2+t+2) 

We get: 

0 

6.11.4 Quotient and Euclidean remainder: quorem 

quorem (or divide) gives the list of the quotient and the remainder of the Euclidean division (by 
decreasing power order) of two polynomials. (See also 6.9.3 and 6.10.7). 
We can enter the polynomials either by the list of their coefficients by decreasing power order, either 
under symbolic forms, and in this case the variable must be added as third argument (by default the 
variable is x). 

To get the quotient and the remainder of the division of 𝑥3 +  2𝑥 +  4 by 𝑥2 +  𝑥 +  2, we enter: 

quorem(x^3+2x+4,x^2+x+2) 

We get: 

[x-1,x+6] 

Or we enter: 

quorem([1,0,2,4],[1,1,2]) 

We get: 
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[[1,-1],[1,6]] 

that is to say the list of polynomials [poly1[1,-1],poly1[1,6]] then the quotient is the 
polynomial x-1 and the remainder is the polynomial x+6. 
 
We enter: 

quorem(t^3+2t+4,t^2+t+2,t) 

We get: 

[t-1,t+6] 

We enter: 

quorem(t^3+2t+4,t^2+t+2) 

We get: 

[(t^3+2*t+4)/(t^2+t+2),0] 

We enter: 

quorem(x^3-1,x^2-1) 

We get: 

[x,x-1] 

We enter: 

quorem(t^3-1,t^2-1,t) 

We get: 

[t,t-1] 

6.11.5 GCD of polynomials by Euclid’s algorithm: gcd igcd 

gcd or igcd designates the GCD (Greatest Common Divisor) of two polynomials which may have 
several variables and also the GCD of a list of polynomials, or of a sequence of polynomials which 
may have several variables (see 6.6 for the GCD of integers). We can also put as parameters two lists 
of same length (or a matrix of two lines), in this case gcd returns the greatest common divisor of 
elements of same index (or of same column). 
 
We enter: 

gcd([x^2-4,x*y-y],[x^3-8,y^2-x^2*y]) 

Or we enter: 

gcd([[x^2-4,x*y-y],[x^3-8,y^2-x^2*y]]) 

We get: 

[x-2,y] 

Examples 
We enter: 

gcd(x^2+2*x+1,x^2-1) 
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We get: 

x+1 

We enter: 

gcd(x^2-2*x+1,x^3-1,x^2-1,x^2+x-2) 

or 

gcd([x^2-2*x+1,x^3-1,x^2-1,x^2+x-2]) 

We get: 

x-1 

We enter: 

A:=z^2+x^2*y^2*z^2+(-(y^2))*z^2+(-(x^2))*z^2 

B:=x^3*y^3*z+(-(y^3))*z+x^3*z-z 

C:=gcd(A,B) 

We get: 

z*x*y+z*x-z*y-z 

We enter: 

factor(A) 

We get: 

(y-1)*(y+1)*(x-1)*(x+1)*z^2 

We enter: 

factor(B) 

We get: 

(x^2+x+1)*(x-1)*(y+1)*(y^2-y+1)*z 

We enter: 

factor(C) 

We get: 

(y+1)*(x-1)*z 

For the polynomials with modular coefficients, we enter for example: 

gcd((x^2+2*x+2) mod 5,(x^2-1) mod 5) 

We get: 

(1 % 5)*x-1 % 5 

but if we enter: 
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gcd(x^2+2*x+2,x^2-1) mod 5) 

We get: 

1%5 

because the modular operation modular is done after the calculation of the GCD which has been 
calculated in ℤ [𝑋]. 
 

6.11.6 Choose the algorithm of the GCD of two polynomials: ezgcd modgcd 

ezgcd and modgcd designate the GCD (Greatest Common Divisor) of two polynomials (or of a list of 
polynomials, or of a sequence of polynomials) of several variables. 
ezgcd is calculated with the algorithm ezgcd, 
modgcd is calculated with the modular algorithm. 
 
We enter: 

gcd(x^2-2*x*y+y^2-1,x-y) 

or 

ezgcd(x^2-2*x*y+y^2-1,x-y) 

or 

modgcd(x^2-2*x*y+y^2-1,x-y) 

We get: 

1 

We enter: 

gcd((x+y-1)*(x+y+1),(x+y+1)^2) 

or we enter: 

ezgcd((x+y-1)*(x+y+1),(x+y+1)^2) 

or 

modgcd((x+y-1)*(x+y+1),(x+y+1)^2) 

We get: 

x+y+1 

We enter: 

ezgcd((x+1)^4-y^4,(x+1-y)^2) 

We get: 

"GCD not successfull Error: Bad Argument Value" 

but if we enter: 

gcd((x+1)^4-y^4,(x+1-y)^2) 
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or 

modgcd((x+1)^4-y^4,(x+1-y)^2) 

We get: 

x-y+1 

6.11.7 LCM of two polynomials: lcm 

lcm designates the LCM (Lowest Common Multiple) of two polynomials which may have several 
variables and also the LCM of a list of polynomials or of a sequence of polynomials which may have 
several variables (see 6.7 for the LCM of integers). 
 
We enter: 

lcm(x^2+2*x+1,x^2-1) 

We get: 

(x+1)*(x^2-1) 

We enter: 

lcm(x,x^2+2*x+1,x^2-1) 

or 

lcm([x,x^2+2*x+1,x^2-1]) 

We get: 

(x^2+x)*(x^2-1) 

We enter: 

A:=z^2+x^2*y^2*z^2+(-(y^2))*z^2+(-(x^2))*z^2 

B:=x^3*y^3*z+(-(y^3))*z+x^3*z-z 

D:=lcm(A,B) 

We get: 

(x*y*z-x*z+y*z-z)*(x^3*y^3*z+(-(y^3))*z+x^3*z-z) 

We enter: 

factor(A) 

We get: 

(y-1)*(y+1)*(x-1)*(x+1)*z^2 

We enter: 

factor(B) 

We get: 

(x^2+x+1)*(x-1)*(y+1)*(y^2-y+1)*z 
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We enter: 

factor(D) 

We get: 

(x-1)*(x+1)*(x^2+x+1)*(y-1)*(y+1)*(y^2-y+1)*z^2 

6.11.8 Bezout identity: egcd 

It is the Bezout identity for polynomials (Extended Greatest Common Divisor). 
egcd takes two or three arguments: the polynomials 𝐴 and 𝐵 which are either in the form of 

expressions of one variable, (if the variable is not specified it is 𝑥), either supplied by the list of their 
coefficients by decreasing power order. 

Given 2 polynomials 𝐴(𝑥), 𝐵(𝑥), egcd or gcdex returns 3 polynomials 
[U(x),V(x),D(x)] such as: 

U(x)*A(x)+V(x)*B(x)=D(x)=GCD(A(x),B(x)) 

We enter: 

egcd(x^2+2*x+1,x^2-1) 

We get: 

[1,-1,2*x+2] 

We enter: 

egcd([1,2,1],[1,0,-1]) 

We get: 

[[1],[-1],[2,2]] 

We enter: 

egcd(t^2+2*t+1,t^2-1,t) 

We get: 

[1,-1,2*t+2] 

We enter: 

egcd(x^2-2*x+1,x^2-x+2) 

We get: 

[x-2,-x+3,4] 

We enter: 

egcd([1,-2,1],[1,-1,2]) 

We get: 

[[1,-2],[-1,3],[4]] 

We enter: 
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egcd(t^2-2*t+1,t^2-t+2,t) 

We get: 

[t-2,-t+3,4] 

6.11.9 Solve polynomial of the form 𝒂𝒖 + 𝒃𝒗 = 𝒄: abcuv 

It is still the Bezout identity. 
abcuv solves the polynomial equation 

𝐶(𝑥)  =  𝑈(𝑥)  ∗  𝐴(𝑥)  +  𝑉 (𝑥)  ∗  𝐵(𝑥) 
in which the unknowns are the polynomials 𝑈 and 𝑉 and the parameters are the three polynomials, 
𝐴, 𝐵, 𝐶 where 𝐶 must be a multiple of the GCD of 𝐴 and 𝐵. 

abcuv takes as argument thre polynomials expressions 𝐴, 𝐵, 𝐶 and the name of their variable (by 

default 𝑥) (resp. 3 lists representing the coefficients by decreasing power order of 3 polynomials 
𝐴, 𝐵, 𝐶). abcuv returns the list of two polynomial expressions 𝑈 and 𝑉 (resp. of two lists which are the 

coefficients by decreasing power order of 𝑈 and 𝑉 ). 
 
We enter: 

abcuv(x^2+2*x+1,x^2-1,x+1) 

We get: 

[1/2,1/-2] 

We enter: 

abcuv(x^2+2*x+1,x^2-1,x^3+1) 

We get: 

[1/2*x^2+1/-2*x+1/2,-1/2*x^2-1/-2*x-1/2] 

We enter: 

abcuv([1,2,1],[1,0,-1],[1,0,0,1]) 

We get: 

[poly1[1/2,1/-2,1/2],poly1[1/-2,1/2,1/-2]] 

6.11.10 Chinese remainder: chinrem 

chinrem takes as argument two lists having each as components two polynomials eventually 
supplied by the list of their coefficients by decreasing power order. 
chinrem returns a list of components of two polynomials. 
chinrem([A,R],[B,Q]) returns the list of polynomials P and S such as: 

𝑆 =  𝑅. 𝑄, 𝑃 =  𝐴 (mod 𝑅), 𝑃 =  𝐵 (mod 𝑄) 

There is always a solution 𝑃 if 𝑅 and 𝑄 are prime to each other, and all the solutions are congruent 
modulus 𝑆 = 𝑅 ∗ 𝑄 

Find the solutions 𝑃(𝑥) of: 

{
𝑃(𝑥)  =  𝑥           mod (𝑥2 +  1)

𝑃(𝑥)  =  𝑥 −  1 mod (𝑥2  −  1)
 

 
We enter: 

chinrem([[1,0],[1,0,1]],[[1,-1],[1,0,-1]]) 
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We get: 

[[1/-2,1,1/-2],[1,0,0,0,-1]] 

or we enter: 

chinrem([x,x^2+1],[x-1,x^2-1]) 

We get: 

[1/-2*x^2+x+1/-2,x^4-1] 

so 𝑃(𝑥)  =  −
𝑥2 − 2.𝑥 +1

2
(𝑚𝑜𝑑 𝑥4 −  1) 

 
Other example: 
We enter: 

chinrem([[1,2],[1,0,1]],[[1,1],[1,1,1]]) 

We get: 

[[-1,-1,0,1],[1,1,2,1,1]] 

or we enter: 

chinrem([x+2,x^2+1],[x+1,x^2+x+1]) 

We get: 

[-x^3-x^2+1,x^4+x^3+2*x^2+x+1] 
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Chapter 7 Menu Polynomial 

 
 

7.1 Canonical form: canonical_form 

canonical_form takes as parameter a trinomial of the second degree that we want to put into the 
canonical form. 
Example: 
Transform into canonical form: 

𝑥2 −  6𝑥 +  1 
 
We enter: 

canonical_form(x^2-6*x+1) 

We find: 

(x-3)^2-8 

7.2 Numerical roots of a polynomial: proot 

proot takes as argument a polynomial or the vector whose components are the coefficients of a 
polynomial (by decreasing order). 
proot returns a vector whose components are the numerical roots of the polynomial. 
 

To find the numerical roots of 𝑃(𝑥)  =  𝑥3 +  1, we enter: 

proot([1,0,0,1]) 

or we enter: 

proot(x^3+1) 

We get: 

[-1,0.5+0.866025403784*i,0.5-0.866025403784*i] 

To get the numerical roots of 𝑥2 –  3, we enter: 

proot([1,0,-3]) 

or: 

proot(x^2-3) 

We get: 

[1.73205080757,-1.73205080757] 

To find the numerical roots of 𝑃(𝑥) =  𝑥3  −  5 ∗ 𝑥2 + 8 ∗ 𝑥 −  4, we enter: 

proot([1,-5,8,-4]) 

or we enter: 
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proot(x^3-5x^2+8x-4) 

We get: 

[1.,2.,2.] 

7.3 Roots exact of a polynomial 

7.3.1 Exact boundaries of complex roots of a polynomial: complexroot 

complexroot has two or four arguments: a polynomial and a real number, and eventually two 
complex 𝛼, 𝛽. 

– if complexroot has two arguments, complexroot returns the list of vectors of coordinates 
the value of complex and exact roots of the polynomial and their multiplicity, or of coordinates 
an interval (the boundaries of the interval are the opposite vertices of a rectangle with sides 
parallel to the axis and in which is a root complex of the polynomial) and the multiplicity of this 
root. 
If the interval is [𝑎1 +  𝑖𝑏1, 𝑎2 +  𝑖𝑏2] we have |𝑎1  −  𝑎2 |  <  and |𝑏1  −  𝑏2 |  < ℰ and the root 

𝑎 +  𝑖𝑏 checks 𝑎1  ≤  𝑎 ≤  𝑎2 and 𝑏1  ≤  𝑏 ≤  𝑏2. 
– if complexroot has four arguments, complexroot only returns the roots laying in the 

rectangle with sides parallel to the axis and of opposite vertices 𝛼, 𝛽. 
 

To get the roots of 𝑥3 +  1, we enter: 

complexroot(x^3+1,0.1) 

We get: 

[[-1,1],[[(4-7*i)/8,(8-13*i)/16],1],[[(8+13*i)/16,(4+7*i)/8],1]] 

So for 𝑥3 +  1: 
−1 is a root of multiplicity 1, 1/2𝑖 ∗ 𝑏 is a root of multiplicity 1 with −7/8 ≤  𝑏 ≤  −13/16, 1/2𝑖 ∗ 𝑐 is 
root of multiplicity1 with 13/1 ≤  𝑐 ≤  7/8. 

To get the roots of 𝑥3 +  1 in the rectangle of opposite vertices −1, 1 +  2 ∗  𝐼, we enter: 

complexroot(x^3+1,0.1,-1,1+2*i) 

We get: 

[[-1,1],[[(8+13*i)/16,(4+7*i)/8],1]] 

7.3.2 Exact values of complex rational roots of a polynomial: crationalroot 

crationalroot has one or three arguments: a polynomial and eventually two complex α, β. 
– if crationalroot has one argument, crationalroot returns the list of values of complex 

roots rational of the polynomial without tell the multiplicity of these roots. 
– if crationalroot has three arguments, crationalroot only returns the complex rational 

roots laying in the rectangle of opposite vertices [𝛼, 𝛽]. 
 

To get the roots rational and complex of (𝑥2 +  4) ∗  (2𝑥 −  3) = 2 ∗  𝑥3  −  3 ∗  𝑥2 +  8 ∗  𝑥 −  12, we 
enter: 

crationalroot(2*x^3-3*x^2+8*x-12) 

We get: 

[2*i,3/2,-2*i] 
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7.4 Fraction rational, its roots and its exact poles 

7.4.1 Roots and exact poles of a rational fraction: froot 

froot takes as argument a rational fraction 𝐹(𝑥). 
froot returns a vector whose components are the roots and the poles of 𝐹(𝑥) followed by their 
multiplicity. 
The calculator returns the exact values of these roots or poles when possible and otherwise returns 
their numerical values. 
 
We enter: 

froot((x^5-2*x^4+x^3)/(x-2)) 

We get: 

[1,2,0,3,2,-1] 

so for 𝐹(𝑥)  =  
𝑥5 − 2𝑥4+𝑥3

𝑥– 2
 : 

1 is a double root, 
0 is a triple root 
and 2 is a pole of order 1. 
We enter: 

froot((x^3-2*x^2+1)/(x-2)) 

We get: 

[1,1,(1+sqrt(5))/2,1,(1-sqrt(5))/2,1,2,-1] 

Note: to get the roots and the complex poles, we must have checked Complex in the CAS 
configuration (key giving the status line). 
 
We enter: 

froot((x^2+1)/(x-2)) 

We get: 

[-i,1,i,1,2,-1] 

7.5 Writing in powers of (𝒙 − 𝒂): ptayl 

It is to write a polynomial 𝑃(𝑥) in powers of (𝑥 − 𝑎). 
ptayl has two parameters: a polynomial P supplied in symbolic form or by the list of its coefficients, 
and a number a. 
ptayl returns the polynomial 𝑄 such as 𝑄(𝑥 − 𝑎) = 𝑃(𝑥). 
 
We enter: 

ptayl(x^2+2*x+1,2) 

We get the polynomial 𝑄(𝑥): 

x^2+6*x+9 

We enter: 
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ptayl([1,2,1],2) 

We get: 

[1,6,9] 

Warning! 
We have: 

𝑃(𝑥) = 𝑄(𝑥 − 𝑎) 
that is to say for the example: 

𝑥2 +  2𝑥 +  1 =  (𝑥 −  2)2 +  6(𝑥 −  2)  +  9 

7.6 Calculation with the exact roots of a polynomial: rootof 

Be 𝑃 and 𝑄 two polynomials supplied by the list of their coefficients, so rootof(P,Q) designates the 

value 𝑃(𝛼) where 𝛼 is the "largest" root of 𝑄 (one first compares the real parts and in case of equality 
one compare the imaginary parts). 
Then, we can perform calculations with this value. 
 
We enter: 

normal(rootof([1,0],[1,2,-3])) 

We get: 

1 

indeed 𝑥2 +  2𝑥 −  3 =  (𝑥 −  1)(𝑥 +  3) takes as largest root 1. 
 
Other example : 

Be 𝛼 the largest root in norm of 𝑄(𝑥)  =  𝑥4 +  10𝑥2 +  1. 

– Calculate 
1

𝛼
 

 
We enter: 

normal(1/rootof([1,0],[1,0,10,0,1])) 

because 𝑃(𝑥)  =  𝑥 is represented by [1,0]. 
We get: 

rootof([[-1,0,-10,0],[1,0,10,0,1]]) 

which means that: 
1

𝛼
=  −(𝛼)3 −  10. 𝛼 

– Calculate (𝛼)2. 
 
We enter: 

normal(rootof([1,0],[1,0,10,0,1])^2) 

We have 𝛼 =rootof([1,0],[1,0,10,0,1]) because 𝑃(𝑥)  =  𝑥 is represented by [1,0], 
and to get 𝛼2, we raise 𝛼 to square. 
We get: 

-5-2*sqrt(6) 

or to get 𝛼2 directly, we enter: 
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normal(rootof([1,0,0],[1,0,10,0,1])^2) 

because 𝑃(𝑥)  =  𝑥2 is represented by [1,0,0]. 
We get: 

-5-2*sqrt(6) 

This result can be checked because we have a biquadratic equation of reduced discriminant 
 25 −  1 =  24 =  4 ∗  6. 
We enter: 

csolve(x^4+10x^2+1) 

We get: 

[(i)*sqrt(-2*sqrt(6)+5), 

(-i)*sqrt(-2*sqrt(6)+5), 

(i)*sqrt(2*sqrt(6)+5), 

(-i)*sqrt(2*sqrt(6)+5)] 

So 𝛼 =  𝑖 ∗ √2 ∗ √6 +  5 
We enter: 

((i)*sqrt(2*sqrt(6)+5))^2 

We get: 

-5-2*sqrt(6) 

7.7 Coefficients of a polynomial: coeff 

coeff has three arguments: the polynomial, the name of the variable (or the list of names of the 
variables) the order (or the list of orders of variables). 
coeff returns the coefficient of the polynomial of specified order. 
 
We enter: 

coeff(x^3-5x^2+8x-4,2) 

We get: 

-5 

We enter: 

coeff(-x^4+3*x*y^2+x,y,2) 

We get: 

3*x 

We enter: 

coeff(-x^4+3*x*y^2+x,[x,y],[1,2]) 

We get: 
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3 

7.8 Coefficients of a polynomial defined by its roots: pcoeff pcoef 

pcoeff (or pcoef) takes as argument a list whose components are the roots of a polynomial P. 
pcoeff (or pcoef) returns a list of components the coefficients of the polynomial univariate P (by 
decreasing order). 
 
We enter: 

pcoef([1,2,0,0,3]) 

We get: 

[1,-6,11,-6,0,0] 

that is to say (𝑥 −  1)(𝑥 −  2)(𝑥2)(𝑥 −  3)  =  𝑥5  −  6𝑥4 +  11𝑥3  −  6𝑥2. 

7.9 Truncation of order n: truncate 

truncate allows to truncate a polynomial at a supplied order. truncate is useful when we do series 
expansions by hand, or to transform a series expansion into a polynomial. 
truncate has two arguments: a polynomial and an integer n. 
truncate returns the polynomial truncated at order n (no terms of order greater than or equal to 
n+1). 
 
We enter: 

truncate((1+x+x^2/2)^3,4) 

We get: 

(9*x^4+16*x^3+18*x^2+12*x+4)/4 

We enter: 

truncate(series(sin(x)),4) 

We get: 

(-x^3-(-6)*x)/6 

We notice that the returned polynomial is reduced to common denominator. 

7.10 List of divisors of a polynomial: divis 

divis takes as argument a symbolic polynomial (or a list of polynomials) and returns the list of 
divisors. 
 
We enter: 

divis(x^2-1) 

We get: 

[1,x-1,x+1,(x-1)*(x+1)] 
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We enter: 

divis(2t^2-2) 

We get: 

[1,2,t-1,2*(t-1),t+1,2*(t+1),(t-1)*(t+1),2*(t-1)*(t+1)] 

We enter: 

divis([t^2,x^2-1]) 

We get: 

[[1,t,t^2],[1,x+1,x-1,(x-1)*(x+1)]] 

7.11 List of factors of a polynomial: factors 

factors takes as argument a polynomial or a list of polynomials. 
factors gives the list of factors of the polynomial with their multiplicity. 
 
We enter: 

factors(x^2+2*x+1) 

We get: 

[x+1,2] 

We enter: 

factors(x^4-2*x^2+1) 

We get: 

[x-1,2,x+1,2] 

We enter: 

factors([x^3-2*x^2+1,x^2-x]) 

We get: 

[[x-1,1,x^2-x-1,1],[x,1,x-1,1]] 

We enter: 

factors([x^2,x^2-1]) 

We get: 

[[x,2],[x+1,1,x-1,1]] 

7.12 GCD of polynomials by Euclid’s algorithm: gcd 

gcd designates the GCD (Greatest Common Divisor) of two polynomials pou-vant get several 
variables and also the GCD of a list of polynomials or of a sequence of polynomials which may have 
several variables (see 6.6 for the GCD of integers). 
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We can also put as parameters two lists of same length (or a matrix of two lines), in this case gcd 
returns the greatest common divisor of elements of same index (or of a same column). 
 
We enter: 

gcd(x^2+2*x+1,x^2-1) 

We get: 

x+1 

We enter: 

gcd([x^2-4,x*y-y],[x^3-8,y^2-x^2*y]) 

Or we enter: 

gcd([[x^2-4,x*y-y],[x^3-8,y^2-x^2*y]]) 

We get: 

[x-2,y] 

We enter: 

gcd(x^2-2*x+1,x^3-1,x^2-1,x^2+x-2) 

or 

gcd([x^2-2*x+1,x^3-1,x^2-1,x^2+x-2]) 

We get: 

x-1 

We enter: 

A:=z^2+x^2*y^2*z^2+(-(y^2))*z^2+(-(x^2))*z^2 

B:=x^3*y^3*z+(-(y^3))*z+x^3*z-z 

C:=gcd(A,B) 

We get: 

z*x*y+z*x-z*y-z 

We enter: 

factor(A) 

We get: 

 (y-1)*(y+1)*(x-1)*(x+1)*z^2 

We enter: 

factor(B) 

We get: 
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(x^2+x+1)*(x-1)*(y+1)*(y^2-y+1)*z 

We enter: 

factor(C) 

We get: 

(y+1)*(x-1)*z 

For the polynomials with modular coefficients, we enter, for example, because %% is there used to 
designate a modular number: 

gcd((x^2+2*x+2) %% 5,(x^2-1) %% 5) 

We get: 

(1 %% 5)*x -1 %% 5 

but if we enter: 

gcd(x^2+2*x+2,x^2-1) %% 5 

We get: 

1 %% 5 

because the modular operation is performed after the calculation of the GCD which has been 
calculated in Z [X]. 

7.13 LCM of two polynomials: lcm 

lcm designates the LCM (lowest common multiple) of two polynomials which may have several 
variables and also the LCM of a list of polynomials or of a sequence of polynomials which may have 
several variables (see 6.7 for the LCM of integers). 
 
We enter: 

lcm(x^2+2*x+1,x^2-1) 

We get: 

(x+1)*(x^2-1) 

We enter: 

lcm(x,x^2+2*x+1,x^2-1) 

or 

lcm([x,x^2+2*x+1,x^2-1]) 

We get: 

(x^2+x)*(x^2-1) 

We enter: 

A:=z^2+x^2*y^2*z^2+(-(y^2))*z^2+(-(x^2))*z^2 
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B:=x^3*y^3*z+(-(y^3))*z+x^3*z-z 

D:=lcm(A,B) 

We get: 

(x*y*z-x*z+y*z-z)*(x^3*y^3*z+(-(y^3))*z+x^3*z-z) 

We enter: 

factor(A) 

We get: 

(y-1)*(y+1)*(x-1)*(x+1)*z^2 

We enter: 

factor(B) 

We get: 

(x^2+x+1)*(x-1)*(y+1)*(y^2-y+1)*z 

We enter: 

factor(D) 

We get: 

(x-1)*(x+1)*(x^2+x+1)*(y-1)*(y+1)*(y^2-y+1)*z^2 

7.14 Create 

7.14.1 Transform a polynomial into a list (internal recursive dense format): 

symb2poly 

symb2poly takes as argument a polynomial, supplied with a polynomial writting, of a variable (resp. 
several variables), and the name of this formal variable (by default x) (resp. the sequence of names of 
these variables). 
symb2poly transforms this polynomial writting, into the list of coefficients by decreasing power order 
according to the name of the variable supplied as second argument (resp. the recursive writting of the 
list of coefficients by decreasing power order according to the names of variables supplied as second 
argument: the result is the list of coefficients of the first variable, coefficients which are itself 
polynomials which will be supplied in form of the list of coefficients of the second variable, etc., ...). 
Warning! If the second argument is a list, the result is the writting of the polynomial under internal 
format. 
 
We enter: 

symb2poly(x^2-1) 

Or we enter: 

symb2poly(x^2-1,x) 

Or we enter: 

symb2poly(y^2-1,y) 
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We get: 

[1,0,-1] 

We enter: 

symb2poly(x*y^2+2y-1,x) 

We get: 

[y^2,2y-1] 

We enter: 

symb2poly(x*y^2+2y-1,y) 

We get: 

[x,2,-1] 

7.14.2 Transform the internal sparse distributed format of the polynomial into a 

polynomial writting: poly2symb 

poly2symb takes as argument a list of coefficients by decreasing power order of a polynomial and a 
name of formal variable (by default x) (resp. the internal sparse distributed format of the polynomial 
that is to say the sum of monomials such as: %%%{c,[px,py,pz] %%%} and a list of formal variables 
such as [x,y,z] which represents the monomial 𝑐𝑥𝑝𝑥𝑦𝑝𝑦𝑧𝑝𝑧). 
poly2symb transforms the list of coefficients by decreasing power order of a polynomial (resp. the 
sum of %%%{c,[px,py,pz] %%%}), in its polynomial writting (according to Horner), by using the 
name of the variable supplied in second argument (resp. by using the list of variables supplied in 
second argument [x,y,z]). 
 
We enter: 

poly2symb([1,0,-1]) 

Or we enter: 

poly2symb([1,0,-1],x) 

We get: 

x*x-1 

We enter: 

poly2symb([1,0,-1],y) 

We get: 

y*y-1 

7.14.3 Coefficients of a polynomial defined by its roots: pcoeff pcoef 

pcoeff (or pcoef) takes as argument a list of components the roots of a polynomial P. 
pcoeff (or pcoef) returns a list of components the coefficients of the polynomial univariate P (by 
decreasing order). 
 
We enter: 
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pcoef([1,2,0,0,3]) 

We get: 

[1,-6,11,-6,0,0] 

that is to say (𝑥 −  1)(𝑥 −  2)(𝑥2)(𝑥 −  3)  =  𝑥5  −  6𝑥4 +  11𝑥3  −  6𝑥2. 

7.14.4 Coefficients of a rational fraction defined by its roots and its poles: fcoeff 

fcoeff takes as argument a vector whose components are the roots and the poles of a rational 
fraction 𝐹(𝑥) followed by their multiplicity. 
fcoeff returns the rational fraction 𝐹(𝑥). 
 
We enter: 

fcoeff([1,2,0,3,2,-1]) 

We get: 

(x-1)^2*x^3*(x-2)^-1 

7.14.5 Coefficients of the term of highest degree of a polynomial: lcoeff 

lcoeff takes as argument a polynomial supplied in symbolic form or by the list of its coefficients. 
lcoeff returns the coefficient of highest degree of this polynomial (lcoeff=leading coefficient). 
 
We enter: 

lcoeff([2,1,-1,0]) 

We get: 

2 

We enter: 

lcoeff(3*x^2+5*x,x) 

We get: 

3 

We enter: 

lcoeff(3*x^2+5*x*y^2,y) 

We get: 

5*x 

7.14.6 Evaluation of a polynomial: polyEval 

polyEval takes as argument a polynomial p supplied by the list of its coefficients and a real a. 
polyEval returns the numerical or exact value of p(a). 
 
We enter: 

polyEval([1,0,-1],sqrt(2)) 
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We get: 

sqrt(2)*sqrt(2)-1 

Then: 

normal(sqrt(2)*sqrt(2)-1) 

We get: 

1 

We enter: 

polyEval([1,0,-1],1.4) 

We get: 

0.96 

7.14.7 Minimal polynomial: pmin 

pmin has one (resp. two) argument(s). 
pmin takes as argument a matrix 𝐴 of degree 𝑛 (resp. a matrix 𝐴 of degree 𝑛 and a name of formal 
variable). 
pmin returns the minimal polynomial of 𝐴 written as a list of its coefficients (resp. the minimal 

polynomial 𝑃 of 𝐴 written in symbolic form by using the name of variable supplied as argument). 
The minimal polynomial 𝑃 of 𝐴 is the polynomial of lowest degree which makes 𝐴 equals zero 

(𝑃(𝐴)  =  0). 
 
We enter: 

pmin([[1,0],[0,1]]) 

We get: 

[1,-1] 

Or we enter: 

pmin([[1,0],[0,1]],x) 

We get: 

x-1 

So the minimal polynomial of [[1,0], [0,1]] is 𝑥 −  1. 
 
We enter: 

pmin([[1,1,0],[0,1,1],[0,0,1]]) 

We get: 

[1,-3,3,-1] 

We enter: 

pmin([[1,1,0],[0,1,1],[0,0,1]],x) 
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We get: 

x^3-3*x^2+3*x-1 

So the minimal polynomial of [[1,1,0], [0,1,1], [0,0,1]] is 𝑥3  −  3 ∗  𝑥2 +  3 ∗  𝑥 −  1. 
 
We enter: 

pmin([[2,1,0],[0,2,0],[0,0,2]]) 

We get: 

[1,-4,4] 

We enter: 

pmin([[2,1,0],[0,2,0],[0,0,2]],x) 

We get: 

x^2-4*x+4 

So the minimal polynomial of [[2,1,0], [0,2,0], [0,0,2]] is 𝑥2  −  4𝑥 +  4. 

7.14.8 Companion matrix of a polynomial: companion 

companion takes as argument a univariate polynomial 𝑃 and the name of its variable. 

companion returns the matrix which has for characteristic polynomial the polynomial 𝑃. 
If 𝑃(𝑥)  =  𝑥 + 𝑎𝑛−1𝑥

𝑛−1+ . . . + 𝑎 −  1𝑥 + 𝑎0, this matrix equals the matrix unity of order 𝑛 −  1 

combined with [0, 0. . , 0, −𝑎0] as first line, and by [−𝑎0, −𝑎1, . . . . , −𝑎𝑛−1] as last column. 
 
We enter: 

companion(x^2+5x-7,x) 

We get: 

[[0,7],[1,-5]] 

We enter: 

companion(x^4+3x^3+2x^2+4x-1,x) 

We get: 

[[0,0,0,1],[1,0,0,-4],[0,1,0,-2],[0,0,1,-3]] 

7.14.9 Random polynomials: randpoly randPoly 

randpoly randPoly takes as parameter an integer n. 
randPoly returns the coefficients of a polynomial of degree n and whose coefficients are random 
integers equally distributed on −99. . +99. 
 
We enter in HOME or in the CAS: 

randPoly(4) 

or 

randpoly(4) 
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We get for example: 

[4,53,-45,80,-99) 

7.14.10 Change the order of variables: reorder 

reorder has two parameters: an expression and a list containing the names of variables in a certain 
order. 
reorder expands the expression by order of the variables supplied as second parameter. 
 
We enter: 

reorder(x^2+2*x*a+a^2+z^2-x*z,[a,x,z]) 

We get: 

a^2+2*a*x+x^2-x*z+z^2 

Warning! The variables must not be assigned. 

7.15 Algebra 

7.15.1 Euclidean quotient of two polynomials: quo 

quo gives the quotient of the Euclidean division of two polynomials (division by decreasing power 
order). 
We can give the polynomials either by the list of their coefficients by decreasing power order, either in 
symbolics forms, and in this case the variable must be added as third argument (by default the 
variable is x). 
 
We enter: 

quo(x^2+2x+1,x+3) 

We get: 

x-1 

We enter: 

quo(t^2+2t+1,t+3,t) 

We get: 

t-1 

or we enter: 

quo([1,2,1],[1,3]) 

We get: 

[ 1,-1] 

that is to say the polynomial poly1[1,-1]. 

To get the quotient of 𝑥3 +  2𝑥 +  4 by 𝑥2 +  𝑥 +  2, we enter: 

quo(x^3+2x+4,x^2+x+2) 
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We get: 

x-1 

Or we enter: 

quo([1,0,2,4],[1,1,2]) 

We get: 

[] 1,-1 [] 

that is to say the polynomial poly1[1,-1] or else the polynomial x-1. 
 
We enter: 

quo(t^3+2t+4,t^2+t+2,t) 

We get: 

t-1 

If we do not put the variable t as last argument, we enter: 

quo(t^3+2t+4,t^2+t+2) 

We get: 

(t^3+2*t+4)/(t^2+t+2) 

7.15.2 Euclidean remainder of two polynomials: rem 

rem gives the remainder of the Euclidean division of two polynomials (division by decreasing power 
order). 
We can give the polynomials either by the list of their coefficients by decreasing power order, either in 
symbolic forms, and in this case the variable must be added as third argument (by default the variable 
is x). 
 
We enter: 

rem(x^3-1,x^2-1) 

We get: 

x-1 

We enter: 

rem(t^3-1,t^2-1,t) 

We get: 

t-1 

We enter: 

rem(x^2+2x+1,x+3) 

Or we enter: 

rem(t^2+2t+1,t+3,t) 
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We get: 

4 

or we enter: 

rem([1,2,1],[1,3]) 

We get: 

[] 4 

that is to say the polynomial poly1[4] or else the polynomial 4. 
 

To get the remainder of 𝑥3 +  2𝑥 +  4  by  𝑥2 +  𝑥 +  2,we enter: 

rem(x^3+2x+4,x^2+x+2) 

We get: 

x+6 

Or we enter: 

rem([1,0,2,4],[1,1,2]) 

We get: 

[1,6] 

that is to say the polynomial poly1[1,6] or else the polynomial x+6. 
 
We enter: 

rem(t^3+2t+4,t^2+t+2,t) 

We get: 

t+6 

If we do not put the variable 𝑡 as last argument, we enter: 

rem(t^3+2t+4,t^2+t+2) 

We get: 

0 

7.15.3 Degree of a polynomial: degree 

degree takes as argument a polynomial supplied in symbolic form or by the list of its coefficients. 
degree returns the degree of this polynomial (degree of the monomial of highest degree). 
 
We enter: 

degree(x^3+x) 

We get: 

3 
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We enter: 

degree([1,0,1,0]) 

We get: 

3 

7.15.4 Valuation of a polynomial: valuation 

valuation or ldegre takes as argument a polynomial supplied in symbolic form or by the list of its 
coefficients. 
valuation or ldegre returns the valuation of this polynomial, it is the degree of the monomial of 
lowest (ldegree=low degree). 
 
We enter: 

valuation(x^3+x) 

We get: 

1 

We enter: 

valuation([1,0,1,0]) 

We get: 

1 

7.15.5 Coefficient of the term of highest degree of a polynomial: lcoeff 

lcoeff takes as argument a polynomial supplied in symbolic form or by the list of its coefficients. 
lcoeff returns the coefficient of highest degree of this polynomial (lcoeff=leading coefficient). 
 
We enter: 

lcoeff([2,1,-1,0]) 

We get: 

2 

We enter: 

lcoeff(3*x^2+5*x,x) 

We get: 

3 

We enter: 

lcoeff(3*x^2+5*x*y^2,y) 

We get: 

5*x 



 166 

7.15.6 Put in factor of 𝒙𝒏 in a polynomial: factor_xn 

factor_xn takes as argument a polynomial P. 
factor_xn returns the polynomial P in which we have put in factor 𝑥𝑛 where 𝑛 is the degree of P 
(n=degree(P)). 
 
We enter: 

factor_xn(-x^4+3) 

We get: 

x^4*(-1+3*x^-4) 

 

7.15.7 GCD of coefficients of a polynomial: content 

content takes as arguments a polynomial P supplied in symbolic form or by the list of its coefficients 
and the name of the variable (by default 𝑥). 
content designates the GCD (Greatest Common Divisor) of coefficients the polynomial P. 
 
We enter: 

content(6*x^2-3*x+9) 

or we enter: 

content(6*t^2-3*t+9,t) 

or: 

content([6,-3,9])) 

We get: 

3 

7.15.8 Primitive part of a polynomial: primpart 

primpart takes as argument a polynomial P supplied in symbolic form or by the list of its coefficients. 
primpart returns the polynomial P divided by the GCD (Greatest Common Divisor) of its coefficients. 
 
We enter: 

primpart(6x^2-3x+9) 

or: 

primpart([6,-3,9],x)) 

We get: 

2*x^2-x+3 

7.15.9 Sturm sequence and number of changes of the sign of P on ]𝒂;  𝒃]: sturm 

sturm has two or four parameters: a polynomial expression P, or a rational fraction 𝑃/𝑄, and the 

name of the variable, or a polynomial expression 𝑃, the name of the variable and two numbers 𝑎 and 
𝑏. 
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When there are two parameters, sturm returns the list of Sturm series and their multiplicity for 𝑃 or for 

𝑃 and for 𝑄 (sturm is then similar to sturmseq). 
When there are four parameters, sturm behaves as sturmab: 

– if 𝑎 and 𝑏 are reals, sturm returns the number of changes of sign of 𝑃 on ]𝑎;  𝑏] 
– if 𝑎 or 𝑏 is complex, sturm returns the number of complex roots laying inside the rectangle of 

opposite vertices 𝑎 and 𝑏. 
 
We enter: 

sturm(2*x^3+2,x) 

We get: 

[2,[[1,0,0,1],[3,0,0],-9],1] 

We enter: 

sturm((2*x^3+2)/(x+2),x) 

We get: 

[2,[[1,0,0,1],[3,0,0],-9],1,[[1,2],1]] 

We enter: 

sturm(x^2*(x^3+2),x,-2,0) 

We get: 

1 

7.15.10 Number of changes of sign on ]𝒂;  𝒃]: sturmab 

sturmab has four parameters: a polynomial expression 𝑃, the name of the variable and two numbers 

𝑎 and 𝑏. 
– if 𝑎 and 𝑏 are reals, sturmab returns either a strictly positive number which is the number of 

changes of sign of 𝑃 on ]𝑎;  𝑏], either 0 if 𝑃 remains of constant positive sign or null on ]𝑎;  𝑏], 
either −1 if 𝑃 remains of constant negative sign or null on ]𝑎;  𝑏]. Thus, sturmab let us know 

the number of roots on [a, b[ of the polynomial 𝑃/𝐺 with 𝐺 =  gcd(𝑃, diff(𝑃)). 
– if 𝑎 or 𝑏 is complex, the number of complex roots laying inside the rectangle of opposite 

vertices 𝑎 and 𝑏. 
 
We enter: 

sturmab(x^2*(x^3+2),x,-2,0) 

We get: 

1 

We enter: 

sturmab(x^3-1,x,-2-i,5+3i) 

We get: 

3 

We enter: 
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sturmab(x^3-1,x,-i,5+3i) 

We get: 

1 

Warning! 

𝑃 must be supplied by its symbolic expression, and, if we enter: 

sturmab([1,0,0,2,0,0],x,-2,0) 

we get: 

Bad argument type. 

7.15.11 Sequence of Sturm: sturmseq 

sturmseq takes as parameter a polynomial expression 𝑃 or a rational fraction 𝑃/𝑄. 

sturmseq returns the list of Sturm series and their multiplicity for 𝑃, or for 𝑃 and 𝑄. 

The series of sturm 𝑅1, 𝑅2, . .. is obtained from the factor 𝐹 without square of 𝑃. To get 𝐹 starting from 
the decomposition of 𝑃 in prime factors, one removes the square terms and one transforms the odd 

powers in powers 1. 

𝑅1 is the opposite of the remainder of the Euclidean division of 𝐹 by 𝐹′ then, 𝑅2 is the opposite of the 

remainder of the Euclidean division of 𝐹′ by 𝑅1 
.... 
and so on until 𝑅𝑘  =  0. 
 
We enter: 

sturmseq(2*x^3+2) 

or 

sturmseq(2*y^3+2,y) 

We get: 

[2,[[1,0,0,1],[3,0,0],-9],1] 

The first term gives the GCD of the coefficients of the numerator (here 2), the last term gives the 

denominator (here 1). Between these two terms, we have the series of polynomials 

[𝑥3 +  1, 3𝑥2, −9]. 
We enter: 

sturmseq((12*x^3+4)/(6*x^2+3),x) 

We get: 

[4,[[3,0,0,1],[9,0,0],-81],3,[[2,0,1],[4,0],-16]] 

The first term gives the GCD of the coefficients of the numerator (here 4), then the Sturm series of the 
numerator ([[3,0,0,1], [9,0,0], −81]), then the the GCD of the coefficient of the denominator (here 3), 

and the Sturm series of the denominator ([[2,0,1], [4,0], −16]). We have the series of polynomials 

[3𝑥3 +  1, 9𝑥2, −81] for the numerator and, [2𝑥2 +  1, 4𝑥, −16] for the denominator. 
 
We enter: 

sturmseq((x^3+1)^2,x) 

We get: 
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[1,1] 

Indeed, the square terms are removed and 𝐹 =  1. 
 
We enter: 

sturmseq(3*(3*x^3+1)/(2*x+2),x) 

We get: 

[3,[[3,0,0,1],[9,0,0],-81],2,[[1,1],1]] 

The first term gives the GCD of the coefficients of the numerator (here 3), the second term gives the 
series of polynomials (here 3x^3+1, 9x^2, 81), the third term gives the GCD of the coefficients of 

the denominator (here 2), the fourth term gives the series of polynomials of the denominator (x+1,1). 
Warning! 

P must be supplied by its symbolic expression, and, if we enter: 

sturmseq([1,0,0,1],x) 

we get: 

Bad argument type. 

7.15.12 Sylvester matrix of two polynomials: sylvester 

sylvester takes as arguments two polynomials. 

sylvester returns the Sylvester matrix S of two polynomials. 

For two polynomials 𝐴(𝑥)  =  ∑ 𝑎𝑖𝑥
𝑖𝑖=𝑛

𝑖=0  and 𝐵(𝑥)  =  ∑ 𝑏𝑖𝑥
𝑖𝑖=𝑚

𝑖=0 , the Sylvester matrix S is a square matrix 

of dimension m+n whose m=degree(B(x)first lines are composed of coefficients of 𝐴(𝑥): 

(

 

𝑠11 = 𝑎𝑛 𝑠12 = 𝑎𝑛−1 ⋯ 𝑠1(𝑛+1) = 𝑎0 0 ⋯ 0

𝑠21 = 0 𝑠22 = 𝑎𝑛 ⋯ 𝑠2(𝑛+1) = 𝑎1 𝑠2(𝑛+2) = 𝑎0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑠𝑚1 = 0 𝑠𝑚2 = 0 ⋯ 𝑠𝑚(𝑛+1) = 𝑎𝑚−1 𝑠𝑚(𝑛+2) = 𝑎𝑚−2 ⋯ 𝑎0)

  

 
and the n=degree(A(x)) following lines are composed the same way of coefficients of B(x): 

(

𝑠(𝑚+1)1 = 𝑏𝑚 𝑠(𝑚+1)2 = 𝑏𝑚−1 ⋯

⋮ ⋮ ⋮
𝑠(𝑚+𝑛)1 = 0 𝑠(𝑚+𝑛)2 = 0 ⋯

𝑠(𝑚+1)(𝑚+1) = 𝑏0 0 ⋯ 0

⋱ ⋮ ⋱ ⋮
𝑠(𝑚+𝑛)(𝑚+1) = 𝑏𝑛−1 𝑏𝑛−2 ⋯ 𝑏0

) 

We enter: 

sylvester(x^3-p*x+q,3*x^2-p,x) 

We get: 

[[1,0,-p,q,0],[0,1,0,-p,q],[3,0,-p,0,0], [0,3,0,-p,0],[0,0,3,0,-p]] 

We enter: 

det([[1,0,-p,q,0],[0,1,0,-p,q],[3,0,-p,0,0], [0,3,0,-p,0],[0,0,3,0,-

p]]) 

We get: 

-4*p^3-27*q^2 

7.15.13 Resultant of two polynomials: resultant 

resultant takes as arguments two polynomials. 
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resultant returns the resultant of two polynomials. 
The resultant is the determinant of the Sylvester matrix S. 

For the two polynomials (𝑥)  =  ∑ 𝑎𝑖𝑥
𝑖𝑖=𝑛

𝑖=0  and 𝐵(𝑥)  =  ∑ 𝑏𝑖𝑥
𝑖𝑖=𝑚

𝑖=0 , the Sylvester matrix S is a square 

matrix of dimension 𝑚 +  𝑛 whose m first lines are composed of coefficients of 𝐴(𝑥): 
 

(

𝑠00 = 𝑎𝑛 𝑠01 = 𝑎𝑛−1 ⋯ 𝑠0𝑛 = 𝑎0 0 ⋯ 0
𝑠10 = 0 𝑠11 = 𝑎𝑛 ⋯ 𝑠1𝑛 = 𝑎1 𝑠1(𝑛+1) = 𝑎0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑠(𝑚−1)0 = 0 𝑠(𝑚−1)1 = 0 ⋯ 𝑠(𝑚−1)𝑛 = 𝑎𝑚−1 𝑠(𝑚−1)(𝑛+1) = 𝑎𝑚−2 ⋯ 𝑎0

) 

 
and the 𝑛 following lines are composed the same way of from coefficients of 𝐵(𝑥): 
 
We enter: 

resultant(x^3-p*x+q,3*x^2-p,x) 

We get: 

-4*p^3-27*q^2 

We look for two polynomials 𝑈(𝑥)  =  𝛼 ∗  𝑥 +  𝛽 (of degree 1) and 𝑉 (𝑥)  = 𝛾 ∗ 𝑥2 + 𝛿 ∗ 𝑥 + 𝜀 (of 

degree 2) so that 𝑈(𝑥) ∗ (𝑥3 − 𝑝 ∗ 𝑥 + 𝑞) + 𝑉 (𝑥) ∗ (3 ∗ 𝑥2 − 𝑝)  =  1 
Then, we must solve a linear system of five equations and five unknowns, which are 𝛼, . . . 𝛿, 𝜂 

(Warning! 𝜀 =  10−10). 
 
We enter: 

symb2poly((alpha*x+beta)*(x^3-p*x+q)+(gamma*x^2+delta*x+eta)*(3*x^2-

p),x) 

We get: 

poly1[alpha+3*gamma,beta+3*delta,-alpha*p-p*gamma+3*eta, 

alpha*q-beta*p-p*delta,beta*q-p*eta] 

The matrix A of this system is then: 

𝐴 =

(

 
 

1 0 3 0 0
0 1 0 3 0
−𝑝 0 −𝑝 0 3
𝑞 −𝑝 0 −𝑝 0
0 𝑞 0 0 −𝑝)

 
 

 

the Sylvester matrix S is the transpose matrix of A: 

𝑆 =

(

 
 

1 0 −𝑝 𝑞 0
0 1 0 −𝑝 𝑞
3 0 −𝑝 0 0
0 3 0 −𝑝 0
0 0 3 0 −𝑝)

 
 

 

We have det(A)=det(S)=-4*p^3+27*q^2 
In fact, we solve 𝑈𝑃 + 𝑉𝑄 =  𝐶 with any 𝐶 such as deg(𝐶) < deg(𝑃) + deg(𝑄) i.e. we look for U and V 
such as deg(𝑈) < deg(𝑄) and deg(𝑉 ) < deg(𝑃) (strict inequalities) which make 

 𝑈𝑃 +  𝑉 𝑄 =  1. When the system is a Cramer system, there is a unique solution and, arithmetically 

speaking, it corresponds to 𝑃 and 𝑄 prime to each other (and reciprocally). So, if det(𝐴) = det(𝑆) is not 

null, 𝑈 and 𝑉 exist and are unique, so the two polynomials 

 𝑥3  −  𝑝 ∗  𝑥 +  𝑞 and 3 ∗  𝑥2  −  𝑝 are prime to each other and reciprocally if the two polynomials 𝑥3  −
 𝑝 ∗  𝑥 +  𝑞 and 3 ∗  𝑥2  −  𝑝 are prime to each other 𝑈 and 𝑉 such as 

 deg(𝑈) < deg(𝑄) and deg(𝑉 ) < deg(𝑃) exist and are unique so det(𝐴) = det(𝑆) is not null. 

So if this determinant is null, the two polynomials 𝑥3  −  𝑝 ∗  𝑥 +  𝑞 and 3 ∗  𝑥2  −  𝑝 are not prime to 
each other. 
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Note: 
We have: discriminant(P)=resultant(P,P’)/lcoeff(P). 
 
Example of the use of the resultant: 

Be 𝐹1 and 𝐹2 two fixed points, and a variable point 𝐴 on the circle of center 𝐹1 and radius 2𝑎. We 

want to find the cartesian equation of the locus of the points 𝑀, intersection of 𝐹1𝐴 and the 

perpendicular bisector of 𝐹2𝐴: we have 𝑀𝐹1 +  𝑀𝐹2 =  𝑀𝐹1 +  𝑀𝐴 = 𝐹1𝐴 =  2𝑎 then 𝑀 draws an 
ellipse of foci 𝐹1 and 𝐹2 and major axis 2𝑎. 

Let us choose as orthonormal basis the one of center 𝐹1 and axis 𝑂𝑥 of vector 

𝐹1𝐹2⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. We have: 
𝐴 =  (2𝑎 cos(𝜃);  2𝑎 sin(𝜃)) where 𝜃 is the angle (𝑂𝑥, 𝑂𝐴). We choose as parameter 𝑡 =  tan(𝜃/2) so 

that the coordinates of 𝐴 are a rational function of the parameter 𝑡. Then, we have: 

𝐴 =  (𝑎𝑥;  𝑎𝑦) =  (2𝑎
1 −  𝑡2

1 +  𝑡2
; 2𝑎

2𝑡

1 +  𝑡2
) 

We consider 𝐹1𝐹2 =  2𝑐 and we note 𝐼 the midpoint of 𝐴𝐹2. We have: 

𝐹2 =  (2𝑐, 0) and 

𝐼 =  (𝑐 + 
𝑎𝑥

2
; 
𝑎𝑦

2
)  =  (𝑐 +  𝑎 

 1 − 𝑡2

1 +  𝑡2
;  𝑎 

2𝑡1 − 𝑡2

1 +  𝑡2
) 

𝐼𝑀 is perpendicular to 𝐴𝐹2 then 𝑀 =  (𝑥;  𝑦) checks the equation 𝑒𝑞1 =  0 with: 

𝑒𝑞1:=  (𝑥 −  𝑖𝑥)  ∗  (𝑎𝑥 −  2 ∗  𝑐)  + (𝑦 −  𝑖𝑦)  ∗  𝑎𝑦 

𝑀 =  (𝑥;  𝑦) is one 𝐹1𝐴 then 𝑀 checks the equation 𝑒𝑞2 =  0 with: 

𝑒𝑞2:=  
𝑦

𝑥
 – 
𝑎𝑦

𝑎𝑥
 

We have: 
resultant(eq1,eq2,t) is a polynomial 𝑒𝑞3 of 𝑥 and 𝑦, 𝑒𝑞3 is independant from 𝑡 and there are 
polynomials of 𝑡, 𝑈 and 𝑉 such as: 𝑈(𝑡) ∗ 𝑒𝑞1 + 𝑉 (𝑡) ∗ 𝑒𝑞2 =  𝑒𝑞3. 
 
We enter: 

ax:=2*a*(1-t^2)/(1+t^2);ay:=2*a*2*t/(1+t^2); 

ix:=(ax+2*c)/2; iy:=(ay/2) 

eq1:=(x-ix)*(ax-2*c)+(y-iy)*ay 

eq2:=y/x-ay/ax 

factor(resultant(eq1,eq2,t)) 

We get as resultant: 

-(64·(x^2+y^2)·(x^2·a^2-x^2·c^2+-2·x·a^2·c+2·x·c^3-a^4+2·a^2·c^2+a^2· y^2-
c^4)) 

The factor -64·(x^2+y^2) never vanishes, then the equation of the locus is: 

𝑥2𝑎2 − 𝑥2𝑐2 + −2𝑥𝑎2𝑐 +  2𝑥𝑐3 − 𝑎4 +  2𝑎2𝑐2 + 𝑎2𝑦2 − 𝑐4 =  0 
By taking as origin of the basis in 𝑂 midpoint of 𝐹1𝐹2, one finds back the cartesian equation of the 
ellipse. To do this change of of origin, we have  

𝐹1𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗  =  𝐹1𝑂⃗⃗⃗⃗ ⃗⃗ ⃗⃗   +  𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  , so we enter: 

normal(subst(x^2·a^2-x^2·c^2+-2· x·a^2·c+2·x·c^3-a^4+2·a^2·c^2+a^2·y^2-
c^4,[x,y]=[c+X,Y])) 

We get: 

-c^2*X^2+c^2*a^2+X^2*a^2-a^4+a^2*Y^2 

or else if we put 𝑏2 = 𝑎2  −  𝑐2 

normal(subst(c^2*X^2+c^2*a^2+X^2*a^2-a^4+a^2*Y^2,c^2=a^2-b^2)) 
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We get: 

a^2*b^2+a^2*Y^2+b^2*X^2 

that is to say after division by 𝑎2𝑏2, 𝑀 checks the equation: 
𝑋2

𝑎2
+
𝑌2

𝑏2
=  1 

 
Another example of use of the resultant 

Be 𝐹1 and 𝐹2 two fixed points and a variable point 𝐴 on the circle of center 𝐹1 and radius 2𝑎. We want 

to find the cartesian equation of the envelop of the perpendicular bisector 𝐷 of 𝐹2𝐴 (we know that the 
perpendicular bisector of 𝐹2𝐴 is tangent to the ellipse of foci 𝐹1 and 𝐹2 and major axis 2𝑎). 

Let us choose as orthonormal basis the one of center 𝐹1 and axis 𝑂𝑥 of vector 

𝐹1𝐹2⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. We have: 
𝐴 =  (2𝑎 cos(𝜃);  2𝑎 sin(𝜃)) where 𝜃 is the angle (𝑂𝑥, 𝑂𝐴). We choose as parameter 𝑡 =  tan(𝜃/2) so 

that the coordinates of 𝐴 are a rational function of parameter 𝑡. We have then: 

𝐴 =  (𝑎𝑥;  𝑎𝑦) =  (2𝑎
1 −  𝑡2

1 +  𝑡2
; 2𝑎

2𝑡

1 +  𝑡2
) 

We consider 𝐹1𝐹2 =  2𝑐 and we note 𝐼 the midpoint of 𝐴𝐹2. We have: 

𝐹2 =  (2𝑐, 0) 
and 

𝐼 =  (𝑐 +  
𝑎𝑥

2
; 
𝑎𝑦

2
)  =  (𝑐 +  𝑎 

1 −  𝑡2

1 +  𝑡2
;  𝑎 

2𝑡1 −  𝑡2

1 +  𝑡2
) 

𝐷 is perpendicular to 𝐴𝐹2 then 𝐷 has for equation: 𝑒𝑞1 =  0 with: 

𝑒𝑞1:=  (𝑥 −  𝑖𝑥)  ∗  (𝑎𝑥 −  2 ∗  𝑐)  + (𝑦 −  𝑖𝑦)  ∗  𝑎𝑦 

The envelop of 𝐷 is then the locus of 𝑀 intersection of 𝐷 and 𝐷’ of equation 𝑒𝑞2 =  0 with 
𝑒𝑞2:=  𝑑𝑖𝑓𝑓(𝑒𝑞1, 𝑡). 
 
We enter: 

ax:=2*a*(1-t^2)/(1+t^2);ay:=2*a*2*t/(1+t^2); 

ix:=(ax+2*c)/2; iy:=(ay/2) 

eq1:=normal((x-ix)*(ax-2*c)+(y-iy)*ay) 

eq2:=normal(diff(eq1,t)) 

factor(resultant(eq1,eq2,t)) 

We get as resultant: 

(-(64· a^2))·(x^2+y^2)·(x^2·a^2-x^2·c^2+-2·x·a^2·c+2·x·c^3 

-a^4+2·a^2·c^2+a^2·y^2-c^4) 

The factor -64·(x^2+y^2) never vanishes then the equation of the locus is: 

𝑥2𝑎2  −  𝑥2𝑎𝑐2 + −2𝑥𝑎2𝑐 +  2𝑥𝑐3 − 𝑎4 +  2𝑎2𝑐2 + 𝑎2𝑐𝑦2  −  𝑐4 =  0 
By taking as origin of the basis in 𝑂 midpoint of 𝐹1𝐹2, we find as previously the cartesian equation of 
the ellipse: 

𝑋2

𝑎2
+
𝑌2

𝑏2
=  1 

7.15.14 Chinese remainder: chinrem 

chinrem takes as argument two lists having each as components two polynomials eventually 
supplied by the list of their coefficients by decreasing power order. 
chinrem returns a list of components of two polynomials. 
chinrem([A,R],[B,Q]) returns the list of polynomials 𝑃 and 𝑆 such as: 
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𝑆 =  𝑅. 𝑄, 𝑃 =  𝐴 (𝑚𝑜𝑑 𝑅), 𝑃 =  𝐵 (𝑚𝑜𝑑 𝑄) 
There is always a solution 𝑃 if 𝑅 and 𝑄 are prime to each other, and all the solutions are congruent 
modulus 𝑆 = 𝑅 ∗ 𝑄 

Find the solutions 𝑃(𝑥) of: 

{
𝑃(𝑥) =  𝑥           𝑚𝑜𝑑 (𝑥2 +  1)

𝑃(𝑥) =  𝑥 −  1 𝑚𝑜𝑑 (𝑥2 −  1)
 

 
We enter: 

chinrem([[1,0],[1,0,1]],[[1,-1],[1,0,-1]]) 

We get: 

[[1/-2,1,1/-2],[1,0,0,0,-1]] 

or we enter: 

chinrem([x,x^2+1],[x-1,x^2-1]) 

We get: 

[-1/2*x^2+x-1/2,x^4-1] 

so 

 𝑃(𝑥) =   
−𝑥2 – 2𝑥 +1

2
(𝑚𝑜𝑑 𝑥4 −  1) 

 
Other example: 
 
We enter: 

chinrem([[1,2],[1,0,1]],[[1,1],[1,1,1]]) 

We get: 

[[-1,-1,0,1],[1,1,2,1,1]] 

or we enter: 

chinrem([x+2,x^2+1],[x+1,x^2+x+1]) 

We get: 

[-x^3-x^2+1,x^4+x^3+2*x^2+x+1] 

7.16 Special 

7.16.1 Cyclotomic polynomial: cyclotomic 

cyclotomic takes as parameter an integer n. 
cyclotomic returns the list of coefficients of the cyclotomic polynomial of degree 𝑛. It is the 
polynomial whose zeros are all the n-th roots and primitives of the unity (an n-th root of the unity is 
primitive if its powers generate all the others n-th roots of the unity). 
For example, for 𝑛 =  4, the fourth root of the unity are: {1, 𝑖, −1, −𝑖}, and the primitive roots are: 

{𝑖, −𝑖}. 
So the cyclotomic polynomial of degree four is (𝑥 −  𝑖). (𝑥 +  𝑖)  =  𝑥2 +  1. 
 
We enter: 
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cyclotomic(4) 

We get: 

[1,0,1] 

We enter: 

cyclotomic(5) 

We get: 

[1,1,1,1,1] 

So the cyclotomic polynomial of degree 5 is 𝑥4 + 𝑥3 + 𝑥2 +  𝑥 +  1 and we have 

(𝑥 −  1)  ∗  (𝑥4 + 𝑥3 + 𝑥2 +  𝑥 + )  =  𝑥5  −  1. 
 
We enter: 

cyclotomic(10) 

We get: 

[1,-1,1,-1,1] 

So the cyclotomic polynomial of degree 10 is 𝑥4 − 𝑥3 + 𝑥2 −  𝑥 +  1 and we have 
(𝑥5  −  1) ∗ (𝑥 +  1)  ∗  (𝑥4 − 𝑥3 + 𝑥2 −  𝑥 + 1 )  =  𝑥10 –  1 
We enter: 

cyclotomic(20) 

We get: 

[1,0,-1,0,1,0,-1,0,1] 

So the cyclotomic polynomial of degree 20 is 𝑥8 − 𝑥6 + 𝑥4 − 𝑥2 + 1 
and we have  
(𝑥10  −  1) ∗ (𝑥2 +  1)  ∗  (𝑥8 − 𝑥6 + 𝑥4 − 𝑥2  + 1 )  =  𝑥20 –  1 

7.16.2 Groebner basis: gbasis 

gbasis a at least two arguments: a list of polynomials of several variables and the list of the names of 
these variables. 
gbasis returns a Groebner basis of the polynomial ideal generated by the polynomials supplied as 
first argument. 
We choose to order the monomials by lexicographical order in accordance with the list supplied as last 

argument and by decreasing power order: for example we write 𝑥2  ∗ 𝑦4  ∗ 𝑧3 then 𝑥2  ∗ 𝑦3  ∗ 𝑧4 if the 

second argument is [𝑥, 𝑦, 𝑧] because (2, 4, 3)  >  (2, 3, 4) but we write 𝑥2 ∗ 𝑦3 ∗ 𝑧4 then 𝑥2 ∗  𝑦4 ∗  𝑧3 if 
the second argument is [𝑥, 𝑧, 𝑦]. 
If 𝐼 is an ideal and if (𝐺𝑘)𝑘∈𝐾 is a Groebner basis of the ideal 𝐼, so, if 𝐹 is a polynomial not null of 𝐼, the 
dominant term of 𝐹 is divisible by the dominant term of a 𝐺𝑘. 
 

Property: if we do the Euclidean division of 𝐹 by one of the 𝐺𝑘 and then, if we do it again with the rest 

obtained and the following 𝐺𝑘, we end up with a null rest. 
 
We enter: 

gbasis([2*x*y-y^2,x^2-2*x*y],[x,y]) 

We get: 
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[y^3,x*y+(-1/2)*y^2,x^2-y^2] 

7.16.3 Reduction according to a Groebner basis: greduce 

greduce has three arguments: a polynomial of several variables, a list of polynomials forming a 
Groebner basis depending on the same variables and the list of the names of these variables. 
greduce returns the reduction (a multiplicative constant excepted) of the polynomial supplied as first 
argument according to the Groebner basis supplied as second argument. 
 
We enter: 

greduce(x*y-1,[x^2-y^2,2*x*y-y^2,y^3],[x,y]) 

We get: 

1/2*y^2-1 

which means that 𝑥𝑦 –  1 =
1

2
(𝑦2–  2)mod 𝐼 where 𝐼 is the ideal generated by the Groebner basis 

[𝑥2– 𝑦2, 2𝑥𝑦 – 𝑦2, 𝑦3], because 𝑦2 −  2 is the remainder of the Euclidean division of 2(𝑥𝑦 –  1) by 

𝐺2 =  2𝑥𝑦 – 𝑦2. 
 
Note: 
The multiplicative constant can be determinated by looking at how the constant coefficient is 
transformed. In the example, the constant term -1 is transformed into the constant term -2, then the 
multiplicative coefficient is 1/2. 

7.16.4 Hermite polynomial: hermite 

hermite takes as argument an integer n and eventually the name of the variable (𝑥 by default). 
hermite returns the Hermite polynomial of degree 𝑛. 

The Hermite polynomial of degree 𝑛 written 𝑃(𝑛, 𝑥) checks the relations: 

𝑃(0, 𝑥)  =  1 

𝑃(1, 𝑥)  =  2𝑥 

𝑃(𝑛, 𝑥)  =  2𝑥𝑃(𝑛 −  1, 𝑥)  −  2(𝑛 −  1)𝑃(𝑛 −  2, 𝑥) 

These polynomials are orthogonal for the scalar product: 

<  𝑓, 𝑔 > =  ∫ 𝑓(𝑥)𝑔(𝑥)𝑒−𝑥
2
𝑑𝑥

+∞

−∞

 

 
We enter: 

hermite(6) 

We get: 

64*x^6+-480*x^4+720*x^2-120 

We enter: 

hermite(6,y) 

We get: 

64*y^6+-480*y^4+720*y^2-120 
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7.16.5 Lagrange interpolation: lagrange 

lagrange takes as argument two lists of length n or a matrix of two lines and n columns and 
eventually the name of the variable var (by default x): 
the first list (or line) corresponds to values of abscissa 𝑥𝑘, and the second list (or line) corresponds to 

values of ordinates 𝑦𝑘 for k from 1 to n. 
lagrange returns a polynomial expression P(var) of degree n-1 such as 

𝑃(𝑥𝑘) =  𝑦𝑘. 

 
We enter: 

lagrange([[1,3],[0,1]]) 

Or we enter: 

lagrange([1,3],[0,1]) 

We get: 

1/2*(x-1) 

indeed for 𝑥 =  1 we have 
𝑥−1

2
=  0 and for 𝑥 =  3 we have 

𝑥−1

2
=  1. 

 
We enter: 

lagrange([1,3],[0,1],y) 

We get: 

1/2*(y-1) 

Warning! lagrange([1,2],[3,4],y) does not return a function but an expression, but we can 
define a function by putting: 

f(x):=lagrange([1,2],[3,4],x) 

or 

f(y):=lagrange([1,2],[3,4],y) 

and so 
f(4) returns 6 because f(x)=x+2) 
Please note the difference between: 

g(x):=lagrange([1,2],[3,4]) 

and 

f(x):=lagrange([1,2],[3,4],x). 

g(x):=lagrange([1,2],[3,4]) does not define a function, for example, g(2)=x-1+3 whereas 
f(2)=4. 
That said, the definition of f is not efficient because the polynomial will be recalculated from the 
beginning at each call of f (when we define a function the right member is not evaluated, the 
evaluation is made only when we call f). 
To be efficient, you must use unapply: 

f:=unapply(lagrange([1,2],[3,4]),x) 

or 
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f:=unapply(lagrange([1,2],[3,4],y),y) 

Exercise: 

Be 𝑓(𝑥) =
1

𝑥
, 𝑥0 =  2𝑥1 =  2.5 and 𝑥2 =  4. You are asked to calculate the polynomial 𝐿 of Lagrange 

interpolation, and its value in 𝑥 =  3 and 𝑥 =  4.5. 
 
We enter: 

f(x):=1/x 

L:=unapply(normal(lagrange([2,2.5,4],[f(2),f(2.5),f(4)])),x) 

We get: 

x->0.05*x^2-0.425*x+1.15 

We enter: 

L(3),L(4.5) 

We get: 

0.325,0.25 

7.16.6 Natural splines: spline 

Definition 
Be a subdivision 𝜎𝑛 of the interval [𝑎, 𝑏]: 

𝑎 =  𝑥0, 𝑥1, … , 𝑥𝑛 =  𝑏 

We say that 𝑠 is a spline function of degree 𝑙 if 𝑠 is an application of [𝑎, 𝑏] in ℝ such as: 

– 𝑠 has continuous derivatives up to degree 𝑙 −  1, 
– 𝑠 restricted at each interval of the subdivision is a polynomial of degree lower than or equals 𝑙. 

 
Theorem 

The set of splines functions of degree 𝑙 on 𝜎𝑛 is a ℝ-vector field of dimension 𝑛 +  𝑙. 
Indeed: 
We [𝑎, 𝑥1], s is a polynomial 𝐴 of degree lower than or equals 𝑙, then on [𝑎, 𝑥1], 
𝑠 =  𝐴(𝑥) =  𝑎0 + 𝑎1𝑥 + …𝑎𝑙𝑥

𝑙 and 𝐴 is a linear combination of 1, 𝑥, … 𝑥𝑙. 
We [𝑥1, 𝑥2], s is a polynomial 𝐵 of degree lower than or equals 𝑙, then on [𝑥1, 𝑥2], 
𝑠 =  𝐵(𝑥) =  𝑏 − 0 +  𝑏 − 1 𝑥 + …𝑏𝑙𝑥

𝑙. 
Since 𝑠 has continuous derivatives up to degree 𝑙 −  1 we must have: 

∀0 ≤  𝑗 ≤  𝑙 −  1, 𝐵(𝑗)(𝑥1)– 𝐴(𝑗)(𝑥1) =  0 

so 𝐵(𝑥)–  𝐴(𝑥) =  𝛼1(𝑥 – 𝑥1)
𝑙
 

or else 𝐵(𝑥) =  𝐴(𝑥) + 𝛼1(𝑥 – 𝑥1)
𝑙
. 

Be the function: 

𝑞1(𝑥) = {
                0  on  [𝑎, 𝑥1]

(𝑥 −  𝑥1)
𝑙  on  [𝑥1, 𝑏]

 

Thus: 

𝑠| [𝑎, 𝑥2]  =  𝑎0  +  𝑎1 𝑥 +  … 𝑎𝑙  𝑥
𝑙  +  𝛼1 𝑞1 (𝑥). 

On [𝑥2, 𝑥3], 𝑠 is a polynomial 𝐶 of degree lower than or equal to 𝑙, then on [𝑥2, 𝑥3], 
𝑠 =  𝐶(𝑥) =  𝑐0 + 𝑐1𝑥 + … 𝑐𝑙𝑥

𝑙. 
Since 𝑠 has continuous derivatives up to degree 𝑙 −  1 we must have: 

∀0 ≤  𝑗 ≤  𝑙 −  1, 𝐶(𝑗)(𝑥2)– 𝐵
(𝑗)(𝑥2) =  0 

so 𝐶(𝑥)–  𝐵(𝑥) =  𝛼2(𝑥 – 𝑥2)
𝑙
 

or else 𝐶(𝑥) =  𝐵(𝑥) + 𝛼2(𝑥 – 𝑥2)
𝑙
. 

Be the function: 
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𝑞2(𝑥) =  {
                0  on  [𝑎, 𝑥2]

(𝑥 −  𝑥2)
𝑙  on  [𝑥2, 𝑏]

 

 
Thus: 

𝑠|[𝑎,𝑥3]  =  𝑎0  +  𝑎1 𝑥 +  … 𝑎𝑙  𝑥
𝑙  +  𝛼1 𝑞1 (𝑥) + 𝛼2 𝑞2 (𝑥) 

and so on, we define the functions: 
∀1 ≤  𝑗 ≤  𝑛 −  1,  

∀1 ≤  𝑗 ≤  𝑛 −  1, 𝑞𝑗(𝑥) =  {
                0  on  [𝑎, 𝑥𝑗]

(𝑥 − 𝑥𝑗)
𝑙
 on  [𝑥𝑗 , 𝑏]

 

 
thus,  

𝑠|[𝑎,𝑏]  =  𝑎0  +  𝑎1 𝑥 +  … 𝑎𝑙  𝑥
𝑙  +  𝛼1 𝑞1 (𝑥) + 𝛼𝑛−1 𝑞𝑛−1 (𝑥) 

 and 𝑠 is a linear combination of 𝑛 + 𝑙 independant functions 1, 𝑥, . . 𝑥𝑙 , 𝑞1, . . 𝑞𝑛−1. 
 
Interpolation with splines functions 
We can ask to interpolate a function 𝑓 on 𝜎𝑛 by a spline function 𝑠 of degree 𝑙, which forces 𝑠 to check 

𝑠(𝑥𝑘) =  𝑦𝑘 =  𝑓(𝑥𝑘) for all 0 ≥  𝑘 ≥  𝑛. 

We have then 𝑛 +  1 conditions, then remain 𝑙 −  1 degrees of freedom. So can we still impose 𝑙 −  1 

additional conditions which will be conditions on the derivatives of 𝑠 in 𝑎 and 𝑏. There are then three 
kinds of interpolation (Hermite interpolation, natural interpolation, periodic interpolation) which are 
obtained by adding three kind of constraints. We can show that for each of these kinds of interpolation 
the solution to the interpolation problem is unique. 
Let us assume 𝑙 odd, 𝑙 =  2𝑚 −  1, there are then 2𝑚 −  2 degrees of freedom. We add the following 
constraints: 

– Hermite interpolation 

∀1 ≤  𝑗 ≤  𝑚 −  1, 𝑠(𝑗)(𝑎) =  𝑓(𝑗)(𝑎), 𝑠(𝑗)(𝑏) =  𝑓(𝑗)(𝑏) 
– natural interpolation 

∀𝑚 ≤  𝑗 ≤  2𝑚 −  2, 𝑠(𝑗)(𝑎) =  𝑠(𝑗)(𝑏) =  0 
– periodic interpolation 

∀1 ≤  𝑗 ≤  2𝑚 −  2, 𝑠(𝑗)(𝑎) =  𝑠(𝑗)(𝑏) 
Let us assume 𝑙 even, 𝑙 =  2𝑚, there are then 2𝑚 −  1 degrees of freedom. We add the following 
constraints: 

– Hermite interpolation 

∀1 ≤  𝑗 ≤  𝑚 −  1, 𝑠(𝑗)(𝑎) =  𝑓(𝑗)(𝑎), 𝑠(𝑗)(𝑏) =  𝑓(𝑗)(𝑏) 
and 

𝑠(𝑚)(𝑎) =  𝑓(𝑚)(𝑎) 
– natural interpolation 

∀𝑚 ≤  𝑗 ≤  2𝑚 −  2, 𝑠(𝑗)(𝑎) =  𝑠(𝑗)(𝑏) =  0 
and 

𝑠(2𝑚−1)(𝑎) = 0 
– periodic interpolation 

∀1 ≤  𝑗 ≤  2𝑚 −  1, 𝑠(𝑗)(𝑎) =  𝑠(𝑗)(𝑏) 
 
A natural spline of supplied degree passing by two supplied points is a spline function that makes the 
natural interpolation. 
The instruction spline returns a natural spline of supplied degree passing by points whose lists of 
abscissae by increasing order and ordinates are supplied has argument. It returns the spline function 
under the form of a list of polynomials, each polynomial being valide in an interval. We give the list of 
abscissae in increasing order, the list of ordinates, the names of variables wished for the polynomials, 
and the degree. 
For instance, we want a natural spline of degree 3, passing by the points 

𝑥0 =  0, 𝑦0 =  1, 𝑥1 =  1, 𝑦1 =  3 and 𝑥2 =  2, 𝑦2 =  0. 
 
We enter: 

spline([0,1,2],[1,3,0],x,3) 

We get a list of two polynomials function of x: 
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[−
5 ∗ 𝑥3

4
+ 
13 ∗ 𝑥

4
+ 1,

5 ∗ (𝑥 −  1)3

4
− 
15 ∗ (𝑥 −  1)2

4
+
(𝑥 −  1)

− 2 
+  3] 

valid respectively on the intervals [0, 1] and [1, 2]. 
For instance, we want a natural spline of degree 4, passing by the points 𝑥0 =  0, 𝑦0 =  1, 𝑥1 =  1,  
𝑦1 =  3, 𝑥2 =  2, 𝑦2 =  0 and 𝑥3 =  3, 𝑦3 = −1, we enter: 

spline([0,1,2,3],[1,3,0,-1],x,4) 

We get a list of three polynomials function of x: 

[
−62 ∗  𝑥4 +  304 ∗  𝑥

121
+  1, 

201 ∗ (𝑥 − 1)4− 248 ∗ (𝑥 − 1)3− 372 ∗ (𝑥 − 1)2+ 56 ∗ (𝑥 − 1)

121
+ 3, 

−139 ∗ (𝑥 − 2)4+ 556 ∗ (𝑥 − 2)3+ 90 ∗ (𝑥 − 2)2 −628 ∗ (𝑥 − 2)

121
] 

valid respectively on the intervals [0, 1], [1, 2] and [2, 3]. 

For instance, to get the natural interpolation of cos on [0,
𝜋

2
,
3𝜋

2
] 

We enter: 

spline([0,pi/2,3*pi/2],cos([0,pi/2,3*pi/2]),x,3) 

We get: 

[
(3𝜋3 + (−7𝜋2)𝑥 +  4𝑥3) (

1
3
)

𝜋3
,
(15𝜋3 + (−46𝜋2) ∗  +36𝜋𝑥2 −  8𝑥3) (

1
12
)

𝜋3
] 

7.16.7 Laguerre polynomial: laguerre 

laguerre takes as argument an integer 𝑛 and eventually the name of the variable (𝑥 by default) and 

the parameter (𝑎 by default). 

laguerre returns the Laguerre polynomial of degree 𝑛 and parameter 𝑎. 
The Laguerre polynomial of degree 𝑛 of parameter 𝑎 written 𝐿(𝑛, 𝑎, 𝑥) checks the relations: 

𝐿(0, 𝑎, 𝑥)  =  1 

𝐿(1, 𝑎, 𝑥)  =  1 +  𝑎 −  𝑥 

𝐿(𝑛, 𝑎, 𝑥) =
2𝑛 + 𝑎 − 1 − 𝑥

𝑛
𝐿(𝑛 −  1, 𝑎, 𝑥)–

𝑛 + 𝑎 − 1

𝑛
𝐿(𝑛 −  2, 𝑎, 𝑥) 

These polynomials are orthogonal for the scalar product: 

<  𝑓, 𝑔 >  = ∫ 𝑓(𝑥)𝑔(𝑥)𝑥𝑎𝑒−𝑥𝑑𝑥
+∞

0

 

 
We enter: 

laguerre(2) 

We get: 

1/2*a^2-a*x+3/2*a+1/2*x^2-2*x+1 

We enter: 

laguerre(2,y) 

We get: 

1/2*a^2-a*y+3/2*a+1/2*y^2-2*y+1) 

b must be purged (b:=’b’), we enter: 

laguerre(2,y,b) 
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We get: 

1/2*b^2-b*y+3/2*b+1/2*y^2-2*y+1 

7.16.8 Legendre polynomial: legendre 

legendre takes as argument an integer 𝑛 and eventually the name of the variable (𝑥 by default). 

legendre returns the Legendre polynomial of degree 𝑛: it is the polynomial, not null, solution of the 
differential equation: 

(𝑥2 −  1). 𝑦’’ −  2. 𝑥. 𝑦’ −  𝑛(𝑛 +  1). 𝑦 =  0 

The Legendre polynomial of degree 𝑛 written 𝑃(𝑛, 𝑥) checks the relations: 

𝑃(0, 𝑥)  =  1 

𝑃(1, 𝑥)  =  𝑥 

𝑃(𝑛, 𝑥) =
2𝑛 − 1

𝑛
𝑥𝑃(𝑛 −  1, 𝑥)–

𝑛 − 1

𝑛
𝑃(𝑛 −  2, 𝑥) 

These polynomials are orthogonal for the scalar product: 

<  𝑓, 𝑔 >  = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
+1

−1

 

We enter: 

legendre(4) 

We get: 

35/8*x^4+-15/4*x^2+3/8 

We enter: 

legendre(4,y) 

We get: 

35/8*y^4+-15/4*y^2+3/8 

7.16.9 Tchebyshev polynomial of first kind: tchebyshev1 

tchebyshev1 takes as argument an integer n and eventually the name of the variable (𝑥 by default). 

tchebyshev1 returns the Tchebyshev polynomial of first kind, of degree 𝑛, written 𝑇(𝑛, 𝑥). 
 
We have: 

𝑇(𝑛, 𝑥)  =  𝑐𝑜𝑠(𝑛. 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥)) 
𝑇(𝑛, 𝑥) checks the relations: 

𝑇(0, 𝑥)  =  1 

𝑇(1, 𝑥)  =  𝑥 

𝑇(𝑛, 𝑥)  =  2𝑥𝑇(𝑛 −  1, 𝑥)  −  𝑇(𝑛 −  2, 𝑥) 

The polynomials 𝑇(𝑛, 𝑥) are orthogonal for the scalar product: 

<  𝑓, 𝑔 ≥ ∫  
𝑓(𝑥)𝑔(𝑥)

√1 − 𝑥2
𝑑𝑥

+1

−1

 

We enter: 

tchebyshev1(4) 

We get: 

8*x^4-8*x^2+1 
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We enter: 

tchebyshev1(4,y) 

We get: 

8*y^4-8*y^2+1 

and we do have: 

𝑐𝑜𝑠(4. 𝑥)  =  𝑅𝑒((𝑐𝑜𝑠(𝑥)  +  𝑖. sin (𝑥))4) 

cos(4. 𝑥) = cos(𝑥)4 −  6. cos(𝑥)2 . (1 − cos(𝑥)2) + (1 − cos(𝑥)2)2 

cos(4. 𝑥) =  𝑇(4, cos(𝑥)) 

7.16.10 Tchebyshev polynomial of second kind: tchebyshev2 

tchebyshev2 takes as argument an integer 𝑛 and eventually the name of the variable (𝑥 by default). 
tchebyshev2 returns the Tchebyshev polynomial of second kind, of degree 𝑛, written 𝑈(𝑛, 𝑥). 
We have: 

𝑈(𝑛, 𝑥) =
sin((𝑛 +  1). arccos(𝑥))

sin(arccos(𝑥))
 

or else 

𝑠𝑖𝑛((𝑛 +  1)𝑥)  =  𝑠𝑖𝑛(𝑥)  ∗  𝑈(𝑛, 𝑐𝑜𝑠(𝑥)) 

𝑈(𝑛, 𝑥) checks the relations: 

𝑈(0, 𝑥)  =  1 

𝑈(1, 𝑥)  =  2𝑥 

𝑈(𝑛, 𝑥)  =  2𝑥𝑈(𝑛 −  1, 𝑥)  −  𝑈(𝑛 −  2, 𝑥) 

Polynomials 𝑈(𝑛, 𝑥) are orthogonal for the scalar product: 

<  𝑓, 𝑔 ≥ ∫  𝑓(𝑥)𝑔(𝑥)√1 − 𝑥2𝑑𝑥
+1

−1

 

We enter: 

tchebyshev2(3) 

We get: 

8*x^3+-4*x 

We enter: 

tchebyshev2(3,y) 

We get: 

8*y^3+-4*y 

indeed: 

sin(4. 𝑥) = sin(𝑥) ∗  (8 ∗ cos(𝑥)3 −  4. cos(𝑥)) = sin(𝑥) ∗  𝑈(3, cos(𝑥)). 
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Chapter 8 Menu Plot 

 
 
Note: 
The plot of most of the commands starting by plot is not well done from the CAS screen: you will 
then preferably use the geometry application to do the plots corresponding to these commands. 

8.1 Plot of a function: plotfunc 

We open the geometry application and we press the key Plot. Then, we use Cmds of the push 
buttons. We choose 6 Plot then 1 Function. plotfunc( shows on the entry line and it is enough 
to fill up with the expression 𝑓(𝑥) which we want to get the plot of. 
The Symbolic view stores then an additional line containing the command entered for example: 
plotfunc(f(x)) 
plotfunc(f(x),x) plots the graphical representation of 𝑦 =  𝑓(𝑥) and plotfunc(f(x),x=a..b) 
plots the graphical representation of 𝑦 =  𝑓(𝑥) 
when 𝑎 ≤  𝑥 ≤  𝑏. 
 
We enter: 

plotfunc(x^2-2) 

or 

plotfunc(a^2-2,a=-1..2) 

We get: 

the graphical representation of y=x^2-2 

Or else, we enter: 

gf:=plotfunc(x^2-2) 

Then, in the Symbolic view of the geometry application (Symb), we press New, which displays, for 
example: 

√GC:= 

 
We fill up with 

√GC:=gf 

Then, we press the key Plot to get the Plot view of the geometry application, we get: 

the plot of x^2-2 

8.2 Parametric curve: plotparam 

plotparam(f(t)+i*g(t),t) (resp. plotparam(f(t)+i*g(t),t=t1..t2)) 
plots the parametric representation of the curve defined by 𝑥 =  𝑓(𝑡), 𝑦 =  𝑔(𝑡) 
(resp. by 𝑥 =  𝑓(𝑡), 𝑦 =  𝑔(𝑡) and 𝑡1 ≥  𝑡 ≥  𝑡2). 
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We enter: 

plotparam(cos(x)+i*sin(x),x) 

or 

plotparam([cos(x),sin(x)],x) 

We get: 

The plot of the circle unity 

We can specify the boundaries of the interval of variation of the parameter. 
We enter: 

plotparam(sin(t)+i*cos(t),t=-4..1) 

or else: 

plotparam(sin(x)+i*cos(x),x=-4..1) 

Or we enter, if in the plot configuration t goes from -4 to 1: 

plotparam(sin(t)+i*cos(t)) 

We get: 

The plot of the arc of circle unity starting from -4 at 1 

We can add a parameter to specify the step of sampling of the parameter t with tstep= , that is to 
say the step t we want to use to do the plot. 
 
We enter, if in the plot configuration t goes from −4 to 1: 

plotparam(sin(t)+i*cos(t),t,tstep=0.5) 

Or we enter: 

plotparam(sin(t)+i*cos(t),t=-4..1,tstep=0.5) 

We get: 

The raw plot of the arc of circle unity starting from -4 to 1 

8.3 Polar curve: plotpolar 

plotpolar(f(t),t) plots the Polar representation of the curve defined by: 
𝜌 =  𝑓(𝑡). 
 
We enter: 

plotpolar(t,t=0..10) 

We enter, if in the plot configuration t goes from 0 to 10: 

plotpolar(t,t) 

We get: 
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The spiral ρ=t is plotted 

We can add a parameter to specify the step of sampling of the parameter t with tstep= , that is to 
say the step t we want to use to do the plot. 
 
We enter, if in the plot configuration t goes from 0 to 10: 

plotpolar(t,t,tstep=1) 

or: 

plotpolar(t,t=0..10,tstep=1) 

We get: 

The spiral ρ=t is plotted roughly. 

8.4 Plot of a recurrent sequence: plotseq 

plotseq(f(x),a,n) or plotseq(f(t),t=a,n) allows to display the n first terms of a recurrent 
sequence defined by: 

𝑢0 =  𝑎, 𝑎 =  𝑓(𝑢𝑛−1) 

 
We enter: 

plotseq(sqrt(1+x),3,5) 

We get: 

The plot of y=sqrt(1+x), of y=x and the five first terms 

of the sequence u_0=3 and u_n=sqrt(1+u_(n-1)) 

 

8.5 Implicit plot in 2D: plotimplicit 

plotimplicit allows to plot curves defined in an implicit way by an expression. In order to not have 
the calculator starting to factorize the expression, the command plotimplicit can be used with the 
option unfactored put as last parameter: 

– with unfactored, the expression will not be modified, 
– without unfactored, the calculator factors the expression to the same denominator and then 

tries to factorize the numerator. 
– plotimplicit(f(x,y),x,y) or plotimplicit(f(x,y),[x,y]) plots the graphical 

representation of the curve defined implicitly by 𝑓(𝑥, 𝑦) = 0 when 𝑥 (resp. 𝑦) varies according 
to 𝑊𝑋 −, 𝑊𝑋 + (resp. 𝑊𝑌-, 𝑊𝑌 +) defined in cfg, 

– plotimplicit(f(x,y),x=0..1,y=-1..1) 
or 
plotimplicit(f(x,y),[x=0..1,y=-1..1]) plots the graphical representation of the 
curve defined implicitly by 𝑓(𝑥, 𝑦)  =  0 when 0 ≤  𝑥 ≤  1 and −1 ≤  𝑦 ≤  1 (set the 
boundaries slightly larger to avoid losing part of the plot!). 

 
We enter: 

plotimplicit(x^2+y^2-1,[x,y]) 

Or we enter: 
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plotimplicit(x^2+y^2-1,{x,y},unfactored) 

Or we enter: 

plotimplicit(x^2+y^2-1,x,y,unfactored) 

We get: 

circle(point(O,O),1) 

We enter: 

g:=plotimplicit(x^2+y^2-1,[x,y]) 

Then, in the Symbolic view of the geometry application (Symb), we press New, which displays, for 
example: 

√GC:= 

We fill up with 

√GC:=g 

Then, in the Plot view of the geometry application (Plot), we get: 

the plot of the circle unity 

 

8.6 Plot of a function by colors levels: plotdensity 

plotdensity(f(x,y),[x,y]) plots the graph of 𝑧 =  𝑓(𝑥, 𝑦) in the plane by representing 𝑧 by one 
of the colors of the rainbow. 
 
We enter: 

plotdensity(x^2-y^2,[x=-2..2,y=-2..2],xstep=0.1,ystep=0.1) 

We get: 

A 2D-plot representing, for each z, the hyperbola defined by x^2-

y^2=z 

of one of the colors of the rainbow. 

We notice that we have the color scale below the plot. 
 

8.7 The field of tangents: plotfield 

We can plot the field of tangents of the differential equation y’= f(t, y) or of the system of differential 
equations 𝑥’ =  𝑢(𝑥, 𝑦), 𝑦’ =  𝑣(𝑥, 𝑦) and we can specify the ranges of values of the parameters. 

– Be 𝑓(𝑡, 𝑦) an expression depending on two variables 𝑡 and 𝑦, then 

plotfield(f(t,y),[t,y]) plots the field of tangents of the differential equation 𝑦’ =
 𝑓(𝑡, 𝑦) where 𝑦 represents a real variable and 𝑡 is represented in abscissa, 

– Be 𝑉 =  [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)] a 2D-vector of coordinates two expressions depending on two 

variables 𝑥, 𝑦, but not depending from the time, so plotfield(V,[x,y]) plots the field of 
tangents of the system [𝑥’(𝑡)  = 𝑢(𝑥, 𝑦), 𝑦’(𝑡)  =  𝑣(𝑥, 𝑦)], 
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– The ranges of values of 𝑡, 𝑦 or of 𝑥, 𝑦 can be specified by t=tmin..tmax, x=xmin..xmax, 
y=ymin..ymax instead of the name of the variable only. 

– We can specify the plot view by putting, for example: 
plotfield(f(t,y),[t=tmin..tmax,y=ymin..ymax]) 

– We can specify that the field of tangents is, in an orthonormal basis, of norm 1 with the option 
normalize. Without the option normalize the contact point is the origin of the vector 
tangent, and with the option normalize, the contact point is located at the midpoint of the 
tangent lines. 

– We can also specify the value of the step in t and in y with xstep=... and ystep=.... 
 
We enter: 

plotfield(4*sin(t*y),[t=0..2,y=-3..7]) 

We get: 

Segments of slope 4*sin(t*y) are plotted in different points. 

These lines represent the vectors tangent oriented toward 

the increasing t and whose origin is the point of contact. 

We enter: 

plotfield(4*sin(t*y),[t=0..2,y=-3..7],normalize, 

xstep=0.7,ystep=0.7)) 

We get: 

Segments of length 1 and slope 4*sin(t*y) 

Representing the tangent lines at their midpoint. 

These points are spaced of 0.7. 

We enter: 

plotfield(5*[-y,x],[x=-1..1,y=-1..1]) 

We get: 

vectors [−y, x] are plotted at points (x, y). 

These vectors represent vectors tangents at their origin to curves 

solutions of the system x(t)0= −y, y(t)0= x. 

They are orientated toward the increasing t. 

We enter: 

plotfield(5*[-y,x],[x=-1..1,y=-1..1],normalize) 

We get: 

Segments of length 1 and slope −y/x 

representing the lines tangent at their midpoint 

to curves solutions of the systemx(t)0= −y, y(t)0= x. 
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8.8 Level curves: plotcontour 

plotcontour(f(x,y),[x,y]) plots the level curves 𝑧 =  −10, 𝑧 = −8, . . , 𝑧 =  0, 𝑧 =  2, . . , 𝑧 =  10 

of the surface defined by 𝑧 =  𝑓(𝑥, 𝑦). 
 
We enter: 

g:=plotcontour(x^2+y^2,[x=-3..3,y=-3..3],[1,2,3], 

display=[green,red,black]+[filled$3]) 

We get: 

[polygon(point(....))..] 

Then, in the Symbolic view of the geometry application (Symb), we press New, which displays, for 
example: 

√GC:= 

We fill up with 

√GC:=g 

Then, in the Plot view of the geometry application (Plot), we get: 

the plot of three ellipses x^2-y^2=n for n=1,2,3; 

the areas in between these ellipses are filled with the color green,red or black. 
 
We enter: 

plotcontour(x^2-y^2,[x,y]) 

We get: 

[polygon(point(-4.8,-5),point(-3.9,-4)....)] 

Then, in the Symbolic view of the geometry application (Symb), we press New, which displays, for 
example: 

√GC:= 

We fill up with 

√GC:=g 

Then, in the Plot view of the geometry application (Plot), we get: 

the plot of 11 hyperbolae x^2-y^2=n for n=-10,-8,..10 

8.9 Plot of solutions of a differential equation: plotode 

We can plot the solutions of the differential equation 𝑦’ =  𝑓(𝑡, 𝑦) or of the system of differential 

equations 𝑥’ =  𝑢(𝑡, 𝑥, 𝑦), 𝑦’ =  𝑣(𝑡, 𝑥, 𝑦) and we can specify the ranges of values of the parameters. 
– plotode(f(t,y),[t,y],[t0,y0]) plots according to the time the solution y(t) of the 

differential equation 𝑦’ =  𝑓(𝑡, 𝑦) passing by the point (t0,y0), where 𝑓(𝑡, 𝑦) designates an 

expression depending on the time variable 𝑡 and the variable 𝑦. 

– By default, 𝑡 varies along the two directions. We can specify the range of the time by the 
optional parameter t=tmin..tmax. 
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– When 𝑦 =  (𝑋, 𝑌 ) is a vector of length 2 and 𝑓 has values in ℝ2, we can also represent in the 
space (𝑡, 𝑋, 𝑌) or in the plane (𝑋, 𝑌) the solution of a differential equation 𝑦’ =  𝑓(𝑡, 𝑦), that is to 

say [𝑋’, 𝑌’]  = [𝑓(𝑡, 𝑋, 𝑌 )]. For that, it is enough to replace 𝑦 by the names of variables 𝑋, 𝑌 and 
the initial value by the two initial values of the variables at time 𝑡0. 

 
We enter: 

plotode(sin(t*y),[t,y],[0,1]) 

We get: 

The graph of the solution of y’=sin(t,y) passing by the point (0,1). 

To display the values of the solution, please refer to section 4.7. 

We enter: 

plotfield(5*[-y,x],[x=-1..1,y=-1..1],normalize) 

plotode(5*[-y,x],[t=0..1,x,y],[0,0.3,0.7],tstep=0.05,plan) 

We get: 

The graph of the solution of x’=-y,y’=x for t=0 

passing by the point (0.3,0.7) 

 

8.10 Polygonal line: plotlist 

plotlist takes as argument a list l or a matrix of two columns. 
plotlist allows to display the segments connecting the cloud of dots having for abscissa 
[0,1,2...n] and for ordinate l, or for coordinates a line of the matrix. listplot or plotlist 
connects by two line segments the different points of the cloud, but without reorder the points unlike 
polygonplot which reorders the points according to their abscissa then connects them. 
 
We enter: 

a:=plotlist([0,1,4,9,16]) 

Or we enter: 

a:=plotlist([[0,0],[1,1],[2,4],[3,9],[4,16]]) 

Then, in the Symbolic view of the geometry application (Symb), we press New, which displays, for 
example: 

√GD:= 

We fill up with 

√GD:=a 

Then, in the Plot view of the geometry application (Plot), we get: 

the plot of 5 points ((0,0),(1,1),...(4,16)) joined by 4 segments 

Warning! 
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plotlist([0,1,2,3,4],[0,1,4,9,16]) 

or 

plotlist([[0,1,2,3,4],[0,1,4,9,16]]) 

is not valid! 
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 The menu MATH of the Toolbox key 
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Chapter 9 Functions on reals 

9.1 HOME constants 

– e for exp(1) 
– i for the complex number of modulus 1 and argument 𝜋/2 or (0,1) 
– MAXREAL it is +∞ 

– MINREAL it is 0 

– Pi or pi or PI for 𝜋 
 

9.2 The symbolic constants of the CAS: e pi i infinity inf 

euler_gamma 

 e or %e designates the number exp(1); 
 pi or %pi designates the number 𝜋; 

 infinity designates ∞. 
 +infinity or inf designates +∞. 
 -infinity or -inf designates −∞. 

 i or %i designates the complex number 𝑖. 
 euler_gamma designates the Euler constant. 
 
We have: 

euler_gamma=limit(sum(1/k,k,1,n)-ln(n),n,+infinity) 

and 

evalf(euler_gamma) returns 0.577215664902 

 

9.3 Booleans 

9.3.1 Boolean values: true false 

A boolean takes as value true or false. 
We have the following synonyms: 
true or TRUE or 1 and, 
false or FALSE or 0. 
In HOME, TRUE is replaced in the history by 1, and FALSE by 0. 
The tests or the conditions are Boolean functions. 

9.3.2 Tests:  ==  !=  >  >=  <  <= 

==,!=, >, >=, <, <= are infix operators. 
>=, <=,!= are obtaineds with the keys ≥, ≤ and ≠. 
a==b tests the equality between a and b and returns 1 if a equals b and 0 otherwise. 
a!=b returns 1 if a is different from b and 0 otherwise. 
a>=b returns 1 if a is greater than or equals b and 0 otherwise. 
a>b returns 1 if a is strictly greater than b and 0 otherwise. 
a<=b returns 1 if a is lower than or equals b and 0 otherwise. 
a<b returns 1 if a is strictly lower than b and 0 otherwise. 
 
To define the boolean function which is true on ]0; +∞[ and false on ]  −  ∞;  0], we enter: 
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f(x):=ifte(x>0,true,false) 

We enter: 

f(0)==0 

We get: 

1 

Warning! 
a=b is not a boolean! 
To test the equality between a and b, you have to write a==b. 

9.3.3 Boolean operators: or xor and not 

or (or ||), xor, and (or &&) are infix operators. 
not is a prefix operator. 
Let a and b be two booleans: (a or b) or (a || b) returns 0 (or false) if a and b equal 0 and 
returns 1 (or true) if not. 
(a xor b) returns 1 if a equals 1 and b equals 0 or if a equals 0 and b equals 1 and returns 0 if a 
and b equal 0 or if a and b equal 1 (it is the "exclusive or "). 
(a and b) or (a && b) returns 1 (or true) if a and b equal 1 and 0 (or false) if not. 
not(a) returns 1 (or true) if a equals 0 (or false), and 0 (or false) if a equals 1 (or true). 
 
We enter: 

1>=0 or 1<0 

We get: 

1 

We enter: 

1>=0 xor 1>0 

We get: 

0 

We enter: 

1>=0 and 1>0 

We get: 

1 

We enter: 

not(0==0) 

We get: 

0 
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9.4 Bit to bit operators 

9.4.1 operators bitor, bitxor, bitand  

The integers can be entered with the notation 0x... in hexadecimal. By example, 0x1f represents 16 +
15 = 31 in decimal. We can display the integers in hexadecimal (key of the status line of the CAS with 
the key Base (Integers)). 
 

– bitor is the inclusive logic bit to bit or. 
 

We enter: 

bitor(0x12,0x38) 

or we enter: 

bitor(18,56) 

We get: 

58 

indeed: 

18 reads 0x12 in basis 16 and 0b010010 in basis 2, 

56 reads 0x38 in basis 16 and 0b111000 in basis 2, 

bitor(18,56) reads 0b111010 in basis 2 and then equals 58. 

 
– bitxor is the logic exclusive bit to bit or. 

 
We enter: 

bitxor(0x12,0x38) 

or we enter: 

bitxor(18,56) 

We get: 

42 

indeed: 

18 reads 0x12 in basis 16 and 0b010010 in basis 2, 

56 reads 0x38 in basis 16 and 0b111000 in basis 2, 

bitxor(18,56) reads 0b101010 in basis 2 and then equals 42. 

 

– bitand is the bit to bit logic and. 
 
We enter: 

bitand(0x12,0x38) 

or we enter: 

bitand(18,56) 

We get: 
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16 

indeed: 

18 reads 0x12 in basis 16 and 0b010010 in basis 2, 

56 reads 0x38 in basis 16 and 0b111000 in basis 2, 

bitand(18,56) reads 0b010000 in basis 2 and then equals 16. 

9.4.2 Bit to bit Hamming distance of: hamdist 

The bit to bit Hamming distance is the sum of absolute values of bit to bit differences between two 
numbers, that is to say the number of different bits. 
 
We enter: 

hamdist(0x12,0x38) 

or we enter 

hamdist(18,56) 

We get: 

3 

indeed: 

18 reads 0x12 in basis 16 and 0b010010 in basis 2, 

56 reads 0x38 in basis 16 and 0b111000 in basis 2, 

hamdist(18,56) equals 1+0+1+0+1+0 and then equals 3. 

9.5 Usual functions 

The usual functions can be accessed by pressing the corresponding keys. 
We need their programming names, for example: 
 id designates the function identity, 
 sq designates the function square, 
 sqrt designates the function square root, 
 neg designates the function 𝑥 →  −𝑥, 

 inv designates the function 𝑥 →
1

𝑥
. 

9.6 The smallest integer greater than or equal to the argument: CEILING 

ceiling 

CEILING(a) or ceiling(a) returns the smallest integer greater than or equal to the argument 𝑎. 
 
We enter: 

CEILING(45/8) 

We get: 

6 

We enter: 

CEILING(-45/8) 
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We get: 

-5 

We enter: 

CEILING(2.5) 

We get: 

3 

9.7 Integer part of a real: FLOOR floor 

FLOOR(a) or floor(a) returns the greater integer lower than or equal to the argument 𝑎. 
 
We enter: 

FLOOR(45/8) 

We get: 

5 

We enter: 

FLOOR(-45/8) 

We get: 

-6 

We enter: 

FLOOR(2.5) 

We get: 

2 

9.8 Argument without its fractional part: IP 

IP(a) returns the argument real 𝑎 without its fractional part. 
 
We enter: 

IP(45/8) 

We get: 

5 

We enter: 

IP(-45/8) 

We get: 
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-5 

9.9 Fractional part: FP 

FP(a) returns the fractional part of the real argument 𝑎. 
 
We enter in: 

FP(45/8) 

We get: 

0.625 

We enter in the CAS: 

FP(45/8) 

We get: 

5/8 

We enter in: 

FP(-45/8) 

We get: 

-0.625 

We enter in the CAS: 

FP(-45/8) 

We get: 

-5/8 

9.10 Round a real or a complex to 𝒏 decimal places: ROUND round 

ROUND(a) or round(a) (resp. ROUND(a,n) or round(a,n)) rounds the real 𝑎 according to the 
closest integer (resp. the closest decimal number having 𝑛 decimal places). 

ROUND(a) (resp. ROUND(a,n)) rounds the complex a according to the closest element of ℤ[𝑖], (resp. 

with 𝑛 decimal places). 
 
We enter: 

ROUND(45/8) 

or 

round(45/8) 

We get: 

6 

We enter: 
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ROUND(45/8,2) 

or 

round(45/8,2) 

We get: 

5.63 

We enter: 

ROUND(-45/8) 

or 

round(-45/8) 

We get: 

-6 

We enter: 

ROUND(-45/8,2) 

or 

round(-45/8,2) 

We get: 

-5.62 

We enter: 

ROUND(0.5+i*pi) 

or 

round(0.5+i*pi) 

We get: 

1+3*i 

We enter: 

ROUND(0.5+i*pi,4) 

or 

round(0.5+i*pi,4) 

We get: 

0.5+3.1416*i 
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9.11 Truncate a real or a complex to 𝒏 decimal places: TRUNCATE trunc 

TRUNCATE or trunc returns the argument truncated to 𝑛 decimal places (by default 𝑛 = 0) . 
 
We enter in HOME or in the CAS: 

TRUNCATE(45/8) 

or 

trunc(45/8) 

We get: 

5 

We enter in HOME or in the CAS: 

TRUNCATE(45/8,2) 

or 

trunc(45/8,2) 

We get: 

5.62 

We enter in HOME or in the CAS: 

TRUNCATE(-45/8) 

or 

trunc(-45/8) 

We get: 

-5 

We enter in HOME or in the CAS: 

TRUNCATE(-45/8,2) 

or 

trunc(-45/8,2) 

We get: 

-5.63 

We enter in HOME or in the CAS: 

TRUNCATE(sqrt(2)+i*sqrt(5),4) 

or 

trunc(sqrt(2)+i*sqrt(5),4) 

We get: 
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1.4142+2.236*i 

Warning! In CAS, truncate(P,n) truncates the polynomial P at degree n. 
 
We enter: 

truncate(x^5+x^4+x^2+x+1,2) 

We get: 

x^2+x+1 

9.12 The fractional part of a real: frac 

frac of a real returns its fractional part. 
 
We enter in the CAS or in HOME: 

frac(22/7)) 

We get: 

1/7 

We enter in the CAS or in HOME: 

frac(sqrt(2)) 

We get: 

sqrt(2)-1 

9.13 The real without its fractional part: iPart 

iPart of a real returns a real which equals the real argument without its fractional part. 
 
We enter: 

iPart(sqrt(2)) 

We get: 

1.0 

9.14 Mantissa of a real: MANT 

MANT(a) returns |𝑎|/ 10𝑛 where the integer n checks: 

10𝑛 ≤ |𝑎| <  10𝑛+1. 
MANT(a) then returns the mantissa of a real 𝑎, that is to say the significant digits of 𝑎. 
 
We enter: 

MANT(45/8) 

We get: 

5.625 
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We enter: 

MANT(-45/8) 

We get: 

5.625 

9.15 Integer part of the logarithm basis 10 of a real: XPON 

XPON(a) returns the integer n such as 10𝑛 ≤ |𝑎| <  10𝑛+1. 
 
We enter: 

XPON(45/8) 

We get: 

0 

We enter: 

XPON(45000/8) 

We get: 

3 

We enter: 

XPON(1234*sqrt(2)) 

We get: 

3 

indeed 103 <  1234 ∗ √2 ≃ 1745.13953597 <  104 
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Chapter 10 Arithmetic 

 
 

10.1 Maximum of two or several values: MAX max 

MAX or max returns the maximum of elements of a sequence or of a list of reals. 
 
We enter: 

MAX(4,5,8,2,6) 

or 

max(4,5,8,2,6) 

We get: 

8 

10.2 Minimum of two or several values: MIN min 

MIN or min returns the minimum of elements of a sequence or of a list of reals. 
 
We enter: 

MIN(4,5,8,2,6) 

or 

min(4,5,8,2,6) 

We get: 

2 

10.3 MOD 

MOD is an infix function. 

a MOD b returns the remainder of the Euclidean division of a by b. 
 
We enter: 

22 MOD 5 

We get: 

2 
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10.4 FNROOT 

FNROOT returns an approximate root of the expression supplied as first argument, for the variable 
supplied as second argument, and which is close to the third argument. 
 

We enter in real mode (i not checked in the CAS Settings): 

FNROOT(x^4+3x-4) 

We get: 

-1.74295920217,1. 

We enter in real mode (i not checked in the CAS Settings): 

FNROOT(x^4+3x-4,x,-2) 

We get: 

-1.74295920217 

We enter in complex mode (i checked in the CAS Settings): 

FNROOT(x^4+3x-4) 

We get: 

[-1.74295920217,0.371479601083+1.46865601291*i, 0.371479601083-

1.46865601291*i,1.0] 

10.5 N-th root: NTHROOT surd 

NTHROOT is an infix function whereas surd is a prefix command of the CAS . 

NTHROOT comes with the shifted key √ 
n

 (Shift 𝑥𝑦). 

p NTHROOT n returns the value of 𝑛1/𝑝 

surd(n,p) returns 𝑛1/𝑝 
 

We enter in real mode in HOME (i not checked in the CAS Settings): 

3 NTHROOT 8 

We get: 

2 

We enter in complex mode in HOME (i checked in the CAS Settings): 

3 NTHROOT -1+i 

We get: 

0.85502540378-0.5*i 

We enter in real mode in the CAS (i not checked in the CAS Settings): 

3 NTHROOT 8 

or 
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surd(8,3) 

We get: 

2 

We enter in complex mode in the CAS: 

3 NTHROOT -1+i 

or 

surd(-1+i,3) 

We get: 

exp(ln(-1+i)/3) 

10.6 % 

%(a,b) returns 
𝑎

100
∗  𝑏  (a percent of b). 

 
We enter: 

%(5,70) 

We get: 

3.5 

We enter: 

%(5,90) 

We get: 

4.5 

10.7 Complex 

10.7.1 The key i 

The key i is a shifted key (Shift 2). 
i is the complex number of modulus 1 and argument 𝜋/2. 
 
We enter: 

1+3*i 

or 

1+3i 

We get: 

1+3*i 
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10.7.2 Argument: ARG arg 

ARG or arg returns the argument of the complex number supplied as argument (in degrees or in 
radians according to the chosen configuration). 
 
We enter in HOME: 

ARG(2+6*i) 

We get, if we are in radians: 

1.2490457724 

We get, if we are in degrees: 

71.5650511771 

We enter in the CAS: 

ARG(2+6*i) 

We get, if we are in radians: 

atan(3) 

We get, if we are in degrees: 

71.5650511771 

10.7.3 Conjugate: CONJ conj 

CONJ or conj returns the conjugate of the complex number supplied as argument. 
 
We enter: 

CONJ(1+3*i) 

or 

conj(1+3*i) 

We get: 

1-3*i 

10.7.4 Imaginary part: IM im 

IM or im returns the imaginary part of the complex number supplied as argument. 
 
We enter: 

IM(1+3*i) 

We get: 

3 

10.7.5 Real part: RE re 

RE or re returns the real part of the complex number supplied as argument. 
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We enter: 

RE(1+3*i) 

We get: 

1 

10.7.6 Sign: SIGN sign 

SIGN or sign returns the complex number supplied as argument divided by its modulus. 
 
We enter: 

SIGN(1+3*i) 

We get: 

(1+3*i)/sqrt(10) 

10.7.7 The key Shift +/−: ABS abs 

The key |x| is a shifted key (Shift +/−). 
The key |x| returns ABS(x), which equals: 

– the absolute value of a real, 
– the modulus of a complex number, 

– the length of a vector 𝑣𝑗 ((∑ |𝑣𝑗|
2𝑛

𝑗=1 )
1/2

), 

– the Schur norm or Frobenius norm of a matrix 𝑎𝑗,𝑘 ((∑ |𝑎𝑗,𝑘|
2𝑛

𝑗,𝑘=1 )
1/2

). 

 
We enter: 

ABS(1+3*i) 

We get: 

3.1622776602 

We use the key |x| in the CAS: 

ABS(1+3*i) 

or we enter: 

abs(1+3*i) 

We get: 

sqrt(10) 

10.7.8 Write of complex in the form of 𝐫𝐞(𝒛) + 𝒊 ∗ 𝐢𝐦(𝒛): evalc 

evalc takes as argument a complex number z. 
evalc returns this complex number, written in the form re(z)+i*im(z). 
 
We enter: 

evalc(sqrt(2)*exp(i*pi/4)) 
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We get: 

1+i 

10.7.9 Multiply by the complex conjugate: mult_c_conjugate 

If an expression has a complex denominator, mult_c_conjugate multiplies the numerator and the 
denominator of this expression by the complex conjugate of the denominator. 
If an expression does not have a complex denominator, mult_c_conjugate multiplies the numerator 
and the denominator of this expression by the complex conjuguate of the numerator. 
 
We enter: 

mult_c_conjugate((2+i)/(2+3*i)) 

We get: 

(2+i)*(2+3*(-i))/((2+3*(i))*(2+3*(-i))) 

We enter: 

mult_c_conjugate((2+i)/2) 

We get: 

(2+i)*(2+-i)/(2*(2+-i)) 

10.8 Exponential and Logarithms 

10.8.1 Function neperian logarithm: LN ln log 

LN or ln or log designates the function neperian logarithm. 
LN (or ln in the CAS) is accessed with the key LN. 
 
Warning! The neperian log is LN in HOME, and ln or log in the CAS. 
 
We enter in HOME: 

LN(e) 

We get: 

1 

We enter: 

LN(2) 

We get: 

0.69314718056 

but in the CAS, we enter: 

ln(e) 

or 

log(e) 
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We get: 

1 

We enter: 

ln(2) 

or 

log(2) 

We get: 

ln(2) 

10.8.2 Function logarithm basis 10: LOG log10 

Warning! The log basis 10 is LOG in HOME and log10 in the CAS and log designates the neperian 
log. 
LOG or log10 designates the function logarithm basis ten, LOG (or log10 in the CAS) can be 
accessed with the key LOG. 
 
We enter in HOME: 

LOG(10) 

We get: 

1 

We enter: 

LOG(7) 

We get: 

0.84509804001 

We enter in the CAS: 

log10(10) 

We get: 

1 

We enter: 

log10(7) 

We get: 

ln(7)/ln(10) 

10.8.3 Function logarithm basis 𝒃: logb 

logb designates the function logarithm with the basis supplied as second argument: 
 
We enter in the CAS: 
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logb(7,7) 

We get: 

1 

We enter in the CAS: 

logb(7,10) 

We get: 

ln(7)/ln(10) 

logb(7,10)=log10(7)=log(7)/log(10)  

 

10.8.4 Function antilogarithm: ALOG alog10 

alog10 designates the function antilogarithm basis ten, it is the function: 
𝑥 →  10𝑥. 
 
We enter in HOME: 

ALOG(3/2) 

We get: 

31.6227766017 

it is the approximate value of sqrt(10)*10 at the nearest 10−10. 
 
We enter in the CAS: 

ALOG(3/2) 

or 

alog(3/2) 

or we get: 

sqrt(10)*10^1 

We enter: 

alog10(10) 

We get: 

10000000000 

10.8.5 Function exponential: EXP exp 

EXP or exp designates the function exponential. 
EXP (or exp in the CAS) can be accessed with the key EXP. 
 
We enter in HOME: 
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EXP(2) 

We get: 

7.38905609893 

but in the CAS, we enter: 

exp(2) 

We get: 

exp(2) 

10.8.6 Function EXPM1 

EXPM1 designates the function 𝑥 →  𝐸𝑋𝑃(𝑥)  −  1. 
 
We enter: 

EXPM1(4) 

We get: 

EXP(4)-1 

We enter: 

EXPM1(2.*10^-4) 

We get: 

0.00020002000133 

BUT if we enter: 

EXP(2.*10^-4)-1 

We get: 

0.00020002 

10.8.7 Function LNP1 

LNP1 designates the function 𝑥 →  𝐿𝑁(𝑥 +  1) 
 
We enter: 

LNP1(4) 

We get: 

LN(5) 

We enter: 

LNP1(2.*10^-4) 

We get: 
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1.99980002666E-4 
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Chapter 11 Trigonometric functions 

 
 

11.1 The keys of trigonometric functions 

– SIN or sin designates the function sine. 
 
We enter in the CAS: 

SIN(pi/3) 

or 

sin(pi/3) 

We get: 

sqrt(3)/2 

– ASIN or asin designates the function arc sine. 
 
We enter in the CAS: 

ASIN(1/2) 

or 

asin(1/2) 

We get: 

pi/6 

– COS or cos designates the function cosine. 
 
We enter in the CAS: 

COS(pi/3) 

or 

cos(pi/3) 

We get: 

1/2 

– ACOS or acos designates the function arc cosine. 
 
We enter in the CAS: 

ACOS(1/2) 

or 

acos(1/2) 
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We get: 

pi/3 

– TAN or tan designates the function tangent. 
 
We enter in the CAS: 

TAN(pi/3) 

or 

tan(pi/3) 

We get: 

sqrt(3) 

– ATAN or atan designates the function arc tangent. 
 
We enter in the CAS: 

ATAN(sqrt(3)/3) 

or 

atan(sqrt(3)/3) 

We get: 

pi/6 

11.2 Cosecant: CSC csc 

CSC(x) or csc returns 1/SIN(x): it is the function cosecant. 
 
We enter in the CAS: 

CSC(pi/3) 

or 

csc(pi/3) 

We get after simplification: 

2*sqrt(3)/3 

11.3 Arccosecant: ACSC acsc 

ACSC(x) or acsc returns ASIN(1/x): it is the reciprocal function of the function cosecant. 
 
We enter in the CAS: 

ACSC(sqrt(2)) 

or 
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acsc(sqrt(2)) 

We get after simplification: 

pi/4 

11.4 Secant: SEC sec 

SEC(x) or sec returns 1/COS(x): it is the function secant. 
 
We enter in the CAS: 

SEC(pi/3) 

or 

sec(pi/3) 

We get: 

2 

11.5 Arcsecant: ASEC asec 

ASEC(x) or asec returns ACOS(1/x): it is the reciprocal function of the function secant. 
 
We enter in the CAS: 

ASEC(2) 

or 

asec(2) 

We get: 

1/3*pi 

11.6 Cotangent: COT cot 

COT(x) or cot returns COS(x)/SIN(x): it is the function cotangent. 
 
We enter in the CAS: 

COT(pi/3) 

or 

cot(pi/3) 

We get after simplification: 

sqrt(3)/3 
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11.7 Arccotangent: ACOT acot 

ACOT(x) or acot returns pi/2-ATAN(x): it is the reciprocal function of the function cotangent. 
 
We enter in the CAS: 

ACOT(sqrt(3)) 

or 

acot(sqrt(3)) 

We get after simplification: 

pi/6 
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Chapter 12 Hyperbolic functions 

 
 

12.1 Hyperbolic sine: SINH sinh 

SINH(x) or sinh(x) returns: 
exp(𝑥) − exp(−𝑥)

2
 

it is the function hyperbolic sine 
 
We enter in the CAS: 

hyp2exp(SINH(ln(2))) 

We enter in the CAS: 

hyp2exp(sinh(ln(2))) 

We get: 

3/4 

Indeed, the command hyp2exp transforms the functions hyperbolic into exponentials. 

12.2 Hyperbolic arc sine: ASINH asinh 

ASINH or asinh is the reciprocal function of the function hyperbolic sine. 
 
We enter in the CAS: 

ASINH(3/4) 

or 

asinh(3/4) 

We get: 

ln(2) 

12.3 Hyperbolic cosine: COSH cosh 

COSH(x) or cosh returns: 
exp(𝑥) + exp(−𝑥)

2
 

 it is the function hyperbolic cosine. 
 
We enter in the CAS: 

COSH(0) 

or 
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cosh(0) 

We get: 

1 

12.4 Hyperbolic arc cosine: ACOSH acosh 

ACOSH or acosh is the reciprocal function of the function hyperbolic cosine. 
 
We enter in the CAS: 

hyp2exp(ACOSH(1)) 

or 

hyp2exp(acosh(1)) 

We get: 

0 

12.5 Hyperbolic tangent: TANH tanh 

TANH(x) or tanh returns: 
exp(2𝑥) –  1

exp(2𝑥) +  1
 

it is the function hyperbolic tangent. 
 
We enter in the CAS: 

hyp2exp(TANH(ln(3))) 

or 

hyp2exp(tanh(ln(3))) 

We get: 

4/5 

Indeed, the command hyp2exp transforms the functions hyperbolic into exponentials. 

12.6 Hyperbolic arc tangent: ATANH atanh 

ATANH or atanh is the reciprocal function of the function hyperbolic tangent. 
 
We enter in the CAS: 

ATANH(4/5) 

or 

atanh(4/5) 

We get: 
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1/2*ln(9) 

12.7 Other functions 

12.7.1 List of variables: lname 

lname takes as parameter an expression. 
lname returns a vector whose components are the name of symbolic variables used in this 
expression. 
 
We enter: 

lname(x*y*sin(x)) 

We get: 

[x,y] 

We enter: 

a:=2;assume(b>0);assume(c=3); 

lname(a*x^2+b*x+c) 

We get: 

[x,b,c] 

12.7.2 List of variables and expressions: lvar 

lvar takes as parameter an expression. 
lvar returns a vector whose components are the names of variables and expressions 
which this expression depends logically. 
 
We enter: 

lvar(x*y*sin(x)^2+ln(x)*cos(y)) 

We get: 

[x,y,sin(x)] 

We enter: 

lvar(x*y*sin(x)^2) 

We get: 

[x,y,sin(x),ln(x),cos(y)] 

We enter: 

lvar(y+x*sqrt(z)+y*sin(x)) 

We get: 

[y,x,sqrt(z),sin(x)] 
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12.7.3 List of variables and algebraic expressions: algvar 

algvar takes as parameter an expression. 
algvar returns a vector whose components are the name of symbolic variables, by order of algebraic 
extension, used in this expression. 
 
We enter: 

algvar(y+x*sqrt(z)) 

We get: 

[[y,x],[z]] 

We enter: 

algvar(y*sqrt(x)*sqrt(z)) 

We get: 

[[y],[z],[x]] 

We enter: 

algvar(y*sqrt(x*z)) 

We get: 

[[y],[x,z]] 

We enter: 

algvar(y+x*sqrt(z)+y*sin(x)) 

We get: 

[[x,y,sin(x)],[z]] 

12.7.4 Testing the presence of a variable in an expression: has 

has takes as parameter an expression and the name of a variable. 
has returns 1, or 0, depending on the variable is present , or not present , in the expression. 
 
We enter: 

has(x*y*sin(x),y) 

We get: 

1 

We enter: 

has(x*y*sin(x),z) 

We get: 

0 
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12.7.5 Evaluate an expression: eval 

eval is used to evaluate an expression. 
eval takes one or two arguments: an expression and eventually the wished level of the evaluation. 
You have to know that the CAS always evaluates the expressions without having to call the command 
eval: the level of evaluation is indicated in the cell Recursive Evaluation of the CAS 
configuration (Shift CAS) and is checked by default to 5. 
The command eval is mostly useful when we want to evaluate a subexpression in the expression 
editor. 
 
We enter: 

a:=2 

We get: 

2 

We enter: 

eval(2+3*a) 

or 

2+3*a 

We get: 

8 

We enter: 

purge(r);purge(p);a:=1+i*r 

r:=p+1;p:=-4; 

We can then get different evaluation of a according to the level of evaluation asked: 
– we enter: 

a 

We get: 

1-3*i 

– we enter: 

eval(a,1) 

We get: 

i*r+1 

– we enter: 

eval(a,2) 

We get: 

i*(p+1)+1 
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– we enter: 

eval(a,3) 

We get: 

1-3*i 

12.7.6 Not evaluating an expression: QUOTE quote ’ 

If we do not want an expression to be evaluated in a calculation, we need to quote it, either with ’, 
either thanks to the function quote. 
Note 
When we enter for example a:=quote(a), this purges the variable a, and this instruction returns the 
value of this variable (or the assumptions made on this variable). 
So a:=quote(a) is synonymous of purge(a). 
 
We enter: 

a:=2;quote(2+3*a) 

or 

a:=2;’2+3*a’ 

We get: 

(2,2+3.a) 

12.7.7 Numerical evaluation: evalf approx 

evalf or approx takes as parameter a numerical expression or a matrix. 
evalf returns the numerical value of the expression or of the matrix. 
By adding a second argument n to evalf (or approx), we can specify the number of significant digits 
of the approximation. 
 
We enter: 

evalf(sqrt(2)) 

We get: 

1.41421356237 

We enter: 

evalf(sqrt(2),5) 

We get: 

1.4142 

We enter: 

evalf([[1,sqrt(2)],[0,1]]) 

We get: 

[[1.0,1.41421356237],[0.0,1.0]] 
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We enter: 

evalf([[1,sqrt(2)],[0,1]],5) 

We get: 

[[1.0,1.4142],[0.0,1.0]] 

12.7.8 Rational approximation: exact 

exact takes as parameter a real numerical expression. 
exact gives a rational approximation of all the decimal numbers r present which validate |𝑟 −
 exact(𝑟)|  <  𝜀, where 𝜀 is defined by epsilon in the CAS configuration (key Shift CAS). 
 
We enter: 

exact(1.5) 

We get: 

3/2 

We enter: 

exact(1.414) 

We get: 

707/500 

We enter: 

exact(1.41421356237^2) 

We get: 

2 
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Chapter 13 Probability functions 

 
 

13.1 Factorial: factorial ! 

! is a postfix function whereas factorial is a prefix function. 

n! or factorial(n) returns the factorial of n if n is n integer, and a! returns the value of the 
Gamma function for 𝑎 + 1 if 𝑎 is real. 
 
We enter in the CAS: 

20! 

or 

factorial(20) 

We get: 

2432902008176640000 

We enter: 

5.2! 

or 

factorial(5.2) 

We get: 

169.406099462 

13.2 Number of combinations of p objects among 𝒏: COMB comb 

COMB(n,p) or comb(n,p) returns the number of combinations of p elements among n (n and p are 
integers). 
We have: COMB(n,p) returns 

𝑛!

𝑝! (𝑛 −  𝑝)!
 

 
We enter: 

COMB(5,2) 

We get: 

10 

13.3 Number of permutations of p objects among n: PERM perm 

PERM(n,p) or perm(n,p) returns the number of permutations of p elements among n (n and p are 
integers). 
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We have: PERM(n,p) returns 
𝑛!

(𝑛 −  𝑝)!
 

 
We enter: 

PERM(5,2) 

We get: 

20 

13.4 Random numbers 

13.4.1 Random number (real or integer): RANDOM 

– To get a random real number between 0 and 1, we do not put any argument. 
 
We enter: 

RANDOM 

We get a real number of the range 0,1, for example: 

0.291424166081 

– To get a random integer a between 1 and n (1 ≤  𝑎 ≤  𝑛), we put n as argument without 
brackets. 
 
We enter: 

RANDOM 3 

We get 1, 2 or 3, for example: 

1 

– To get a random real number a between b and c (𝑏 ≤  𝑎 ≤  𝑐), we put b, c as arguments 
without brackets. 
 
We enter: 

RANDOM 3,5 

We get a real number of 3,5 for example: 

4.81731227506 

 
– To get k random integers a between p and n (𝑝 ≤  𝑎 ≤  𝑛) we put k, p, n as arguments without 

brackets. 
 
We enter: 

RANDOM 3,2,5 

We get 3 integers between 2 and 5, for example: 

[5,3,2] 
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13.4.2 Random integer: RANDINT 

– To get a random integer a between 1 and n (1 ≤  𝑎 ≤  𝑛) we put n as argument. 
 
We enter: 

RANDINT(4) 

We get 0,1,2,3 or 4, for example: 

2 

– To get a random integer a between b and c (𝑏 ≤  𝑎 ≤  𝑐), we put b and c as arguments. 
 
We enter: 

RANDINT(4,6) 

We get 4,5 or 6, for example: 

5 

– To get k random integers a between p and n (𝑝 ≤ 𝑎 ≤ 𝑛) we put k, p and n as arguments. 
 
We enter: 

RANDINT(4,2,6) 

We get 4 numbers between 2 and 6, for example: 

[2,6,2,6] 

13.4.3 Rand function of the CAS: rand 

Equally distributed draw on [0, 1[: rand() 

rand() returns randomly, in an equiprobable manner, a real number of [0, 1[. 
 
We enter: 

rand() 

We get for example: 

0.912569261115 

To get, randomly, in an equiprobable manner, a number of [0;  1[, we can also use (see following 
paragraph): 

rand(0,1) 

We get: 

0.391549611697 

Equally distributed draw on the interval [𝒂; 𝒃[: rand(a,b) 

If a and b are reals, rand(a,b) designates a random decimal number of the interval [𝑎;  𝑏[. 
Thus, rand(a,b) returns randomly, and in an equiprobable manner, a decimal number of [𝑎;  𝑏[. 
To get, randomly and in an equiprobable manner, a decimal number of [0;  1[, we enter: 

rand(0,1) 
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We get: 

0.391549611697 

We get for example: 

0.912569261115 

To get, randomly and in an equiprobable manner, a decimal number of [0;  0.5[, we enter: 

rand(0,0.5) 

We get: 

0.303484437987 

To get, randomly and in an equiprobable manner, a decimal number of ] −  0.5;  0], we enter: 

rand(0,-0.5) 

or we enter: 

rand(-0.5,0) 

We get for example: 

-0.20047219703 

If a and b are reals, rand(a..b) designates a function which is a generator of random numbers of 
the interval [𝑎;  𝑏[. 
Thus, rand(a..b)() returns randomly, and in an equiprobable manner, a decimal number of [𝑎;  𝑏[. 
To get, randomly and in an equiprobable manner, a decimal number of [0;  1[, we enter: 

rand(0..1)() 

We get: 

0.391549611697 

To get, randomly and in an equiprobable manner, several random decimal numbers of the interval 
[1;  2[, we enter: 

r:=rand(1..2) 

then, it is enough to press r(). 
We enter: 

r() 

We get: 

1.14160255529 

Random draw of equally distributed integers on 𝟎, . . , 𝒏: rand(n) 

If n is a relative integer, rand(n) returns randomly, and in an equiprobable manner, an integer of 
[0, 1, . . , 𝑛[ (or of ]𝑛, . .1, 0] if n is negative). 
 
We enter: 

rand(2) 



 226 

We get: 

1 

or we get: 

0 

We enter: 

rand(-2) 

We get: 

-1 

or we get: 

0 

To get a random integer between 6 and 10, boundaries included, we enter: 

6+rand(11-6) 

We get for example: 

8 

Random draw without replacement of 𝒑 objects among 𝒏: rand 
rand has, in this case, either two, either three arguments. 
If rand has two arguments: the arguments are an integer p and a list L, then rand(p,L) 
returns, randomly, p elements of the list L. 
If rand has three arguments: the arguments are three integers p,min,max, then rand(p,min,max) 
returns, randomly, p integers of [min,..,max] 
 
We enter: 

rand(3,["r","r","r","r","v","v","v"]) 

We get: 

["r","r","v"] 

We enter: 

rand(2,1,10) 

We get: 

[3,7] 

We enter: 

rand(2,4,10) 

We get: 

[5,7] 
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13.4.4 Random permutation: randperm 

randperm takes as argument an integer n. 
randperm returns a random permutation of [0. . 𝑛 −  1]. 
 
We enter: 

randperm(3) 

We get: 

[2,0,1] 

13.4.5 Generating a random list: randvector 

randvector generates a list of random numbers. 

randvector takes as argument an integer n and eventually a second argument, either an integer k, 
either the quoted or not quoted name of the distribution law of the random numbers of the list (see 
also 13.4.8, 13.5.4, 13.5.5 and 13.5.6). 
 
randvector returns a list of degree n constituted of random integers equally distributed between −99 

and 99 (by default) or between 0 and 𝑘 −  1 or a list of degree n of random numbers distributed 
according to the quoted law or as parameter. 
When randvector takes as argument an integer n and a random law of the calculator you have to 
quote or not in this case, randvector returns a list of dimension n whose elements are taken 
randomly according to the function supplied as third argument. 
The functions supplied as second argument, which must be quoted or not, can be: 
’rand(n)’ 

’binomial(n,p)’ or binomial,n,p or ’randbinomial(n,p)’ 
’poisson(λ)’ or poisson, λ or ’randpoisson(λ)’ 
’normald(µ,σ)’ or normald,µ,σ or ’randnorm(µ,σ)’ 

’exponential(a)’ or exponential,a or ’randexp(a)’ 
’fisher(n,m)’ or fisher,n,m or ’randfisher(n,m)’ 
 
Warning! The syntax without quote suits to the laws, but not to the corresponding command 
rand..., then, for example, the commands randvector(3,normald,0,1) or 
randvector(3,’normald(0,1)’) or randvector(3,’randnorm(0,1)’) are valid but 
randvector(3,randnorm,0,1) is not valid. 
 
We enter: 

randvector(3) 

We get for example: 

[-54,78,-29] 

We enter: 

randvector(3,5) 

We enter: 

randvector(3,’rand(5)’) 

We get for example: 

[1,2,4] 

We enter: 
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randvector(3,normald,0,1) 

Or we enter: 

randvector(3,’normald(0,1)’) 

We get for example: 

[1.39091705476,-0.136794772167,0.187312440336] 

We enter: 

randvector(3,2..4) 

We get for example: 

[3.92450003885,3.50059241243,2.7322040787] 

We enter: 

randvector(6,binomial,4,0.2) 

Or we enter: 

randvector(6,’binomial(4,0.2)’) 

We get for example: 

[0,1,0,2,2,0] 

We enter: 

randvector(6,poisson,1.3) 

Or we enter: 

randvector(6,’poisson(1.3)’) 

We get for example: 

[1,0,1,1,1,1] 

We enter: 

randvector(4,exponential,1.2) 

Or we enter: 

randvector(4,’exponential(1.2)’) 

We get for example: 

 [1.67683756526,0.192937941271,0.580820253805,0.709352619633] 

We enter: 

randvector(5,fisher,4,6) 

Or we enter: 

randvector(5,’fisher(4,6)’) 
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We get for example: 

[0.17289703163,1.03709368317,0.161051043162,1.4407877128,0.3586901042

75] 

13.4.6 Draw according to a multinomial law with programs 

We write the programs randmult and randmultiname which simulate the multinomial law. 
randmult(n,P) chooses randomly n numbers among 1...k according to the multinomial law of 
probability P (k=size(P)). This means that we do a draw with replacement of n objects among 
k=size(P) objects. randmult(n,P) returns a list R of k=size(P) elements where R[j] is the 
number of objects of probability P[j] which have been drawn. 
 
We enter the program randmult: 
 

(n,p)->BEGIN 

local k,j,l,r,x,y; 

k:=size(p); 

x:=cumSum(p); 

if x[k]!=1 then return "error"; end; 

y:=makelist(0,1,k) 

for j from 1 to n do 

r:=rand(0,1); 

l:=1; 

while r>x[l] do 

l:=l+1; 

end; 

y[l]:=y[l]+1 

end; 

return (y); 

END; 

 
We do six times the draw of an object among three objects (draw with replacement). Each object has 
a probability [1/2,1/3,1/6] to be drawn. 
To simulate a draw, we enter: 

randmult(6,[1/2,1/3,1/6]) 

We get for example: 

[3,2,1] 

randmultinom(n,P,C) chooses randomly n objects among the elements of the list C. If 
k=size(C), the object C[j] has the probability P[j] to be drawn for (j=1..k). We must get 
k=size(C)=size(P) and sum(P)=1. 
randmultinom(n,P,C) returns the sequence of k lists constituted of the name of the objects and 
their number of occurence. 
 
We enter the program randmultinom: 
 

(n,p,c)->BEGIN 

local k,j,l,r,x,y; 

k:=size(p); 

if size(c)!=k then return "error"; end; 

x:=cumSum(p); 

if x[k]!=1 then return "error"; end; 

y:=MAKELIST([c[j],0],j,1,k); 

for j from 1 to n do 

r:=rand(0,1); 

l:=1; 

while r>x[l] do 

l:=l+1; 

end; 

y[l,2]:=y[l,2]+1 

end; 
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return y; 

END; 

 
We do six times the draw of an object among three objects ["A","B","C"] (draw with replacement). 
Each object has the probability [1/2,1/3,1/6] to be drawn. 
To simulate a draw, we enter: 

randmultinom(6,[1/2,1/3,1/6],["A","B","C"]) 

We get for example: 

[["A",3],["B",1],["C",2]]] 

13.4.7 Draw according to a normal distribution: RANDNORM randNorm 

RANDNORM(mu,sigma) or randNorm(mu,sigma) returns a real randomly distributed according to 
the normal distribution 𝑁(𝑚𝑢, 𝑠𝑖𝑔𝑚𝑎) (by default 𝑚𝑢 =  0 and 𝑠𝑖𝑔𝑚𝑎 = 1). 
 
We enter: 

RANDNORM() 

Or we enter: 

RANDNORM(0,1) 

We get, for example: 

1.2440525851 

We enter: 

RANDNORM(1,2) 

We get, for example: 

-1.8799815939 

13.4.8 Draw according to an exponential law: randexp 

randexp(a) returns numbers randomly distributed according to the exponential law of positive 
parameter a. 
The density of probability is proportional to 𝑒𝑥𝑝(−𝑎 ∗  𝑡) and we have: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  𝑡) = 𝑎 ∫ 𝑒𝑥𝑝(−𝑎 ∗  𝑢)𝑑𝑢
𝑡

0
. 

 
We enter: 

randexp(1) 

We get for example: 

0.310153677284 

or we get for example: 

0.776007926195 
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13.4.9 Initializing the series of random numbers: RANDSEED RandSeed srand 

RANDSEED or RandSeed or srand initializes the series of random numbers supplied by RANDOM. If we 
do not put a parameter, RANDSEED uses the time value as parameter. 
 
We enter: 

RANDSEED() 

We get: 

1 

We enter: 

RANDSEED(pi) 

We get: 

1 

13.4.10 Function UTPC 

UTPC(n,x0) returns the probability that a random Chisquare variable with n degrees of freedom be 
greater than x0. 
 
We enter: 

UTPC(2,6.1) 

We get: 

0.0473589243911 

13.4.11 Function UTPF 

UTPF(n,m,x0) returns the probability that a random Fisher-Snedecor variable with n,m degrees of 
freedom be greater than x0. 
 
We enter: 

UTPF(4,10,3.5) 

We get: 

0.0491881403249 

13.4.12 Function UTPN 

UTPN(mu,v,x0) returns the probability that a random Normal variable be greater than x0 with mu the 
mean and v the variance (by default 𝑚𝑢 =  0 and 𝑣 =  1). 
 
We enter: 

UTPN(1.96) or UTPN(1,4,4.92) 

We get: 

0.0249978951482 
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indeed (𝑥 −  1)/√4  >  1.96 is equivalent to 𝑥 >  4.92. 
 
We enter: 

UTPN(0.98) 

or 

UTPN(1,4,2.96) 

We get: 

0.163543059328 

indeed (𝑥 −  1)/√4  >  0.98 is equivalent to 𝑥 >  2.96. 

13.4.13 Function UTPT 

UTPT(n,x0) returns the probability that a random Student variable with n degrees of freedom be 
greater than x0. 
 
We enter: 

UTPT(3,2.35) 

We get: 

0.050152899407 

We enter: 

UTPT(3,-2.35) 

We get: 

0.949847100593 

13.5 Density of probability 

13.5.1 Density of probability of the normal distribution: NORMALD normald 

NORMALD(x) or normald(x) is the density of probability of the normal reduced centered distribution 
(of mean 0 and standard deviation 1). 
NORMALD(µ, σ,x) or normald(µ, σ,x) is the density of probability of the normal distribution of 

mean µ and standard deviation σ). 
 
We enter: 

NORMALD(0.5) 

Or we enter: 

NORMALD(0,1,0.5) 

We get: 

0.352065326764 
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We enter: 

NORMALD(1,2,0.5) 

We get: 

0.193334058401 

13.5.2 Density of probability of the Student law: STUDENT student 

STUDENT(n,x) or student(n,x) is the density of probability of the Student law having n degrees of 
freedom. 
 
We enter: 

STUDENT(3,5.2) 

We get: 

0.00366574413491 

13.5.3 Density of probability of the χ2: CHISQUARE chisquare 

CHISQUARE(n,x) or chisquare(n,x) is the density of probability of the 𝜒2 law having n degrees of 
freedom. 
 
We enter: 

CHISQUARE(2,3.2) 

We get: 

0.100948258997 

13.5.4 Density of probability of the Fisher law: FISHER fisher snedecor 

FISHER(n,m,x) or fisher(n,m,x) or snedecor(n,m,x) returns the density of probability in x of 

the Fisher-Snedecor law (n and m are the numbers of degrees of freedom). 
 
We enter: 

FISHER(4,10,2.1) 

We get: 

0.141167840452 

13.5.5 Density of probability of the binomial law: BINOMIAL binomial 

BINOMIAL(n,k,p) or binomial(n,k,p) returns COMB(𝑛, 𝑘) ∗  𝑝𝑘 ∗  (1 − 𝑝)(𝑛 – 𝑘) and 
BINOMIAL(n,k) or binomial(n,k,p) returns COMB(𝑛, 𝑘) if there is no third argument. 
 
We enter: 

BINOMIAL(4,2) 

We get: 

6 
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We enter: 

BINOMIAL(4,2,0.5) 

We get: 

0.375 

We enter in the CAS: 

binomial(4,2) 

We get: 

6 

We enter in the CAS: 

binomial(4,2,1/2) 

We get: 

3/8 

13.5.6 Density of probability of the Poisson law: POISSON poisson 

The density of probability of the Poisson law of parameter mu, that is to say of mean mu and standard 
deviation mu is: 
POISSON(mu,k) or poisson(mu,k) returns 

exp(−𝑚𝑢) ∗  𝑚𝑢𝑘

𝑘!
 

 
We enter: 

POISSON(0.5,2) 

We get: 

0.0758163324641 

13.6 Function of distribution 

13.6.1 Function of distribution of the normal distribution: NORMALD_CDF 

normald_cdf 

When a random variable X follows a normal reduced centered distribution, we have: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  𝑥) =NORMALD_CDF(x)=normald_cdf(x) and 

𝑃𝑟𝑜𝑏𝑎(𝑥 ≤  𝑋 ≤  𝑦) =NORMALD_CDF(x,y)=normald_cdf(x,y). 

When a random variable X follows a normal distribution of mean µ and standard deviation σ, we have: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  𝑥) =NORMALD_CDF(µ, 𝜎, 𝑥). 

𝑃𝑟𝑜𝑏𝑎(𝑥 ≤  𝑋 ≤  𝑦) =NORMALD_CDF(µ, 𝜎, 𝑥, 𝑦). 

 
We enter: 

NORMALD_CDF(0.96) 

Or we enter: 
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NORMALD_CDF(0,1,0.96) 

We get: 

0.831472392533 

We enter: 

NORMALD_CDF(1.96) 

We get: 

0.975002104852 

We enter: 

NORMALD_CDF(0,1.96) 

We get: 

0.475002104852 

because NORMALD_CDF(0)=1/2 and 0.975002104852 − 0.5 = 0.475002104852 
 
We enter: 

NORMALD_CDF(1,2,1.96) 

We get: 

0.684386303484 

We enter: 

NORMALD_CDF(1,2,1.1,2.9) 

We get: 

0.309005067853 

13.6.2 Function of distribution of the Student law: STUDENT_CDF 
student_cdf 

When a random variable X follows a Student law having n degrees of freedom,we have: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  𝑥) =STUDENT_CDF(n,x)=student_cdf(n,x). 

𝑃𝑟𝑜𝑏𝑎(𝑥 ≤  𝑋 ≤  𝑦) =STUDENT_CDF(n,x,y)=student_cdf(n,x,y). 

 
We enter: 

STUDENT_CDF(5,2) 

We get: 

0.949030260585 

We enter: 

STUDENT_CDF(5,-2) 

We get: 
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0.0509697394149 

13.6.3 Function of distribution of the 𝝌𝟐 law: CHISQUARE_CDF 
chisquare_cdf 

When a random variable X follows a 𝜒2 law having n degrees of freedom, we have: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  𝑥) =CHISQUARE_CDF(n,x)=chisquare_cdf(n,x). 

𝑃𝑟𝑜𝑏𝑎(𝑥 ≤  𝑋 ≤  𝑦) =CHISQUARE_CDF(n,x,y)=chisquare_cdf(n,x,y). 

 
We enter: 

CHISQUARE_CDF(5,11) 

We get: 

0.948620016517 

We enter: 

CHISQUARE_CDF(5,3) 

We get: 

0.300014164121 

We enter: 

CHISQUARE_CDF(5,3,11) 

We get: 

0.648605852396 

because 0.948620016517 − 0.300014164121 = 0.648605852396 

13.6.4 The function of distribution of the Fisher-Snedecor law: FISHER_CDF 
fisher_cdf snedecor_cdf 

When a random variable X follows a Fisher-Snedecor law having as degrees of freedom n1, n2, we 
have: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  𝑥) =FISHER_CDF(n1,n2,x)=fisher_cdf(n1,n2,x). 

𝑃𝑟𝑜𝑏𝑎(𝑥 ≤  𝑋 ≤  𝑦) =FISHER_CDF(n1,n2,x,y)= 

fisher_cdf(n1,n2,x,y)=snedecor_cdf(n1,n2,x,y). 

 
We enter: 

FISHER_CDF(5,3,9) 

We get: 

0.949898927032 

We enter: 

FISHER_CDF(3,5,9.) 

We get: 
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0.981472898262 

We enter: 

FISHER_CDF(3,5,2.) 

We get: 

0.767376082 

We enter: 

FISHER_CDF(3,5,2.,9.) 

We get: 

0.214096816262 

because 0.981472898262 − 0.767376082 = 0.214096816262 

13.6.5 Function of distribution of the binomial law: BINOMIAL_CDF 
binomial_cdf 

When a random variable X follows a binomial law 𝐵(𝑛, 𝑝). 
We have: 

BINOMIAL_CDF(n,p,x)=binomial_cdf(n,p,x)= Proba(X ≤ x)= 

BINOMIAL(n,0,p)+...+BINOMIAL(n,floor(x),p). 

BINOMIAL_CDF(n,p,x,y)=binomial_cdf(n,p,x,y)=Proba(x ≤ X ≤ y= 

BINOMIAL(n,ceil(x),p)+...+BINOMIAL(n,floor(y),p). 

 
We enter: 

BINOMIAL_CDF(4,0.5,2)) 

We get: 

0.6875 

We can check that: 

BINOMIAL(4,0,0.5)+BINOMIAL(4,1,0.5)+BINOMIAL(4,2,0.5) 

=0.6875 

We enter: 

BINOMIAL_CDF(2,0.3,1) 

We get: 

0.91 

We enter: 

BINOMIAL_CDF(2,0.3,1,2) 

We get: 

0.51 
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We enter in the CAS: 

binomial_cdf(4,1/2,2)) 

We get: 

11/16 

We enter: 

binomial_cdf(2,3/10,1) 

We get: 

91/100 

We enter: 

binomial_cdf(2,3/10,1,2) 

We get: 

51/100 

13.6.6 Function of distribution of the Poisson law: POISSON_CDF 
poisson_cdf 

When a random variable X follows a Poisson law of parameter mu, of mean mu, we have: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  𝑥)=POISSON_CDF(mu,x)=poisson_cdf(mu,x) with 𝑋 ∈ 𝑃(𝑚𝑢). And 

𝑃𝑟𝑜𝑏𝑎(𝑥 ≤  𝑋 ≤  𝑦) =POISSON_CDF(mu,x,y)=poisson_cdf(mu,x,y) 

POISSON_CDF(mu,x) is the function of distribution of the Poisson law of parameter mu. 
 
We enter: 

POISSON_CDF(10.0,3) 

We get: 

0.0103360506759 

13.7 Inverse distribution function 

13.7.1 Inverse normal distribution function: NORMALD_ICDF normald_icdf 

When a random variable X follows a normal reduced centered distribution, if we have 
NORMALD_ICDF(x)=normald_icdf(x)=h ,it is what we have: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  ℎ) =x=NORMALD_CDF(h)=normald_cdf(h). 

When a random variable X follows a normal distribution of mean µ and standard deviation σ, if we 
have: 

NORMALD_ICDF(µ, σ,x)=normald_icdf(µ, σ,x)=h 

it is that we have: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  ℎ) =x=NORMALD_CDF(µ, σ,h)=normald_cdf(µ, σ,h). 

 
We enter: 

NORMALD_ICDF(0.95) 
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Or we enter: 

NORMALD_ICDF(0,1,0.95) 

We get: 

1.64485362695 

We enter: 

NORMALD_ICDF(0.975) 

We get: 

1.95996398454 

We enter: 

NORMALD_ICDF(1,2,0.495) 

We get: 

0.974933060984 

We enter: 

NORMALD_ICDF(1,2,NORMALD_CDF(1,2,0.975)) 

We get: 

0.975 

We enter: 

NORMALD_CDF(1,2,NORMALD_ICDF(1,2,0.495)) 

We get: 

0.495 

We enter: 

NORMALD_ICDF(1,2,2.96*sqrt(2)) 

We get: 

0.944423950497 

13.7.2 Inverse distribution Student’s function: STUDENT_ICDF 
student_icdf 

When a random variable X follows a Student law having n degrees of freedom, if we have 
STUDENT_ICDF(n,x)=student_icdf(n,x)=h it is that: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  ℎ) =x=STUDENT_CDF(n,h)=student_cdf(n,h). 

 
We enter: 

STUDENT_ICDF(5,0.95) 

We get: 
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2.01504837333 

13.7.3 Inverse function of the function of distribution of the 𝝌𝟐 law: 

CHISQUARE_ICDF chisquare_icdf 

When a random variable X follows a 𝜒2 law having n degrees of freedom, if we have 
CHISQUARE_ICD(n,x)=chisquare_icdf(n,x)=h it is that: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  ℎ) =x= CHISQUARE_CDF(n,h)=chisquare_cdf(n,h). 

 
We enter: 

CHISQUARE_ICDF(5,0.95) 

We get: 

11.0704976935 

13.7.4 Inverse of the function of distribution of the Fisher-Snedecor law: 

FISHER_ICDF fisher_icdf snedecor_icdf 

When a random variable X follows a Fisher-Snedecor law having as degrees of freedom 𝑛1, 𝑛2, if we 
have: 

FISHER_ICDF(n1,n2,x)=fisher_icdf(n1,n2,x)=snedecor_icdf(n1,n2,x)=h 

it is that: 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  ℎ)=x=FISHER_CDF(n1,n2,h)=fisher_cdf(n1,n2,h)= snedecor_cdf(n1,n2,h 

 
We enter: 

FISHER_ICDF(5,3,0.95) 

We get: 

9.01345516752 

We enter: 

1/FISHER_ICDF(3,5,0.05) 

We get: 

9.01345516752 

Note: 
FISHER_ICDF(n1,n2,p)=1/FISHER_ICDF(n2,n1,1-p) 

13.7.5 Inverse distribution function of the binomial law: BINOMIAL_ICDF 
binomial_icdf 

When a random variable X follows a binomial law 𝐵(𝑛, 𝑝), if we have: 
BINOMIAL_ICDF(n,p,x)=binomial_icdf(n,p,x)=h it is that 

𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  ℎ) =x=BINOMIAL_ICDF(n,p,h)=binomial_cdf(n,p,h). 

 
We enter: 

BINOMIAL_ICDF(4,0.5,0.9) 

We get: 
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3 

We enter: 

BINOMIAL_ICDF(2,0.3,0.95) 

We get: 

2 

We enter in the CAS: 

binomial_icdf(4,1/2,0.9) 

We get: 

3 

We enter: 

binomial_icdf(2,3/10,0.95) 

We get: 

2 

13.7.6 Inverse distribution function of Poisson: POISSON_ICDF 
poisson_icdf 

When a random variable X follows a Poisson law of parameter mu, of mean mu, we have: 
POISSON_ICDF(mu,t)=poisson_icdf(mu,t)= h is equivalent to 
𝑃𝑟𝑜𝑏𝑎(𝑋 ≤  ℎ) =t= poisson_cdf(mu,h)=POISSON_CDF(mu,h) with 𝑋 ∈  𝑃(𝑚𝑢). 
POISSON_ICDF(mu,t) is the inverse of the function of distribution of the Poisson law of parameter 
mu. 
 
We enter: 

POISSON_ICDF(10.0,0.975) 

We get: 

0.125110035721 



 242 

Chapter 14 Statistics functions 

 
 

14.1 Statistics functions at one variable 

We will describe the different statistics functions thanks to an example: 
with the list A:=[0,1,2,3,4,5,6,7,8,9,10,11] 

– taking as statistical sequence of size 1 the list A1, or 
– taking as statistical sequence the list A1 with as size again the list A1. 

 
We enter: 

A1:=[0,1,2,3,4,5,6,7,8,9,10,11] 

We can also refer to 15.1 when the arguments are lists and at 15.1.1 when the arguments are 
matrices. 

14.1.1 The mean: mean 

mean returns the numerical mean of the elements of a list (or of each column of a matrix). 
 
We enter: 

A:=[0,1,2,3,4,5,6,7,8,9,10,11] 

mean(A) 

We get: 

11/2 

Indeed, (0 + 1+. . . +11) = 66 and 66/12 = 11/2 
 
We enter: 

mean([[1,2],[3,4]]) 

We get: 

[2,3] 

Indeed, (1 + 3)/2 = 2 and (2 + 4)/2 = 3. 
mean returns the numerical mean of the elements of a list (respectively of each column of a matrix) 
weighted by a list (respectively a matrix) of same size, supplied as second argument. 
 
We enter: 

A:=[0,1,2,3,4,5,6,7,8,9,10,11] 

mean(A,A) 

We get: 

23/3 
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Indeed: 1 ∗ 1 + 2 ∗ 2+. .11 ∗ 11 = 23 ∗ 12 ∗ 11/6 = 23 ∗ 2 ∗ 11 and 1 + 2+. .11 = 66 then: 

mean(A,A)= 23 ∗ 2 ∗ 11/66 = 23/3 
 
We enter: 

mean([[1,2],[3,4]],[[1,2],[3,4]]) 

We get: 

[5/2,10/3] 

Indeed: (1 ∗ 1 + 3 ∗ 3)/(1 + 3) = 5/2 and (2 ∗ 2 + 4 ∗ 4)/(2 + 4) = 10/3 

14.1.2 The standard deviation: stddev 

stddev returns the numerical standard deviation of the elements of a list (or of each column of a 
matrix). 
 
We enter: 

A:=[0,1,2,3,4,5,6,7,8,9,10,11] 

stddev(A) 

We get: 

sqrt(143/12) 

We enter: 

stddev([[1,2],[3,4]]) 

We get: 

[1,1] 

stddev returns the numerical standard deviation of the elements of a list weighted by another list 
supplied as second argument. 
 
We enter: 

A:=[0,1,2,3,4,5,6,7,8,9,10,11] 

stddev(A,A) 

We get: 

sqrt(65/9) 

14.1.3 The standard deviation of the population: stddevp stdDev 

stddevp takes as argument a (or two) list(s): 
stddevp(l) returns an estimation of the numerical standard deviation of the population whose is 
issu the sample described by the elements of the list l, of length n, supplied as argument 
(size(l)=n and n must be large). We have: 
stddevp(l)^2=n/(n-1)* stddev(l)^2. 

 
We enter: 

A1:=[0,1,2,3,4,5,6,7,8,9,10,11] 
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stddevp(A1) 

We get: 

sqrt(13) 

Indeed: n=size(A1)=12 and 12/11*stddev(A1)^2=12/11*143/12=13. 
 
We enter: 

stddevp([[1,2],[3,4]]) 

We get: 

[sqrt(2),sqrt(2)] 

stddevp(l1,l2) returns the numerical standard deviation of the population whose is issu 
the sample described by the elements of a list l1 weighted by another list l2 supplied as second 
argument. 
We have: 
stddevp(l1,l2)^2=n/(n-1)* stddev(l1,l2)^2 if n is the size of the sample, that is to say if n 
is the sum of the list l2 (sum(l2)=n). 
 
We enter: 

stddevp(A1,A1) 

We get: 

sqrt(22/3) 

Indeed, sum(A1)=66 and 
22

3
=
66

65
∗
65

9
 

Note stddev is the standard deviation after division by n (size of the sample) whereas stddevp is 
divided by n-1 and gives the non biased estimator of the standard deviation of a population from the 
standard deviation calculated with a sample (the division by n-1 allows to remove the bias). 
For the variance, we just give one command (division by n), but it is very easy to define a "variance of 
sample" by taking the square of the standard deviation stddevp. 

14.1.4 The variance: variance 

variance returns the numerical variance of the elements of a list. 
 
We enter: 

A1:=[0,1,2,3,4,5,6,7,8,9,10,11] 

variance(A1) 

We get: 

143/12 

variance returns the numerical variance of the elements of a list weighted by another list supplied as 
second argument. 
 
We enter: 

A1:=[0,1,2,3,4,5,6,7,8,9,10,11] 

variance(A1,A1) 
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We get: 

65/9 

We enter: 

variance([[1,2],[3,4]]) 

We get: 

[1,1] 

14.1.5 The median: median 

median returns the median of the elements of a list. 
 
We enter: 

A1:=[0,1,2,3,4,5,6,7,8,9,10,11] 

median(A1) 

We get: 

5.0 

median returns the numerical median of the elements of a list weighted by another list supplied as 
second argument. 
 
We enter: 

A1:=[0,1,2,3,4,5,6,7,8,9,10,11] 

median(A1,A1) 

We get: 

8 

We have indeed: 1 +  2 +  3 + . . .7 =  28 and 9 +  10 +  11 =  30 there are then 28 elements before 
8 and 30 elements after 8. 

14.1.6 Different statistics values: quartiles 

quartiles returns the matrix column formed by: the minimum, the first quartile, the median, the third 
quartile and the maximum of the elements of a list. 
 
We enter: 

A1:=[0,1,2,3,4,5,6,7,8,9,10,11] 

quartiles(A1) 

We get: 

[[0.0],[2.0],[5.0],[8.0],[11.0]] 

We enter: 

A1:=[0,1,2,3,4,5,6,7,8,9,10,11] 
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quartiles(A1,A1) 

We get: 

[1,6,8,10,11] 

14.1.7 The first quartile: quartile1 

quartile1 returns the first quartile of the elements of a list. 
 
We enter: 

A1:=[0,1,2,3,4,5,6,7,8,9,10,11] 

quartile1(A1) 

We get the first quartile of A1: 

2.0 

quartile1 returns the first quartile of the elements of a list weighted by another list supplied as 
second argument. 
We enter: 

quartile1(A1,A1) 

We get the first quartile of A1 weighted by A1: 

6 

14.1.8 The third quartile: quartile3 

quartile3 returns the third quartile of the elements of a list. 
 
We enter: 

A1:=[0,1,2,3,4,5,6,7,8,9,10,11] 

quartile3(A1) 

We get the third quartile of A1: 

8.0 

quartile3 returns the third quartile of the elements of a list weighted by another list supplied as 
second argument. 
We enter: 

quartile3(A1,A1) 

We get the first quartile of A1 weighted by A1: 

10 

14.1.9 The quantile: quantile 

quantile(L1,p) where L1 is the statistical sequence and p a real of [0,1[, tells the value of the 
character starting from which the cumulated frequency of L1 reaches or exceeds p. 
 
We enter: 
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A1:=[0,1,2,3,4,5,6,7,8,9,10,11] 

quantile(A1,0.1) 

We get the first quantile: 

1.0 

We enter: 

quantile(A1,0.25) 

We get the first quartile: 

2.0 

We enter: 

quantile(A1,0.5) 

We get the median: 

5.0 

We enter: 

quantile(A1,0.75) 

We get the third quartile: 

8.0 

We enter: 

quantile(A1,0.9) 

We get the ninth quantile: 

10.0 

quantile(l1,l2,p) returns the quantile specified by the last argument of the elements of the list 
l1 weighted by the list l2. 
 
We enter: 

quantile(A1,A1,0.25) 

We get the first quartile of the list A weighted by A: 

6 

14.1.10 The histogram: histogram 

histogram plots the histogram of data. We can specify a list of numbers of items, or a number nc of 
classes, or the mimimum classmin of the classes and the size classsize of the classes. 
histogram allows to display the function density of frequencies: we put as abscissa the classes and 
as ordinate the density of frequency (if we have discret values, they are considered as being the 
center of the class). The histogram is then a stairs graph in which the frequency of different classes 
are represented by the areas of different rectangles located under the different steps. 
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We point out that, if the size of the class [𝑎𝑗−1;  𝑎𝑗] is 𝑛𝑗, the frequency of the classe [𝑎𝑗−1;  𝑎𝑗]  is 𝑓𝑗 =
𝑛𝑗

𝑁
 

(if 𝑁 is the total number of items) and the density of frequency of the class [𝑎𝑗−1;  𝑎𝑗] is 
𝑓𝑗
𝑎𝑗– 𝑎𝑗−1
⁄ . 

 
We enter: 

histogram([[1.5..1.65,50],[1.65..1.7,20],[1.7..1.8,30]]) 

The graphic windows automatically opens and we get the histogram of the sequence 
[[1.5..1.65,50],[1.65..1.7,20],[1.7..1.8,30]], provided that the plot configuration has 
been correctly defined (menu Cfg). 
The argument of histogram can also be a list of discrete values. In this case, the classes start at a 

value (class_min) and are all of same size (class_size), either defined by default (at 0 and 1, 
values tobe checked in the graphic settings), either put as second and third arguments. 
 
We enter: 

histogram([0,1,2,1,1,2,1,2,3,3]) 

so class_min=0 and class_size=1 and then the values 0,1,2,3 are not centered. 
but if we enter: 

histogram([0,1,2,1,1,2,1,2,3,3],-0.5,1) 

so class_min=-0.5 and class_size=1 and the values 0,1,2,3 are then centered, and it returns 
the same thing as: 

histogram([[0,1],[1,4],[2,3],[3,2]]) 

We enter: 

histogram(seq(rand(1000),k,1,100),0,100) 

Here we have chosen class_min=0 and class_size=100. 
 
We enter: 

histogram(seq(rand(10),k,1,100),0,1) 

Here we have chosen class_min=0 and class_size=1. 

14.1.11 The covariance: covariance 

The covariance of random variables X and Y is: 

𝑐𝑜𝑣(𝑋, 𝑌 )  =  𝐸((𝑋 −  𝑋̅)(𝑌 − 𝑌̅ )). 

covariance has different kinds of arguments: 
– when the sizes equal 1, covariance takes as argument two lists of same length or a matrix 

of two columns. 
covariance returns the numerical variance of two lists or two columns of this matrix. 
We enter: 

covariance([1,2,3,4],[1,4,9,16]) 

We get: 

25/4 

We enter: 
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covariance([[1,1],[2,4],[3,9],[4,16]]) 

We get: 

25/4 

Because we have: 

1/4 ∗ (1 + 8 + 27 + 64) − 75/4 = 25/4 

 Provided that A1:=[0,1,2,3,4,5,6,7,8,9,10,11], we enter: 

covariance(A1,A1^2) 

We get: 

1573/12 

– when the sizes are different from 1: 

 if the paired values 𝑎[𝑗], 𝑏[𝑗] have as size 𝑛[𝑗] (𝑗 =  0. . 𝑝 − 1), covariance takes as 
argument three lists 𝑎, 𝑏, 𝑛 of same length 𝑝, or a matrix of three columns 𝑎, 𝑏, 𝑛 and 𝑝 

lines [𝑎[𝑗], 𝑏[𝑗], 𝑛[𝑗]]. 
covariance returns the numerical variance of the two first lists weighted by the list 
supplied as last argument, or of the two columns of this matrix weighted by the third 
column. 
 
We enter: 

covariance([1,2,3,4],[1,4,9,16],[3,1,5,2]) 

Or we enter: 

covariance([[1,1,3],[2,4,1],[3,9,5],[4,16,2]]) 

We get: 

662/121 

 if the paired values 𝑎[𝑗], 𝑏[𝑘] have for size 𝑁[𝑗, 𝑘] (𝑗 =  1. . 𝑝, 𝑘 =  1. . 𝑞), covariance 
takes as argument two lists 𝑎, 𝑏 of respective lengths 𝑝 and 𝑞, and a matrix 𝑁 of 𝑝 rows 

and 𝑞 columns, or also, in order to write the data in a pleasant way in the table, 

covariance can also have two arguments, a matrix 𝑀 and −1. 𝑀 is then a double entry 
table equal to: 

𝑀 = [

𝑎 \ 𝑏 𝑏[1] ⋯ 𝑏[𝑞]

𝑎[1] 𝑁[1, 1] ⋯ 𝑁[1, 𝑞]
⋮ ⋮ ⋱ ⋮

𝑎[𝑝] 𝑁[𝑝, 0] ⋯ 𝑁[𝑝, 𝑞]

] 

 
covariance(a,b,N) or covariance(M,-1) returns the numerical covariance of paired values 
𝑎[𝑗], 𝑏[𝑘] weighted by 𝑁𝑗,𝑘. 

 
We enter: 

covariance([1,2,3,4],[1,4,9,16],[[3,0,0,0], 

[0,1,0,0],[0,0,5,0],[0,0,0,2]]) 

We get: 

662/121 



 250 

We enter: 

covariance([[b\a,1,2,3,4],[1,3,0,0,0], 

[4,0,1,0,0],[9,0,0,5,0],[16,0,0,0,2]],-1) 

We get: 

662/121 

14.1.12 The correlation: correlation 

The coefficient of linear correlation of two random variables X and Y is 𝜌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎(𝑋)𝜎(𝑌)
 where 𝜎(𝑋) (resp. 

𝜎(𝑌)) designates the standard deviation of 𝑋 (resp. 𝑌). 
correlation has the same arguments a covariance. 
When the sizes equal 1, correlation takes as argument two lists of same length or a matrix of two 
columns. 
 
We enter: 

correlation([1,2,3,4],[1,4,9,16]) 

We get: 

100/(4*sqrt(645)) 

We enter: 

correlation([[1,1],[2,4],[3,9],[4,16]]) 

We get: 

100/(4*sqrt(645)) 

Provided that A1:=[0,1,2,3,4,5,6,7,8,9,10,11], we enter: 

correlation(A1,A1^2) 

We get: 

18876/(572*sqrt(1173)) 

When the sizes are different from 1: 
– if the paired values 𝑎[𝑗], 𝑏[𝑗] have as size 𝑛[𝑗] (𝑗 =  0. . 𝑝 −  1), correlation takes as 

argument three lists a, b, n of same length p, or a matrix of three columns 𝑎, 𝑏, 𝑛 and 𝑝 rows 

[𝑎[𝑗], 𝑏[𝑗], 𝑛[𝑗]]. 
correlation returns the numerical correlation of the two first lists which are weighted by the 
list supplied as last argument or returns the numerical correlation of two columns of this matrix 
which are weighted by the third column. 
 
We enter: 

correlation([1,2,3,4],[1,4,9,16],[3,1,5,2]) 

Or we enter: 

correlation([[1,1,3],[2,4,1],[3,9,5],[4,16,2]]) 

We get: 

662/(180*sqrt(14)) 
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– if the paired values 𝑎[𝑗], 𝑏[𝑘] have for size 𝑁[𝑗, 𝑘] (𝑗 =  1. . 𝑝, 𝑘 =  1. . 𝑞), correlation takes 

as argument two lists 𝑎, 𝑏 of respective lengths 𝑝 and 𝑞 and a matrix 𝑁 of 𝑝 rows and 𝑞 
columns or else, in order to write the data in a pleasant way in the table, correlation can also 
get for argument, a matrix 𝑀 and −1. 
M is then a double entry table equal to: 

𝑀 = [

𝑎 \ 𝑏 𝑏[1] ⋯ 𝑏[𝑞]

𝑎[0] 𝑁[1, 1] ⋯ 𝑁[1, 𝑞]
⋮ ⋮ ⋱ ⋮

𝑎[𝑝] 𝑁[𝑝, 1] ⋯ 𝑁[𝑝, 𝑞]

] 

 
correlation(a,b,N) or correlation(M,-1) returns the numerical correlation of paired 
values a[j], b[k] weighted by Nj,k. 
 
We enter: 

correlation([1,2,3,4],[1,4,9,16],[[3,0,0,0],[0,1,0,0], 

[0,0,5,0],[0,0,0,2]]) 

We get: 

662/(180*sqrt(14)) 

We enter: 

correlation([["b\a",1,2,3,4],[1,3,0,0,0], 

[4,0,1,0,0],[9,0,0,5,0],[16,0,0,0,2]],-1) 

We get: 

662/(180*sqrt(14)) 

14.1.13 Covariance and correlation: covariance_correlation 

covariance_correlation has the same arguments as covariance: if the sizes equal 1, 
covariance_correlation takes as argument two lists of same length or a matrix of two columns 

representing two random variables X and Y and otherwise covariance_correlation takes as 

argument three lists of same length, or a matrix of three columns representing two random variables X 
and Y and the weighting of their sizes or else a matrix M and -1, where M gives the weighting of X (the 
first column of M without 𝑀[0, 0]) and Y (the first line of M without 𝑀[0, 0]). 
covariance_correlation returns the list of the covariance 𝑐𝑜𝑣(𝑋, 𝑌) and the coefficient of linear 

correlation ρ of two random variables X and Y. 

We have 𝜌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎(𝑋)𝜎(𝑌)
 where 𝜎(𝑋) (resp. 𝜎(𝑌)) designates the standard deviation of X (resp. Y ). 

 
We enter: 

covariance_correlation([[1,1],[2,4],[3,9],[4,16]]) 

We get: 

 [25/4,100/(4*sqrt(645))] 

Provided that A1:=[0,1,2,3,4,5,6,7,8,9,10,11], we enter: 

covariance_correlation(A1,A1^2) 

We get: 

[1573/12,18876/(572*sqrt(1173))] 

We enter: 
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covariance_correlation([1,2,3,4],[1,4,9,16],[3,1,5,2]) 

Or we enter: 

covariance_correlation([[1,1,3],[2,4,1],[3,9,5],[4,16,2]]) 

We get: 

[662/121,662/(180*sqrt(14))] 

We enter: 

covariance_correlation([1,2,3,4],[1,4,9,16], 

[[3,0,0,0],[0,1,0,0],[0,0,5,0],[0,0,0,2]]) 

We get: 

[662/121,662/(180*sqrt(14))] 

We enter: 

covariance_correlation([["b\a",1,2,3,4],[1,3,0,0,0], 

[4,0,1,0,0],[9,0,0,5,0],[16,0,0,0,2]],-1) 

We get: 

[662/121,662/(180*sqrt(14))] 

14.1.14 Polygonal line: polygonplot 

polygonplot takes as arguments two lists or a matrix of two columns. 
polygonplot allows to display the line segments joining the different points of the cloud of dots 
defined by the argument and ordinates according to the increasing abscissae. If you want that the 
points are joined in the order supplied, you must use listplot. 
 
We enter: 

polygonplot([[0,0],[1,1],[2,4],[3,9],[4,16]]) 

Or we enter, because the points will be ordered according to the increasing abscissae: 

polygonplot([[2,4],[0,0],[3,9],[1,1],[4,16]]) 

Or we enter: 

polygonplot([0,1,2,3,4],[0,1,4,9,16]) 

The graphic windows automatically opens and we get the plot of 4 segments joining the 5 points 
((0,0), . . . (4,16)), provided that the plot configuration has been correctly defined (menu Cfg). 

14.1.15 Polygonal line: plotlist 

plotlist takes as argument a list l or a matrix of two columns. 
listplot or plotlist allows to display the segments joining the cloud of plots having for abscissa 
[0,1,2...n] and for ordinate l or for coordinates a line of the matrix. plotlist connects by two line 
segments the different points of the cloud, but without reordering the points, unlike polygonplot 
which reorders the points according to their abscissa, then connects them. 
 
We enter: 
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plotlist([0,1,4,9,16]) 

Or we enter: 

plotlist([[0,0],[1,1],[2,4],[3,9],[4,16]]) 

The graphic windows automatically opens and we get, provided that the plot configuration has been 
correctly defined (menu Cfg): 

the plot of 5 points ((0,0),(1,1),...(4,16)) connected by 4 segments 

We enter, if A is a matrix of 5 rows and 2 columns: 

A:=[[0,0],[1,1],[5,4],[3,9],[4,16]] 

listplot(A[0..4,0..1]) 

The graphic windows automatically opens and we get: 

The 5 points joined by 4 segments 

Please note the difference between: 

listplot([[0,0],[1,1],[5,4],[3,9],[4,16]]) 

polygonplot([[0,0],[1,1],[5,4],[3,9],[4,16]]) 

Warning! 
listplot([0,1,2,3,4],[0,1,4,9,16]) 

or 
listplot([[0,1,2,3,4],[0,1,4,9,16]]) 

is not valid! 

14.1.16 Polygonal line and cloud of plots: polygonscatterplot 

polygonscatterplot takes as arguments two lists or a matrix of two columns. 
polygonscatterplot allows to display the cloud of dots defined by the argument, by joining by line 
segments the different points of the cloud, ordering them according to the increasing abscissae . 
 
We enter: 

polygonscatterplot([[0,0],[1,1],[2,4],[3,9],[4,16]]) 

Or we enter: 

polygonscatterplot([0,1,2,3,4],[0,1,4,9,16]) 

The graphic windows automatically opens and we get the plot of 5 points ((0,0), . . . (4,16)) joined by 4 
segments, provided that the plot configuration has been correctly defined (menu Cfg). 

14.1.17 Linear interpolation: linear_interpolate 

Considering a matrix of two lines giving points coordinates: once the abcissae of these points have 
been sorted, these points define a polygonal line. We want to get the points coordinates of this line 
regularly distributed. 
linear_interpolate has four arguments, a two line matrix A1 giving the coordinates of the points 
of a polygonal line, the minimum value of x (xmin), the maximum value of x (xmax), and the step 
(xstep). 
linear_interpolate returns the coordinates of the points of the polygonal line for x growing from 
xmin to xmax with a step of xstep. 
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Note: we must have xmin and xmax being in the interval [min(A1[0]);max(A1[0])]. 
 
We enter: 

linear_interpolate([[1,2,6,9],[3,4,6,12]],1,9,1) 

We get: 

[[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0], 

[3.0,4.0,4.5,5.0,5.5,6.0,8.0,10.0,12.0]] 

We enter: 

linear_interpolate([[1,2,6,9],[3,4,6,12]],2,7,1) 

We get: 

[[2.0,3.0,4.0,5.0,6.0,7.0],[4.0,4.5,5.0,5.5,6.0,8.0]] 

We enter: 

linear_interpolate([[1,2,9,6],[3,4,6,12]],1,9,1) 

We get: 

[[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0], 

[3.0,4.0,6.0,8.0,10.0,12.0,10.0,8.0,6.0]] 

14.1.18 Linear regression: linear_regression 

To fit the data the best way by the line of the least squares having for equation 𝑦 =  𝑚𝑥 +  𝑏, we use 

linear_regression which returns the paired value (𝑚, 𝑏). 
If the data are 𝑥𝑖, 𝑦𝑖 with 𝑖 =  1. . 𝑛, we have: 

𝑚 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎(𝑋)2
 and 𝑏 = 𝑌̅  −  𝑚𝑋̅ 

because the sum of the squares of the distances 𝑑𝑖 = |𝑦𝑖–  𝑚𝑥𝑖– 𝑏𝑖| is minimal for these values and 

this minimum (which is then the average vertical quadratic error) equals (1 – 𝜌2)𝜎(𝑌)2 where r is the 

correlation coefficient (𝜌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎(𝑋)𝜎(𝑌)
). 

linear_regression has the same arguments as covariance. 
 
We enter: 

linear_regression([[0,0],[1,1],[2,4],[3,9],[4,16]]) 

Or we enter: 

linear_regression([0,1,2,3,4],[0,1,4,9,16]) 

We get: 

4,-2 

it is then the linear function equation 𝑦 =  4𝑥 −  2 which fits the data the best. 
 
We enter: 

X1:=[0,1,2,3,4,5,6,7,8,9,10] 
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Y1:=[7.3,9.53,12.47,16.3,21.24,27.73,36.22, 47.31,61.78,80.68,105] 

Z1:=log(Y1) 

linear_regression(X1,Z1) 

We get: 

0.266729219953,1.98904252589 

it is then the linear function equation 𝑧 =  ln(𝑦)  =  0.267𝑥 + 1.99 which fits the data the best. 

14.1.19 Exponential regression: exponential_regression 

To fit the data by an exponential function equation 𝑦 = 𝑏𝑒𝑚𝑥 = 𝑏𝑎𝑥, we use 
exponential_regression which returns the paired value (𝑎, 𝑏). 
exponential_regression has the same arguments as covariance. 
 
We enter: 

evalf(exponential_regression([[1,1],[2,4],[3,9],[4,16]])) 

Or we enter: 

evalf(exponential_regression([1,2,3,4],[1,4,9,16])) 

We get: 

2.49146187923,0.5 

it is then the exponential function of equation 𝑦 =  0.5 ∗  (2.49146187923)𝑥 which fits the data the 
best. 
 
We enter: 

X1:=[0,1,2,3,4,5,6,7,8,9,10] 

Y1:=[7.3,9.53,12.47,16.3,21.24,27.73,36.22,47.31, 61.78,80.68,105] 

exponential_regression(X1,Y1) 

We get: 

1.30568684451,7.30853268031 

it is then the function exponential of equation 𝑦 =  7.3 ∗  (1.3)𝑥 which fits the data the best. We check 
by entering: 

e^[linear_regression(X1,ln(Y1))] 

We get: 

1.30568684451,7.30853268031 

14.1.20 Logarithmic regression: logarithmic_regression 

To fit the data by a logarithmic function equation 𝑦 = 𝑚ln(𝑥) + 𝑏, we use 
logarithmic_regression which returns the paired value (𝑚, 𝑏). 
logarithmic_regression has the same arguments as covariance. 
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We enter: 

evalf(logarithmic_regression([[1,1],[2,4],[3,9],[4,16]])) 

Or we enter: 

evalf(logarithmic_regression([1,2,3,4],[1,4,9,16])) 

We get: 

10.1506450002,-0.564824055818 

it is then the logarithmic function of equation 𝑦 =  10.15 𝑙𝑛(𝑥)  −  0.565 which fits the data the best. 
 
We enter: 

X1:=[1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7,7.5,8] 

Y1:=[1.6,2.15,2.65,3.12,3.56,3.99,4.4,4.8,5.18, 

5.58,5.92,6.27,6.62,7.06,7.3] 

logarithmic_regression(X1,Y1) 

We get: 

2.83870854646,0.843078064152 

it is then the logarithmic function of equation 𝑦 =  0.84 𝑙𝑛(𝑥)  +  2.84 which fits the data the best. 
We check by entering: 

linear_regression(ln(X1),Y1) 

We get: 

2.83870854646,0.843078064152 

and the correlation coefficient is: 

correlation(ln(X1),Y1) 

We get: 

0.977939822434 

We can also enter to look for a better approximation: 

logarithmic_regression(X1,log(Y1)) 

We get: 

0.732351031846,0.467599676658 

it is then the function logarithmique of equation 𝑧 =  𝑙𝑛(𝑦)  =  0.73 𝑙𝑛(𝑥) + 0.47 which fits the data the 
best. 
We check by entering: 

linear_regression(ln(X1),ln(Y1)) 

We get: 

0.732351031846,0.467599676658 
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and the correlation coefficient is: 

correlation(ln(X1),ln(Y1)) 

We get: 

0.999969474543 

14.1.21 Polynomial regression: polynomial_regression 

To fit the data by a polynomial function of degree ≤  𝑛 of equation 𝑦 =  𝑎0𝑥
𝑛+. . +𝑎𝑛, we use, putting 

the degree n as last parameter, polynomial_regression which returns the list [𝑎𝑛, . . 𝑎0]. 
polynomial_regression has the same first arguments as covariance, the last argument being 
the degree of the polynomial returned. 
 
We enter: 

polynomial_regression([[1,1],[2,4],[3,9],[4,16]],3) 

Or we enter: 

polynomial_regression([1,2,3,4],[1,4,9,16],3) 

We get: 

[0,1,0,0] 

it is then the polynomial function equation 𝑦 =  0 ∗  𝑥3 + 𝑥2 +  0 ∗  𝑥 +  0 =  𝑥2 which fits the data the 
best. 
Note: we will notice that the equation of the curve represented as well as the value of the correlation 
coefficient of data are written in blue. 
If we want to get the equation and/or the correlation coefficient on the plot we must add as last 
argument the option equation and/or correlation. 

14.1.22 Power regression: power_regression 

To fit the data by a function power equation 𝑦 =  𝑏𝑥𝑚, we use power_regression which returns the 

paired value (𝑚, 𝑏). 
power_regression has the same arguments as covariance. 
 
We enter: 

evalf(power_regression([[1,1],[2,4],[3,9],[4,16]])) 

Or we enter: 

evalf(power_regression([1,2,3,4],[1,4,9,16])) 

We get: 

(2.0,1.0) 

so 𝑦 =  𝑥2 is the function power which fits the data the best. 
 
We enter: 

X1:=[1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7,7.5,8] 

Y1:=[1.6,2.15,2.65,3.12,3.56,3.99,4.4,4.8,5.18, 

5.58,5.92,6.27,6.62,7.06,7.3] 
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power_regression(X,Y) 

We get: 

0.732351031846,1.59615829535 

it is then the function power of of equation 𝑦 =  1.6 ∗  𝑥0.73 which fits the data the best. 
We check by entering: 

linear_regression(ln(X1),ln(Y1)) 

We get: 

0.732351031846,0.467599676658 

We do have: 

e^0.467599676658=1.59615829535 

 so 
ln(𝑦)  =  ln(1.59615829535) + ln(𝑥) ∗ 0.732351031846 
ln(𝑦)  =  0.467599676659 + ln(𝑥) ∗ 0.732351031846 
and the correlation coefficient is: 

correlation(ln(X1),ln(Y1)) 

We get: 

0.999969474543 

14.1.23 Logistic regression: logistic_regression 

The logistic curves are of curves whose equation 𝑦 = 𝑦(𝑥) are solutions of a differential equation of 
the form: 
𝑦’/𝑦 =  𝑎 ∗  𝑦 +  𝑏 and 𝑦0 =  𝑦(𝑥0) with 𝑎 <  0 and 𝑏 >  0. 

The solutions are of the form: 𝑦(𝑥)  =  𝐶/(1 +  𝑒𝑥𝑝(−𝛼(𝑥 –  𝑥_0 −  𝑘) with 𝐶 =  −𝑏/𝑎, 𝛼 =  −𝑏 and 

𝑦0  =  (−𝑏/𝑎)/(1 + exp(−𝑏 ∗  𝑘)) thus 
𝑘 =  −1/𝑏 ∗  (𝑙𝑛(−((𝑎 ∗  𝑦0  +  𝑏)/(𝑎 ∗  𝑦0)))) To check, we can enter: 

normal(desolve(y’/y=a*y+b) 

We get: 

(-b*exp(-(b*c_0-b*x)))/(a*exp(-(b*c_0-b*x))-1) 

Then, we can enter to check: 

normal(desolve([y’/y=a*y+b,y(x0)=y0],y) 

We get: 

[(-b*exp(b*x-b*x0+ln(y0/(a*y0+b))))/(a*exp(b*x-b*x0+ln(y0/(a*y0+b)))-

1)] 

We have then: 𝑐0  =  𝑥0  −  𝑙𝑛(𝑦0/(𝑎 ∗  𝑦0  +  𝑏))/𝑏 

Thus, by multiplying the numerator and denominator of 𝑦(𝑥) by exp(𝑏 ∗  𝑐0 −  𝑏 ∗  𝑥), we have: 

𝑦(𝑥)  =  (−𝑏/(𝑒𝑥𝑝(𝑏 ∗  𝑐_0 −  𝑏 ∗  𝑥)  ∗  𝑎 ∗  𝑒𝑥𝑝(−(𝑏 ∗  𝑐_0 −  𝑏 ∗  𝑥))  −  1) 

so 𝑦(𝑥)  = −𝑏/(𝑎 −  𝑒𝑥𝑝(𝑏 ∗  (𝑥 – 𝑐0)))  =  (−𝑏/(𝑎 ∗  (1 −  𝑒𝑥𝑝(𝑏 ∗  (𝑥 – 𝑐0))/𝑎)) 
We have 1/𝑎 =  − exp(−ln(−𝑎)) because 𝑎 <  0 

then 𝑦(𝑥)  =  (−𝑏/𝑎) ∗  (1/(1 +  𝑒𝑥𝑝(𝑏 ∗ (𝑥 – 𝑐0)  −  𝑙𝑛(−𝑎))) which is indeed the form announced. 
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When we know the values of 𝑓’ at 𝑥 =  𝑥0, 𝑥0 + 1… . 𝑥0 + 𝑛, we look for a logistic function 𝑦(𝑥) such as 

𝑦’(𝑥) fits the different values of 𝑓’(𝑥) the best. 
logistic_regression takes as parameters: 

– a list L1 which stores the values of 𝑦’ to 𝑥 =  𝑥0, 𝑥0 +  1… . 𝑥0 +  𝑛, 

– the value x0 of 𝑥0 
– the value y0 of 𝑦(𝑥0) when we know it, otherwise the calculator gets to estimate it... 

logistic_regression(L1,x0,y0) returns the functions y(x) and y’(x), the constant C, y1M 
and xM with y1M is the value y’(xM) which is the maximum of 𝑦’ obtained in 𝑥 =  𝑥𝑀, and then the 

linear correlation coefficient R of 𝑌 =  𝑦’/𝑦 function of y with the line 𝑌 =  𝑎 ∗  𝑦 +  𝑏. 
From the list L1, the calculator returns the list Ly by using the formula 𝑦(𝑡 +  1)  −  𝑦(𝑡)  =  𝑦’(𝑡), thus, 
we have Ly=[y0,y0+y0’,y0+y0’+y1’,....]. 
Then, the CAS performs a linear regression of L/Ly in term of Ly to get the values of a and b (𝑦’/𝑦 =
 𝑎 ∗  𝑦 +  𝑏 and 𝑦0 =  𝑦(𝑥0)) then finds the solution of this differential equation. 
 
We enter: 

logistic_regression([0.0,1.0,2.0,3.0,4.0],0,1) 

We get, written in blue, the signification of the values returned: 

[(-17.77)/(1+exp(-0.496893925384*x+2.82232341488+3.14159265359*i)), 

(-2.48542227469)/(1+cosh(-

0.496893925384*x+2.82232341488+3.14159265359 

-17.77,-1.24271113735,5.67993141131+6.32246138079*i, 0.307024935856] 

We enter: 

evalf(logistic_regression([1,2,4,6,8,7,5],0,2)) 

Or we enter: 

logistic_regression(evalf([1,2,4,6,8,7,5]),0,2.0)) 

We get: 

[64.8358166583/(1.0+exp(-0.551746244591*x+2.95837880348)), 

14.4915280084/(1.0+cosh(-0.551746244591*x+2.95837880348)), 

64.8358166583,7.24576400418,5.36184674112,-0.81176431297] 

To retrieve the value −0.81176431297 of the correlation coefficient, we enter: 

L:=[1,2,4,6,8,7,5]; 

y0:=2.0; 

Ly:=makelist(y0,1,size(L))+cumSum(L) 

We get: 

[3,5,9,15,23,30,35] 

then 

correlation(L/Ly,Ly) 

which returns 

-0.81176431297 
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Chapter 15 Statistics 

 
 

15.1 Statistics functions on a list: mean, variance, stddev, 

stddevp, median, quantile, quartiles, quartile1, 

quartile3 

See also 15.1.1 and 14. 
Useful functions for statistics whose data are lists: 

– mean to calculate the mean of the elements of a list. 
 
We enter: 

mean([3,4,2]) 

We get: 

3 

We enter: 

mean([1,0,1]) 

We get 

2/3 

– stddev to calculate the numerical standard deviation of the elements of a list. 
 
We enter: 

stddev([3,4,2]) 

We get: 

sqrt(2/3) 

We have indeed the mean which equals 3 and the standard deviation which equals: 

√
(3 −  3)2 + (4 −  3)2 + (2 −  3)2

3
 =  √

2

3
 

– stddevp to calculate an estimation of the numerical standard deviation of the population from 
a sample whose elements are supplied in a list. 
 
We enter: 

stddevp([3,4,2]) 

We get: 

1 

We have indeed the mean which equals 3 and the standard deviation which equals: 
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√
(3 −  3)2 + (4 −  3)2 + (2 −  3)2

2
 =  √

2

2
 =  1 

We have the relation: 

stddevp(l)^2=size(l)*stddev(l)^2/(size(l)-1). 

– variance to calculate the numerical variance of the elements of a list. 
 
We enter: 

variance([3,4,2]) 

We get: 

2/3 

– median to calculate the median of the elements of a list. 
 
We enter: 

median([0,1,3,4,2,5,6]) 

We get: 

3.0 

– quantile to calculate the deciles of the elements of a list. 
 
We enter: 

quantile([0,1,3,4,2,5,6],0.25) 

We get the first quartile: 

[1.0] 

We enter: 

quantile([0,1,3,4,2,5,6],0.5) 

We get the median: 

[3.0] 

We enter: 

quantile([0,1,3,4,2,5,6],0.75) 

We get the third quartile: 

[5.0] 

– quartiles returns the minimum, the first quartile, the median, the third quartile and the 
maximum of a statistical series. 
 
We enter: 

quartiles([0,1,3,4,2,5,6]) 

We get: 
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[[0.0],[1.0],[3.0],[5.0],[6.0]] 

– quartile1 returns the first quartile of a statistical series. 
 
We enter: 

quartile1([0,1,3,4,2,5,6]) 

We get: 

1.0 

– quartile3 returns the third quartile of a statistical series. 
 
We enter: 

quartile3([0,1,3,4,2,5,6]) 

We get: 

5.0 

Be A the list [0,1,2,3,4,5,6,7,8,9,10,11]. 
We enter: 

A:=[0,1,2,3,4,5,6,7,8,9,10,11] 

We get: 

11/2 for mean(A) 

sqrt(143/12) for stddev(A) 

0 for min(A) 

[1.0] for quantile(A,0.1) 

[2.0] for quantile(A,0.25) 

[5.0] for median(A) or for quantile(A,0.5) 

[8.0] for quantile(A,0.75) 

[9.0] for quantile(A,0.9) 

11 for max(A) 

[[0.0],[2.0],[5.0],[8.0],[11.0]] for quartiles(A) 

See also these functions for matrices at section 15.1.1 and for weighted lists at chapter 14. 

15.1.1 Statistics functions on the columns of a matrix: mean, stddev, 
variance, median, quantile, quartiles 

See also 15.1 and 14. 
Useful functions for statistics whose data are the columns of a matrix: 

– mean to calculate the mean numerical of statistical series which are the columns of a matrix. 
 
We enter: 

mean([[3,4,2],[1,2,6]]) 
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We get a vector whose components are the mean of columns: 

[2,3,4] 

We enter: 

mean([[1,0,0],[0,1,0],[0,0,1]]) 

We get 

[1/3,1/3,1/3] 

– stddev to calculate the numerical standard deviation of statistical series which are the 
columns of a matrix. 
 
We enter: 

stddev([[3,4,2],[1,2,6]]) 

We get a vector whose components are the standard deviation of columns: 

[1,1,2] 

– variance to calculate the numerical variance of statistical series which are the columns of a 
matrix. 
 
We enter: 

variance([[3,4,2],[1,2,6]]) 

We get a vector whose components are the variance of columns: 

[1,1,4] 

– median to calculate the median of statistical series which are the columns of a matrix. 
 
We enter: 

median([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0], 

[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]]) 

We get a vector whose components are the median of columns: 

[2.0,2.0,3.0,3.0,2.0,2.0,3.0] 

– quantile to calculate the decile according to the second argument, of statistical series which 
are the columns of a matrix. 
 
We enter: 

quantile([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0], 

[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]],0.25) 

We get a vector whose components are the first quartile of columns: 

[1.0,1.0,2.0,2.0,1.0,1.0,1.0] 

We enter: 

quantile([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0], 

[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]],0.75) 
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We get a vector whose components are the third quartile of columns: 

[4.0,4.0,5.0,5.0,5.0,5.0,5.0] 

– quartiles to calculate the minimum, the first quartile, the median, the third quartile and the 
maximum of statistical series which are the columns of a matrix. 
 
We enter: 

quartiles([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0], 

[3,4,2,5,6,0,1], [4,2,5,6,0,1,3], [2,5,6,0,1,3,4]]) 

We get the matrix, of first line the minimum of each column, of second line the first quartile of 
each column, of third line the median of each column, of fourth line the third quartile of each 
column and last line the maximum of each column: 

[[0.0,0.0,1.0,0.0,0.0,0.0,0.0],[1.0,1.0,2.0,2.0,1.0,1.0,1.0], 

[2.0,2.0,3.0,3.0,2.0,2.0,3.0],[4.0,4.0,5.0,5.0,5.0,5.0,5.0], 

[6.0,5.0,6.0,6.0,6.0,6.0,6.0]] 

15.2 Tables indexed by two strings: table 

A table is a list indexed by something more general than integers. 
A table can be used, for example, to store of telephone numbers indexed by two names. 
In CAS, the index of a table can be any objects of the CAS. 
The access is done by an algorithm which sorts by type then uses the order of each type (for example 
< for numerical type, lexicographical order for strings, etc., ...). 
table takes as argument a list or a sequence of equalities of the form: 
"index_name"=value_element. 

table returns this table. 
 
We enter: 

T:=table(3=-10,"a"=10,"b"=20,"c"=30,"d"=40) 

We enter: 

T["b"] 

We get: 

20 

We enter: 

T[3] 

We get: 

-10 

Example 

We want to encode the letters "a","b",.."z" by 1,2, . . . .26. 
 
We enter: 

alphab:="abcdefghijklmnopqrstuvwxyz"; 

then: 
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code:=table(seq(alphab[j]=j+1,j=0..25)); 

We enter 

code["c"] 

We get 

3 

or we write a function: 
 

Code(a):={ 

local code,alphab,j; 

alphab:="abcdefghijklmnopqrstuvwxyz"; 

code:=table(seq(alphab[j]=j+1,j=0..25)); 

return code(a); 

}; 

 
We enter 

Code("c") 

We get 

3 

Note: 
If we do an assignment of the type T[n]:= ... where T is the name of a variable and n an integer 

– if the variable T stores a list or a sequence, then the n-th element of T is modified, 

– if the variable T is not assigned, a table T is created with an entry (corresponding to the index 
𝑛). Note that once this assignment is done, T is not a list, even though 𝑛 is an integer. 
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Chapter 16 Lists 

 
 

16.1 Function MAKELIST makelist 

In HOME, MAKELIST creates a list from a symbolic expression. 

For instance, we create a list starting from 𝑋2 +  1, by having the variable X growing from 2 to 6 with a 

step of 1 (1 can be omitted), we enter: 

MAKELIST(X^2+1,X,2,6) 

We get: 

{5,10,17,26,37} 

We enter: 

MAKELIST(0,X,1,10) 

We get: 

{0,0,0,0,0,0,0,0,0,0} 

We create a list starting from 𝑋2 +  1, by having the variable X growing from 2 to 6 with a step of 2, we 
enter: 

MAKELIST(X^2+1,X,2,6,2) 

We get: 

{5,17,37} 

In CAS, we can use MAKELIST and makelist. makelist has a function as first argument, the 
second argument represents the initilal value of the variable and the third argument represents its final 
value. We can put a fourth argument which represents the step of the variable. 
Warning! The index also starts at 1. 
 
We enter: 

makelist(x->x^2,1,10) 

We get: 

[1,4,9,16,25,36,49,64,81,100] 

We enter: 

makelist(x->x^2,1,10,2) 

We get: 

[1,9,25,49,81] 
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16.2 Function SORT sort 

SORT or sort sorts by increasing order the components of a list. 
 
We enter: 

SORT([12,2,31,24,15]) 

We get: 

[2,12,15,24,31] 

We enter: 

SORT({12,2,31,24,15}) 

We get: 

{2,12,15,24,31} 

16.3 Function REVERSE 

REVERSE creates a list by reversing the order of the elements. 
 
We enter: 

REVERSE([1,22,3,4,5]) 

We get: 

[5,4,3,22,1] 

We enter: 

REVERSE({1,22,3,4,5}) 

We get: 

{5,4,3,22,1} 

16.4 Concatenate: CONCAT concat 

CONCAT or concat concatenates two lists or two vectors or two strings of characters or two matrices 
(the two matrices must have the same number of rows, and will be concatenated line by line.) 
 
We enter: 

CONCAT([1,2,3],[4,5]) 

We get: 

[1,2,3,4,5] 

We enter: 

CONCAT({1,2,3},{4,5}) 

We get: 
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{1,2,3,4,5} 

We enter: 

CONCAT("HE","LLO") 

We get: 

"HELLO" 

We enter: 

2=>A 

CONCAT([1,A,3],[4,5]) 

We get: 

[1,2,3,4,5] 

We enter: 

CONCAT([[1,2],[3,4]],[[4,5,6],[6,7,8]]) 

We get: 

[[1,2,4,5,6],[3,4,6,7,8]] 

We enter: 

2=>A 

CONCAT({1,A,3},{4,5}) 

We get: 

{1,2,3,4,5} 

To concatenate a string and a list into a list we use CONCAT. 
 
We enter: 

2=>A 

CONCAT([1,A,3]),"L1" 

We get: 

[1,2,3,"L1"] 

We enter: 

2=>A 

CONCAT("L1",[1,A,3]) 

We get: 

["L1",1,2,3] 

Warning! 
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To concatenate a string and a list into a string we use +. 
 
We enter: 

2=>A 

"L1="+[1,A,3] 

We get: 

"L1=[1,2,3]" 

We enter: 

2=>A 

[1,A,3]+"L1=" 

We get: 

"[1,2,3]L1=" 

We enter: 

2=>A 

"L1="+{1,A,3} 

We get: 

"L1={1,2,3}" 

16.4.1 Add an element at the end of a list: append 

append adds an element at the end of a list. 
 
We enter: 

append([3,4,2],1) 

We get: 

[3,4,2,1] 

We enter: 

append([1,2],[3,4]) 

We get: 

[1,2,[3,4]] 

16.4.2 Add an element at the beginning of a list: prepend 

prepend adds an element at the beginning of a list. 
 
We enter: 

prepend([3,4,2],1) 
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We get: 

[1,3,4,2] 

We enter: 

prepend([1,2],[3,4]) 

We get: 

[[3,4],1,2] 

16.5 Position in a list: POS 

POS returns the position of an element in a list, that is to say POS returns the index of the first 
occurence of the element or 0 if the element is not in the list. 
 
We enter: 

POS([4,3,1,2,3,4,5],4) 

Or we enter: 

POS({4,3,1,2,3,4,5},4) 

We get: 

1 

We enter: 

POS([4,3,1,2,3,4,5],2) 

Or we enter: 

POS({4,3,1,2,3,4,5},2) 

We get: 

4 

We enter: 

POS([4,3,1,2,3,4,5],6) 

Or we enter: 

POS({4,3,1,2,3,4,5},6) 

We get: 

0 

16.6 Function DIM dim SIZE size length 

SIZE or size or DIM or dim or length returns the length of the list (or of the strings) supplied as 
argument. 
Warning! 



 272 

In HOME and in the CAS SIZE returns the dimension of a matrix whereas in the CAS size returns 
the number of line of a matrix. 
 
We enter in HOME: 

SIZE({1,2,3}) 

We get: 

3 

We enter: 

SIZE([[1,2,3],[4,5,6]]) 

We get: 

{2,3} 

We enter in the CAS: 

size([1,2,3]) 

We get: 

3 

We enter: 

size([[1,2,3],[4,5,6]]) 

We get: 

2 

Warning! 
We enter in the CAS: 

SIZE([[1,2,3],[4,5,6]]) 

We get: 

[2,3] 

16.6.1 Get the reversed list: revlist 

revlist takes as argument a list (resp. a sequence). 
revlist returns the list (resp. the sequence) in reversed order. 
 
We enter: 

revlist([0,1,2,3,4]) 

We get: 

[4,3,2,1,0] 

We enter: 

revlist([0,1,2,3,4],3) 
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We get: 

3,[0,1,2,3,4] 

16.6.2 Get the list swapped starting from its n-th element: rotate 

rotate takes as argument a list and an relative integer (by default n=-1). 
rotate returns: 

– if n>0: the list obtained by swapping the n first elements with the end of the list,  
– if n<0: the list obtained by swapping the -n last elements with the beginning of the list. By 

default, n=-1 and we put the last element in first position. 
 
We enter: 

rotate([0,1,2,3,4]) 

We get: 

[4,0,1,2,3] 

We enter: 

rotate([0,1,2,3,4],2) 

We get: 

[2,3,4,0,1] 

We enter: 

rotate([0,1,2,3,4],-2) 

We get: 

[3,4,0,1,2] 

16.6.3 Get the list shifted starting from its n-th element: shift 

shift takes as argument a list and an relative integer (by default n=-1). 
shift returns: 

– if n>0: the list obtained by replacing the n first elements of the list by undef, then by swapping 
these n first elements with the end of the list, 

– if n<0: the list obtained by replacing the -n last elements of the list by undef, then by 
swapping the -n last elements with the beginning of the list. By default (n=-1) the first 
element equals undef and is followed by the list whose last element is removed. 

 
We enter: 

shift([0,1,2,3,4]) 

We get: 

[undef,0,1,2,3] 

We enter: 

shift([0,1,2,3,4],2) 

We get: 
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[2,3,4,undef,undef] 

We enter: 

shift([0,1,2,3,4],-2) 

We get: 

[undef,undef,0,1,2] 

16.6.4 Removing an element from a list: suppress 

suppress removes from a list the element of supplied index. 
Warning! The index of the first element is 0. 
 
We enter: 

suppress([3,4,2],1) 

We get: 

[3,2] 

16.6.5 Get the list without its first element: tail 

tail returns the list without its first element. 
 
We enter: 

tail([0,1,2,3]) 

We get: 

[1,2,3] 

l:=tail([0,1,2,3]) is equivalent to l:=suppress([0,1,2,3],0) 

16.6.6 Removing elements from a list: remove 

remove has two parameters: a boolean function f and a list l. 
remove removes the elements c from the list l, which checks f(c)=true. 
 
We enter: 

remove(x->(x>=2),[0,1,2,3,4,5]) 

We get: 

[0,1] 

Note 
To do the same thing with a string of characters, for example, remove all the "a" from a string: 
 
We enter: 

ord("a") 

We get: 

97 
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We enter: 

f(chn):={local l:=length(chn); return 

remove(x->(ord(x)==97),seq(chn[k],k,1,l));} 

Then, we enter: 

f("abracadabra") 

We get: 

["b","r","c","d","b","r"] 

Then, we enter: 

char(ord(["b","r","c","d","b","r"])) 

We get: 

"brcdbr" 

16.6.7 Right and left part straight of a list: right, left 

– right(l,n) returns the n last elements of a list l. 
 
We enter: 

right([1,2,3,4,5,6],4) 

We get: 

[3,4,5,6] 

– left(l,n) returns the n first elements of a list l. 
 
We enter: 

left([1,2,3,4,5,6,7,8],3) 

We get: 

[1,2,3] 

16.6.8 Checking whether an element is in a list: member 

member has two parameters: an element c and a list (or a set) L. 
member is a function which checks whether the element c is in the list L. 
member returns 0 if c is not in L, and returns otherwise: 

"the index of its first occurence". 

Warning! For sake of compatibility, please mind the order of the parameters! 
 
We enter: 

member(2,[1,2,3,4,2]) 

We get: 
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2 

We enter: 

member(2,% {1,2,3,4,2% }) 

We get: 

2 

16.6.9 Checkin whether an element is in a list: contains 

contains has two parameters: a list (or a set) L and an element c. 
contains is a function which checks whether the element c is in the list L. 
contains returns 0 if c is not in L, and otherwise returns: 

"the index of its first occurence". 

Warning! For sake of compatibility, please mind the order of the parameters! 
 
We enter: 

contains([1,2,3,4,2],2) 

We get: 

2 

We enter: 

contains(% {1,2,3,4,2% },2) 

We get: 

2 

16.6.10 Counting the elements of a list or of a matrix such as a property: 

count 

Depending on its parameters, count is able to count in a list l the number of elements: 
– equal to a with count(x->x==a,l), 
– greather than a with count(x->x>a,l), 
– lower than a with count(x->x<a,l), 
– with count(x->1,l) 

Indeed, count has one, two or three parameters: 
1. a list of integers l 
2. a real function f,  

 list l of length n or a matrix a of dimension p*q, 

 an optional argument row or col, in case of the second parameter is a matrix a. 
 
When count has: 

– one parameter which is a list of integers l, count(l) counts the number of occurences by 
returning a matrix of first column the elements of the list l sorted, and second column the 
number of occurences of this element in the list. 

– two parameters, count applies the function to the elements of the list (or of the matrix) and in 
returns the sum, that is to say, count(f,l) returns the number 
f(l[0])+f(l[1])+..f(l[n-1]) or count(f,a) returns the number 
f(a[0,0])+....+f(a[p-1,q-1]). 
If f is a boolean function, count returns the number of elements of the list (or of the matrix) 
for which the boolean function is true. 
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– three parameters, count applies the function to the elements of each line (resp. column) of 
the matrix a if the optional argument is row (resp. col) and returns a list of length p having as 
k-nth element: 

f(a[k,0])+...f(a[k,q-1]) (resp. a list of length q having as k-nth element: 
f(a[0,k])+..f(a[p-1,k])). 

 
We enter: 

count([1,3,1,1,2,10,3]) 

We get: 

[[1,3],[2,1],[3,2],[10,1]] 

We enter: 

count((x)->x,[2,12,45,3,7,78]) 

Or we enter: 

count((x)->x,[[2,12,45],[3,7,78]]) 

We get: 

147 

because we have: 2 + 12 + 45 + 3 + 7 + 78 = 147. 
 
We enter: 

count((x)->x,[[2,12,45],[3,7,78]],row) 

We get: 

[59,88] 

because we have: 2 + 12 + 45 = 59 𝑎𝑛𝑑 3 + 7 + 78 = 88. 
 
We enter: 

count((x)->x,[[2,12,45],[3,7,78]],col) 

We get: 

[5,19,123] 

because we have: 2+3=5,12+7=10,45+78=123Tapez une équation ici.. 
 
We enter: 

count((x)->x<12,[2,12,45,3,7,78]) 

We get: 

3 

Indeed, (𝑥) → 𝑥 < 12 is a boolean function which equals 1 if 𝑥 < 12 and 0 otherwise. 

We have then 1 +  0 +  0 +  1 +  1 +  0 =  3. 
 
We enter: 
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count((x)->x==12,[2,12,45,3,7,78]) 

Or we enter: 

count((x)->x==12,[[2,12,45],[3,7,78]]) 

We get: 

1 

Indeed, (𝑥)−> 𝑥 == 12 is a boolean function which equals 1 if 𝑥 == 12 and 0 otherwise. 

We get then the number of terms equal to 12. Here it is 1. 
 
We enter: 

count((x)->x>12,[2,12,45,3,7,78]) 

We get: 

2 

Indeed, (𝑥) → 𝑥 > 12 is a boolean function which equals 1 if 𝑥 > 12 and 0 otherwise. 

We have then 0 +  0 +  1 +  0 +  0 +  1 =  2. 
 
We enter: 

count(x->x^2,[3,5,1]) 

We get: 

35 

Indeed, we have: 32 + 52 + 11 =  35. 
We enter: 

count(id,[3,5,1]) 

We get: 

9 

Indeed, id is the function identity and we have: 3 + 5 + 1 = 9. 
 
We enter: 

count(1,[3,5,1]) 

We get: 

3 

Indeed, 1 is the constant function equal to 1 and we have: 1 + 1 + 1 = 3. 

16.6.11 Select elements of a list: select 

In CAS, select has two parameters: a boolean function f and a list L. 
select selects the elements c of the list L which checks f(c)=true. 
 
We enter: 



 279 

select(x->(x>=2),[0,1,2,3,4,5]) 

We get: 

[2,3,4,5] 

16.7 List of differrences between consecutive terms: ΔLIST deltalist 

In HOME, (resp. CAS), ΔLIST (resp. deltalist) returns the list of differerences between the 

components of the list supplied as argument. 
 
We enter in HOME: 

ΔLIST([1,21,34,41,52]) 

We get: 

[20,13,7,11] 

We enter in HOME: 

ΔLIST({1,21,34,41,52}) 

We get: 

{20,13,7,11} 

We enter in the CAS: 

deltalist([1,21,34,41,52]) 

We get: 

[20,13,7,11] 

16.8 Sum of the elements of a list: ΣLIST sum 

In HOME, ΣLIST returns the sum of components of the list supplied as argument. 

 
We enter: 

ΣLIST([1,2,3,4,5]) 

We get: 

15 

We enter: 

ΣLIST({1,2,3,4,5}) 

We get: 

15 

In CAS, sum returns the sum of the components of the list supplied as argument. 
 
We enter: 
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sum([1,2,3,4,5]) 

We get: 

15 

16.9 Product of the elements of a list: ΠLIST product 

In HOME, ΠLIST returns the product of the components of the list supplied as argument. 

 
We enter: 

ΠLIST([1,2,3,4,5]) 

We get: 

120 

We enter: 

ΠLIST({1,2,3,4,5}) 

We get: 

120 

In CAS, product returns the product of the components of the list supplied as argument. 
 
We enter: 

product([1,2,3,4,5]) 

We get: 

120 

16.9.1 Apply a function of one variable to the elements of a list: map apply 

map, or apply, is used to apply a function to the elements of a list, but these two instructions are not 
of synonymous. We have: 

– apply has two parameters: a function f and a list L. 
apply(f,L) returns [f(L[0]),f(L[1]),...f(L[size(L)-1])]. 
Warning! apply answers [] if the second element is not a list. 

– map has two parameters: an expression E or a list L, and a function f. 
map(E,f) returns f(E) and map(L,f) returns [f(L[0]),f(L[1]),...f(L[size(L)-
1])]. 

Warning!, Please mind that, for sake of compatibility, the orders of the parameters are 
different for map and apply. 
When the list is a matrix and the function must apply to each element of a matrix, matrix 
must be put as optional argument to map. 

 
We enter: 

apply(x->x+1,[3,5,1]) 

or 

map([3,5,1],x->x+1) 
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this adds 1 to each element of the list, and we get: 

[4,6,2] 

Example with a matrix 
We enter: 

apply(x->x+1,[[3,5,1],[3,5,1],[3,5,1]]) 

or 

map([[3,5,1],[3,5,1],[3,5,1]],x->x+1) 

this adds 1 to each element of the list, that is to say to each line of the matrix and since 
[3,5,1]+1=[3,5,2], we get: 

[[3,5,2],[3,5,2],[3,5,2]] 

We enter: 

map([[3,5,1],[3,5,1],[3,5,1]],x->x+1,matrix) 

this adds 1 to each element of the matrix, and we get: 

[[4,6,2],[4,6,2],[4,6,2]] 

Other examples. We enter: 

apply(x->x^2,[3,5,1]) 

or 

map([3,5,1],x->x^2) 

or we define the function ℎ(𝑥)  =  𝑥^2 
by entering: 

h(x):=x^2 

then 

apply(h,[3,5,1]) 

or 

map([3,5,1],h) 

We get: 

[9,25,1] 

We enter: 

apply(h,[[3,5,1],[3,5,1],[3,5,1]]) 

or 

map([[3,5,1],[3,5,1],[3,5,1]],h) 

or 
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map([[3,5,1],[3,5,1],[3,5,1]],h,matrix) 

We get each element raised to square: 

[[9,25,1],[9,25,1],[9,25,1]] 

We define the function 𝑔(𝑥) =  [𝑥, 𝑥2, 𝑥3] by entering: 

g(x):=[x,x^2,x^3] 

or 

g:=(x)->[x,x^2,x^3] 

then, we enter: 

apply(g,[3,5,1]) 

or 

map([3,5,1],g) 

We make 𝑔 proceed on 3, on 5, then on 1, and we get: 

[[3,9,27],[5,25,125],[1,1,1]] 

Note: 
If l1,l2,l3 are lists: 

sizes([l1,l2,l3])=map(size,[l1,l2,l3]) 

16.9.2 Apply a function of two variables to elements of two lists: zip 

zip is used to apply a function of two variables to elements of two lists. 
 
We enter: 

zip(’sum’,[a,b,c,d],[1,2,3,4]) 

We get: 

[a+1,b+2,c+3,d+4] 

We enter: 

zip((x,y)->x^2+y^2,[4,2,1],[3,5,1]) 

Or we enter: 

f:=(x,y)->x^2+y^2 

then, 

zip(f,[4,2,1],[3,5,1]) 

We get: 

[25,29,2] 

We enter: 
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f:=(x,y)->[x^2+y^2,x+y] 

then, 

zip(f,[4,2,1],[3,5,1]) 

We get: 

[[25,7],[29,7],[2,2]] 

16.10 Convert a list to a matrix: list2mat 

list2mat allows to get the matrix of the terms of the list supplied as argument by splitting the list 
according to the number of columns specified. If terms are missing, the list is supplemented by zeros. 
 
We enter: 

list2mat([5,8,1,9,5,6],2) 

We get: 

[[5,8],[1,9],[5,6]] 

We enter: 

list2mat([5,8,1,9],3) 

We get: 

[[5,8,1],[9,0,0]] 

Note: 

In the answer, the delimitors of a matrix are ⟦  and  ⟧, whereas the delimitors of a list are [ and ] (the 
vertical line of the brackets is thicker for the matrices). 

16.11 Convert a matrix to a list: mat2list 

mat2list allows to get the list of the terms of the matrix supplied as argument. 
 
We enter: 

mat2list([[5,8],[1,9]]) 

We get: 

[5,8,1,9] 

16.12 Useful functions for the lists and the components of a vector 

16.12.1 Norms of a vector: maxnorm l1norm l2norm norm 

See also 20.11.1 for the different instructions to get the norms of a matrix. 
The different instructions to get the norms of a vector are: 

– maxnorm to calculate the norm 𝑙∞ of a vector: it is the maximum of the absolute values of its 
coordinates. 
We enter: 
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maxnorm([3,-4,2]) 

Or we enter: 

maxnorm(vector(3,-4,2)) 

We get: 

4 

Indeed: 𝑥 = 3, 𝑦 = −4, 𝑧 = 2 and 4 = max(|𝑥|, |𝑦|, |𝑧|). 
– l1norm to calculate the norm 𝑙1 of a vector: it is the sum of the absolute values of its 

coordinates. 
We enter: 

l1norm([3,-4,2]) 

Or we enter: 

l1norm(vector(3,-4,2)) 

We get: 

9 

Indeed: 𝑥 = 3, 𝑦 = −4, 𝑧 = 2 and 9 = |𝑥| + |𝑦| + |𝑧|. 
– norm or l2norm to calculate the norm 𝑙2 of a vector: it is the square root of the sum of the 

squares of its coordinates. 
We enter: 

norm([3,-4,2]) 

Or we enter: 

norm(vector(3,-4,2)) 

We get: 

sqrt(29) 

Indeed: 𝑥 = 3, 𝑦 = −4, 𝑧 = 2 and 29 =  |𝑥|2 + |𝑦|2 + |𝑧|2. 

16.12.2 Normalizing the components of a vector: normalize 

normalize normalizes the components of a vector and returns the components of a vector of norm 1 

according to the norm 𝑙2 (the square root of the sum of the squares of its coordinates). 
 
We enter: 

normalize([3,4,5]) 

We get: 

[3/(5*sqrt(2)),4/(5*sqrt(2)),5/(5*sqrt(2))] 

Indeed: 𝑥 = 3, 𝑦 = 4, 𝑧 = 5 and 50 =  |𝑥|2 + |𝑦|2 + |𝑧|2. 
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16.12.3 Cumulated sums of the elements of a list: cumSum 

cumSum allows to do the cumulated sums of the elements of a list, or of a sequence of real numbers, 
or of decimals, or of string of characters. 
cumSum takes as argument a list or a sequence. 
cumSum returns a list or a sequence, the element of index k being obtained by doing the sum of the 
elements of index 1. . . 𝑘. 
If l is a list, cumSum returns the list lr which equals [sum(l[j],j=1..k)$(k=1..size(l))]. 
If l is a sequence, cumSum returns the sequence lr which equals 
sum(l[j],j=1..k)$(k=1..size(l)). 
 
We enter: 

L:=cumSum(1,2,3) 

We get: 

1,3,6 

We enter: 

L:=cumSum([1,2,3]) 

We get: 

[1,3,6] 

We enter: 

c[2] 

We get: 

3 

16.12.4 Term by term sum of two lists: + .+ 

The term by term sum of two lists is done with the infix operator + or .+ and also with the prefix 
operator ’+’. 
If the two lists are not of same length, the shortest list is supplemented by zeros. 
Please note the difference with sequences: if the infix operator + takes as arguments two sequences, 
it returns the sum of the terms of the two sequences. 
 
We enter: 

[1,2,3]+[4,3,5] 

Or we enter: 

[1,2,3] .+[4,3,5] 

Or we enter: 

’+’([1,2,3],[4,3,5]) 

Or we enter: 

’+’([[1,2,3],[4,3,5]]) 

We get: 
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[5,5,8] 

We enter: 

[1,2,3,4,5,6]+[4,3,5] 

Or we enter: 

[1,2,3,4,5,6].+[4,3,5] 

Or we enter: 

’+’([[1,2,3,4,5,6],[4,3,5]]) 

Or we enter: 

’+’([[1,2,3,4,5,6],[4,3,5]]) 

We get: 

[5,5,8,4,5,6] 

Warning! 
When the operator + is prefix, it must be quoted, that is to say written ’+’. 
If we enter: 

[1,2,3,4,5,6]+4 

We get, because the list is considered as the coefficients of a polynomial: 

[1,2,3,4,5,10] 

16.12.5 Term by term difference of two lists: - .- 

The term by term difference of two lists is done with the infix operator - or .- and also with the prefix 
operator ’-’. 
If the two lists are not of same length, the shorted list is supplemented by zeros. 
Please note the difference with sequences: if the infix operator - takes as arguments two sequences, it 
returns the difference of the sums of the terms of each of the sequences. 
 
We enter: 

[1,2,3]-[4,3,5] 

Or we enter: 

[1,2,3] .- [4,3,5] 

Or we enter: 

’-’([1,2,3],[4,3,5]) 

Or we enter: 

’-’([[1,2,3],[4,3,5]]) 

We get: 

[-3,-1,-2] 

Warning! 
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When the operator - is prefix, it must be quoted, that is to say written ’-’. 

16.12.6 Term by term product of two lists: .* 

See also product for lists and matrices (cf 20.4.4 and ??) 
The term by term product of two lists of same length is done with the infix operator.*. 

 
We enter: 

[1,2,3] .* [4,3,5] 

We get: 

[4,6,15] 

We enter: 

[[1,2],[4,3]] .* [[4,3],[5,6]] 

We get: 

[[4,6],[20,18]] 

16.12.7 Quotient term by term of two lists: ./ 

The quotient term by term of two lists of same length is done with the infix operator ./. 
 
We enter: 

[1,2,3] ./ [4,3,5] 

We get: 

[1/4,2/3,3/5] 
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Chapter 17 Strings of characters 

 
 

17.1 Write a string or a character: " 

Strings of characters are written by using the quotes as delimitors (" " it is the key ALPHA 0). 
A character is a string of one character; indeed the delimitors ’ ’ or (quote key Shift ()) are used to 
specify that the variable put between the quotes must not be evaluated. 
 
Example: 
"a" is a character but ’a’ or quote(a) designates the variable a non evaluated. 
The characters of a string are designated by an index (as for the lists). 
To access an element of a string, we enter the index of this element between two brackets (the index 
which start at 1): [] [[]]. 
 
Example: 
 
We enter: 

"hello"[2] 

We get: 

"e" 

We enter: 

"hello"[[2]] 

We get: 

"e" 

Note: 
When we put a string of characters on the entry line, this generates an echo as a result. 
 
Example: 
 
We enter: 

"hello" 

We have "hello" written as a question and we get hello as answer. 
We enter: 

"hello"+", how do you do?" 

We get: 

"hello, how do you do?" 
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17.1.1 To concatenate two numbers and strings: cat + 

+ or cat evaluates the arguments and concatenates them in a string. This allows so to convert a real 
number into a string of characters. 
 
We enter: 

"="+123 

Or we enter: 

cat("=",123) 

We get: 

"=123" 

We enter: 

a:=123 

then, 

"We get: "+a) 

or 

cat("We get: ",a) 

We get: 

"We get: 123" 

17.1.2 Concatenating a sequence of words: cumSum 

cumSum allows to do the concatenation of a list of strings. 
cumSum takes as argument a list of strings. 
cumSum returns a list of strings, the element of index 𝑘 being obtained by concatenating the strings 

before it (i.e those of index 1. . . 𝑘 − 1) with the string of index 𝑘. 
If l is a list of 𝑘 strings, cumSum returns the list lr equal to 
[sum(l[j],j=1..k)$(k=1..size(l))] 
 
We enter: 

c:=cumSum("Hello ","my ","friend") 

We get: 

" Hello "," Hello my "," Hello my friend" 

We enter: 

c[2] 

We get: 

" Hello my " 
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17.1.3 Finding a character in a string: INSTRING inString 

inString has two parameters: a string of characters S and a character c. 
inString is a function which checks whether the character c is in the string of characters S. 
inString returns 0 if c is not in S and, otherwise, returns "the index of its first 

occurence". 
 
We enter: 

inString("abcded","d") 

We get: 

4 

We enter: 

inString("abcd","e") 

We get: 

0 

17.2 ASCII codes: ASC asc 

ASC or asc returns the list of ASCII codes of the characters of the string. 
We enter the " " thanks to the key ALPHA 0. 
 
We enter in HOME: 

ASC("A") 

We get: 

[65] 

We enter in HOME: 

ASC("ABC") 

We get: 

[65,66,67] 

We enter in the CAS: 

asc("A") 

We get: 

[65] 

We enter in the CAS: 

asc("ABC") 

We get: 

[65,66,67] 
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17.3 Character from ASCII code: CHAR char 

CHAR or char returns the string corresponding to the characters having as ASCII code those of the 
argument. 
 
We enter in HOME: 

char(65) 

or 

char({65}) 

We get: 

"A" 

We enter: 

char([65,66,67]) 

or 

char({65,66,67}) 

We get: 

"ABC" 

We enter in the CAS: 

char(65) 

or 

char([65]) 

or 

char({65}) 

We get: 

"A" 

We enter: 

char([65,66,67]) 

or 

char({65,66,67}) 

We get: 

"ABC" 

17.3.1 Converting a real or an integer into a string: string 

string evaluates its argument and converts it into a string of characters. 
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We enter: 

string(1.32*10^20) 

We get: 

"1.23e+20" 

We enter: 

a:=1.32*10^4) 

string(a+a) 

We get: 

"26400" 

17.4 Use a string as a number or a command: expr 

17.4.1 Use a string as a number 

expr allows to use a string of digits without leading zero as an integer written in basis 10, or a string 

of digits with a point as a decimal number written in basis 10. 
expr returns this integer. 
 
We enter: 

expr("123")+1 

We get: 

124 

We enter: 

expr("45.67")+2.12 

We get: 

47.79 

expr also allows to use a string of digits with no 8, nor 9, and with no leading zero as an integer 
written in basis 8. 
 
We enter: 

expr("0123") 

We get: 

83 

Indeed, 1 ∗ 82 + 2 ∗ 8 + 3 =  83 
Note: 
If we enter expr("018"), we get the decimal number 18.0. 
expr allows to use a string containing digits and the letters a,b,c,d,e,f, and with the prefix 0x as 
an integer written in basis 16. 
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We enter: 

expr("0x12f") 

We get: 

303 

Indeed, 1 ∗ 162 + 2 ∗ 16 + 15 =  303 

17.4.2 Use a string as a command name 

expr allows to use a string of characters as a command. 
expr is mostly useful in a program. 
expr takes as argument a string of characters which can be interpreted as a command (or the name 
of a variable which stores a string or an expression returning a string). 
expr transforms the string in an expression, then evaluates this expression: 
to do an assignment, we should not write expr("a"):=2, but expr("a:=2") (see also expr 
17.4) 
 
We enter: 

expr("c:=1") 

We get: 

The variable c stores 1 

We enter: 

a:="ifactor(54)";expr(a) 

or: 

expr("ifactor(54)") 

We get: 

2*3^3 

17.5 Evaluate an expression in the form of a string: string 

string evaluates an expression and returns its value in the form of a string of characters. 
We can also use the concatenation of the expression with an emtpy string. 
 
We enter: 

string(ifactor(6)) 

Or we enter: 

ifactor(6)+"" 

Or we enter: 

""+ifactor(6) 

We get: 
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"2*3" 

We enter: 

string(’(ifactor(6)’)) 

We get: 

"ifactor(6)" 

17.6 inString 

inString(l,c) checks whether c is in the string l and returns the index of 𝑐 or 0. 
 
We enter: 

inString"ABCDEF","C" 

We get: 

3 

We enter: 

inString"ABCDEF","G" 

We get: 

0 

17.7 Left part of a string: left 

left(l,n) returns the left part of length 𝑛 of the string 𝑙. 
 
We enter: 

left("ABCDEF",3) 

We get: 

"ABC" 

17.8 Right part of a string: right 

right(l,n) returns the right part of length 𝑛 of the string 𝑙. 
 
We enter: 

right("ABCDEF",2) 

We get: 

"EF" 
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17.9 Mid part of a string: mid 

mid(l,d,n) returns the string extracted from the string 𝑙, starting by the character of index 𝑑, and 

length 𝑛 (by default 𝑛 = dim(𝑙) −  𝑑). 
 
We enter: 

mid("ABCDEF",2,3) 

We get: 

"BCD" 

We enter: 

mid("ABCDEF",2) 

We get: 

"BCDEF" 

17.10 Rotate last character: rotate 

rotate returns the string obtained by turning the last character first. 
 
We enter: 

rotate("ABC") 

We get: 

("CAB") 

17.11 Length of a string: dim DIM size SIZE length 

DIM (or dim or size or SIZE or length returns the length of the string (or of the list). 
 
We enter in HOME or in the CAS: 

DIM("ABC") 

We get: 

3 

We can also use SIZE 
We enter: 

SIZE("ABC") 

We get: 

3 

Note 
In HOME, DIM and SIZE are equivalent for matrices. 
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We enter in HOME: 

DIM([[1,2,3],[4,5,6]]) 

We get: 

{2,3} 

We enter in HOME: 

SIZE([[1,2,3],[4,5,6]]) 

We get: 

{2,3} 

In CAS, dim and size are not equivalent for matrices. 
dim returns the list giving the dimension of a matrix whereas size returns the length of the list. 
 
We enter in the CAS: 

dim([[1,2,3],[4,5,6]]) 

We get: 

[2,3] 

We enter in the CAS: 

size([[1,2,3],[4,5,6]]) 

We get: 

2 

17.12 Concatenate two strings: + 

+ concatenates two strings. 
 
We enter: 

"ABC"+"DEF" 

We get: 

"ABCDEF" 

We can also use CONCAT 
We enter: 

CONCAT("ABC","DEF") 

We get: 

"ABCDEF" 
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17.13 Get the list or the string without its first element: tail 

tail(s) returns the list or the string s without its first element. 
 
We enter: 

tail([0,1,2,3]) 

We get: 

[1,2,3] 

l:=tail([0,1,2,3]) is equivalent to l:=suppress([0,1,2,3],0) 
We enter: 

tail("abcdef") 

We get: 

"bcdef" 

l:=tail("abcdef") is equivalent to l:=suppress("abcdef","a") 

17.14 First element of a list or of a string: head 

head(s) returns the first element of the list s or the first character of the strings s. 
 
We enter: 

head([0,1,2,3]) 

We get: 

0 

We enter: 

head("abcdef") 

We get: 

"a" 
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Chapter 18 Polynomials 

 

18.1 Coefficients of a polynomial: POLYCOEF 

POLYCOEF returns the coefficients of a polynomial knowing its roots. 
 
We enter: 

POLYCOEF([2,1]) 

or we enter: 

POLYCOEF(2,1) 

We get: 

poly1[1,-3,2] 

this represents the polynomial 𝑋2–  3𝑋 +  2 =  (𝑋 –  2) ∗  (𝑋 –  1) 

We enter: 

POLYCOEF([2,-1,3,-4]) 

We get: 

poly1[1,0,-15,10,24] 

this represents the polynomial 𝑋4–  15𝑋2 +  10𝑋 +  24 

18.2 Polynomial from coefficients: POLYEVAL 

POLYEVAL returns the symbolic writting of a polynomial supplied by the list of its coefficients or 
POLYEVAL evaluates at a point a polynomial supplied by the list of its coefficients. 
 
We enter: 

POLYEVAL({1,0,-15,10,24}) 

or we enter: 

POLYEVAL([1,0,-15,10,24]) 

We get: 

X^4-15*X^2+10*X+24 

We enter: 

POLYEVAL({1,0,-15,10,24},4) 

or we enter: 

POLYEVAL([1,0,-15,10,24],4) 
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We get: 

80 

because 44–  15 ∗  42 +  10 ∗  4 +  24 =  80 

18.3 Expand a polynomial: POLYFORM 

POLYFORM expands a polynomial supplied by an expression of one or several variables. 
POLYFORM also permits to factorize a polynomial of one or several variables and do the decomposition 
into simple elements of a rational fraction. 
 
We enter: 

POLYFORM((X+2)^3+5) 

or 

POLYFORM((X+2)^3+5,X) 

We get: 

X^3+6*X^2+12*X+13 

We enter: 

POLYFORM((X+Y)^3+5) 

or 

POLYFORM((X+Y)^3+5,X,Y) 

We get: 

X^3+3*X^2*Y+3*X*Y^2+Y^3+5 

We enter: 

POLYFORM((X+Y)^3+5,Y,X) 

We get: 

Y^3+3*Y^2*X+3*Y*X^2+X^3+5 

We enter: 

POLYFORM((X+2)^2+5,X) 

We get: 

X^2+4*X+8 

We enter: 

POLYFORM((X+Y)^2+5) 

We get: 

X^2+2*X*Y+Y^2+5 
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We enter: 

POLYFORM((X^2+2*X+1)*(X-1))) 

We get: 

X^3+X^2-X-1) 

To factorize we enter: 

POLYFORM(X^3+X^2-X-1,’*’) 

We get: 

(X-1)*(X+1)^2 

We enter: 

POLYFORM(X^2-Y^2,’*’) 

We get: 

(X-Y)*(X+Y) 

We enter: 

POLYFORM(1/(X^2-Y^2),’*’) 

We get: 

1/((X-Y)*(X+Y)) 

To perform the decomposition into simple elements of a rational fraction, we enter: 

POLYFORM(1/(1-X^2)^2),’+’ 

We get: 

-1/4/(X-1)^2-1/4/(X-1)+1/4/(X+1)^2+1/4/(X+1) 

We enter: 

POLYFORM(1/(X^2-Y^2)),’+’ 

We get: 

1/(2*Y)/(X+Y)-1/(2*Y)/(X-Y) 

Note: 
We can also use STO to get a rewritting of an expression: 

– STO STO to evaluate formally an expression, 
– STO + to expand or to do a decomposition into simple elements 
– STO * to factorize 

 
We enter from Home: 

X*SIN(X) STO STO 

We get: 

X*SIN(X) 
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We enter: 

∂(X*SIN(X),X) STO STO 

We get: 

SIN(X)+X*COS(X) 

We enter: 

 ∫  (SIN(X),X) STO STO 

We get: 

-COS(X) 

We enter: 

(X+Y)^2+5 STO + 

We get: 

X^2+2*X*Y+Y^2+5 

We enter: 

1/(1-X^2)^2 STO + 

We get: 

-1/4/(X-1)^2-1/4/(X-1)+1/4/(X+1)^2+1/4/(X+1) 

We enter: 

X^3+X^2-X-1 STO *) 

We get: 

(X-1)*(X+1)^2 

18.4 Roots of a polynomial from its coefficients: POLYROOT 

POLYROOT returns the roots of a polynomial knowing its coefficients. 
 
We enter: 

POLYROOT({1,0,-15,10,24}) 

Or we enter: 

POLYROOT([1,0,-15,10,24]) 

We get: 

[-1,2,3,-4] 

which are the four roots of the polynomial 𝑋4–  15𝑋2 +  10𝑋 +  24 
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Chapter 19 Recurrent sequences 

19.1 Values of a recurrent sequence or of a system of recurrent sequences: 

seqsolve 

See also rsolve 19.0.2. 
seqsolve takes as argument the expression or the list of expressions which define(s) (one of) the 
relation(s) of recurrence, for example 𝑓(𝑥, 𝑛) if the recurrence relation is 𝑢𝑛+1 = 𝑓(𝑢𝑛, 𝑛) (resp. 

𝑔(𝑥, 𝑦, 𝑛) if the recurrence relation is 𝑢𝑛+2 = 𝑔(𝑢𝑛, 𝑢𝑛+1, 𝑛) = 𝑔(𝑥, 𝑦, 𝑛)), the name of variables used 

(for example [𝑥, 𝑛] (resp. [𝑥, 𝑦, 𝑛])) and the start values of the sequences: for example a if 𝑢0 =  𝑎 

(resp. [𝑎, 𝑏] if 𝑢_0 =  𝑎 and 𝑢1 =  𝑏). 
The recurrence relation must includes a linear homogenous part, the non homogenous part must be a 
linear combination of products of polynomial in 𝑛 by a geometrical sequence in 𝑛. seqsolve then 

returns the value of the sequence on 𝑛. 
 
Examples: 

– Values of the sequence 𝑢0 =  3, 𝑢𝑛+1 =  2𝑢𝑛 +  𝑛 
 
We enter: 

seqsolve(2x+n,[x,n],3) 

We get: 

-n-1+4*2^n 

We can also press rsolve(u(n+1)=2*u(n)+n,u(n),u(0)=3) (cf19.0.2) 
 

– Values of the sequence 𝑢0 =  3, 𝑢𝑛+1 =  2𝑢𝑛 +  𝑛3
𝑛 

 
We enter: 

seqsolve(2x+n*3^n,[x,n],3) 

We get: 

(n-3)*3^n+6*2^n 

– Values of the sequence 𝑢0 =  0, 𝑢1 =  1, 𝑢𝑛+1 =  𝑎 +  𝑢𝑛−1 for 𝑛 >  0. 
 
We enter: 

seqsolve(x+y,[x,y,n],[0,1]) 

We get: 

(5+sqrt(5))/10*((sqrt(5)+1)/2)^(n-1)+ 

(5-(sqrt(5)))/10*((-sqrt(5)+1)/2)^(n-1) 

– Values of the sequence 𝑢0 =  0, 𝑢1 =  1, 𝑢𝑛+2 =  2 ∗  𝑢𝑛+1 + 𝑢𝑛  +  𝑛 +  1 for 𝑛 >  0. 
By hand, we find 𝑢2 =  3, 𝑢3 =  9, 𝑢4 =  24, etc., ... 
 
We enter: 

seqsolve(x+2y+n+1,[x,y,n],[0,1]) 
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We get: 

(-4*n-3*(-(sqrt(2)-1))^n*sqrt(2)+2*(-(sqrt(2)-1))^n+3*(sqrt(2)+1)^n 

Check that n:=4 returns 24 
Or we enter because we have 𝑢𝑛+1 =  2𝑢𝑛 + 𝑣𝑛 +  𝑛 and 𝑣𝑛+1 = 𝑢𝑛 (so 𝑣𝑛 = 𝑢𝑛−1) 
with 𝑢0 =  0 and 𝑢1 =  2𝑢0 + 𝑣0 +  0 =  1 then 𝑣0 =  1: 

seqsolve([2x+y+n,x],[x,y,n],[0,1]) 

We get: 

[(-1)/2-(-2-3*sqrt(2))/8*(sqrt(2)+1)^n-(-2+3*sqrt(2))/8*(-

sqrt(2)+1)^n-1/2*n, -(-4+sqrt(2))/8*(sqrt(2)+1)^n-(-4-sqrt(2))/8*(-

sqrt(2)+1)^n-1/2*n] 

Check that n:=4 returns 24 
 

– Values of the sequence 𝑢_0 =  0, 𝑣0 =  1, 𝑢𝑛+1 = 𝑢𝑛  +  2𝑣𝑛, 𝑣𝑛+1 = 𝑢𝑛  +  𝑛 +  1 for 𝑛 >  0. 
 
We enter: 

seqsolve([x+2*y,n+1+x],[x,y,n],[0,1]) 

We get: 

[(-2*n-(-1)^n+2^n*4-3)/2,((-1)^n+2*2^n-1)/2] 

– Values of the sequence 𝑢0 =  0, 𝑣0 =  1, 𝑢𝑛+1 = 𝑢𝑛  +  2𝑣𝑛 +  𝑛 +  1, 𝑣𝑛 + 1 =  𝑢𝑛 for 𝑛 >  0. 
 
We enter: 

seqsolve([x+2*y+n+1,x],[x,y,n],[0,1]) 

We get: 

[(-2*n-(-1)^n*3+2^n*8-5)/4,(-2*n+(-1)^n*3+2^n*4-3)/4] 

– Values of the sequence 𝑢0 =  0, 𝑣0 =  1, 𝑢𝑛+1 = 𝑢𝑛  +  𝑣𝑛 , 𝑣𝑛+1 = 𝑢𝑛 – 𝑣𝑛 for 𝑛 >  0. 
 
We enter: 

seqsolve([x+y,x-y],[x,y,n],[0,1]) 

We get: 

[(-4*n-3*(-(sqrt(2)-1))^n*sqrt(2)+ 

2*(-(sqrt(2)-1))^n+ 3*(sqrt(2)+1)^n*sqrt(2)+ 

2*(sqrt(2)+1)^n-4)/8, (-4*n+(-(sqrt(2)-1))^n*sqrt(2)+ 

4*(-(sqrt(2)-1))^n-(sqrt(2)+ 1)^n*sqrt(2)+ 

4*(sqrt(2)+1)^n)/8] 

– Values of the sequence 𝑢0 =  2, 𝑣0 =  0, 𝑢𝑛+1 =  4 ∗  𝑣𝑛 +  𝑛 +  1, 𝑣𝑛 + 1 =  𝑢𝑛, for 𝑛 >  0. 
 
We enter: 

seqsolve([4y+n+1,x],[x,y,n],[2,0]) 
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We get: 

[(-8)/9+2*2^n-(-8)/9*(-1)^n*2^n-1/3*n, 

(-5)/9+2^n-4/9*(-1)^n*2^n-1/3*n] 

19.2 Values of a recurrent sequence or of a system of recurrent sequences: 

rsolve 

See also seqsolve 19.1. 
rsolve takes as argument the relation(s) of recurrence, the name of the variables used and the start 
value of the sequence. 
The recurrence relation is: 

– either a linear homogenous part, the non homogenous part must be a linear combination of 
products of polynomial in 𝑛 by a geometrical sequence in 𝑛. For example, 𝑢𝑛+1 =  2𝑢𝑛 +  𝑛3

𝑛 

– either an homographic function. For example, 𝑢𝑛+1 =
𝑢
𝑛 – 1

𝑢𝑛− 2
 

 

rsolve then returns a matrix whose rows are the values of the sequence in n. 
 
Notes 
Unlike seqsolve, rsolve is more flexible because with rsolve: 

– starting the sequence by u(0) is not compulsory, 
– we can give several start values, for example u(0)^2=1, that is why rsolve returns a list, 
– we write the recurrence relation as in mathematics. 

 
Examples: 

– Values of the sequence 𝑢0 =  3, 𝑢𝑛+1 =  2𝑢𝑛 +  𝑛 
 
We enter: 

rsolve(u(n+1)=2u(n)+n,u(n),u(0)=3) 

We get: 

[-1+4*2^(n+1-1)-n] 

– Values of the sequence 𝑢1
2 =  1, 𝑢𝑛+1 =  2𝑢𝑛 +  𝑛 

We enter: 

rsolve(u(n+1)=2u(n)+n,u(n),u(1)^2=1) 

We get: 

[[-1-(-3)/2*2^(n+1-1)-n, -1-(-1)/2*2^(n+1-1)-n]] 

– Values of the sequence 𝑢0 =  3, 𝑢𝑛+1 =  2𝑢𝑛 +  𝑛3
𝑛 

 
We enter: 

rsolve(u(n+1)=2u(n)+(n)*3^n,u(n),u(0)=3) 

We get: 

[-3*3^(n+1-1)+6*2^(n+1-1)+n*3^(n+1-1)] 

– Values of the sequence 𝑢0 =  4, 𝑢𝑛+1 =
𝑢
𝑛 – 1

𝑢
𝑛 – 2

 

We enter: 
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rsolve(u(n+1)=(u(n)-1)/(u(n)-2),u(n),u(0)=4) 

We get: 

[((10*sqrt(5)+30)*((sqrt(5)-3)/2)^n+30*sqrt(5)-70)/ 

(20*((sqrt(5)-3)/2)^n+10*sqrt(5)-30)] 

– Values of the sequence 𝑢0 =  0, 𝑢1 =  1, 𝑢𝑛+1 =  𝑎 + 𝑢𝑛−1 for 𝑛 >  0. 
 
We enter: 

rsolve(u(n+1)=u(n)+u(n-1),u(n),u(0)=0,u(1)=1) 

We get: 

 [(5+sqrt(5))/10*((sqrt(5)+1)/2)^(n+1-1-1)+ 

(5-sqrt(5))/10*((-sqrt(5)+1)/2)^(n+1-1-1)] 

– Values of the sequence 𝑢0 =  0, 𝑢1 =  1, 𝑢𝑛+1 =  2 ∗  𝑎 + 𝑢𝑛−1 +  𝑛 for 𝑛 >  0. 
 
We enter: 

rsolve(u(n+1)=2*u(n)+u(n-1)+n,u(n),u(0)=0,u(1)=1) 

We get: 

[(-1)/2-(-2-3*sqrt(2))/8*(sqrt(2)+1)^(n+1-1)-(-2+3*sqrt(2))/8*(-

sqrt(2)+1)^(n+1-1)-1/2*n] 

Or we enter: 

rsolve([u(n+1)=2*u(n)+v(n)+n,v(n+1)=u(n)], [u(n),v(n)],u(0)=0,v(0)=1) 

We get: 

[[(-1)/2-(-2-3*sqrt(2))/8*(sqrt(2)+1)^(n+1-1)-(-2+3*sqrt(2))/8*(-

sqrt(2)+1)^(n+1-1)-1/2*n, -(-4+sqrt(2))/8*(sqrt(2)+1)^(n+1-1)-(-4-

sqrt(2))/8*(-sqrt(2)+1)^(n+1-1)-1/2*n]] 

– Values of the sequence 𝑢0 =  0, 𝑣0 =  1, 𝑢𝑛+1 =  𝑎 +  𝑣𝑛 , 𝑣𝑛+1 =  𝑎 – 𝑣𝑛. 
 
We enter: 

rsolve([u(n+1)=u(n)+v(n),v(n+1)=u(n)-v(n)], 

[u(n),v(n)],[u(0)=0,v(0)=1]) 

We get: 

[[1/2*2^((n-1)/2)+1/2*(-(sqrt(2)))^(n-1), (-1+sqrt(2))/2*2^((n-1)/2)+ 

(-1-sqrt(2))/2*(-(sqrt(2)))^(n-1)]] 

– Values of the sequence 𝑢0 =  2, 𝑣0 =  0, 𝑢𝑛+1 =  4 ∗  𝑣𝑛 +  𝑛 +  1, 𝑣𝑛+1 = 𝑢𝑛. 
 
We enter: 

rsolve([u(n+1)=4*v(n)+n+1,v(n+1)=u(n)], [u(n),v(n)],[u(0)=2,v(0)=0]) 

We get: 
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[[(-8)/9+2*2^(n+1-1)-(-8)/9*(-1)^(n+1-1)*2^(n+1-1)-1/3*n, 

(-5)/9+2^(n+1-1)-4/9*(-1)^(n+1-1)*2^(n+1-1)-1/3*n]] 
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Chapter 20 Matrices 

20.1 Generalities 

To write a matrix, we put between two brackets a series of row vectors, for example: [[1,2], [3,4]]. 
The numerical matrices are stored in variables 𝑀0,𝑀1. . . 𝑀9. 
The index of rows and columns of a matrix start at 1, and we put the index between two brackets or 
parentheses. 

20.2 Definition 

To define the matrix 𝑀1 which equals [[1,2], [3,4]], we enter: 
[[1,2],[3,4]]=>M1 or we use the matrix editor (Shift 4 (Matrix)) 
We get: 

[[1,2],[3,4]] 

To define the matrix 𝑀2 which equals [[1,2], [3,4], [5,6]], we enter: 
[[1,2],[3,4],[5,6]]=>M2 or we use the matrix editor (Shift 4 (Matrix)) 
We get: 

[[1,2],[3,4],[5,6]] 

To get the element 3 of 𝑀2, located at the beginning of the second row: this will be the element on row 

of index 2 and on column of index 1 if we designate it by M2[2,1] or M2(2,1). 
We enter: 

M1[2,1] 

We get: 

3 

We enter: 

M1(2,1) 

We get: 

3 

20.2.1 Dimension of a matrix: dim 

dim takes as argument a matrix 𝐴. 

dim returns the dimension of the matrix 𝐴 in the form of a list formed by its number of rows and 
number of columns. 
 
We enter: 

dim([[1,2,3],[3,4,5]]) 

We get: 

[2,3] 



 308 

20.2.2 Number of rows: rowDim 

rowDim takes as argument a matrix 𝐴. 

rowDim returns the number of rows of the matrix 𝐴. 
 
We enter: 

rowDim([[1,2,3],[3,4,5]]) 

We get: 

2 

20.2.3 Number of columns: colDim 

colDim takes as argument a matrix 𝐴. 

colDim returns the number of columns of the matrix 𝐴. 
 
We enter: 

colDim([[1,2,3],[3,4,5]]) 

We get: 

3 

20.3 Operations on rows and columns useful in programming 

20.3.1 Add a column to a matrix: ADDCOL 

ADDCOL(M1,col,n) adds the column col which will be the column of index n of the matrix M1. 
 
We enter: 

[[1,2],[3,4]]=>M1 

ADDCOL(M1,[5,6],1) 

We get the new matrix 𝑀1: 

[[5,1,2],[6,3,4]] 

We enter: 

M1 

We get the new matrix 𝑀1: 

 [[5,1,2],[6,3,4]] 

To add a last column (which, in this case, will be the column of index 3) to the matrix M1, we enter: 

[[1,2],[3,4]]=>M1 

ADDCOL(M1,[5,6],3) 

We get the new matrix 𝑀1: 

[[1,2,5],[3,4,6]] 
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We enter: 

M1 

We get the new matrix 𝑀1: 

[[1,2,5],[3,4,6]] 

20.3.2 Swap rows: SWAPROW rowSwap 

SWAPROW or rowSwap has three arguments: a matrix and two integers 𝑛1 and 𝑛2. 

SWAPROW or rowSwap returns the matrix obtained by swapping the rows 𝑛1 and 𝑛2 in the matrix given 
as argument. 
 
We enter in HOME (the index starts at 1): 

SWAPROW([[1,2],[3,4]],1,2) 

We get: 

[[3,4],[1,2]] 

We enter in the CAS (the index also starts at 1): 

SWAPROW([[1,2],[3,4]],1,2) 

or 

rowSwap([[1,2],[3,4]],1,2) 

We get: 

[[3,4],[1,2]] 

20.3.3 Swap columns: SWAPCOL colSwap 

SWAPCOL or colSwap has three arguments: a matrix and two integers 𝑛1 and 𝑛2. 
SWAPCOL or colSwap returns the matrix obtained by swapping the columns 𝑛1 and 𝑛2 in the matrix 
given as argument. 
 
We enter in HOME or in the CAS (the index starts at 1): 

SWAPCOL([[1,2],[3,4]],1,2) 

We get: 

[[2,1],[4,3]] 

We enter in the CAS 

SWAPCOL([[1,2],[3,4],[5,6]],1,2) 

or 

colSwap([[1,2],[3,4],[5,6]],1,2) 

We get: 

[[2,1],[4,3],[6,5]] 
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20.3.4 Extract rows from a matrix: row 

row allows to extract one or several rows from a matrix. 
row has two arguments: a matrix and an integer 𝑛 or an interval 𝑛1. . 𝑛2. 
row returns the row of index 𝑛 of the matrix supplied as argument, or the sequence of rows of index 

starting from 𝑛1 to 𝑛2 of this matrix. 
 
We enter in HOME or in the CAS (the index starts at 1): 

row([[1,2,3],[4,5,6],[7,8,9]],1) 

We get: 

[1,2,3] 

We enter: 

row([[1,2,3],[4,5,6],[7,8,9]],1..2) 

We get: 

[[1,2,3],[4,5,6]] 

20.3.5 Extract columns from a matrix: col 

col allows to extract one or several columns from a matrix. 
col has two arguments: a matrix, and an integer 𝑛 or an interval 𝑛1. . 𝑛2. 
col returns the column of index n of the matrix supplied as argument, or the sequence of columns of 
index starting from 𝑛1 to 𝑛2 of this matrix. 
 
We enter in HOME or danc CAS (the index starts at 1): 

col([[1,2,3],[4,5,6],[7,8,9]],1) 

We get: 

[1,4,7] 

We enter: 

col([[1,2,3],[4,5,6],[7,8,9]],1..2) 

We get: 

([1,4,7],[2,5,8]) 

20.3.6 Remove columns from a matrix: DELCOL delcols 

In HOME, DELCOL(M1,n) removes the column of index n from the matrix M1. 
In CAS, delcols has two arguments: a matrix 𝐴, and an integer 𝑛 or an interval 𝑛1. . 𝑛2. 

delcols returns the matrix obtained by removing the column 𝑛 or the columns 𝑛1 up to 𝑛2 from the 

matrix 𝐴. 
 
We enter: 

[[1,2,5],[3,4,6]]=>M1 

DELCOL(M1,2) 

or 
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DELCOL(M1,2..2) 

We get: 

[[1,5],[3,6]] 

To remove the columns of index 2 and 3 from the matrix 𝑀1, we enter: 

[[1,2,5],[3,4,6]]=>M2 

DELCOL(M1,2..3) 

We get: 

[[1],[3]] 

We enter: 

delcols([[1,2,3],[4,5,6],[7,8,9]],2) 

We get: 

[[1,3],[4,6],[7,9]] 

We enter: 

delcols([[1,2,3],[4,5,6],[7,8,9]],1..2) 

We get: 

[[3],[6],[9]] 

20.3.7 Remove rows from a matrix: DELROW delrows 

In HOME, DELROW(M1,n) removes the row of index n from the matrix M1 
In CAS, delrows has two arguments: a matrix 𝐴, and an integer 𝑛 or an interval 𝑛1. . 𝑛2. 

delrows returns the matrix obtained by removing the row 𝑛 or the rows 𝑛1 up to 𝑛2 from the matrix 𝐴. 
 
We enter: 

[[1,2],[3,4],[5,6]]=>M1 

DELROW(M1,2) 

or 

DELROW(M1,2..2) 

We get the new matrix M1: 

[[1,2],[5,6]] 

To remove the rows of index 2 and 3 from the matrix 𝑀1, we enter: 

[[1,2],[3,4],[5,6]]=>M1 

DELROW(M1,2..3) 

We get the new matrix 𝑀1: 

[[1,2]] 
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We enter: 

delrows([[1,2,3],[4,5,6],[7,8,9]],2) 

We get: 

[[1,2,3],[7,8,9]] 

We enter: 

delrows([[1,2,3],[4,5,6],[7,8,9]],1..2) 

We get: 

[[7,8,9]] 

20.3.8 Extract a sub-matrix from a matrix: SUB subMat 

In HOME, SUB has three arguments: a matrix 𝑀1, and two lists of indexs {𝑛𝑙1, 𝑛𝑐1}, {𝑛𝑙2, 𝑛𝑐2}. 
Warning! Indices starts at 1. 
These indices are: 
𝑛𝑙1 index of the beginning of row, 

𝑛𝑐1 index of the beginning of column, 
𝑛𝑙2 index of end of row, 

𝑛𝑐2 index of end of column. 

SUB(M1,{nl1,nc1},{nl2,nc2}) extracts the sub-matrix from the matrix 𝐴 of first element 
A[nl1,nc1] and last element A[nl2,nc2]. 
 
We enter: 

SUB([[3,4,5],[1,2,6]],{1,2},{2,3}) 

We get: 

[[4,5],[2,6]] 

In CAS, subMat has three arguments: a matrix A, and two lists of indexs [𝑛𝑙1, 𝑛𝑐1], [𝑛𝑙2, 𝑛𝑐2] or 

{𝑛𝑙1, 𝑛𝑐1}, {𝑛𝑙2, 𝑛𝑐2}. 
Warning! Indices also start at 1. 
These indices are: 
𝑛𝑙1 index the beginning of row, 

𝑛𝑐1 index of the beginning of column, 

𝑛𝑙2 index of end of row 

𝑛𝑐2 index of end of column. 
subMat(A,nl1,nc1,nl2,nc2) extracts the sub-matrix from the matrix 𝐴 of first element 
A[nl1,nc1] and last element A[nl2,nc2]. 
To define the matrix 𝐴, we enter: 

A:=[[1,2,3],[4,5,6],[7,8,9]] 

We enter: 

subMat(A,[1,2],[2,3]) 

We get: 

[[2,3],[5,6]] 



 313 

20.3.9 Redimension a matrix or a vector: REDIM 

REDIM takes as argument a matrix 𝐴 (resp. a vector) and a list of two integers (resp. one integer). 

REDIM redimension this matrix (resp. this vector) either by reducing it, either by filling it with 0. 
 
We enter: 

REDIM([[4,1,-2],[1,2,-1]],[3,4]) 

We get: 

[[4,1,-2,0],[1,2,-1,0],[0,0,0,0]] 

We enter: 

REDIM([[4,1,-2],[1,2,-1],[2,1,0]],[2,1]) 

We get: 

 [[4],[1]] 

We enter: 

REDIM([4,1,-2,1,2,-1],8) 

We get: 

[4,1,-2,1,2,-1,0,0] 

We enter: 

REDIM([4,1,-2,1,2,-1],3) 

We get: 

[4,1,-2] 

20.3.10 Replace a portion of a matrix or of a vector: REPLACE 

REPLACE takes as argument a matrix A (resp. a vector) and a list of two indices (resp. one integer) 
and the matrix (resp. the vector) which must be replaced starting from these two indices. 
REPLACE does this replacement by eventually reducing the matrix (resp. the vector) if it is oversized. 
 
We enter in HOME: 

REPLACE([[1,2,3],[4,5,6]],{1,1},[[5,6],[7,8]]) 

Or we enter in the CAS: 

REPLACE([[1,2,3],[4,5,6]],[1,1],[[5,6],[7,8]]) 

We get: 

[[5,6,3],[7,8,6]] 

We enter in HOME: 

REPLACE([[1,2,3],[4,5,6]],{1,2},[[7,8],[9,0]]) 

Or we enter in the CAS: 
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REPLACE([[1,2,3],[4,5,6]],[1,2],[[7,8,10],[9,0,11]]) 

We get: 

[[1,7,8],[4,9,0]] 

We enter in HOME or in the CAS: 

REPLACE([1,2,3,4],2,[5,6]) 

We get: 

[1,5,6,4] 

We enter in HOME or in the CAS: 

REPLACE([1,2,3,4],2,[5,6,7,8]) 

We get: 

[1,5,6,7] 

20.3.11 Add a row to a matrix: ADDROW 

ADDROW(M1,row,n) adds the row row which will be the row of index 𝑛 to the matrix 𝑀1. 
 
We enter: 

[[1,2],[3,4]]=>M1 

ADDROW(M1,[5,6],1) 

We get the new matrix 𝑀1: 

[[5,6],[1,2],[3,4]] 

To add a last row (which will be here the row of index 3) to the matrix 𝑀1, we enter: 

[[1,2],[3,4]]=>M1 

ADDROW(M1,[5,6],3) 

We get the new matrix 𝑀1: 

[[1,2],[3,4],[5,6]] 

20.3.12 Add a row to another: rowAdd 

In CAS, rowAdd has three arguments: a matrix 𝐴 and two integers 𝑛1 and 𝑛2. 

rowAdd returns the matrix obtained by replacing in 𝐴 the row 𝑛2 by the sum of rows 𝑛1 and 𝑛2. 
 
We enter: 

rowAdd([[1,2],[3,4]],1,2) 

We get: 

[[1,2],[4,6]] 
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20.3.13 Multiply a row by an expression: SCALE mRow 

Warning! SCALE and mRow do not have their arguments listed in the same order. 

SCALE has three arguments: a matrix 𝐴, an expression and an integer 𝑛. 
mRow has three arguments: an expression, a matrix 𝐴 and an integer 𝑛. 

SCALE or mRow returns the matrix obtained by replacing in 𝐴 the row 𝑛 by the multiplication of the row 

𝑛 by the expression. 
 
We enter: 

SCALE([[1,2],[3,4]],12,2) 

Or we enter: 

mRow(12,[[1,2],[3,4]],2) 

We get: 

[[1,2],[36,48]] 

20.3.14 Add k times a row to another: SCALEADD mRowAdd 

Warning! SCALEADD and mRowAdd do not have their arguments listed in the same order. 

SCALEADD has four arguments: a matrix 𝐴, a real 𝑘 and two integers 𝑛1 and 𝑛2. 
mRowAdd has four arguments: a real 𝑘, a matrix 𝐴 and two integers 𝑛1 and 𝑛2. 

mRowAdd returns the matrix obtained by replacing in 𝐴 the row 𝑛2 by the sum of the row 𝑛2 and 𝑘 

times the row 𝑛1. 
 
We enter: 

SCALEADD([[5,7],[3,4],[1,2]],1.1,2,3) 

Or we enter: 

mRowAdd(1.1,[[5,7],[3,4],[1,2]],2,3) 

We get: 

[[5,7],[3,4],[4.3,6.4]] 

20.4 Creation and arithmetic of matrices 

20.4.1 Addition and substraction of matrices: + - .+ .- 

The addition (resp. the substraction) of matrices is done thanks to the infix operator + or .+ 
(resp. - or .-). 
 
We enter: 

[[1,2],[3,4]] + [[5,6],[7,8]] 

We get: 

[[6,8],[10,12]] 

We enter: 

[[1,2],[3,4]] - [[5,6],[7,8]] 
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We get: 

[[-4,-4],[-4,-4]] 

Note: 
+ can also be prefix, in this case it must be quoted. 
We enter: 

’+’([[1,2],[3,4]],[[5,6],[7,8]],[[2,2],[3,3]]) 

We get: 

[[8,10],[13,15]] 

20.4.2 Multiplication of matrices: * &* 

The multiplication of matrices is done thanks to the infix operator * (or &*). 
 
We enter: 

[[1,2],[3,4]] * [[5,6],[7,8]] 

Or we enter: 

[[1,2],[3,4]] &* [[5,6],[7,8]] 

We get: 

[[19,22],[43,50]] 

20.4.3 Rising a matrix to an integer power: ˆ &ˆ 

The rising of a matrix to a power is done thanks to the infix operator ^ (or &^). 
 
We enter: 

[[1,2],[3,4]] ^ 5 

Or we enter: 

[[1,2],[3,4]] &^ 5 

We get: 

[[1069,1558],[2337,3406]] 

We enter: 

normal([[1,2],[3,4]] ^ n) 

Or we enter: 

normal([[1,2],[3,4]] &^ n) 

We get: 

[[(11-sqrt(33))/22*((sqrt(33)+5)/2)^n+ 

(11+sqrt(33))/22*((-sqrt(33)+5)/2)^n,(2 



 317 

20.4.4 Hadamard product (infix version): .* 

See also 16.12.6 and ??. 
.* takes as arguments two matrices or two lists 𝐴 and 𝐵 of same order. 
.* is a infix operator which returns the matrix or the list constituted by the product terme at term of 
elements of 𝐴 and 𝐵. 
 
We enter: 

[[1, 2],[3,4]] .* [[5, 6],[7, 8]] 

We get: 

[[5,12],[21,32]] 

20.4.5 Hadamard division (infix version): ./ 

./ takes as arguments of matrices or two lists 𝐴 and 𝐵 of same degree. 

./ is a infix operator which returns the matrix or the list constituted by the division term by term of 
elements of 𝐴 and 𝐵. 
 
We enter: 

[[1, 2],[3,4]] ./ [[5, 6],[7, 8]] 

We get: 

[[1/5,1/3],[3/7,1/2]] 

20.4.6 Hadamard power (infix version): .ˆ 

.^ takes as arguments a matrix 𝐴 and a real number 𝑏. 

.^ is an infix operator which returns the matrix constituted by each element of 𝐴 rised to the power 𝑏. 
 
We enter: 

[[1, 2],[3,4]] .^ 2 

We get: 

[[1,4],[9,16]] 

20.5 Transpose matrix: transpose 

In CAS, transpose returns the transpose matrix of the matrix supplied as argument. 
 
We enter: 

transpose([[i,2],[4,5-i]]) 

We get: 

[[i,4],[2,5-i]] 

20.6 Conjugate transpose matrix: TRN trn 

In CAS, TRN returns the transpose of the conjugatee of the matrix supplied as argument. 



 318 

 
We enter: 

TRN([[i,2],[4,5-i]]) 

Or we enter: 

trn([[i,2],[4,5-i]]) 

We get: 

[[-i,4],[2,5+i]] 

20.7 Determinant: DET det 

In HOME, DET returns the determinant of a square matrix. 
 
We enter: 

DET([[1/2,2,4],[4,5,6],[7,8,9]]) 

We get: 

-1.5 

In CAS, DET or det returns the determinant of a square matrix. 
We enter: 

DET([[1/2,2,4],[4,5,6],[7,8,9]]) 

Or we enter: 

det([[1,2,4],[4,5,6],[7,8,9]]) 

We get: 

-3/2 

20.7.1 Characteristic polynomial: charpoly 

charpoly has one (resp. two) argument(s). 
charpoly takes as argument a matrix 𝐴 of order 𝑛 (resp. a matrix 𝐴 of order 𝑛 and a name of formal 
variable). 
charpoly returns the characteristic polynomial 𝑃 of 𝐴 written as a list of its coefficients (resp. the 

characteristic polynomial 𝑃 of 𝐴 written in symbolic form by using the name of variable supplied as 
argument). 
The characteristic polynomial 𝑃 of 𝐴 is defined by 

𝑃(𝑥) = det(𝑥. 𝐼 −  𝐴) 

 
We enter: 

charpoly([[4,1,-2],[1,2,-1],[2,1,0]]) 

We get: 

[1,-6,12,-8] 

So the characteristic polynomial of [[4,1, −2], [1,2, −1], [2,1,0]] is 
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𝑥3 −  6𝑥2 +  12𝑥 −  8 

We can also get the symbolic form by entering: 

normal(poly2symb([1,-6,12,-8]))). 

We enter: 

purge(x):;charpoly([[4,1,-2],[1,2,-1],[2,1,0]],x) 

We get: 

x^3-6*x^2+12*x-8 

We can specify by an optional argument the algorithm used to do this calculations, among the 
following: 

– lagrange: calculation by Lagrange interpolation, by giving to 𝑥 the values between 0 and the 
dimension. 
 
We enter: 

pcar([[4,1,-2],[1,2,-1],[2,1,0]],lagrange) 

We get: 

x*((x-1)*(-x+5)-7)+8 

and after simplification: 

-x^3+6*x^2-12*x+8 

– hessenberg: calculation by tridiagonal reduction, then recurrence formula, efficient on a finite 
field. 
 
We enter: 

pcar([[4,1,-2],[1,2,-1],[2,1,0]],hessenberg) 

We get: 

[1,-6,12,-8] 

 

– fadeev: simultaneous calculation of the characteristic polynomial and the comatrix of 𝑥𝐼 –  𝐴 
 
We enter: 

pcar([[4,1,-2],[1,2,-1],[2,1,0]],fadeev) 

We get: 

[1,-6,12,-8] 

– pmin: calculation of the minimal polynomial relative to a randomly chosen vector. It is the 
characteristic polynomial if it is of maximal degree. 
 
We enter: 

pcar([[4,1,-2],[1,2,-1],[2,1,0]],pmin) 

We get: 
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[1,-6,12,-8] 

 
For matrices with integer coefficients, the algorithm used by default is modular, we calculate the 
characteristic polynomial modulus several prime numbers, either by the minimal polynomial, either by 
Hessenberg, and we rebuild by the chinese remainders coefficient by coefficient. The stop condition is 
probabilistic, when the rebuilt polynomial does not vary anymore for prime numbers whose product is 
greater than the inverse of the value of proba_epsilon (which can be tuned in the CAS 
configuration). If proba_epsilon is null, the result is determinist (an increase a priori of the 
coefficients is then used). In all cases, the calculation time is of the range 𝑂(𝑛4 ln(𝑛)), but it is quicker 
with the probabilistic method. 

20.8 Vectorial field and linear applications 

20.8.1 Basis of a vectorial subspace: basis 

basis takes as argument the list of components of the vectors which generate a vectorial subspace 
of ℝ𝑛. 
basis returns a list constituted of vectors of a basis of this vectorial subspace. 
 
We enter: 

basis([[1,2,3],[1,1,1],[2,3,4]]) 

We get: 

[[1,0,-1], [0,1,2]] 

20.8.2 Intersection basis of two vectorial subspaces: ibasis 

ibasis takes as argument two lists of vectors generating two vectorial subspaces of ℝ𝑛. 
ibasis returns a list constituted of vectors forming a basis of the intersection of these vectorial 
subspaces. 
 
We enter: 

ibasis([[1,2]],[[2,4]]) 

We get: 

[[1,2]] 

20.8.3 Image of a linear application: image 

image takes as argument the matrix of a linear application 𝑓 in the canonical basis. 

image returns a list of vectors forming a basis of the image of 𝑓. 
 
We enter: 

image([[1,1,2],[2,1,3],[3,1,4]]) 

We get: 

[[-1,0,1],[0,-1,-2]] 

20.8.4 Kernel of a linear application: ker 

ker takes as argument the matrix of a linear application 𝑓 in the canonical basis. 
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ker returns a list of vectors forming a basis of the kernel of 𝑓. 
 
We enter: 

ker([[1,1,2],[2,1,3],[3,1,4]]) 

We get: 

[[1,1,-1]] 

The kernel is then generated by the vector [1,1,-1]. 

20.9 Solve a linear system: RREF rref 

In HOME, RREF allows to solve a linear system of matrix 𝑀1 and second member 𝑀3. 
ADDCOL(M1,M3)=>M2 and RREF(M2) returns the reduced row-echelon form of 𝑀2. 

For instance, we want to solve the system: {3𝑥 +  𝑦 =  2, 3𝑥 +  2𝑦 =  −2} with respect to 𝑥, 𝑦. 
 
We enter: 

RREF([[3,1,2],[3,2,-2]]) 

We get: 

[[1,0,2],[0,1,-4]] 

and we deduce that 𝑥 =  2 and 𝑦 =  −4. 
We want to solve the system: 
{𝑥 +  𝑦 −  𝑧 =  5, 2𝑥 −  𝑦 =  7, 𝑥 −  2𝑦 +  𝑧 =  2} with respect to 𝑥, 𝑦, 𝑧. 
 
We enter: 

RREF([[1,1,-1,5],[2,-1,0,7],[1,-2,1,2]]) 

We get: 

[[1,0,-0.333333333333,4],[0,1,-0.666666666667,1],[0,0,0,0]] 

and we deduce that 𝑥 =  4 +  𝑧/3, 𝑦 =  1 +  2𝑧/3 and 𝑧 =  𝑧. 
 
In CAS, rref or RREF returns the reduced row-echelon form of the matrix supplied as argument. 
For instance, we want solve the system: {3𝑥 +  𝑦 =  2, 3𝑥 +  2𝑦 =  −2} with respect to 𝑥, 𝑦. 
We enter: 

rref([[3,1,2],[3,2,-2]]) 

Or we enter: 

RREF([[3,1,2],[3,2,-2]]) 

We get: 

[[1,0,2],[0,1,-4]] 

and we deduce that 𝑥 =  2 and 𝑦 =  −4. 
We want to solve the system: 
{𝑥 +  𝑦 −  𝑧 =  5, 2𝑥 −  𝑦 =  7, 𝑥 −  2𝑦 +  𝑧 =  2} with respect to 𝑥, 𝑦, 𝑧. 
We enter: 
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rref([[1,1,-1,5],[2,-1,0,7],[1,-2,1,2]]) 

Or we enter: 

RREF([[1,1,-1,5],[2,-1,0,7],[1,-2,1,2]]) 

We get: 

[[1,0,-1/3,4],[0,1,-2/3,1],[0,0,0,0]] 

and we deduce that 𝑥 =  4 +  𝑧/3, 𝑦 =  1 +  2𝑧/3 and 𝑧 =  𝑧. 

20.9.1 Solve of 𝑨 ∗ 𝑿 = 𝑩: simult 

simult allows to solve a system of linear equations (resp. several systems of linear equations which 
differ by their second member only). 
We write the system(s) in matrix form (see also 6.10.17): 

A*X=b (resp. A*X=B) 

The parameters of simult are the matrix A of the system and the column vector b (i.e. a matrix of 
one column) formed by the second member of the system to be solved (resp. the matrix B whose 
columns are the vectors b of the second members of the systems to be solved). 
The result is a column vector solution of the system (resp. a matrix whose columns are the solutions of 
the different systems). 
For instance, be the following system to be solved: 

{
3𝑥 +  𝑦 =  −2
3𝑥 +  2𝑦 =  2

 

We enter: 

simult([[3,1],[3,2]],[[-2],[2]]) 

We get: 

[[-2],[4]] 

so this means: 
𝑥 =  −2 and 𝑦 =  4 are solutions of the system. 
We enter: 

simult([[3,1],[3,2]],[[-2,1],[2,2]]) 

We get: 

[[-2,0],[4,1]] 

so this means that: 
𝑥 =  −2 and 𝑦 =  4 are solutions of the system 

{
3𝑥 +  𝑦 =  −2
3𝑥 +  2𝑦 =  2

 

and that 𝑥 =  0 and 𝑦 =  1 are solutions of the system 

{
3𝑥 +  𝑦 =  1
3𝑥 +  2𝑦 =  2
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20.10 Make matrices 

20.10.1 Make a matrix from an expression: MAKEMAT makemat 

In HOME, MAKEMAT(Expr(I,J),n,p) creates a matrix from an expression according to the 
variables 𝐼 and 𝐽. 
𝐼 represents the index of rows and 𝐽 represents the index of columns and the index 𝐼 goes from 1 to 𝑛 

and the index 𝐽 goes from 1 to 𝑝. 

MAKEMAT(Expr(I,J),n,p) returns the matrix 𝑀𝐼, 𝐽 =  𝐸𝑥𝑝𝑟(𝐼, 𝐽) for 𝐼 = 1. . 𝑛 and 𝐽 =  1. . 𝑝. 
We enter: 

MAKEMAT(I*J,2,3) 

We get: 

[[2,3,4],[3,4,5]] 

In CAS, we can use MAKEMAT and makemat. makemat has a function as first argument: the first 
variable, the index of the row and the second variable, the index of the column. The second argument 
represents the number of rows and the third argument represents the number of columns. 
Warning! The indices also start at 1. 
 
We enter: 

MAKEMAT((I+J),2,3) 

Or we enter: 

makemat((j,k)->(j+k),2,3) 

We get: 

[[0,1,2],[1,3,5]] 

20.10.2 Matrix of zeros: matrix 

matrix(n,p) returns the matrix of n rows and p columns formed by zeros. 
 
We enter: 

matrix(4,3) 

We get: 

[[0,0,0],[0,0,0],[0,0,0],[0,0,0]] 

20.10.3 Matrix identity: IDENMAT identity 

In HOME, IDENMAT(n) creates the identity matrix of size 𝑛. 
 
We enter: 

IDENMAT(3) 

We get the identity matrix of size 3: 

[[1,0,0],[0,1,0],[0,0,1]] 

In CAS,IDENMAT(n) creates the identity matrix of size 𝑛. 
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We enter: 

IDENMAT(3) 

Or we enter: 

identity(3) 

We get the identity matrix of size 3: 

[[1,0,0],[0,1,0],[0,0,1]] 

20.10.4 Matrix random: RANDMAT randMat randmatrix ramn 

In HOME, RANDMAT(M1,n,p) creates a random matrix 𝑀1 of 𝑛 rows and 𝑝 columns and formed of 

integers between −99 and +99. 
 
We enter: 

RANDMAT(M1,2,3) 

We get: 

[[-24.0,-67.0,38.0],[-73.0,-3.0,72.0]] 

We enter: 

M1 

We get: 

[[-24,-67,38],[-73,-3,72]] 

In CAS, we have two arguments only: RANDMAT(n,p) creates a random matrix of 𝑛 rows and 𝑝 

columns, and formed of integers between −99 and +99. 
 
We enter: 

RANDMAT(2,3) 

In CAS, or in HOME, randMat(n,p) or randmatrix or ranm(n,p) creates a random matrix of 𝑛 

rows and 𝑝 columns, and formed of integers between −99 and +99. 
 
We enter: 

randMat(2,3) 

Or we enter: 

randmatrix(2,3) 

Or we enter: 

ranm(2,3) 

We get for example: 

[[-57,17,39],[-61,23,4]] 
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20.10.5 Jordan block: JordanBlock 

In HOME, we use it in the form of CAS.JordanBlock(a,n) because it is a CAS function. 
In CAS, JordanBlock(a,n) returns a square matrix of size 𝑛, filled with 𝑎 on the main diagonal, 1 
above and 0 elsewhere. 
 
We enter: 

JordanBlock(7,3) 

We get: 

[[7,1,0],[0,7,1],[0,0,7]] 

20.10.6 N-th Hilbert matrix: hilbert 

hilbert is used in the CAS (in HOME, use CAS.hilbert). 
hilbert(n) returns the 𝑛-th Hilbert matrix, that is to say: 

𝐻𝑗,𝑘 =
1

𝑗 + 𝑘 + 1
  to 𝑗 =  1. . 𝑛 and 𝑘 =  1. . 𝑛. 

 
We enter: 

hilbert(3) 

We get: 

[[1,1/2,1/3],[1/2,1/3,1/4],[1/3,1/4,1/5]] 

20.10.7 Matrix of an isometry: mkisom 

mkisom is used in the CAS (in HOME, use CAS.mkisom). 
mkisom takes as argument: 

– In dimension 3, the list of characteristic elements (axis direction, angle for a rotation or normal 
to the plane for a symmetry) and +1 or -1 for direct isometries or -1 indirect isometries). 

– In dimension 2, the characteristic element (an angle or a vector) and +1 or -1 (+1 for direct 
isometries and -1 for indirect isometries). 

mkisom returns the matrix of the isometry defined by the arguments. 
 
We enter: 

mkisom([[-1,2,-1],pi],1) 

We get the matrix of a rotation of axis [−1, 2, −1] and angle 𝜋: 

[[-2/3,-2/3,1/3],[-2/3,1/3,-2/3],[1/3,-2/3,-2/3]] 

We enter: 

mkisom([pi],-1) 

We get the matrix of a symmetry with respect to 𝑂: 

[[-1,0,0],[0,-1,0],[0,0,-1]] 

We enter: 

mkisom([1,1,1],-1) 

We get the matrix of a symmetry with respect to the plane 𝑥 +  𝑦 +  𝑧 =  0: 
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[[1/3,-2/3,-2/3],[-2/3,1/3,-2/3],[-2/3,-2/3,1/3]] 

We enter: 

mkisom([[1,1,1],pi/3],-1) 

We get the matrix product of a rotation of axis [1, 1, 1] and angle 
𝜋

3
 and a symmetry with respect to the 

plane 𝑥 +  𝑦 +  𝑧 =  0: 

[[0,-1,0],[0,0,-1],[-1,0,0]] 

We enter: 

mkisom(pi/2,1) 

We get the matrix, in dimension 2, of the plane rotation of angle 
𝜋

2
: 

[[0,-1],[1,0]] 

We enter: 

mkisom([1,2],-1) 

We get the matrix, in dimension 2, of the plane symmetry with respect to the line of equation 

𝑥 +  2𝑦 =  0: 

[[3/5,-4/5],[-4/5,-3/5]] 

To get the matrix in dimension 2 of rotation center 𝑂 and angle 1, we enter: 

mkisom(1,1) 

We get: 

[[cos(1),-sin(1)],[sin(1),cos(1)]] 

20.10.8 Vandermonde matrix: vandermonde 

vandermonde is used in the CAS (in HOME, use CAS.vandermonde). 
vandermonde takes as argument a vector whose components are 𝑥𝑗. 

vandermonde returns the corresponding Vandermonde matrix: elle a for 𝑘-nth row the vector whose 

components are 𝑥𝑗
𝑘−1(𝑘 =  1. . 𝑛). 

Warning! 

The calculator numbers the rows and the columns starting from 1. 
 
We enter: 

vandermonde([a,2,3]) 

We get (if a is not assigned): 

[[1,1,1],[a,2,3],[a*a,4,9]] 

20.11 Basics 

20.11.1 Schur norm or Frobenius norm of a matrix: ABS 

We point out that ABS let us get: 
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– the absolute value of a real, 
– the modulus of a complex number, 

– the length of a vector 𝑣𝑗 ((∑ |𝑣𝑗  |
2𝑛

𝑗=1 )

1

2
), 

– the Schur norm or Frobenius norm of a matrix 𝑎𝑗,𝑘 ∶  ((∑ |𝑎𝑗,𝑘  |
2𝑛

𝑗,𝑘=1 )

1

2
). 

We enter: 

ABS([[1,2],[3,4]]) 

We get: 

sqrt(30) 

indeed √1 +  4 +  9 +  16  =  √30 
We enter: 

ABS([[1,2],[3,4],[5,11]]) 

We get: 

4*sqrt(11) 

indeed √1 +  4 +  9 +  16 +  25 +  121  =  √176  =  4√11 
In CAS, we enter: 

abs([[i,2],[4,5+i]]) 

Or we enter || with the key on the right of the toolbox: 

|[[i,2],[4,5+i]]| 

We get: 

sqrt(47) 

because √1 +  4 +  16 +  25 +  1  =  √47 
In HOME, we enter: 

ABS([[i,2],[4,5+i]]) 

Or we enter || with the key on the right of the toolbox: 

|[[i,2],[4,5+i]]| 

We get: 

6.8556546004 

because √1 +  4 +  16 +  25 +  1  =  √47  ≃  6.8556546004 

20.11.2 Maximum of the norms of the rows of a matrix: ROWNORM rownorm 

In HOME, ROWNORM takes as argument a matrix. 
ROWNORM returns the maximum of the norms of the rows of this matrix (the norm of a row being the 
sum of the absolute values of the components of the line). 
 
We enter: 
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ROWNORM([[1,-2,3],[4,5,-6]]) 

We get: 

15 

indeed we have 1 +  2 +  3 =  6 <  4 +  5 +  6 =  15 
In CAS, ROWNORM or rownorm takes as argument a matrix. 
ROWNORM or rownorm returns the maximum of the norms of the rows of this matrix (the norm of a row 
being the sum of matrix absolute values of matrix components of the line). 
 
We enter: 

ROWNORM([[1,-2,3],[4,5,-6]]) 

Or we enter: 

rownorm([[1,-2,3],[4,5,-6]]) 

We get: 

15 

indeed we have 1 +  2 +  3 =  6 <  4 +  5 +  6 =  15 

20.11.3 Maximum of matrix norms of matrix columns of a matrix: COLNORM 

colnorm 

In HOME, COLNORM takes as argument a matrix. 
COLNORM returns the maximum of the norms of the columns of this matrix (the norm of a column being 
the sum of the absolute values of the components of the column). 
 
We enter: 

COLNORM([[1,-2,3],[4,5,-6]]) 

We get: 

9 

indeed we have 1 +  4 <  2 +  5 <  3 +  6 =  9 
In CAS, COLNORM or colnorm takes as argument a matrix. 
COLNORM or colnorm returns the maximum of the norms of the columns of this matrix (the norm of a 
column being the sum of the absolute values of the components of the column). 
 
We enter: 

COLNORM([[1,-2,3],[4,5,-6]]) 

Or we enter: 

colnorm([[1,-2,3],[4,5,-6]]) 

We get: 

9 

indeed we have 1 +  4 <  2 +  5 <  3 +  6 =  9 
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20.11.4 Spectral norm of a matrix: SPECNORM 

In HOME, SPECNORM is written CAS.SPECNORM and takes as argument a matrix 𝑀1. 

SPECNORM returns the spectral norm of this matrix 𝑀1: it is the largest singular value of the matrix 𝑀1 
i.e. the root of the largest eigenvalue of the symmetric matrix 𝑀1 ∗ TRN(𝑀1). 
 
We enter: 

CAS.SPECNORM([[1,1],[0,2]]) 

We get: 

2.28824561127 

because 

eigenvals([[1,1],[0,2]]*trn([[1,1],[0,2]]))=[sqrt(5)+3,-sqrt(5)+3] 

EIGENVAL([[1,1],[0,2]]*TRN([[1,1],[0,2]])) 

=[0.7639320225,5.2360679775] 

and 

SVL([[1,1],[0,2]])=[sqrt(sqrt(5)+3),sqrt(-sqrt(5)+3)] 

and 

√√5 +  3  ≃  2.28824561127 

 
In CAS, SPECNORM takes as argument a matrix 𝐴. 

SPECNORM returns the spectral norm of this matrix 𝐴: it is the largest singular value of the matrix A i.e. 

the root of the largest eigenvalue of the symmetric matrix 𝐴 ∗ TRAN(𝐴). 
 
We enter: 

SPECNORM([[1,1],[0,2]]) 

We get: 

2.28824561127 

because 

eigenvals([[1,1],[0,2]]*trn([[1,1],[0,2]]))=[sqrt(5)+3,-sqrt(5)+3] 

EIGENVAL([[1,1],[0,2]]*TRN([[1,1],[0,2]]))=[0.7639320225,5.2360679775

] 

and 

SVL([[1,1],[0,2]])=[sqrt(sqrt(5)+3),sqrt(-sqrt(5)+3)] 

and  

√√5 +  3  ≃  2.28824561127. Indeed, SVL(A)), returns the list of singular values (i.e. the positive 
square roots of the eigenvalues of 𝐴 ∗  trn(𝐴)) of the real numerical matrix 𝐴 supplied as argument. 

20.11.5 Spectral radius of a square matrix: SPECRAD 

In HOME, SPECRAD is written CAS.SPECRAD and takes as argument a square matrix. 
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SPECRAD returns the spectral radius of this square matrix: the spectral radius is the largest eigenvalue 
in absolute value. 
 
We enter: 

CAS.SPECRAD([[1,1],[0,-2]]) 

We get: 

2. 

In CAS, SPECNORM takes as argument a matrix A. 
SPECNORM returns the spectral radius of this square matrix: the spectral radius is the largest 
eigenvalue in absolute value. 
We enter: 

SPECRAD([[1,1],[0,-2]]) 

We get: 

2. 

20.11.6 Condition number of an invertible square matrix: COND cond 

In HOME (resp. in the CAS), COND (resp. cond) takes as argument an invertible square matrix and as 
second argument 1, 2 or ∞ (obtained with Shift 9) (resp. 1, 2 or inf), by default 1, specifying the 

norm used (𝑙1, 𝑙2 or 𝑙∞). 
COND returns the condition number of this invertible square matrix for the norm specified: 

– if the second argument is 1, the condition number of an invertible square matrix is the product 
of the column norm (it is colnorm) of this matrix by the column norm of its inverse matrix. 
The column norm of 𝑀1 of dimension 𝑝, 𝑞 is: 

𝑀𝐴𝑋(1≤𝑘≤𝑞)(∑𝐴𝐵𝑆(𝑀1[𝑗, 𝑘])

𝑝

𝑗=1

) 

We enter: 

COND([[1,2],[5,6]]) 

or 

cond([[1,2],[5,6]]) 

We get: 

22 

We have indeed: 
Column norm of [[1, 2], [5, 6]] is 2 + 6 = 8 

Column norm of [[1, 2], [3, −4]]
−1
= [[−1.5, 0.5], [1.25, −0.25]] is 1.5 + 1.25 = 2.75. 

We do have 2.75 ∗ 8 = 22. 
– if the second argument is 2, the condition number of an invertible square matrix is the product 

of the spectral norm (it is SPECNORM, and also max(SVL()) of this matrix by the spectral 
norm of its inverse matrix. 
 
We enter: 

COND([[1,2],[3,-4]],2) 

or 
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cond([[1,2],[3,-4]],2) 

We get: 

2.6180339888 

We have indeed: 

SPECNORM(INV([[1,2],[3,-4]]))=5.116672736 

SPECNORM(INV([[1,2],[3,-4]]))=0.5116672736. 

We do have 5.116672736 ∗ 0.5116672736 = 2.6180339888. 
– if the second argument is inf, the condition number of an invertible square matrix is the 

product of the norm row (it is rownorm) of this matrix by the norm row of its inverse matrix. 
The norm row of 𝑀1 of dimension 𝑝, 𝑞 is: 

𝑀𝐴𝑋(1≤𝑗≤𝑝) (∑𝐴𝐵𝑆(𝑀1[𝑗, 𝑘])

𝑞

𝑘=1

) 

 
We enter: 

COND([[1,2],[5,6]],inf) 

or 

cond([[1,2],[5,6]],inf) 

We get: 

22.0 

We have indeed: 
Norm row of [[1, 2], [5, 6]] is 5 + 6 = 11 

Norm row of [[1, 2], [3, −4]]
−1
= [[−1.5, 0.5], [1.25, −0.25]] is 1.5 + 0.5 = 2. 

We do have 2 ∗ 11 = 22. 

20.11.7 Rank of a matrix: RANK rank 

In HOME, RANK returns the rank of the matrix supplied as argument. 
 
We enter: 

RANK([[1,2,3],[4,5,6]]) 

We get: 

2 

In CAS, RANK or rank returns the rank of the matrix supplied as argument. 
We enter: 

RANK([[1,2,3],[4,5,6]]) 

Or we enter: 

rank([[1,2,3],[4,5,6]]) 

We get: 
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2 

20.11.8 Step of the Gauss-Jordan reduction of a matrix: pivot 

pivot is used in the CAS (in HOME, use CAS.pivot). 
pivot has three arguments: a matrix of 𝑛 rows and 𝑝 columns and two integers 𝑙 and 𝑐 such as: 0 ≤
 𝑙 <  𝑛 and 0 ≤  𝑐 <  𝑝. 
pivot(A,l,c) returns the matrix obtained by putting zeros in the column c of A, with the method of 
Gauss-Jordan, using the element A[l,c] as pivot. 
 
We enter: 

pivot([[1,2],[3,4],[5,6]],1,1) 

We get: 

[[-2,0],[3,4],[2,0]] 

We enter: 

pivot([[1,2],[3,4],[5,6]],0,1) 

We get: 

[[1,2],[2,0],[4,0]] 

20.11.9 Trace of a square matrix: TRACE trace 

In HOME, TRACE returns the trace of the square matrix supplied as argument. 
 
We enter: 

TRACE([[1/2,2,3],[4,5,6],[7,8,9]]) 

We get: 

14.5 

We enter: 

TRACE([[i,2],[4,5-i]]) 

We get: 

5 

In CAS, TRACE or trace returns the trace of the square matrix supplied as argument. 
 
We enter: 

TRACE([[1/2,2,3],[4,5,6],[7,8,9]]) 

Or we enter: 

trace([[1,2,3],[4,5,6],[7,8,9]]) 

We get: 

29/2 
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We enter: 

TRACE([[i,2],[4,5-i]]) 

Or we enter: 

trace([[i,2],[4,5-i]]) 

We get: 

5 

20.12 Advanced 

20.12.1 Eigenvalues: EIGENVAL eigenvals 

In HOME, EIGENVAL returns the vector of the calculable eigenvalues of a diagonalizable numerical 
matrix. 
 
We enter: 

EIGENVAL([[1,1],[0,2]]) 

We get: 

 [2,1] 

In CAS, eigenvals returns the vector of the calculable eigenvalues of a matrix. 
 
We enter: 

eigenvals([[1,1,2],[0,1,1],[0,0,1]]) 

We get: 

[1,1,1] 

We enter: 

eigenvals([[1,1,2],[0,2,1],[0,0,3]]) 

We get: 

[3,2,1] 

We enter: 

eigenvals([[1,1,2],[0,1,1],[0,0,1]]) 

We get: 

[1,1,1] 

We enter: 

eigenvals([[1,1,2],[0,2,1],[0,0,3]]) 

We get: 
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[3,2,1] 

20.12.2 Eigenvectors: EIGENVV eigenvects 

In HOME, EIGENVV returns a list of two matrices: the one of eigenvectors and the one of the 
calculable eigenvalues of a numerical diagonalizable matrix. 
 
We enter: 

EIGENVV([[1,1],[0,2]]) 

We get: 

{[[0.707106781187,-1.41421356237],[0.707106781187,0]],[[2,0],[0,1]]} 

In CAS, eigenvects or eigVc returns the matrix of eigenvectors of a diagonalizable matrix. 
 
We enter: 

eigenvects([[1,1],[0,2]]) 

or 

eigVc([[1,1],[0,2]]) 

We get: 

[[1,-1],[1,0]] 

We enter: 

eigenvects([[1,1,2],[0,1,1],[0,0,1]]) 

or 

eigVc([[1,1,2],[0,1,1],[0,0,1]]) 

We get: 

"Low accuracy or not diagonalizable at some eigenvalue. 

Try jordan if the matrix is exact." 

We enter: 

eigenvects([[1,1,2],[0,2,1],[0,0,3]]) 

or 

eigVc([[1,1,2],[0,2,1],[0,0,3]]) 

We get: 

[[3,-1,1],[2,-1,0],[2,0,0]],[[3,0,0],[0,2,0],[0,0,1]] 

20.12.3 Jordan matrix: eigVl 

eigVl takes as argument a matrix of size 𝑛. 
eigVl returns the matrix of Jordan associated to this matrix. 
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Note: if the matrix is symbolic, we can get as a numerical result eigenvalues because the CAS must 
formally factorize the characteristic polynomial! 
 
We enter: 

egVl([[4,1,-2],[1,2,-1],[2,1,0]]) 

We get: 

[[2,1,0],[0,2,1],[0,0,2]] 

We enter: 

egVl([[4,1,0],[1,2,-1],[2,1,0]]) 

We get: 

[[0.324869129433,0,0],[0,4.21431974338,0],[0,0,1.46081112719]] 

20.12.4 Jordan matrix and its transfer matrix: jordan 

jordan is used in the CAS (in HOME, use CAS.jordan and the result will be exact). 
jordan returns the list formed by the transfer matrix and the Jordan form of a matrix. 
We enter: 

jordan([[1,1,2],[0,2,1],[0,0,3]]) 

We get: 

[[3,-1,1],[2,-1,0],[2,0,0]] 

We enter: 

jordan([[1,1,2],[0,1,1],[0,0,1]]) 

We get: 

[[1,2,0],[0,1,0],[0,0,1]],[[1,1,0],[0,1,1],[0,0,1]] 

If A=[[1,1,2],[0,1,1],[0,0,1]], P=[[1,2,0],[0,1,0],[0,0,1]] and 
B=[[1,1,0],[0,1,1],[0,0,1]], we have: 
inv(P)*A*P returns B. 

20.12.5 Power n of a square matrix: matpow 

matpow rises a square matrix to the power n by jordanization. 
 
We enter: 

matpow([[1,2],[2,1]],n) 

We get: 

[[((-1)^n+3^n)/2,(-(-1)^n+3^n)/2],[(-(-1)^n+3^n)/2,((-1)^n+3^n)/2]] 

We have indeed: 
jordan([[1,2],[2,1]]) returns: 

[[1,-1],[1,1]],[[3,0],[0,-1]] 
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20.12.6 Diagonal matrix and its diagonal: diag 

diag is used in the CAS (in HOME, use CAS.diag). 
When diag takes as argument a matrix, diag returns the vector formed by the elements of its 
diagonal. 
When diag takes as argument a vector, diag returns the diagonal matrix, of diagonal the elements of 
this vector. 
We enter: 

diag([[1,0],[0,2]]) 

We get: 

[1,2] 

We enter: 

diag([1,2]) 

We get: 

[[1,0],[0,2]] 

20.12.7 Cholesky matrix: cholesky 

cholesky is used in the CAS (in HOME, use CAS.cholesky). 
cholesky takes as argument a symmetric matrix A. 
cholesky returns the matrix L such as A=L*tran(L) 
 
We enter: 

cholesky([[3,1],[1,4]]) 

We get: 

[[3/(sqrt(3)),0],[1/(sqrt(3)),(sqrt(33))/3]] 

and we do have [[3/(sqrt(3)),0],[1/(sqrt(3)),(sqrt(33))/3]]* 
tran([[3/(sqrt(3)),0],[1/(sqrt(3)),(sqrt(33))/3]]) 

returns [[3,1],[1,1/3+11/3]] 

20.12.8 Hermite normal form of a matrix: ihermite 

ihermite returns the Hermite normal form of a matrix 𝐴 of integer coefficients. 

ihermite returns 𝑈, 𝐵 such as 𝑈 is invertible in ℤ, 𝐵 is upper triangular and 𝐵 =  𝑈 ∗  𝐴. 
We enter: 

ihermite([[1,2],[2,3]]) 

We get: 

[[-3,2],[2,-1]],[[1,0],[0,1]] 

20.12.9 Matrix reduction to Hessenberg form: hessenberg 

hessenberg is used in the CAS (in HOME, use CAS.hessenberg). 
hessenberg takes as first argument a matrix 𝐴 and as second argument 0,−1 or −2 or 𝑛 >  1 and 𝑛 
prime. 
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hessenberg returns the transfer matrix 𝑃 and the matrix 𝐵 similar to 𝐴 whose coefficients sous-sous-

diagonaux are null. We say that 𝐵 is a Hessenberg matrix and we have 𝐵 =  𝑃−1𝐴𝑃 or 𝐵 ∼  𝑃−1𝐴𝑃 
according to the second argument. 

– With one single argument or as second argument 0, calculations are exact. 

– With as second argument −1, the calculations are approximate and the matrix 𝐵 is triangular. 

– With as second argument −2, the calculations are approximate and the matrix 𝑃 is orthogonal 
and the matrix 𝐵 has its subdiagonal coefficients are null. 

– With as second argument 𝑛 >  1 and 𝑛 prime, the calculations are given modulus 𝑛 and the 

matrix 𝐵 is triangular. 
 
We enter: 

hessenberg([[1,2,3],[4,5,6],[7,8,1]]) 

We get: 

[[[1,0,0],[0,4/7,1],[0,1,0]], [[1,29/7,2],[7,39/7,8],[0,278/49,3/7]]] 

We enter: 

hessenberg([[1,2,3],[4,5,6],[7,8,1]],-1) 

We get: 

[[[-0.293737737475,0.802770468103,0.518919759814], 

[-0.69005396727,-0.553745992027,0.466037443312], 

[-0.661470833702,0.221189854777,-0.716611041155]], 

[[12.4541647409,-2.25953233593,-4.26290461387], 

[8.03071937292e-17,-0.379762185881,0.849798726727], 

[4.52383345971e-20,-9.66694414605e-19,-5.07440255497]]] 

We enter: 

hessenberg([[1,2,3],[4,5,6],[7,8,1]],-2) 

We get: 

[[[1,0.0,0.0], 

[0,0.496138938357,0.868243142124], 

[0,0.868243142124,-0.496138938357]], 

[[1.0,3.59700730309,0.248069469178], 

[8.0622577483,8.01538461538,6.27692307692], 

[0,4.27692307692,-2.01538461538]]] 

We enter: 

hessenberg([[1,2,3],[4,5,6],[7,8,1]],3) 

We get: 

[[[1,0,0],[0,1,0],[0,1,1]],[[1,-1,0],[1,-1,0],[0,1,1]]] 
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20.12.10 Smith normal form of a matrix: ismith 

ismith is used in the CAS (in HOME, use CAS.ismith). 
ismith(A) returns the Smith normal form of the matrix 𝐴 with integer coefficients and returns the 
matrices 𝑈, 𝐵, 𝑉 with 𝑈 and 𝑉 invertible in ℤ and where 𝐵 is a diagonal matrix so that 𝐵[𝑗, 𝑗] is a divider 

of 𝐵[𝑗 +  1, 𝑗 +  1] and 𝐵 =  𝑈 ∗  𝐴 ∗  𝑉 . 
 
We enter: 

ismith([[1,2],[2,3]]) 

We get: 

[[1,0],[2,-1]],[[1,0],[0,1]],[[1,-2],[0,1]] 

We enter: 

ismith([[9,-36,30],[-36,192,-180],[30,-180,180]]) 

We get: 

[[-3,0,1],[6,4,3],[20,15,12]],[[3,0,0],[0,12,0],[0,0,60]], 

[[1,24,-30],[0,1,0],[0,0,1]] 

20.13 Factorization 

20.13.1 LQ decomposition of a matrix: LQ 

In HOME LQ(M1), (resp. in the CAS LQ(A)), returns the LQ decomposition of a numerical matrix 𝑀1 

(resp. 𝐴) of dimension 𝑚 ×  𝑛 in a lower triangular matrix 𝑀2 (resp. 𝐿) of dimension 𝑚 ×  𝑛, an 
orthogonal matrix 𝑀3 (resp. 𝑄) of dimension 𝑛 × 𝑛 and a permutation matrix 𝑀4 (resp. 𝑃) of dimension 

𝑛 ×  𝑛 such as 𝑀4 ∗  𝑀1 =  𝑀2 ∗  𝑀3 (resp. 𝑃 ∗  𝐴 =  𝐿 ∗  𝑄). 
 
We enter: 

LQ([[4,0,0],[8,-4,3]]) 

We get: 

[[4.0,0,0],[8.0,5.0,0]],[[1,0,0], 

[0,-0.8,0.6],[0,-0.6,-0.8]],[[1,0,],[0,1]] 

We enter: 

LQ([[0.8,0.6],[2.2,0.4]]) 

We get: 

[[1.0,0],[2.0,-1.0]],[[0.8,0.6], [-0.6,0.8]],[[1,0],[0,1]] 

We enter: 

LQ([[4,3],[11,2]]) 

We get: 

[[5.0,0],[10.0,-5.0]],[[0.8,0.6], [-0.6,0.8]],[[1,0],[0,1]] 



 339 

We enter: 

LQ([[1,2],[3,4]]) 

We get: 

[[2.2360679775,0.],[4.9193495505,0.894427191]], 

[[0.4472135955,0.894427191],[0.894427191,-0.4472135955]], 

[[1,0],[0,1]]] 

which means that: 

[[1,2],[3,4]]=[[2.2360679775,0.0],[4.9193495505,0.894427191]]* 

[[0.4472135955,0.894427191],[0.894427191,-0.4472135955]] 

We enter: 

[[1,2,3],[3,4,5],[5,6,7]]=>M3 

LQ(M3) 

We get: 

[[3.74165738677,0,0],[6.94879228972,1.30930734142,0], 

[10.1559271927,2.61861468283,1]], 

[[0.267261241912,0.534522483825,0.801783725737], 

[0.872871560944,0.218217890236,-0.436435780472], 

[-9.09494701773e-13,-2.27373675443e-13,6.8212102633e-13]], 

[[1,0,0], [0,1,0],[0,0,1]] 

20.13.2 Minimal norm of the linear system 𝑨 ∗ 𝑿 = 𝑩: LSQ 

LSQ(A,B) returns the minimal norm to the least squares method of the over or underdeterminated 
linear system A*X=B, to estimate the solution of a linear system A*X=B (if B is a vector) or of linear 
systems A*X=B (if B is a matrix) for: 

– an overdeterminated system (more rows than columns) 
– if B is a vector: we look for X, of Euclidean norm minimal which minimizes the Euclidean norm 

of (AX-B). 
– if B is a matrix: we look for Xj of Euclidean norm minimal among the solutions which minimize 

the Euclidean norm of (AXj-Bj) 
– an underdeterminated system (most of the time: more columns than rows) 

We look for X which minimizes the Frobenius norm of (AX-B) (the Frobenius norm of a matrix 

𝑀 is √𝑃 |𝑀(𝑗, 𝑘)|2). 
– a system exactly determinated (the number of columns equals the number of rows and A is 

invertible). 
We use inv(A)*B to get X which gives false results with approximate calculation if the matrix 
is baddly determinated (independant equations close one to the other) 

 
We enter: 

LSQ([[1,2],[3,4]],[[5,-1],[11,-1]]) 

We get: 

[[1,1],[2,-1]] 

We enter: 
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LSQ([[1,2]],[[5,-1]]) 

We get: 

[[1,-1.2],[2,-0.4]] 

We enter: 

LSQ([[1,2],[3,4],[3,6]],[[5,-1],[11,-1],[15,-3]]) 

We get: 

[[1,1],[2,-1]] 

We enter: 

LSQ([[1,2],[3,4],[3,6]],[[5,-1],[11,-1],[15,-1]]) 

We get: 

[[1,-0.2],[2,-0.1]] 

20.13.3 LU decomposition of a square matrix: LU 

Warning! LU and lu do not return the same result. 
 
In HOME LU(M1), returns the 𝐿𝑈 decomposition of a square matrix 𝑀1 (resp. 𝐴1) in a lower triangular 
matrix 𝑀2 (resp. 𝐿) (of diagonal 1) and a upper triangular matrix 𝑀3 (resp. 𝑈) such as, if 𝑀4 (resp. 𝑃) 

is a permutation matrix we have 𝑀4 ∗  𝑀1 =  𝑀2 ∗  𝑀3 (resp. 𝑃 ∗  𝐴1 =  𝐿 ∗  𝑈). 
 
We enter: 

LU([[1,2],[1,4]]) 

We get: 

{[[1,0],[1,1]],[[1,2],[0,2]],[[1,0],[0,1]]} 

We enter: 

LU([[1,2],[3,4]]) 

We get: 

{[[1,0],[0.333333333333,1]], 

[[3,4],[0,0.666666666667]], 

[[0,1],[1,0]]} 

because we have chosen to put 1 on the diagonal of 𝐿. 
This means that: 

[[0,1],[1,0]]*[[1,2],[3,4]])= [[3,0],[1,0.666666]]*[[1,1.333333],[0,1]] 

 
We enter: 

LU([[1,2,4],[4,5,6],[7,8,9]]) 

We get: 
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[[[1,0,0],[4,1,0],[7,2,1]], [[1,2,4],[0,-3,-10],[0,0,1]],[0,1,2]] 

which means that: 

[[1,2,4],[4,5,6],[7,8,9]]= 

[[1,0,0],[4,1,0],[7,2,1]]*[[1,2,4],[0,-3,-10],[0,0,1]] 

because the matrix associated to the permutation [0,1,2] is the identity matrix of size 3. 
 
We enter: 

LU([[6,12,18],[5,14,31],[3,8,18]]) 

We get: 

[[[1,0,0],[2,1,0],[5/3,(-1)/6,1]],[[3,8,18],[0,-4,-18],[0,0,-

2]],[2,0,1]] 

which means that: 

[[0,0,1],[1,0,0],[0,1,0]]*[[6,12,18],[5,14,31],[3,8,18]]= 

[[1,0,0],[2,1,0],[5/3,(-1)/6,1]]*[[3,8,18],[0,-4,-18],[0,0,-2]] 

because the matrix associated to the permutation [2,0,1] is the matrix [[0,0,1], [1,0,0], [0,1,0]]. 

20.13.4 LU decomposition: lu 

Warning! LU and lu do not return the same result. 
 
In HOME (resp. in the CAS) lu takes as argument a square matrix 𝑀1 (resp. 𝐴1) of size 𝑛 (numerical 
or symbolic). 
lu(M1) returns a permutation 𝑝 of 1. . 𝑛 (because in HOME the indices start at 1), a lower triangular 

matrix 𝐿 with 1 on its diagonal and an upper triangular matrix 𝑈. 

lu(A) returns a permutation 𝑝 of 1. . 𝑛 (because in the CAS the indices also start at 1), a lower 

triangular matrix 𝐿 with 1 on its diagonal and an upper triangular matrix 𝑈. 
 
These matrices are such as: 

– 𝑃 ∗  𝑀1 =  𝐿 ∗  𝑈 (resp. 𝑃 ∗  𝐴1 =  𝐿 ∗  𝑈), where 𝑃 is the permutation matrix associated to 𝑝 
(that we can calculate in the CAS with P:=permu2mat(p)), 

– the equation 𝐴 ∗  𝑥 =  𝐵 equals: 

𝐿 ∗ 𝑈 ∗ 𝑥 =  𝑃 ∗ 𝐵 =  𝑝(𝐵) where 𝑝(𝐵) =  [𝑏𝑝(1), 𝑏𝑝(2). . 𝑏𝑝(𝑛)], 𝐵 =  [𝑏1, 𝑏2. . 𝑏𝑛] 

 
We can also define from p the permutation matrix 𝑃𝑛 by: 

𝑃𝑛[𝑖, 𝑝(𝑖)] ≔  1 

and 

𝑃𝑛[𝑖, 𝑗]: =  0 if 𝑗 ≠  𝑝(𝑖). 

It is the matrix obtained by permuting, according to permutation 𝑝, the rows of the matrix unity. 

We can use the function permu2mat: permu2mat(p) returns the matrix 𝑃 of size 𝑛. 
 
We enter in HOME: 

(p,L,U):=lu([[3,5],[4,5]]) 

We get: 

[1,2],[[1,0],[1.3333333333,1]],[[4,5],[0,-1.6666666667]] 

We enter in the CAS: 

(p,L,U):=lu([[3,5],[4,5]]) 

We get: 
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[1,2],[[1,0],[4/3,1]],[[3,5],[0,-5/3]] 

We have indeed 𝑛 =  2, then: 

𝑃[0, 𝑝(0)] =  𝑃2[0, 1] =  1, 𝑃[1, 𝑝(1)] =  𝑃2[1, 0] =  1, 𝑃 =  [[0, 1], [1, 0]] 
Checking: 
We enter: 

permu2mat(p)*A1; L*U 

We get: 

[[4.0,5.0],[3.0,5.0]],[[4.0,5.0],[3.0,5.0]] 

Please note that the permutation is different when the data are exact (the choice of the pivot is easier).  
We enter in the CAS: 

lu([[1,2],[3,4]]) 

We get: 

[1,2],[[1,0],[3,1]],[[1,2],[0,-2]] 

20.13.5 QR decomposition of a square matrix: QR qr 

In HOME QR(M1), (resp. in the CAS qr(A)), returns the 𝑄𝑅 decomposition of a square matrix M1 

(resp. A) in a matrix 𝑄 orthogonal and an upper triangular matrix 𝑅 such as, if 𝑃 is a permutation 
matrix, we have 𝑀1 ∗  𝑃 =  𝑄 ∗  𝑅 (resp. 𝐴 ∗  𝑃 =  𝑄 ∗  𝑅). 
 
We enter: 

QR([[4,11,-2],[3,2,11]]) 

or 

qr([[4,11,-2],[3,2,11]]) 

We get: 

{[[0.8,-0.6],[0.6,0.8]],[[5.0,10.0,5.0],[0,-5.0,10.0]], 

[[1,0],[0,1]]} 

We enter: 

QR([[1,2],[3,4]]) 

or 

qr([[1,2],[3,4]]) 

We get: 

[[0.316227766017,0.948683298051], [0.94868329805,-0.316227766017]], 

[[3.16227766017,4.42718872424], [0.0,0.632455532034]], [[1,0],[0,1]] 

which means that: 
[[0.316227766017,0.948683298051],[0.94868329805,-0.316227766017]]* 

[[3.16227766017,4.42718872424],[0.0,0.632455532034]]= 

[[1,2],[3,4]] 

 
We enter: 
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QR([[1,2,4],[4,5,6],[7,8,9]]) 

We get: 

[[[1,0,0],[4,1,0],[7,2,1]], [[1,2,4],[0,-3,-10],[0,0,1]],[0,1,2]] 

which means that: 
[[1,2,4],[4,5,6],[7,8,9]]= 

[[1,0,0],[4,1,0],[7,2,1]]*[[1,2,4],[0,-3,-10],[0,0,1]] 

20.13.6 Matrix reduction to Hessenberg form: SCHUR schur 

In HOME SCHUR(M1), (resp. in the CAS schur(A)), returns the numerical matrices [𝑃, 𝐵] such as 

𝐵 =  𝑖𝑛𝑣(𝑃)  ∗  𝑀1  ∗  𝑃 (resp. 𝐵 =  inv(𝑃) ∗  𝐴 ∗  𝑃) with 𝐵 triangular. 
We have SCHUR(A)=hessenberg(A,-1). 𝐵 is the Hessenberg matrix similar to the matrix 𝑀1 (resp. 

𝐴). 
 
We enter: 

SCHUR([[1,2,3],[4,5,6],[-1,3,-2]]) 

We get two matrices P (orthogonal transfer matrix tran(P)=inv(P)) and B (triangular matrix similar 
to the argument): 

[[[0.353452714748,-0.31069680265,0.882348386557], 

[0.905760021954,-0.122092619725,-0.405822836763], 

[0.23381608385,0.94263507734,0.238262774897]], 

[[8.10977222864,3.79381095693,2.32899008373], 

[0.0,-3.0,-3.03031411127],[0.0,0.0,-1.10977222865]]] 

and we have: 

B∼ inv(P)*[[1,2,3],[4,5,6],[-1,3,-2]]*P. 

We enter: 

SCHUR([[1,2,4],[4,5,6],[7,8,9]]) 

We get two matrices P (orthogonal transfer matrix tran(P)=inv(P)) and B (triangular matrix similar 
to the argument): 

[[[-0.275726630766,-0.921788330317,-0.272545591008], 

[-0.518148584403,-0.0962872203049,0.849853408352], 

[-0.809627611663,0.375546329096,-0.451074367633]], 

[[16.5037894003,3.99680014234,-0.803622341526], 

[-4.55776517517e-20,-1.61625693617,0.616262731649], 

[4.1752316389e-20,-2.72155736143e-15,0.112467535861]]] 

and we have: 

MB∼ inv(P)*[[1,2,3],[4,5,6],[-1,3,-2]]*P 

20.13.7 Singular value decomposition: SVD svd 

In HOME SVD(M1) returns 1 matrix M2, 1 vector M3, 1 matrix M4. 
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This gives the factorization of the rectangular numerical matrix real 𝑀1 (of size 𝑚 ∗  𝑛) in 

M2*diag(M3)*TRN(M4) where M2 is an orthogonal matrix 𝑚 ∗  𝑚, M4 is an orthogonal matrix 𝑛 ∗  𝑛, 
and diag(M3) is a diagonal matrix of dimension 𝑚 ∗  𝑛 having as diagonal the singular values M3 of 

𝑀1. 
In CAS, svd(A) returns 1 matrix U, 1 vector S, 1 matrix Q. 
This gives the factorization of the rectangular numerical matrix real 𝐴 (of size 𝑚 ∗ 𝑛) in 

U*diag(S)*TRN(Q) where U is an orthogonal matrix m∗m, Q is an orthogonal matrix 𝑛 ∗  𝑛, and 

diag(S) is a matrix diagonal of size 𝑚 ∗  𝑛 having as diagonal the singular values S of 𝐴. 
 
We enter in HOME: 

M2,M3,M4:=SVD([[1,2],[2,1]]) 

We get: 

{[[[0.707106781187,-0.707106781187], 

[0.707106781187,0.707106781187]], 

[3,1], 

[[0.707106781187,0.707106781187], 

[0.707106781187,-0.707106781187]]]} 

and we have (here 𝑀4 is symmetrical): 
M2*diag(M3)*TRN(M4). 
 
We enter in the CAS: 

U,S,Q:=SVD([[1,2],[2,1]]) 

Or we enter in the CAS: 

U,S,Q:=svd([[1,2],[2,1]]) 

We get: 

{[[[0.707106781187,-0.707106781187], 

[0.707106781187,0.707106781187]], 

[3.,1.], 

[[0.707106781187,0.707106781187], 

[0.707106781187,-0.707106781187]]]} 

and we have (𝑄 is symmetrical): 
[[0.707106781187,-0.707106781187],[0.707106781187,0.707106781187]]* 

[[3,0],[0,1]]* 

[[0.707106781187,0.707106781187],[0.707106781187,-0.707106781187]]= 

[[1,2],[2,1]] 

 
We enter in the CAS: 

SVD([[1,2],[3,4]]) 

Or we enter in the CAS: 

svd([[1,2],[3,4]]) 
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We get: 

[[-0.404553584834,-0.914514295677], 

[-0.914514295677,0.404553584834]], 

[5.46498570422,0.365966190626] 

[[-0.576048436767,0.81741556047], 

[-0.81741556047,-0.576048436766]], 

because 

 [[−0.404553584834, −0.914514295677], [−0.914514295677, 0.404553584834]]∗ 
[[5.46498570422, 0], [0, 0.365966190626]]∗ 
TRN([[−0.576048436767, 0.81741556047], [−0.81741556047, −0.576048436766]]) 

= 

[[1.0, 2.0], [3.0, 4.0]] 

20.13.8 Singular values: SVL svl 

In HOME SVL(M1), (resp. in the CAS svl(A)), returns the list of singular values of the numerical real 
matrix 𝑀1 (resp. 𝐴) i.e. the positive square roots of the eigenvalues of the real symmetrical matrix 

𝑀1 ∗ 𝑇𝑅𝑁(𝑀1) (resp(𝐴 ∗ 𝑇𝑅𝑁(𝐴)). 
 
We enter: 

SVL([[1,4],[1,1]]) 

Ou: 

svl([[1,4],[1,1]]) 

We get: 

[4.30277563773,0.697224362268] 

because 
eigenvals([[1,4],[1,1]]*[[1,1],[4,1]]) 
returns 
(5*sqrt(13)+19)/2,(-5*sqrt(13)+19)/2  

and 
sqrt((5*sqrt(13)+19)/2.),sqrt((-5*sqrt(13)+19)/2.) 

returns 
4.30277563773,0.697224362268 

We enter: 

SVL([[1,2],[2,1]]) 

or 

svl([[1,2],[2,1]]) 

We get: 

[3,1] 

because 
EIGENVAL([[1,2],[2,1]]*[[1,2],[2,1]]) 

returns 
[9,1]. 

We enter: 
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SVL([[1,2],[3,4]]) 

or 

svl([[1,2],[3,4]]) 

We get: 

[5.46498570422,0.365966190626] 

because 
EIGENVAL([[1,2],[3,4]]*[[1,3],[2,4]]) 

returns 
[29.8660687473,0.133931252682] 

which are the aproached values of √221 +  15 and – √221 +  15. 
We have: 

√√221 +  15  ≃  5.46498570422,√− √221 +  15  ≃  0.365966190626 

20.14 Vector 

20.14.1 Cross product: CROSS cross 

In HOME, CROSS returns the cross product of two vectors. 
 
We enter: 

CROSS([1,2,3],[4,5,6]) 

or 

CROSS({1,2,3},{4,5,6}) 

We get: 

[-3,6,-3] 

because 2 ∗  6 −  5 ∗  3 =  −3, 4 ∗  3 −  1 ∗  6 =  6, 5 −  4 ∗  2 =  −3 
In CAS, CROSS or cross returns the cross product of two vectors. 
We enter: 

CROSS([1,2,3],[4,5,6]) 

or 

cross([1,2,3],[4,5,6]) 

We get: 

[-3,6,-3] 

because 2 ∗  6 −  5 ∗  3 =  −3, 4 ∗  3 −  1 ∗  6 =  6, 5 −  4 ∗  2 =  −3 

20.14.2 Dot product: DOT dot 

In HOME, DOT returns the dot product of two vectors. 
 
We enter: 
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DOT([1,2,3],[3,4,5]) 

We get: 

26 

because 1 ∗  3 + 2 ∗  4 + 3 ∗  5 = 26 

In CAS, DOT returns the dot product of two vectors. 
 
We enter: 

DOT([1,2,3],[3,4,5]) 

Or we enter: 

dot([1,2,3],[3,4,5]) 

We get: 

26 

because 1 ∗  3 +  2 ∗  4 +  3 ∗  5 =  26 

20.14.3 Norm l2: l2norm 

l2norm is used in the CAS (in HOME, use CAS.l2norm and the answer will be exact). 

l2norm returns the norm 𝑙2 of a vector: it is the square root of the sum of the squares of its 
coordinates. 
 
We enter: 

l2norm([3,-4,2]) 

Or we enter: 

l2norm(vector(3,-4,2)) 

We get: 

sqrt(29) 

Indeed: 𝑥 = 3, 𝑦 = −4, 𝑧 = 2 and 29 =  |𝑥|2 + |𝑦|2 + |𝑧|2 
. 

20.14.4 Norm 𝒍𝟏: l1norm 

l1norm is used in the CAS (in HOME, use CAS.l1norm and the answer will be exact). 
l1norm returns the norm 𝑙1 of a vector: it is the sum of absolute values of its coordinates. 
We enter: 

l1norm([3,-4,2]) 

Or we enter: 

l1norm(vector(3,-4,2)) 

We get: 

9 
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Indeed: 𝑥 = 3, 𝑦 = −4, 𝑧 = 2 and 9 = |𝑥| + |𝑦| + |𝑧|. 

20.14.5 Norm of the maximum: maxnorm 

maxnorm is used in the CAS (in HOME, use CAS.maxnorm and the answer will be exact). 
maxnorm returns the norm 𝑙∞ of a vector: it is the maximum of absolute values of its coordinates. 
 
We enter: 

maxnorm([3,-4,2]) 

Or we enter: 

maxnorm(vector(3,-4,2)) 

We get: 

4 

Indeed: 𝑥 = 3, 𝑦 = −4, 𝑧 = 2 and 4 = 𝑚𝑎𝑥(|𝑥|, |𝑦|, |𝑧|). 
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Chapter 21 Special functions 

21.1 𝜷 function: Beta 

Beta is used in the CAS (in HOME, use CAS.Beta and the answer will be exact). 
Beta takes as argument two reals 𝑎, 𝑏, or three reals 𝑎, 𝑏, 𝑝, or three reals and 1: 𝑎, 𝑏, 𝑝, 1. 

– with two arguments 𝑎, 𝑏, Beta returns the values of the function 𝛽 at the point 𝑎, 𝑏 of ℝ2. 
We have by definition: 

𝛽(𝑥, 𝑦) =
Γ(𝑥) ∗  Γ(𝑦)

Γ(𝑥 +  𝑦)
 

We have: 
𝛽(1, 1)  =  1 

𝛽(𝑛, 1) =
1

𝑛
 

and: 

𝛽(𝑛, 2) =
1

𝑛(𝑛 +  1)
 

We have: 

Beta(a,b)= ∫ 𝑡𝑎−1 ∗  (1 –  𝑡)
𝑏−1
𝑑𝑡

1

0
 

Beta(a,b) is defined for 𝑎 and 𝑏 positive reals (so that the integral is convergent). 
 
We enter: 

Beta(5,2) 

We get: 

1/30 

We enter: 

simplify(Beta(5,-3/2)) 

We get: 

256/15 

We enter: 

Beta(x,y) 

We get: 

Gamma(x)*Gamma(y)/Gamma(x+y) 

We enter: 

Beta(5.1,2.2) 

We get: 

0.0242053671402 

– with three arguments 𝑎, 𝑏, 𝑝 ,it is the incomplete Beta function for 𝑝 between 0 and 1, it is: 



 350 

– Beta(a,b,p)= ∫ 𝑡𝑎−1 ∗  (1 –  𝑡)
𝑏−1
𝑑𝑡

𝑝

0
, the integral goes from 0 to 𝑝 instead of 0 to 1 for the 

Beta function. 
 
We enter: 

Beta(5,2,0.5) 

We get: 

0.00364583333333 

– with four arguments 𝑎, 𝑏, 𝑝, 1, if we put 1 as fourth argument, this returns the regularized 
incomplete beta function, i.e. the incomplete Beta function divided by Beta(a,b). 
 
We enter: 

Beta(5,2,0.5,1) 

We get: 

0.109375 

indeed Beta(5,2)=1/30 and 0.00364583333333*30=0.109375 

21.2 𝚪 function: Gamma 

Gamma is used in the CAS (in HOME, use CAS.Gamma and the answer will be exact). 
Gamma takes as argument a number a. 
Gamma returns the values of the function Γ at point a. 
We have by definition: 

𝛤(𝑎) = ∫ 𝑒−𝑡𝑡𝑎−1𝑑𝑡,
+∞

0

if 𝑎 >  0 

and we use the formula:  
Γ(𝑎 +  1) =  𝑎 ∗  Γ(𝑎) if 𝑎 is not a negative integer  
Thus: 

Γ(1)  =  1 

Γ(𝑎 +  1)  =  𝑎 ∗  Γ(𝑎) 
and thus: 

Γ(𝑛 +  1)  =  𝑛! 
 
We enter: 

Gamma(5) 

We get: 

24 

We enter: 

Gamma(1/2) 

We get: 

sqrt(pi) 

We enter: 

Gamma(0.7) 
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We get: 

1.29805533265 

We enter: 

Gamma(-0.3) 

We get: 

-4.32685110883 

Indeed: Gamma(0.7)=-0.3*Gamma(-0.3) 
 
We enter: 

Gamma(-1.3) 

We get: 

3.32834700679 

Indeed: 
Gamma(0.7)=-0.3*Gamma(-0.3)=(-0.3)*(-1.3)*Gamma(-1.3) 

21.3 Derivatives of the DiGamma function: Psi 

Psi is used in the CAS (in HOME, use CAS.Psi and the answer will be exact). 
Psi takes as arguments a real a and an integer n (by default 𝑛 =  0). 

Psi is the value of the 𝑛-th derivative of the DiGamma function at point 𝑎. 
The DiGamma function is the derivative of ln (Γ(𝑥)). 
 
We enter: 

Psi(3,1) 

We get: 

pi^2/6-5/4 

We can omit the parameter 𝑛 when 𝑛 =  0. 

When Psi takes as single parameter a number 𝑎, Psi returns the value of the DiGamma function at 

point 𝑎: 
then we have Psi(a,0)=Psi(a). 
 
We enter: 

Psi(3) 

We get: 

Psi(1)+3/2 

We enter: 

evalf(Psi(3)) 

We get: 

.922784335098 
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21.4 The ζ function: Zeta 

Zeta is used in the CAS (in HOME, use CAS.Zeta and the answer will be exact). 
Zeta takes as argument a real x. 
Zeta returns for 𝑥 >  1: 

∑
1

𝑛𝑥

+∞

𝑛=1

   

We enter: 

Zeta(2) 

We get: 

pi^2/6 

We enter: 

Zeta(4) 

We get: 

pi^4/90 

21.5 𝒆𝒓𝒇 function: erf 

erf is used in the CAS (in HOME, use CAS.erf and the answer will be exact). 
erf takes as argument a number a. 
erf returns the values of the erf function at point 𝑎. 
We have by definition: 

erf(x) =
2

√π
∫ 𝑒−𝑡

2
𝑥

0

𝑑𝑡 

We have: 
erf(+∞)  =  1 

erf(−∞)  =  −1 
Indeed, we know that: 

∫ 𝑒−𝑡
2

+∞

0

𝑑𝑡 =
√π

2
 

 
We enter: 

erf(1) 

We get: 

0.84270079295 

We enter: 

erf(1/(sqrt(2)))*1/2+0.5 

We get: 

0.841344746069 

Note: 
There is a relationship between the functions erf and normal_cdf: 

normal_cdf(x) = 
1

2
 +  

1

2
erf (

𝑥

√2
) 
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Indeed: 

normal_cdf(x) = 
1

2
 +

1

√2π
∫ e

−𝑡2

2
𝑥

0
𝑑𝑡 

so with the change of variable 𝑡 =  𝑢 ∗ √2, we have: 
 

normal_cdf(x) =
1

2
 +

1

√π
∫ 𝑒−𝑢

2
𝑥

√2

0
𝑑𝑢 =

1

2
 +  

1

2
erf (

𝑥

√2
)   

 
We check by entering: 

normal_cdf(1)=0.841344746069 

21.6 erfc function: erfc 

erfc is used in the CAS (in HOME, use CAS.erfc and the answer will be exact). 
erfc takes as argument a number 𝑎. 

erfc returns the values of the erfc functionc at point 𝑎. 
We have by definition: 

erfc(𝑥) =
2

√π
∫ 𝑒−𝑡

2
+∞

𝑥

𝑑𝑡 = 1 − erf(𝑥) 

We have: 
𝑒𝑟𝑓𝑐(0)  =  1 

𝑒𝑟𝑓𝑐()  =  −1 
Indeed, we know that: 

∫ e−𝑡
2

+∞

𝑥

𝑑𝑡 =
√π

2
 

We enter: 

erfc(1) 

We get: 

0.15729920705 

We enter: 

1- erfc(1/(sqrt(2)))*1/2 

We get: 

0.841344746069 

Note: 
There is a relationship between the functions erfc and normal_cdf: 

normal_cdf(x) =  1 – 
1

2
 erfc (

𝑥

√2
) 

Indeed: 

normal_cdf(x) =
1

2
 +

1

√2π
∫ 𝑒

−𝑡2

2
𝑥

0
𝑑𝑡 

so with the change of variable 𝑡 =  𝑢 ∗ √2 
 

normal_cdf(x) = 
1

2
 +

1

√π
∫ 𝑒−𝑢

2
𝑥

√2

0
𝑑𝑢 = 1 – 

1

2
 erfc (

𝑥

√2
)  

 
We check by entering: 

normal_cdf(1)=0.841344746069 
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21.7 Exponential integral function: Ei 

Ei is used in the CAS (in HOME, use CAS.Ei and the answer will be exact). 
Ei takes as argument a complex number 𝑎. 

Ei returns the values of the Ei function at point 𝑎. 
We have by definition: 

Ei(𝑥)  = ∫
𝑒𝑡

𝑡

𝑥

t=−∞

dt 

 
For 𝑥 >  0, we extend by the principal value of the integral (the parts of 0− and 0+ compensate 
themselves). We have: 

𝐸𝑖(0)  =  −∞, 𝐸𝑖(−∞)  =  0 

When we are close to 𝑥 =  0 we know that: 

exp(𝑥)

𝑥
=
1

𝑥
+  1 +

𝑥

2!
+
𝑥2

3!
+ … +

𝑥𝑛

(𝑛 −  1)!
…. 

then we have for 𝑥 ∈  𝐶 – ℝ+, (the function is discontinuous on ℝ+): 

Ei(𝑥) = ln(−𝑥) +  𝛾 +  𝑥 +
𝑥2

2.2!
+
𝑥3

3.3!
+  … 

where γ = Euler constant =  0.57721566490.. 
on the axis 𝑥 >  0 we take: 

Ei(𝑥) = ln(𝑥) +  𝛾 +  𝑥 +
𝑥2

2.2!
+
𝑥3

3.3!
+  … 

 
We enter: 

Ei(1.) 

We get: 

1.89511781636 

We enter: 

Ei(-1.) 

We get: 

-0.219383934396 

We enter: 

Ei(1.)-Ei(-1.) 

We get: 

2.11450175075 

We enter: 

int((exp(x)-1)/x,x=-1..1.) 

We get: 

2.11450175075 

We enter: 

evalf(Ei(-1)-sum((-1)^n/n/n!,n=1..100)) 

We get the Euler constant γ: 
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0.577215664901532860606507 

21.8 Sine integral function: Si 

Si is used in the CAS (in HOME, use CAS.Si and the answer will be exact). 
Si takes as argument a complex number 𝑎. 

Si returns the values of the function Si at point 𝑎. 
We have by definition 

Si(𝑥) =  ∫
sin(𝑡)

𝑡

𝑥

𝑡=0

𝑑𝑡 

We have Si(0) =  0, Si(−∞) =  −
𝜋

2
, Si(+∞) =

𝜋

2
 . 

When we are close to 𝑥 =  0, we know that: 
 

sin(𝑥)

𝑥
=  1 –

𝑥2

3!
+
𝑥4

5!
+ … + (−1)𝑛

𝑥2𝑛

(2𝑛 +  1)!
…. 

 

which gives by integration the development in sequences of Si in 0. 
We also note that Si is an odd function. 
 
We enter: 

Si(1.) 

We get: 

0.946083070367 

We enter: 

Si(-1.) 

We get: 

-0.946083070367 

We enter: 

Si(1.)+Si(-1.) 

We get: 

0 

We enter: 

Si(1.)-Si(-1.) 

We get: 

1.89216614073 

We enter: 

int(sin(x)/x,x=-1..1.) 

We get: 

1.89216614073 
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21.9 Cosine integral function: Ci 

Ci is used in the CAS (in HOME, use CAS.Ci and the answer will be exact). 
Ci takes as argument a complex number a. 
Ci returns the values of the function Ci at point a. 
We have by definition: 

Ci(𝑥) =  ∫
cos(𝑡)

𝑡

𝑡=+∞

𝑥

𝑑𝑡 = ln(𝑥) +  γ + ∫
cos(𝑡) − 1

𝑡

𝑥

0

𝑑𝑡 

We have: 𝐶𝑖(0)  =  −∞, 𝐶𝑖(−∞)  =  𝑖𝜋, 𝐶𝑖(+∞)  =  0. 

When we are close to 𝑥 =  0 we know that  

cos(𝑥)

𝑥
=  
1

𝑥
 –
𝑥

2
+
𝑥3

4!
+ … + (−1)𝑛

𝑥2𝑛−1

(2𝑛)!
…. 

which gives by integration the development in sequences of Ci. 
 
We enter: 

Ci(1.) 

We get: 

0.337403922901 

We enter: 

Ci(-1.) 

We get: 

0.337403922901+3.14159265359*i 

We enter: 

Ci(1.)-Ci(-1.) 

We get: 

-3.14159265359*i 

We enter: 

int((cos(x)-1)/x,x=-1..1.) 

We get: 

-3.14159265359*i 

21.10 𝑯𝒆𝒂𝒗𝒊𝒔𝒊𝒅𝒆 function: Heaviside 

Heaviside takes as argument a number a. 
Heaviside returns the values of the Heaviside function at point a. 
We have by definition: 

𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑥)  =  0 if 𝑥 <  0 and 1 otherwise 
 
We enter: 

Heaviside(2) 

We get: 
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1 

We enter: 

Heaviside(-4) 

We get: 

0 

21.11 𝑫𝒊𝒓𝒂𝒄 distribution: Dirac 

Dirac takes as argument a number 𝑎. 
Dirac is the Dirac distribution, it is the distribution associated to the function Heaviside. 
We have by definition: 

𝐷𝑖𝑟𝑎𝑐(𝑥)  =  0 if 𝑥 6 =  0 and ∞ otherwise 

and if 𝑎 ≥  0 and 𝑏 ≠  0 we have: 

∫ 𝐷𝑖𝑟𝑎𝑐(𝑥)𝑑𝑥
𝑎

𝑏

 =  1 

 

∫ 𝐷𝑖𝑟𝑎𝑐(𝑥)𝑓(𝑥)𝑑𝑥
𝑎

𝑏

 =  [𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑥)𝑓(𝑥)]𝑏
𝑎 −∫ 𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑥)𝑓′(𝑥)𝑑𝑥 = 𝑓(0)

𝑎

𝑏

 

∫ 𝐷𝑖𝑟𝑎𝑐(𝑥) ∗ 𝑓(𝑥)𝑑𝑥
+∞

−∞

= 𝑓(0) 

We enter: 

int(Dirac(x)*sin(x),x,-1,2) 

We get: 

sin(0) 

We enter: 

int(Dirac(x-1)*sin(x),x,-1,2) 

We get: 

sin(1) 
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Chapter 22 Constants and calculations with units 

22.1 Shifted key Units 

With the shifted key Units, and then Tools of the push buttons, we get the functions allowing to 
perform calculations with units: 
convert, mksa, ufactor, usimplify. 
With the shifted key Units, and then Units of the push buttons, we get the units sorted by category, in 
menu 1 the avalaible prefixes. 
With the shifted key Units, and then Const of the push buttons, we get the Mathematics, Chemistry, 
Physics and Quantum Mechanics constants. 

22.2 Units 

22.2.1 Notation of units 

The names of units are prefixed with the symbol _ ("underscore"). For instance 2_m for 2 meters. 

You can add a prefix ahead of the name of a unit meaning a multiplication by a power of 10. For 

example, k or K for kilo (means multiplication by 103), D for deca (means multiplication by 10), d for 
deci (means multiplication by 10−1), etc.. 
When combining a real number with units, we create a unit object. 
 
We enter: 

10.5_m 

We get: 

a unit object of 10.5 meters 

We enter: 

10.5_km 

We get: 

a unit object of 10.5 kilometers 

22.2.2 Avalaible prefixes for units names 

You can add prefixes ahead of the names of the units: each prefix corresponds to the name of the unit 
multiplied by a power of 10. 
Here are the different avalaible prefixes: 
 
Prefix Name (*10^) n Prefix Name (*10^) n 
Y yota 24 d deci -1 
Z zeta 21 c cent -2 
E exa 18 m mili -3 
P peta 15 mu micro -6 
T tera 12 n nano -9 
G giga 9 p pico -12 
M mega 6 f femto -15 
k or K kilo 3 a atto -18 
h or H hector 2 z zepto -21 
D deca 1 y yocto -24 
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Note: 
You can of course not use a prefix with an integrated unit if this combination leads to another 
integrated unit. 
For instance, 1_a is an are and 1_Pa is a Pascal, and not 10^15_a. 

22.2.3 Calculations with units 

We can do the basic operations (+, -, *, /) with unit objects. 
In the operations, we can use different units (provided they are compatibles for + and -) and the result 
will be expressed according to the corresponding unit. For the multiplication and the division of two 
different units _u1 and _u2 the result unity reads _(u1*u2) or _(u1/u2) (Mind to not forget the 
parentheses!) 
We can also rise a unit object to an integer power: we get the corresponding unit object. 
Please note that, as far as the addition or substraction is concerned, the result will be expressed with 
the unit of the first term of the operation. 
 
We enter: 

1_m+100_cm 

We get: 

2_m 

We enter: 

100_cm+1_m 

We get: 

200_cm 

We enter: 

1_m*100_cm 

We get: 

100_(cm*m) 

We enter: 

3_h +10_mn-(1_h+45_mn) 

We get: 

1.41666666667_h 

We enter: 

10_mn+3_h-(1_h+45_mn) 

We get: 

85.0_mn 



 360 

22.3 Tools 

22.3.1 Conversion of a unit object to another unit: convert => 

convert allows to get the conversion of a unit object into another unit given as second parameter. 
=> is the infix version of convert. 
 
We enter: 

convert(2_h+30_mn,_mn) 

or else 

2_h+30_mn=>_mn 

We get: 

150_mn 

We enter: 

convert(1_m*100_cm,_m^2) 

or else 

convert(100_(cm*m),_m^2) 

or else 

100_(cm*m)=>_m^2 

We get: 

1_m^2 

We enter: 

convert(1_h,_s) 

Or we enter: 

1_h=>_s 

We get: 

3600_s 

We enter: 

convert(60_mn,_h) 

Or we enter: 

60_mn=>_h 

We get: 

1.0_h 

Note: 
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You must insert a space before the unit if the number of unit is stored in a variable or if it is a constant: 
We enter: 

convert(pi _rad,_deg) 

Or we enter: 

pi _rad=>_deg 

We get: 

180.0_deg 

We enter: 

a:=180 

convert(a _deg,_rad) 

Or we enter: 

a _deg=>_rad 

We get: 

3.14159265358_rad 

22.3.2 Units conversion to MKSA units: mksa 

mksa allows to get the conversion of a unit object into a unit object expressed in MKSA units. 
 
We enter: 

mksa(15_C) 

We get: 

15_A*s 

We enter: 

mksa(1_Hz) 

We get: 

1_s^(-1) 

22.3.3 Factorize a unit in a unit object: ufactor 

ufactor allows to factorize the compound unit of a unit object to get a unit object expressed in 
constituent units (i.e. multiplied by the necessary MKSA units). 
 
We enter: 

ufactor(3_J,_W) 

We get: 

3_(W*s) 
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We enter: 

ufactor(3_W,_J) 

We get: 

3_(J/s) 

22.3.4 Simplify a unit: usimplify 

usimplify allows to simplify a unit in a unit object. 
 
We enter: 

usimplify(3_(W*s)) 

We get: 

3_J 

22.4 Physics constants  

With the shifted key Units then Const of the push buttons, then 3: Physics we get the physics 
constants sorted by category. With the shifted key Units then Unit of the push buttons, we get the 
units sorted by category. The physics constants, and the units sorted by category, are in the menu 
Physics. 

22.5 Units 

22.5.1 Units notation 

The names of units are prefixed with the symbol _ ("underscore"). For instance 2_m for 2 meters. 
You can add a prefix ahead of the name of a unit meaning a multiplication by a power of 10. For 

example, k or K for kilo (multiplication by 103), D for deca (means multiplication by 10), d for deci 
(means multiplication by 10−1) etc., ... 
When combining a real number with units, we create a unit object. 
 
We enter: 

10.5_m 

We get: 

a unit object of 10.5 meters 

We enter: 

10.5_km 

We get: 

a unit object of 10.5 kilometers 

22.5.2 Calculations with units 

In the operations, we can use different units (provided they are compatibles for + and -) and the result 
will be expressed according to the corresponding unit. For the multiplication and the division of two 



 363 

different units _u1 and _u2 the result unity reads _(u1*u2) or _(u1/u2) (Mind to not forget the 
parentheses!) 
We can also rise a unit object to an integer power: we get the corresponding unit object. 
Please note that, as far as the addition or substraction is concerned, the result will be expressed with 
the unit of the first term of the operation. 
 
We enter: 

1_m+100_cm 

We get: 

2_m 

We enter: 

100_cm+1_m 

We get: 

200_cm 

We enter: 

1_m*100_cm 

We get: 

100_(cm*m) 

We enter: 

3_h +10_mn-(1_h+45_mn) 

We get: 

1.41666666667_h 

We enter: 

10_mn+3_h-(1_h+45_mn) 

We get: 

85.0_mn 

22.5.3 Conversion of a unit object into another unit: convert => 

convert allows to get the conversion of a unit object into another unit given as second parameter. 
=> is the infix version of convert. 
 
We enter: 

convert(2_h+30_mn,_mn) 

or else 

2_h+30_mn=>_mn 

We get: 
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150_mn 

We enter: 

convert(1_m*100_cm,_m^2) 

or else 

convert(100_(cm*m),_m^2) 

or else 

100_(cm*m)=>_m^2 

We get: 

1_m^2 

We enter: 

convert(1_h,_s) 

Or we enter: 

1_h=>_s 

We get: 

3600_s 

We enter: 

convert(60_mn,_h) 

Or we enter: 

60_mn=>_h 

We get: 

1.0_h 

Note: 
You must insert a space before the unit if the numerical value of the unit is stored in a variable or if it is 
a constant: 
 
We enter: 

convert(pi _rad,_deg) 

Or we enter: 

pi _rad=>_deg 

We get: 

180.0_deg 

We enter: 

a:=180 



 365 

convert(a _deg,_rad) 

Or we enter: 

a _deg=>_rad 

We get: 

3.14159265358_rad 

22.5.4 Units conversion to MKSA units: mksa 

mksa allows to get the conversion of a unit object to a unit object expressed in MKSA units. 
 
We enter: 

mksa(15_C) 

We get: 

15_A*s 

We enter: 

mksa(1_Hz) 

We get: 

1_s^(-1) 

22.5.5 Conversions between degree Celsius and Fahrenheit: 

Celsius2Fahrenheit Fahrenheit2Celsius 

Celsius2Fahrenheit allows to convert the Celsius degrees into Fahrenheit degrees. 
 
We enter: 

Celsius2Fahrenheit(a) 

We get: 

(a*9)/5+32 

We enter: 

Celsius2Fahrenheit(0) 

We get: 

32 

Fahrenheit2Celsius allows to convert the Fahrenheit degrees into Celsius degrees. 
 
We enter: 

Fahrenheit2Celsius(a) 

We get: 

((a-32)*5)/9 
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We enter: 

Fahrenheit2Celsius(212)) 

We get: 

100 

22.5.6 Factorization of a unit: ufactor 

ufactor allows to factorize the compound unit of a unit object to get a unit object expressed in 
constituent units (i.e. multiplied by the necessary MKSA units). 
 
We enter: 

ufactor(3_J,_W) 

We get: 

3_(W*s) 

We enter: 

ufactor(3_W,_J) 

We get: 

3_(J/s) 

22.5.7 Simplify a unit: usimplify 

usimplify allows to simplify a unit in a unit object. 
We enter: 

usimplify(3 _(W*s)) 

We get: 

3 _J 

22.6 Constants 

22.6.1 Notation of chemical, physics or quantum mechanics constants. 

The names of physics constants start and end by the character _ ("underscore"). Do no mix physics 
constants and symbolic constants. For example, 𝑒, 𝜋 are symbolic constants whereas _c_, _NA_ are 
physics or chemical constants. 
 
We enter: 

_c_ 

We get the light speed in vacuum: 

299792458_m*s^-1 

We enter: 

_NA_ 
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We get the Avogadro number: 

6.0221367e23_gmol^-1 

22.6.2 Physics constants library 

Here is the constants library: 
Name Description 
_NA_ Avogadro Number 
_k_ Boltzmann constant 
_Vm_ Molar volume of ideal gas 
_R_ Molar gas constant 
_StdT_ Standard temperature  
_StdP_ Standard pression  
_sigma_  tefan-Boltzmann constant 
_c_ Light speed 
_epsilon0_ Vacuum permittivity 
_mu0_ Vacuum permeability 
_g_ Acceleration of gravity 
_G_ Gravitation 
_h_ Planck constant 
_hbar_ Dirac constant 
_q_ Electronic charge 
_me_ Electron mass 
_qme_ q/me ratio (charge/mass of the electron) 
_mp_ Proton mass 
_mpme_ mp/me ratio (proton mass /electron mass) 
_alpha_ fine structure 
_phi_ Magnetic flux quantum 
_F_ Faraday constant 
_Rinfinity_ Rydberg constant 
_a0_ Bohr radius 
_muB_ Bohr magneton 
_muN_ Nuclear magneton 
_lambda0_ Photon wavelength 
_f0_ Photon frequency 
_lambdac_ Compton wavelength 
_rad_ 1 radian 
_twopi_ 2*pi radians 
_angl_ Angle of 180 degrees 
_c3_ Wien displacement law constant  
_kq_ k/q (Boltzmann/electronic charge) 
_epsilon0q_ epsilon0/q (permittivity/electronic charge) 
_qepsilon0_ q*epsilon0 (electronic charge*permittivity) 
_epsilonsi_ Silicium dielectric constant  
_epsilonox_ Silicium dioxyd dielectric constant 
_I0_ Sound reference intensity  
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Chapter 23 Functions of 3D geometry 

 
 

23.1 Common perpendicular to two 3D lines: common_perpendicular 

common_perpendicular takes as argument two lines D1 and D2. 
common_perpendicular(D1,D2) draws the common perpendicular of lines D1 and D2. 
 
We enter: 

D1:=line([1,1,0],[0,1,1]); 

D2:=line([0,-1,0],[1,-1,1]); 

Then, we enter: 

d:=common_perpendicular(D1,D2) 

We get: 

pnt([[1,0,-1],[-1/3,-2/3,-1/3]],0,d) 

Which means that the common perpendicular to 𝐷1 and 𝐷2 passes through the points [1,0, −1] and 

[−1/3, −2/3, −1/3]. 
 
Then, we enter: 

equation(d) 

We get: 

[2/3-2*x/3+4*y/3=0,-4/3-8*x/9-4*y/9-20*z/9=0] 
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 The Applications and the Apps key 



 370 

Chapter 24 The menu Geometry 

 
 
Warning! The documentation on the geometry application is subject to modification. 

24.1 Generalities 

We will describe here the Geometry application which allows to do interactive geometry. 
As all the Apps, the plane geometry application has three views: the Symbolic view, the Plot view and 
the Numeric view. 
Cmds, in the push buttons of these three views, lists the geometry commands, sorted by categories 
useful in each of the views: 
Point Line Polygon Curv Plot Transformation for the Symbolic view, 
Zoom Point Line Polygon Curv Plot Transformation, Cartesian, Measure,Tests 
for the Plot view, 
Cartesian, Measure,Tests for the Numeric view. 
Let us detail these three views with an example: 

1. the key Symb opens the Symbolic view. 
Tap Edit or Insert in the push buttons, and fill in the cell GC:circle(1,2) 
For that: 

– enter circle (spelt out) or tap Cmds in the push buttons (Cmds->Curv>Circle). 
If it is the first command you enter, it will be named GA. You can modify this name by selecting 
GA and editing it by tapping Edit in the push buttons. Change A for C and press Enter. 

– directly plot a circle in the Plot view so that circle(point(GA),GB-GA) is written in GC, in 

the Symbolic view. You can then modify the values of GA and GB − GA by point(1) and  

 
Notes 
a. To have the command stored in GC executed, check the cell ahead of GC. 
b. To highlight a command line, use the cursor. 
c. To reorder the commands, use the arrows ↑ and ↓ of the push buttons: with them you can 

move the highlighted line. 
d. To insert a new command, press Insert of the push buttons. 
e. To change the name of a variable in the Symbolic view, select this name, edit it with 

Edit of the push buttons, modify it, and confirm with Enter. 
f. To delete a command line, highlight it, then press the delete key. 

 
2. The key Plot opens the Plot view. 

To directly plot a circle in the Plot view, use Cmds (push buttons) (Cmds->Curv>Circle), 
then designate with your finger the point which will be the center (you can then refine with the 
cursor), and press Enter to confirm your choice: the command point(2.375,1.24)(for 
example) has been automatically registered in GA in the Symbolic view. 
Then, directly with your finger a second point, this time on the circle (you can then refine with 
the cursor) and press Enter to confirm your choice. 
The command point(2.375,3.24) (for example) is then written in GB and the command 
circle(point(GA),GB-GA) is then written in GC in the Symbolic view. 
Once the circle is drawn, you can: 
a. change the color. 

Put your finger close to the contour of the circle to have Options appear in the push 
buttons, then tap Options->Choose to choose a color and Enter. The color palette 
opens: select a color with your finger and confirm with Enter. 

b. Fill it with color 
Put your finger close to the contour of the circle to have Options appear in the push 
buttons, then tap Options->Filled and Enter, which fills the circle with the chosen 
color. 

c. Hide its name 
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Put your finger close to the contour of the circle to have Options appear in the push 
buttons, then tap Options->Hide Label: in case of ambiguity, the calculator will 
propose several choices. 

d. Move it 
Put your finger close to the name of the circle (refine with the cursor) to have Options 
appear in the push buttons, then Enter. Then, you can dragg it anywhere with your 
finger or with the cursor. 
Confirm with Enter. 

Note: 
Please note that the points or the geometrical objects directly created in the Plot view are 
written automatically: the geometrical objects are named and designated by A, B, C... then 
stored in the variables GA, GB, GC... variables also listed in the Symbolic view. Please note 
that the point F does not exist because GF is a CAS command. 

 
3. the key Num opens the Numeric view. 

If you want the equation of the circle previously defined, press: equation(GC) and you get: 

(x-1.0)^2+y^2=4.0 

The Numeric view allows to use the numerical commands in relationship with the graphic and 
to get numerical results. 
The commands giving a numerical result (points coordinates, lines equationsor of curves...) 
can be executed from the Num screen by using New, then Cmds (push buttons) of the Num 
screen. 

 
When we are in the CAS or in the Geometry Application, the commands of geometry are sorted by 
category in the menu Apps-> Geometry of the key Toolbox. We find there the nine categories of 
the Cmds menu of each (push buttons) of the various views: 
Point, Line, Polygon, Curve, Plot, Transformation, Cartesian, Measure, 

Tests. 

 
Note: 
All the geometry functions can be executed from the CAS, but, in this case, the answer will be such 
as, for example: point(1,2), or line(x=1), but not a plot. 
Then, we can do 2D, or even 3D analytic geometry from the CAS. 
For example, let us enter from the CAS: 
g:=line(x=1) then add in the Symb screen GK:=g. 
 
Warning! 
We can retrieve the value of these variables in the Symbolic view , in the Numeric view, or in the CAS 
screen. If, for example, in the geometry application, we have: GA:=point(4.16+2.13*i) and in the 
CAS we enter GA:=5, GA will be equal to 5, as long as we have not used Plot of the geometry 
application, because, once we will have done this, we will have back GA:=point(4.16+2.13*i). 
For this reason, it is not safe to use the variables GA, GB, ... in the CAS. 

24.2 Point 

24.2.1 Point defined as barycenter of n points: barycenter 

In plane geometry, barycenter takes as argument 𝑛 lists of length 2 (resp. a matrix of 𝑛 lines and 
two columns): 
the first element of the list 𝑗 (resp. the 𝑗-th element of the first column of the matrix) stores the point 𝐴𝑗 

or the complex number aj representing the affix of this point, the second element of the list 𝑗 (resp. the 

𝑗-th element of the second column) stores the real coefficient αj assigned to 𝐴𝑗. 

barycenter returns and plots the point which is the barycenter of points 𝐴𝑗 of affixes 𝑎𝑗 assigned of 

real coefficients 𝛼𝑗 when ∑αj ≠  0. 

If ∑αj =  0, barycenter returns an error. 
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We enter: 

barycenter([1+i,1],[1-i,1]) 

Or we enter: 

barycenter([point(1,1),1],[point(1,-1),1]) 

Or we enter: 

barycenter([[1+i,1],[1-i,1]]) 

Or we enter: 

barycenter([[point(1,1),1],[point(1,-1),1]]) 

We get in the geometry application: 

The point of affix 1 is plotted with a cross and its label (name) 

 We get in the CAS: 

point(1) 

Warning! In the geometry application, if you want to get as answer a complex number, you have to 
ask for the affix of the barycenter, otherwise we get the plot of the barycenter point. 
We enter: 

affix(barycenter([1+i,1],[1-i,1])) 

Or we enter: 

affix(barycenter([[1+i,1],[1-i,1]])) 

We get: 

1 

In CAS screen, barycenter may also be used  in 3D geometry and takes as argument 𝑛 lists of 

length 2 (or a matrix of 𝑛 lines and two columns). The first element of the list 𝑗 (resp. the 𝑗-th element 
of the first column of the matrix) stores the point 𝐴𝑗, the second element of the list 𝑗 (resp. the 𝑗-nth 

element of the second column) stores the real coefficient 𝛼𝑗 assigned to 𝐴𝑗. 

barycenter returns point([a,b,c]), where [a,b,c] are the coordinates of the barycenter of 
these 𝑛 points. 
 
We enter: 

barycenter([point(0,0,0),1],[point(3,3,3),2]) 

We get: 

pnt(pn[(point[2,2,2],0)]) 

24.2.2 Point in geometry: point 

In the Plot view, to get a point, it is enough to be in mode point (i.e. Point of the push buttons, then 
select Point and Enter) and locate the cursor at the wished place (with the finger or the arrows) 
then to confirm with Enter: a point is displayed as well as a label. 
This label is automatically generated: A, then B, etc., ... 
We can also use the command point: 
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point takes as argument a complex number or a paired value of two real numbers. 
 
Warning! 
If a,b is a paired value of two complex numbers whose one is non real, GK:=point(a,b) returns two 
points of same label (here K): one of affix a, the other of affix b. 
When a,b is a paired value of two real numbers, GA:=point(a,b) returns and plots the point having 
for affix a+ib. 
 
We enter: 

GA:=point(1+i) 

We get: 

The point A of affix 1+i is plotted with a cross 

We enter: 

GB:=point(-2,1) 

We get: 

The point B of affix -2+i is plotted with a cross 

We enter: 

GC:=point(-2,i) 

We get: 

The two points of affix -2 and i are plotted with a cross and are 

written C 

Note When doing an assignment, for example GA:=point(-2+i), this stores the point(-2+i) in 
the variable GA, to plot the point with a cross and to assign it as a label the name on the left of := by 
omitting the letter G: here A. 
In the case we do several assignments with one single := sign, such as: 
GD,GE:=point(-2+i),point(2+i), the variable GD stores the point(-2+i), and GE the 
point(-2+i), but it will not be possible to move these points by pointing them. 
To avoid this, we must enter: 
GL:=point(-2+i),point(2+i):;GD:=L[0];GE:=L[1] 

or 

GL:=point(-2+i,2+i):;GD:=L[0];GE:=L[1] which defines the point D of affix −2 and the point 
E of affix i (because the affix of GD is not real!). 

24.2.3 Midpoint of a segment: midpoint 

In plane geometry, midpoint takes as argument two points or two complex numbers representing the 
affixes of these points (or else a list of two points or of two complex numbers). 
midpoint returns and plots the point midpoint of the segment defined by these two points. 
 
We enter: 

midpoint(-1,1+i) 

We get in the geometry application: 

The point of affix i/2 is plotted with its label 

In CAS screen, midpoint may also be used in 3D geometry and returns the point midpoint of the 
segment defined by two points. 
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We enter: 

midpoint(point(0,0,0),point(2,2,2)) 

We get: 

point(1,1,1) 

24.2.4 Isobarycenter of n points: isobarycenter 

isobarycenter takes as argument the list (or the sequence) of 𝑛 points or 𝑛 complex numbers 
representing the affixes of these points. 
isobarycenter returns and plots a point which is the isobarycenter of these 𝑛 points. 
We enter: 

isobarycenter(0,2,2*i) 

We get: 

The point of affix 2/3+2*i/3 is plotted with a cross in the geometry 

application 

In CAS screen, isobarycenter may also be used in 3D geometry and takes as argument the list (or the 
sequence) of n points. 
isobarycenter returns point([a,b,c]) where [a,b,c] are the coordinates of the isobarycenter 
of these n points. 
 
We enter: 

isobarycenter(point(0,0,0),point(3,3,3)) 

We get: 

pnt(pn[(point[3/2,3/2,3/2],0])) 

24.2.5 Randomly define a 2D point: point2d 

point2d takes as argument a sequence of names of points. 
point2d randomly defines the integer coordinates (between −5 and +5) of the 2D points supplied as 
argument. 
 
We enter: 

point2d(A,B,C) 

Then, we enter: 

triangle(A,B,C) 

We get: 

The plot of a triangle ABC 

Warning! 
The points defined by the command point2d are fixed once and for all, and hence, they may not be 
moved. 
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24.2.6 Polar point in plane geometry: polar_point 

polar_point(r,t) returns the 2D point of polar coordinates the arguments r and t, that is to say 
the point of affix r*exp(i*t). 
 
We enter: 

polar_point(2,pi/4) 

We get: 

The plot of the point of affix 2*exp(i*pi/4) 

24.2.7 One of the intersection points of two geometrical objects: single_inter 

single_inter takes two or three arguments which are two geometrical objects and eventually a 
third argument which ,is either a point either a list of points. 
single_inter returns one of the intersection points of these two geometrical objects. 
If we have supplied a point GA (or its affixe) as third argument, single_inter returns the 
intersection point the closest to GA, and if we have supplied a list of points l (or a list of affixes), 
single_inter returns the intersection point which is not in the list l. 
 
We enter: 

GA:=single_inter(line(0,1+i),line(1,i)) 

We get: 

The point of affix 1/2+i/2 is plotted with a cross and is labeled A 

We enter: 

GB:=single_inter(circle(0,1),line(-1,i)) 

We get: 

The point of affix i is plotted with a cross and is labeled B 

We enter: 

GB1:=single_inter(circle(0,1),line(-1,i),[i]) 

We get: 

The point of affix -1 is plotted with a cross and is labeled B1 

We enter: 

GB2:=single_inter(circle(0,1),line(-1,1+2*i),1+2*i) 

We get: 

The point of affix i is plotted with a cross and is labeled B2 

We enter: 

GC:=single_inter(circle(1,sqrt(2)),circle(0,1)) 

We get: 

The point of affix i is plotted with a cross and is labeled C 
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We enter: 

GC1:=single_inter(circle(1,sqrt(2)),circle(0,1),[i]) 

We get: 

The point of affix -i is plotted with a cross and is labeled C1 

We enter: 

GC2:=single_inter(circle(1,sqrt(2)),circle(0,1),i/2) 

We get: 

The point of affix i is plotted with a cross and is labeled C2 

24.2.8 All intersection points of two geometrical objects: inter 

inter takes two arguments or three arguments: 
– if inter is supplied with two geometrical objects as arguments, it returns the list of points of 

intersection of these two geometrical objects. 
– if inter is supplied with two geometrical objects and a point as arguments, it returns the 

intersection point of these two geometrical objects the closest of the point supplied as third 
argument. 

 
We enter in geometry: 

GA:=inter(line(0,1+i),line(1,i))[0] 

We get: 

The point of affix 1/2+i/2 is plotted with a cross and is labeled A 

We enter in geometry: 

GB:=inter(circle(0,1),line(1,i))[0] 

GC:=inter(circle(0,1),line(1,i))[1] 

We get: 

The point of affix i is plotted with a cross and is labeled B 

The point of affix 1 is plotted with a cross and is labeled C 

We enter in the CAS: 

inter(circle(0,1),line(1,i)) 

We get: 

[point(1),point(i)] 

We enter in geometry in the Symbolic view: 

GL inter(circle(0,1),line(1,i)) 

We get in the Plot view: 

The points of affix i and 1 are plotted with a cross and are written 

L 
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We enter in plane geometry: 

GD:=inter(circle(0,1),line(1,i),point(1/2)) 

We get: 

The point of affix 1 is plotted with a cross and is labeled D 

24.2.9 Orthocenter of a triangle: orthocenter 

orthocenter takes as argument a triangle, or three points, or three complex numbers specifying the 
affix of three points. 
orthocenter plots and returns the point which is the orthocenter of the triangle, or of the triangle 
formed by these three points. 
 
We enter: 

orthocentre(0,1+i,-1+i) 

Or we enter: 

orthocenter(triangle(0,1+i,-1+i)) 

We get: 

The point of affix 0 is plotted with a cross 

We enter in the Symbolic view of the geometry application: 

GT triangle(-i,2+i,-1+i);GH orthocenter(T) 

We get: 

The triangle T and the point H of affix 0 are plotted 

24.2.10 Vertices of a polygon: vertices 

vertices takes as argument a polygon. 
vertices returns the list of the vertices of this polygon and plots them. 
Warning! If the polygon has n vertices the list will be of length n. 
 
We enter: 

vertices(equilateral_triangle(0,2)) 

We get: 

the points [pnt(0,0),pnt(2,0),pnt((2*(sqrt(3)*(i)+1))/2,0)] are 

plotted with a cross 

We enter: 

GC:=vertices(equilateral_triangle(0,2))[2] 

We get: 

The point of affix 1 +  𝑖 ∗ √3 is plotted with a cross and is labeled C 

Warning! If we enter: 
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GT:=equilateral_triangle(0,2,C); 

We get: 

the triangle T and the point C 

Whereas, if we enter 

GT:=equilateral_triangle(0,2,C):;vertices(GT[0]) 

We get: 

the vertices of T plotted with a cross without label 

24.2.11 Vertices of a polygon: vertices_abca 

vertices_abca takes as argument the name of a polygon. 
vertices_abca returns the "closed" list of vertices of this polygon and plot them. 
Warning! If the polygon has n vertices the list will be of length 𝑛 +  1 because it starts and ends by 
the first vertex (“closed” list). 
We enter: 

vertices_abca(equilateral_triangle(0,2)) 

We get: 

[pnt(0,0),pnt(2,0),pnt((2*(sqrt(3)*(i)+1))/2,0),pnt(0,0)] 

24.2.12 Point on a geometrical object: element 

element may take different kind of arguments: 
1. an interval a..b and two reals, the value and the step (by default the value equals (𝑎 + 𝑏)/2 

and the step (𝑏 − 𝑎)/100). For example, we enter in the Symbolic view: 
GC:=element(-pi..pi) or 
GC:=element(-pi..pi,pi/2) or 
GC:=element(-pi..pi,pi/2,pi/100.0) 
this means that GC can take any value in the range [−𝜋;  𝜋], the second argument 𝜋/2 is the 

start value of GC and 𝜋/100.0 is the chosen step. 
Then, in the Plot view: 

– we have at the bottom-left the coordinates x1,y1 of the pointer. We enter C in Alpha 
mode, 

– then we get at the bottom-right Pick GC; Press Enter to validate. 
– then pick C. 

A line appears at the top of the Plot view: it is a cursor which allows to change the 
value of GC with the arrows (← and →) and at the bottom-right we have Move GC to 
the left of this line we have GC=xc (xc is the value of GC). The arrows ← and → allow 
to change the value xc of GC. 

Example. 
We define GC as above: 
We enter in the Symbolic view: 

GC:=element(-pi..pi,pi/2) 

GD:=line(y+x*TAN(GC)-2*SIN(GC)=0) 

GD is then a line of parameter GC. 
When we move the cursor GC, the line GD moves. 
We can keep the trace of this line GD by entering in the Symbolic view: trace(GD) or by 
using in the menu of the Plot view Point->Plus->trace, which allows to choose the name 
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of the object whose we want the trace of and thus trace(GD) reads automatically in the 
Symbolic view. 
Thus, we can see that the envelop of these lines is an astroid. 
Note: 
To delete the trace or to stop it, use the menu Point->Plus. 

2. a geometrical object and a real (by default this real equals 1/2), for example: 

GA:=element(circle(0,2),1) means that A is on the circle of center 0 and radius 2, and 
has as affix 2 ∗  𝑒𝑥𝑝(𝑖) (because 2 ∗  𝑒𝑥𝑝(𝑖 ∗  𝑡) is the parametric equation of this circle and 

the second argument 1 gives the value of the parameter 𝑡 to define GA). 

For instance, GA:=element(circle(0,1)) means that A is on the circle of center 0 and 
radius 1, the point A will be plotted by having 𝑡 =  1/2 as value of the parameter of the 

parametric equation of the geometrical object (here affix(GA)= 2 ∗  𝑒𝑥𝑝(𝑖/2)). When 
moving A with the arrows, A will follow the outline of the geometrical object. 
Warning! It is the projection of the cursor on the circle which defines the point A: take care to 
move the cursor in the Plot view so that it defines a point A. 

3. a geometrical object and a name of variable (for example GC) previously defined by the 
command element: for example GC:=element(0..pi). 
If we enter GD:=element(circle(0,2),GC), then GC is the variable of setting of the 
geometrical object defined by the first argument of element, that is to say that GD is on the 
circle of center 0 and radius 2, and GD has as affix 2 ∗  𝑒𝑥𝑝(𝑖 ∗  𝐺𝐶), because 2 ∗  𝑒𝑥𝑝(𝑖 ∗  𝑡) 
is the parametric equation of the circle(0,2). It is compulsory in this case to previously 
define the second argument (here GC) as being an element of an interval. 
By example, we enter: 

GC:=element(0..pi) 

then 

GD:=element(circle(0,2),GC) 

Then, we place the cursor on GC (Pointer GC), then Enter. As a result, we have at the top a 
cursor labelled GC that the we can move with the arrows (← and →) from 0 to 𝜋, with at the left 

of this cursor a number equal to the value of the cursor. This cursor allows to move the point A 
on the top half-circle of the circle of center 0 and radius 1 (because 0 ≤  𝑡 ≤  𝜋) and this 
without plotting this half-circle. 
By example, we enter: 

GA:=point(1);GB:=point(2+i) 

GC:=element(0..2) 

then 

GD:=element(line(GA,GB),GC) 

D is a point of the line AB and we have M=A+t*(B-A) i.e. M=(1-t)*A+t*B 
to follow the segment AB, you have to put GC:=element(0..1) or else 
GD:=element(segment(GA,GB),GC) which leaves D in A if 𝑡 < 0 and leave D in B if 𝑡 > 1. 

4. a polygonal line GP and [floor(GC),frac(GC)] with GC previsouly defined by the 
command element: for example GC:=element(0..5) if GP has 5 sides. 
The sides of the polygonal line GP have as number: 0,1. ... 
If, for example, GP has 5 sides and as vertices S(0),...S(4),S(5)=S(0), we enter: 

GC:=element(0..5) 

GD:=element(GP,[floor(GC),frac(GC)]) 

Thus, according to the values of GC, D will follow the 5 sides of GP: D will be located on the 
side number n=floor(GC) and we will have: 
D=frac(GC)*S(n)+(1-frac(GC))*S(n+1). 

For instance: 
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GA:=point(0); 

GB:=point(4); 

GC:=point(4*i); 

Gd:=element(0..3); 

GT:=triangle(A,B,C); 

GM:=element(GT,[floor(GD),frac(GD)]); 

 

Warning! If we add a complex a to a point 𝑀 of affix 𝑚, defined as element of a curve 𝐶, this defines a 
point 𝑁 of the curve 𝐶 which is the projection the point of affix 𝑚 +  𝑎 on 𝐶. 

Par contre if a point M of affix m, defined as element of a curve 𝐶, we add a point 𝐴 of affix 𝑎, this 

defines a point 𝑃 of affix 𝑚 +  𝑎. For instance, being supplied 3 points 𝑀,𝐴, 𝐵, if we want to define the 
point 𝑁 that makes for example: 

𝑀𝑁⃗⃗⃗⃗⃗⃗  ⃗  =  𝐴𝐵⃗⃗⃗⃗  ⃗, 
We can enter: GN:=GM+(GB-GA) provided that 𝑀 is not defined as element of a curve 𝐶. Indeed, if we 

have entered GM:=element(GC),we must define 𝑁 by entering: GN:=affix(GM)+GB-GA or 
GN:=GM+GB-GA (without parenthesis) because GN:=GM+GB-GA is interpreted as GN:=(GM+GB)-GA 
becausethere are no precedence rules for + and − whereas 
GN:=GM+(GB-GA)returns an element of the curve C which is the projection of N on C. 
Thus, if we enter: 

GA:=point(-2,2);GB:=point(1,3);GC:=circle(0,1); 

GM:=element(GC);GN:=affix(GM)+GB-GA;(or GN:=GM+GB-GA;) 

GN is not on the curve C 
but if we enter: 

GP:=GM+(GB-GA) (or GP:=projection(GC,GN);) 

P is on the curve C. 

24.2.13 Point dividing a segment: division_point 

division_point takes three arguments: two points (or two complex numbers 𝑎 and 𝑏) and a 

complex number 𝑘. 
division_point returns and plots the point of affix 𝑧 such as: 

𝑧 − 𝑎

𝑧 − 𝑏
=  𝑘 

 
We enter: 

GA:=division_point(i,2+i,3+i) 

We get: 

the point A of affix (5+4*i)/(2+i) 

because csolve(z-i=(3+i)*(z-2-i),z) returns [(14+3*i)/5] and (5+4*i)/(2+i) returns 
(14+3*i)/5 
 
We enter: 

GB:=division_point(point(i),point(2+i),3) 

We get: 

the point B of affix 3+i 

because csolve(z-i=3*(z-2-i),z) returns [3+i] 
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24.2.14 Harmonic division: harmonic_division 

Four points aligned 𝐴, 𝐵, 𝐶, 𝐷 are in harmonic division if we have: 

𝐶𝐴̅̅ ̅̅

𝐶𝐵̅̅ ̅̅
=  −

𝐷𝐴̅̅ ̅̅

𝐷𝐵̅̅ ̅̅
=  𝑘 

We also say that 𝐶 and 𝐷 divide the segment 𝐴𝐵 with the ratio 𝑘 and that the point 𝐷 is the conjugate 

harmonic of 𝐶 according to 𝐴 and 𝐵 or, shortly, 𝐷 is the harmonic conjugate of 𝐴, 𝐵, 𝐶. 
Four concurrent or parallel lines 𝑑1, 𝑑2, 𝑑3, 𝑑4 are in harmonic division if they define an harmonic 
division on each secant line. 
We also say that 𝑑1, 𝑑2, 𝑑3, 𝑑4 form an harmonic bundle. 
harmonic_division takes as arguments three points aligned or their three affixes 
(resp. three concurrent or parallel lines) and the name of a variable. 
harmonic_division modifies the last argument so that we get an harmonic division and returns the list 
of four points (resp. list of four lines) and plots the points (resp. the lines). 
 
We enter: 

harmonic_division(0,2,3/2,GD) 

We get: 
[0,2,3/2,pnt(3,0,"GD")] and only the point D is plotted 

We enter: 

harmonic_division(point(0),point(2),point(3/2),GD) 

We get: 
[pnt(0,0),pnt(2,0),pnt(3/2,0), pnt(3,0,"D")] and the four points are plotted 

Note: 0 stands for the color of the point. 
 
We enter: 

harmonic_division(line(i,0),line(i,1+i), line(i,3+2*(i)),GD) 

We get: 
[pnt([[i,0],0]),pnt([[i,1+i],0]), pnt([[i,3+2*i],0]), 

pnt([[i,-3+2*i],0,"GD"])] and the four lines are plotted 

24.2.15 Harmonic conjugate: harmonic_conjugate 

harmonic_conjugate takes as arguments three points aligned 𝐺𝐴, 𝐺𝐵, 𝐺𝐶 (resp. three concurrent or 
parallel lines). 
harmonic_conjugate returns and draws the conjugate harmonic of 𝐺𝐶 with respect to 𝐺𝐴 and 𝐺𝐵. 
 
We enter: 

harmonic_conjugate(0,2,3/2) 

We get: 

pnt(3,0) and the plot of this point 

We enter: 

harmonic_conjugate(line(0,1+i),line(0,3+i),line(0,i)) 

We get: 

pnt([[0,3+2*i],0]) and the plot of this line 
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24.2.16 Pole and polar: pole polar 

polar takes as argument a circle 𝐺𝐶 and a point 𝐺𝐴 (or a complex number). 

polar returns and draws the polar of the point 𝐺𝐴 with respect to the circle 𝐺𝐶: it is the line which is 
the locus of conjugates of 𝐺𝐴 with respect to the circle 𝐺𝐶. 

pole takes as argument a circle 𝐺𝐶 and a line 𝐺𝑑. 

pole returns and draws the pole of 𝐺𝑑 with respect to the circle 𝐺𝐶: it is the point 𝐺𝐴 having 𝐺𝑑 as 
polar according to 𝐺𝐶. 
 
We enter: 

polaire(circle(0,1),(point(1+i))/2) 

We get: 

pnt([[2,2*i],0]) and the plot of this line 

We enter: 

pole(circle(0,1),line(i,1)) 

We get: 

pnt(1+i,0) and the plot of this point 

24.2.17 Reciprocal polar: reciprocation 

reciprocation takes as argument a circle 𝐺𝐶 and a list of points and lines. 
reciprocation returns the list obtained by replacing in the list supplied as argument a point (resp. a 
line) by its polar (resp. its pole) with respect to the circle 𝐺𝐶. 
We enter: 

reciprocation(circle(0,1),[point((1+i)/2), line(1,-1+i)]) 

We get: 

the line of equation y = (−x + 2) and the point of affix 1+2i 

24.2.18 The center of a circle: center 

center takes as argument the name of a circle (see the definition of the circle ??). 
center returns and plots the center of this circle. 
 
We enter: 

GC:=center(circle(0,point(2*i))) 

We get: 

The point of affix i is plotted with a cross and is labeled C 

We enter: 

GM:=center(circle(point(1+i),1)) 

We get: 

The point of affix 1+i is plotted with a cross and is labeled M 
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24.3 Line 

24.3.1 Line defined by a point and a slope: DrawSlp 

DrawSlp(a,b,m) draws the line of slope 𝑚 passing by the point (𝑎, 𝑏) 
 
We enter: 

DrawSlp(1,2,-1) 

We get: 

The line passing by the point of affix 1+2i and slope -1 

24.3.2 Tangent to the curve of 𝒚 =  𝒇(𝒙) in 𝒙 =  𝒂: LineTan 

LineTan(f(x),x=a) plots the tangent to the curve of 𝑦 =  𝑓(𝑥) in 𝑥 =  𝑎. 
 
We enter: 

LineTan(sin(x),pi/6) 

Or we enter: 

LineTan(sin(t),t,pi/6) 

We enter: 

LineTan(sin(t),t=pi/6) 

We get: 

The plot of the tangent to the curve y = sin(x) at the point of 

abscissa x = π/6) 

24.3.3 Altitude of a triangle: altitude 

altitude(GA,GB,GC) plots the altitude of the triangle 𝐴𝐵𝐶 through 𝐴. 
 
We enter: 

altitude(1,0,1-i) 

We get in the geometry application: 

The plot of the altitude of the triangle (1, 0, 1 − i) through the 
point of affix 1 

We enter: 

altitude(0,1,2-i) 

We get in the geometry application: 

The plot of the altitude of the triangle (0, 1, 2 − i) through the 
point of affix 0 

We enter in the CAS screen: 
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a:=altitude(1,0,1-i) 

We get: 

line(y=x-1) 

We enter in the CAS screen: 

a:=altitude(1,0,1-i) 

We get: 

line(y=x) 

24.3.4 Internal bisector of a angle: bisector 

bisector(GA,GB,GC) plots the internal bisector of the angle 𝐵𝐴𝐶̂. 
 
We enter: 

bisector(0,1,i) 

We get in the geometry application: 

The plot of the internal bisector of the angle (0, 1, 𝑖)̂  

We enter in the CAS screen: 

bisector(0,1,i) 

We get: 

line(y=x) 

24.3.5 External bisector of a angle: exbisector 

exbisector(GA,GB,GC) plots the internal bisector of the angle 𝐵𝐴𝐶̂. 
 
We enter: 

exbisector(0,1,i) 

We get in the geometry application: 

The plot of the external bisector of the angle (0, 1, 𝑖)̂  

We enter in the CAS screen: 

exbisector(0,1,i) 

We get: 

line(y=-x) 

24.3.6 Half line: half_line 

half_line(GA,GB) plots the half line 𝐴, 𝐵. 
 
We enter: 
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half_line(1,2+i) 

We get in the geometry application: 

The plot of the half-line of origin the point of affix 1 and passing 

by the point of affix 2+i. 

We enter in the CAS screen: 

half_line(1,2+i) 

We get: 

line(y=x-1) 

24.3.7 Line and oriented line: line 

In plane geometry, line takes as argument two points (or two complex numbers representing the 
affixes of these points), or a list of two points (or two complex numbers), or takes as argument a point 
and slope=m, or else a line equation of the form 𝑎 ∗ 𝑥 + 𝑏𝑦 + 𝑐 = 0. 
line returns and plots the line defined by the two arguments. 
line(GA,GB) plots the line 𝐴, 𝐵. 
 
Note: slope is also a command giving the slope of a line. You would better use DrawSlp to define a 
line with a point and its slope. (DrawSlp(a,b,m) defines the line line(point(a,b),slope=m)). 
 
In the CAS screen: 
 
We enter: 

line(1,2+i) 

We get: 

line(y=x-1) 

In the geometry application: 
 
We enter: 

line(1,2+i) 

We get: 

The plot of the line passing by the point of affix 1 and through the 

point of affix 2+i. 

We enter: 

line(0,1+i) 

We get: 

The line equation y=x is plotted 

We enter: 

line(i,slope=2) 

Or we enter: 



 386 

DrawSlp(0,1,2) 

We get: 

The line equation y=2x+1 is plotted 

We enter: 

line(y-x=0) 

We get: 

The line equation y=x is plotted 

Note: orientation of the line 
– When the line is defined by two points, its orientation is defined by the order n which the points 

are supplied as argument. For example, line(GA,GB) defines a line oriented by the vector 

𝐴𝐵⃗⃗⃗⃗  ⃗. 
– When the line is defined by an equation, we rewrite the equation in the form: "𝑙𝑒𝑓𝑡_𝑚𝑒𝑚𝑏𝑒𝑟 −

𝑟𝑖𝑔ℎ𝑡_𝑚𝑒𝑚𝑏𝑒𝑟 = 0" to get a line equation of the form 𝑎 ∗ 𝑥 + 𝑏𝑦 + 𝑐 = 0 and then the vector 
giving the orientation of the line is [𝑏, −𝑎], or else its orientation is defined by the 3D cross 

product of its normal vector (third coordinate 0) and [0,0,1]. For instance, line(y=2*x) is 

orientated by [1,2] because its equation is −2 ∗ 𝑥 + 𝑦 = 0 and cross([-2,1,0], 

[0,0,1])=[1,2,0]. 
– When the line is defined by a point 𝐴 and its slope 𝑚, its orientation is defined by the vector 

𝐴𝐵⃗⃗⃗⃗  ⃗ with 𝐵 =  𝐴 +  1 +  𝑖 ∗  𝑚. 

24.3.8 Segment: Line 

Line takes as argument four real numbers giving the coordinates of two points. 
Line(a,b,c,d) returns and plots the segment defined by the two points 𝑎 + 𝑖 ∗ 𝑏 and 𝑐 + 𝑖 ∗ 𝑑. 
 
We enter: 

Line(-1,1,2,-2) 

We get: 

The segment -1+i,2-2*i 

24.3.9 Plot of a 2D horizontal line: LineHorz 

LineHorz takes as argument an expression 𝑋𝑝𝑟. 
LineHorz plots the horizontal line 𝑦 =  𝑋𝑝𝑟. 
We enter: 

LineHorz(1) 

We get: 

the plot of the line y=1 

24.3.10 Plot of a 2D vertical line: LineVert 

LineVert takes as arguments an expression 𝑋𝑝𝑟. 
LineVert plots the the vertical line 𝑥 =  𝑋𝑝𝑟. 
We enter: 

LineVert(1) 
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We get: 

the plot of the line x=1 

24.3.11 Vector in plane geometry: vector 

In plane geometry, vector takes as arguments: 
– either two points 𝐺𝐴 and 𝐺𝐵, or two complex numbers representing the affixes of these points, 

or two lists of the points coordinates. 

vector defines and draws the vector 𝐺𝐴𝐺𝐵⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
– either a point 𝐺𝐴 (or a complex number representing the affix of this point or a list representing 

the coordinates of this point) and a vector 𝐺𝑉⃗⃗⃗⃗  ⃗ (recursive definition). 

vector defines and draws the vector 𝐴𝐵 such as 𝐺𝐴𝐺𝐵⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   =  𝐺𝑉⃗⃗⃗⃗  ⃗. 

If GW:=vector(GA,GV), so the point 𝐺𝐵⃗⃗⃗⃗  ⃗ such as 𝐺𝐴𝐺𝐵⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   =  𝐺𝑉⃗⃗⃗⃗  ⃗ is point(GW[1,1])or 
point(coordinates(GV)+coordinates(GA))or GA+(affix(V)[1]-affix(GV)[0]). 

 
We enter: 

vector(point(-1),point(i)) 

Or we enter: 

vector(-1,i) 

Or we enter: 

vector([-1,0],[0,1]) 

We get: 

The plot of the vector of origin -1 and end i 

We enter: 

GV:=vector(point(-1),point(i)) 

We enter: 

vector(point(-1+i),GV) 

Or we enter: 

vector(-1+i,GV) 

Or we enter: 

vector([-1,1],GV) 

We enter: 

point([-1,1],coordinates(GV)) 

We get: 

The plot of the vector of origin -1+i and end 2*i 

We enter: 

GD:=point([-1,1]+coordinates(GV)) 
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We get: 

GD the point(2*i) 

Note: 
In symbolic computation, we work with the list of coordinates of the vectors that the we get thanks to 
the command coordinates (cf 24.8.6). 

24.3.12 Median line of a triangle: median_line 

median_line(GA,GB,GC) plots the median line of the triangle 𝐴𝐵𝐶 through 𝐴. 
We enter: 

median_line(0,1,2+i) 

We get in the geometry application: 

The plot of the line passing by the point of affix 0 and through the 

point of affix (3+i)/2 (midpoint of the segment (0,2+i)) 

We enter in the CAS screen: 

median_line(0,1,2+i) 

We get: 

line(y=x/3) 

24.3.13 Parallel lines: parallel 

parallel(GA,GD) plots the line parallel to the line 𝐷 passing by 𝐴. 
We enter: 

parallel(0, line(1,i)) 

We get in the geometry application: 

the plot of the line equation y=-x 

We enter in the CAS screen: 

parallel(0, line(1,i)) 

We get: 

line(y=(-x)) 

24.3.14 Perpendicular bisector: perpen_bisector 

perpen_bisector(GA,GB) plots the perpendicular bisector of the segment 𝐴𝐵. 
 
We enter: 

perpen_bisector(1,i) 

We get in the geometry application: 

the plot of the line equation y=x 

We enter in the CAS screen: 
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perpen_bisector(1,i) 

We get: 

line(y=x) 

24.3.15 Line perpendicular to a line: perpendicular 

perpendicular(GA,GB,GC) or perpendicular(GA,line(GB,GC)) plots the line perpendicular 
to the line 𝐵𝐶 passing by the point 𝐴. 
 
We enter: 

perpendicular(1,1,2-i) 

We get in the geometry application: 

the plot of the line perpendicular to the line (1,2-i) and passing by 

the point of affix 1 

We enter in the CAS screen: 

perpendicular(1,1,2-i) 

We get: 

line(y=(x-1)) 

24.3.16 Segment: segment 

segment (GA,GB) plots the segment 𝐴𝐵. 
 
We enter: 

segment (0,1+i) 

We get in the geometry application: 

The plot of the segment (0,1+i) 

We enter in the CAS screen: 

segment (0,1+i) 

We get: 

segment (point(0),point(1+i)) 

24.3.17 Tangent to a geometrical object or tangent to a curv in a point: 

tangent 

tangent takes two arguments: a geometrical object and a point 𝐴. 
– the geometrical object is the graph G of a function 2D 

In this case, the second argument can be, either a real number 𝑥0, either a point A located on 
G. 
For example, if we have defined the function g, we enter: 

GG:=plotfunc(g(x),x) 

tangent(GG, 1.2) 
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plots the tangent to the graph G of the function g at point of abscissa x=1.2, or we enter: 

GA:=point(1.2+i*g(1.2)) 

tangent(GG, GA) 

plots the tangent to point A of the graph G of the function g. 

For instance, to get the plot of the tangent to the curve of 𝑔(𝑥) =  𝑥2 at point of abscissa 𝑥0 =
 1, we enter in the CAS: 

g(x):=x^2 

Then, in Symb, we enter: 

GG:=plotfunc(g(x),x) 

GT:=tangent(G,1) 

or we enter: 

GT:=tangent(G,point(1+i)) 

We get 

The tangent to the curve of 𝑔(𝑥) =  𝑥2 at point 1+i 

We get the equation of the tangent by entering in Num: 

equation(GT) 

– the geometrical object is not a graph 
 

tangent may take as arguments: 
– either a geometrical object 𝐺 and a point 𝐴, 

– either a point 𝐴 defined by element whose parameters are: a geometrical object 
𝐺 and a real representing the value of the parameter of the parametric equation of 𝐺. 
tangent returns a list of lines and draws these lines which are the tan-gentes at this 
geometrical object 𝐺 and which passent through the point 𝐴. 
 
We enter: 

tangent(circle(0,1),point(1+i)) 

We get: 

The line equation x=1 and the line equation y=1 

We enter: 

tangent(element(circle(0,1),1)) 

We get: 

The tangent to the circle of center 0 and radius 1, at point of affix 

exp(i) 

We enter: 

tangent(circle(i,1+i),point((1+i*sqrt(3))*2)) 

We get: 
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2 tangents to the circle of center i and radius √2 through the 

point((1+i*sqrt(3))*2) 

24.3.18 Radical axis of two circles: radical_axis 

The radical axis of two circles 𝐶1 and 𝐶2 is the locus of points which have the same power with respect 
to 𝐶1 and at 𝐶2. 
 
We enter: 

radical_axis(circle(0,1+i),circle(1,1+i))) 

We get: 

The plot of the line equation x = 1/2 

Indeed: the line 𝑥 =  1/2 is the perpendicular bisector of the segment [0; 1] 

24.4 Polygon 

24.4.1 Scalene triangle: triangle 

In plane geometry, triangle takes as arguments: three points (or three complex numbers 
representing the affixes of these points, or else a list of three points or of three complex numbers). 
triangle returns and plots the triangle having for vertices these three points. 
 
We enter: 

triangle(-1,i,1+i) 

We get: 

The triangle of vertices -1, i, 1+i 

24.4.2 Equilateral triangle: equilateral_triangle 

In plane geometry, equilateral _triangle, takes two a or three arguments: 
– two arguments: two points or two complex numbers representing the affixes of these points 

(or else a list of two points or of two complex numbers). 
equilateral_triangle(GA,GB) returns and plots the equilateral triangle 
direct ABC but without defining the point 𝐶. We enter: 

equilateral_triangle(0,2) 

We get: 

the equilateral triangle of vertices the points of affix 

0,2,1+i*sqrt(3) 

To define the third vertex 𝐶, we can give the triangle a label (for example 
GT:=equilateral_triangle(0,2)) and use the command vertices(GT) which 
returns the list of vertices of 𝑇. Then, we will define GC:= vertices(GT)[2] but it is easier 
to add GC, name of the last vertex, as third argument. 

– three arguments: the two previous arguments and as third argument the name of a variable to 
define and plot the third vertex with its label. 
 
We enter: 
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equilateral_triangle(0,2,GC) 

We get: 

the equilateral triangle of vertices the points of affix 

0,2,1+i*sqrt(3) 

We enter: 

normal(affix(GC)) 

We get: 

1+i*sqrt(3) 

24.4.3 Right triangle: right_triangle 

In plane geometry, right_triangle takes three or four arguments: 
– three arguments: two points 𝐴 and 𝐵 (or two complex numbers representing the affixes of 

these points) and a real 𝑘 not null. 

right_triangle(GA,GB,k) returns and plots the triangle 𝐴𝐵𝐶 right angled in 𝐴: this 

triangle is direct if 𝑘 >  0, indirect if 𝑘 <  0 and is such as 𝐴𝐶 =  |𝑘|  ∗  𝐴𝐵. 

Thus, if the angle (𝐵𝐶⃗⃗⃗⃗  ⃗, 𝐵𝐴⃗⃗⃗⃗  ⃗)  =  𝛽 radians (or degrees), we have 𝑡𝑎𝑛(𝛽)  =  𝑘. 
We notice that if 𝐶 is the transform of 𝐵 in the similarity of center 𝐴 of ratio |𝑘| and angle 

(𝑘/|𝑘|)  ∗  𝜋/2. 
 
We enter: 

right_triangle(i,-i,2) 

We get: 

The right triangle of vertices i, -i, 4+i 

We enter: 

right_triangle(i,-i,-2) 

We get: 

The right triangle of vertices i, -i, -4+i 

– four arguments: the three previous arguments and as last argument the name of a variable to 
define the third vertex. 
 
We enter: 

right_triangle(i,-i,2,GD) 

We get: 

The right triangle of vertices i, -i, 4+i 

We enter: 

normal(affix(GD)) 

We get: 

4+i 
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24.4.4 Isosceles triangle: isosceles_triangle 

In plane geometry, isosceles_triangle takes three or four arguments: 
– three arguments: two points 𝐴 and 𝐵 (or two complex numbers representing the affixes of 

these points) and a real which designates the measure in radians (or in degrees) of the angle 

(𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐶⃗⃗⃗⃗  ⃗).  
isosceles_triangle(GA,GB,c) returns and plots the isosceles triangle 𝐴𝐵𝐶 of vertex 𝐴 

(𝐴𝐵 =  𝐴𝐶) and such as the angle (𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐶⃗⃗⃗⃗  ⃗)  =  𝑐 radians (or degrees), without defining the 
point 𝐶). 
 
We enter: 

isosceles_triangle(i,1,-3*pi/4) 

We get, if we have checked radian in the CAS configuration (Shift-CAS): 

The isoscele triangle of vertices -1, i, −√2+i 

– four arguments: the three previous arguments and as fourth argument the name of a variable 
to define the third vertex. 
 
We enter: 

isosceles_triangle(i,1,-3*pi/4,GC) 

We get, if we have checked radian in the CAS configuration (Shift-CAS): 

The isoscele triangle of vertices -1, i, −√2+i 

We enter: 

normal(affix(GC)) 

We get: 

-sqrt(2)+i 

24.4.5 Rhombus: rhombus 

In plane geometry, rhombus takes three to five arguments: 
– three arguments: two points or two complex numbers representing the affixes of these points 

and a real number 𝑎. 

rhombus(GA,GB,a) returns and plots the rhombus 𝐴𝐵𝐶𝐷 such as: 

(𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐷⃗⃗ ⃗⃗  ⃗) = 𝑎 radians (or degrees), but without defining the points 𝐶 and 𝐷. 

 
We enter: 

rhombus(-2*i,sqrt(3)-i,pi/3) 

We get, if we have checked radian in the CAS or Home configuration (Shift-CAS or Shift-
Home) 

The rhombus of vertices −2 ∗ 𝑖, √3 − 𝑖, √3 + 𝑖, 0 
– four (resp. five) arguments: the three previous arguments, the last parameter (resp. the two 

last parameters) is (resp. are) the name(s) of a (resp. of the two) variable(s) which define(s) 
the penultimate vertex (resp. the two last vertices). 
 
We enter: 

rhombus(-2*i,sqrt(3)-i,pi/3,E,F) 
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We get, if we have checked radian in the CAS configuration: 

The rhombus of vertices -2*i, √3-i, √3+i, 0 

We enter: 

normal(affix(E)) 

We get: 

sqrt(3)+i 

We enter: 

normal(affix(F)) 

We get: 

0 

24.4.6 Rectangle: rectangle 

In plane geometry, rectangle takes three to five arguments: 
– three arguments: two points (or two complex numbers representing the affixes of these points) 

and a real number 𝑘 not null. 

rectangle(GA,GB,k) returns and plots the rectangle 𝐴𝐵𝐶𝐷 such as: 

𝐴𝐷 =  |𝑘|  ∗  𝐴𝐵  and (𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐷⃗⃗ ⃗⃗  ⃗)  =  (𝑘/|𝑘|)  ∗  𝜋/2 that is to say such as: 

affix(GD) = affix(GA)+k∗exp(i∗π/2)∗(affix(GB)−affix(GA)) 
but without defining the points 𝐶 and 𝐷. 

Note If 𝑘 is complex, we have: 

affix(GD) = affix(GA)+k∗exp(i∗π/2)∗(affix(GB)−affix(GA)) and we can thus 

get the plot of a parallelogram. 
 
We enter: 

rectangle(0,1+i,1/2) 

We get: 

The rectangle of vertices 0,1+i,1/2+3*i/2,-1/2+i/2 

We enter: 

rectangle(0,1+i,-1/2) 

We get: 

The rectangle of vertices 0,1+i,3/2+i/2,1/2-i/2 

We enter: 

rectangle(0,1,1+i) 

We get: 

The parallelogram of vertices 0,1,i,-1+i because −1 + i = (1 + i) ∗ 
exp(i ∗ π/2) 

– five arguments: the three previous arguments and the two last arguments are the names of 
two variables to define the two last vertices. 
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We enter: 

rectangle(0,1+i,-1/2,GG,GH) 

We get: 

The rectangle of vertices 0,1+i,3/2+i/2,1/2-i/2 

We enter: 

normal(affix(GG)) 

We get: 

(3+i)/2 

We enter: 

normal(affix(GH)) 

We get: 

(1-i)/2 

24.4.7 Square: square 

In plane geometry, square takes one to four arguments: 
– two arguments: two points or two complex numbers representing the affixes of these points (or 

else a list of two points or of two complex numbers). 
square(GA,GB) returns and plots the square 𝐴𝐵𝐶𝐷 of direct direction, but without defining 

the points 𝐷 and 𝐶. 
 
We enter: 

square(0,1+i) 

We get: 

The square of vertices 0, 1+i, 2*i, -1+i 

– three (resp. four) arguments: the two previous arguments followed by the the name of a (resp. 
two) variable(s) which define(s) the penultimate vertex (resp. the two other vertices). 
 
We enter: 

square(0,1+i,GC,GD) 

We get: 

The square of vertices 0, 1+i, 2*i, -1+i 

We enter: 

affix(GC) 

We get: 

2*i 

We enter: 
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affix(GD) 

We get: 

-1+i 

24.4.8 Quadrilateral: quadrilateral 

In plane geometry, quadrilateral(GA,GB,GC,GD), returns and plots the quadrilateral 𝐴𝐵𝐶𝐷. 
 
We enter: 

quadrilateral(0,1,1+i,-1+2*i) 

We get: 

The "kite" of vertices 0, 1, 1+i, 1+2*i 

24.4.9 Parallelogram: parallelogram 

In plane geometry, parallelogram takes three arguments or four arguments: 
– three arguments: three points (or three complex numbers representing the affixes of these 

points). 
parallelogram(GA,GB,GC) returns and plots the parallelogram 𝐴𝐵𝐶𝐷 such as: 

𝐴𝐷⃗⃗ ⃗⃗  ⃗  =  𝐵𝐶⃗⃗⃗⃗  ⃗ but without defining the point 𝐷. 
 
We enter: 

parallelogram(0,1,2+i) 

We get: 

The parallelogram of vertices 0,1,2+i,1+i 

We enter: 

parallelogram(1,0,-1+i) 

We get: 

The parallelogram of vertices 1,0,-1+i,i 

– four arguments: the three previous arguments and as fourth argument the name of a variable 
which defines the missing vertex. 
 
We enter: 

parallelogram(0,1,2+i,GF) 

We get: 

The parallelogram of vertices 0,1,2+i,1+i and the point F of affix 

1+i 

We enter: 

normal(affix(GF)) 

We get: 
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1+i 

24.4.10 Isopolygon: isopolygon 

In plane geometry, isopolygon takes three arguments: 
– either two points or two complex numbers and a positive integer 𝑘 

– either two points or two complex numbers and a negative integer 𝑘. 
When 𝑘 >  0, isopolygon plots the direct regular polygon of 𝑘 sides and consecutive vertices the 
two first arguments. 
 
We enter: 

isopolygon(0,1,4) 

We get: 

The square of vertices 0,1,1+i,i 

When 𝑘 <  0, isopolygon plots the direct regular polygon having – 𝑘 sides, as center the first 
argument, and as vertex the second argument. 
We enter: 

isopolygon(0,1,-4) 

We get: 

square of vertices 1,i,-1,-i 

24.4.11 Hexagon: hexagon 

See also: ?? for 2D geometry. 
In plane geometry, hexagon may take from two to six arguments. 
Description of the arguments: 

– two arguments: two points or two complex numbers representing the affixes of these points (or 
else a list of two points or of two complex numbers). 
hexagon(A,B) returns and plots the hexagon 𝐴𝐵𝐶𝐷𝐸𝐹 of direct orientation, but without 

defining the points 𝐷, 𝐶, 𝐸 and 𝐹. 
 
We enter: 

hexagon(0,1) 

We get: 

The hexagon of vertices 

0,1,3/2+i*sqrt(3)/2,1+i*sqrt(3),i*sqrt(3),-1/2+i*sqrt(3)/2 

– six arguments, the four last parameters are the name of two variables which define the two 
other vertices. 
 
We enter: 

hexagon(0,1,C,D,E,F) 

We get: 

The hexagon of vertices 

0,1,3/2+i*sqrt(3)/2,1+i*sqrt(3),i*sqrt(3),-1/2+i*sqrt(3)/2 
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We enter: 

affix(C) 

We get: 

3/2+i*sqrt(3)/2 

We enter: 

affix(D) 

We get: 

1+i*sqrt(3) 

We enter: 

affix(E) 

We get: 

i*sqrt(3) 

We enter: 

affix(F) 

We get: 

-1/2+i*sqrt(3)/2 

24.4.12 Polygon: polygon 

In plane geometry, polygon takes as argument the list (or the sequence) of 𝑛 points or of 𝑛 complex 
numbers representing the affixes of these points. 
polygon returns and plots the polygon having for vertices these 𝑛 points. 
 
We enter: 

polygon(-1,-1+i/2,i,1+i,-i) 

We get: 

The polygon of vertices -1,-1+i/2,i,1+i,-i 

We enter: 

polygon(makelist(x->exp(i*pi*x/3),0,5,1)) 

We get: 

The hexagon of vertices 1, 𝑒
𝑖𝜋

3 , 𝑒
2𝑖𝜋

3 , . . , 𝑒
5𝑖𝜋

3  

24.4.13 Polygonal line: open_polygon 

In plane geometry, open_polygon takes as argument the list (or the sequence) of 𝑛 points or of 𝑛 
complex numbers representing the affixes of these points. 
open_polygon returns and plots the polygonal line having for vertices these 𝑛 points. 
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We enter: 

open_polygon(-1,-1+i/2,i,1+i,-i) 

We get: 

The polygonal line of vertices -1,-1+i/2,i,1+i,-i 

We enter: 

open_polygon(makelist(x->exp(i*pi*x/3),0,5,1)) 

We get: 

The polygonal line of vertices 1, 𝑒
𝑖𝜋

3 , 𝑒
2𝑖𝜋

3 , . . , 𝑒
5𝑖𝜋

3  

24.4.14 Convex hull of points of the plan: convexhull 

The instruction convexhull returns the convex hull of a ensemble of points of the plane supplied by 
two points or of affixes of points, elle returns a list of complex affixes of vertices of the envelop 
convexe. The algorithm used ist the scan of Graham. We can use polygon on the result of 
convexhull to get the plot of the convexe envelop. 
 
We enter: 

polygon(convexhull(0,1,1+i,1+2i,-1-i,1-3i,-2+i)) 

to get the convex hull of points of affixes (0,0), (1,0), (1,1), (1,2), (−1,−1), (1, −3), (−2,1). 

24.5 Curves 

24.5.1 Circle and arcs: circle 

circle takes one or two arguments to draw a circle, and four to six arguments to draw an arc of 
circle: 

– with one argument: 
the argument of circle is then the equation of the circle having as variables 𝑥 and 𝑦, 

– with two arguments: 
The first argument of circle is a point or a complex number considered as the affix of a 
point. 
The second argument specifies which additional data is supplied to plot the circle: either the 
radius (as modulus of a complex number), either the diameter (specified by a point). 
Then: 

– circle(GC,r) where GC is a point (or a complex number) and r a complex number, 
plots the circle of center C and radius the modulus of r. 
This is useful, for example, to get the circle of center A passing by B. 
 
We enter: 

circle(GA,GB-GA). 

 
– circle(GA,GB) where A is a point or a complex number and B a point, plots the circle 

of diameter AB. 
 
We enter: 

circle(x^2+y^2-2*x-2*y) 
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We get: 

The circle of center 1+i and radius sqrt(2) is drawn. 

We enter: 

circle(-1,i) 

We get: 

The circle of center -1 and radius 1 is drawn. 

We enter: 

circle(-1, point(i)) 

We get: 

The circle of diameter -1,i 

– With four to six arguments: 
circle designates an arc of circle. In this case, the two first arguments determinate the circle 
which is the basis of the arc (see above) and the two following arguments are the angles at 
the center of the points which border the arc, and the two last arguments are the names of the 
variables storing the points which border the arc. The third and the fourth argument are the 
measures of the angles at the center of points which border the arc, these angles are 
measured in radians (or in degrees) starting from the axis defined by the two first arguments if 
the second argument is a point (definition of the circle by its diameter) or of the axis defined by 
its center 𝐶 and the point 𝐴 =  𝐶 +  𝑟 if the second argument is a complex equal to 𝑟 
(definition of the circle by its centre and a complex whose modulus equals the radius). 
The fifth and the sixth argument are not mandatory and define the ends of the arc. 
 
We enter: 

circle(-1,1,0,pi/4,A,B) 

We get, if we have checked radian in the CAS configuration: 

The arc AB (GA:=point(0) and GB:=point(
−1+√2+𝑖∗√2

2
)) of the circle of 

center -1 and radius 1 is drawn. 

Indeed, the angle is measured starting from the axis (−1,0) and then the angle 0 is the point 
(0). 
 
We enter: 

circle(-1,i,0,pi/4,A,B) 

We get, if we have checked radian in the CAS configuration: 

The arc AB (GA:=point(-1+i) and GB:=point(
−1−√2+𝑖∗√2

2
)) of the circle of 

center -1 and radius 1 is drawn. 

Indeed, the angle is measured starting from the axis (−1, 𝑖 − 1) and then the angle 0 is the 

point of affix 𝑖 − 1. 
 
We enter: 

circle(-1, point(i),0,pi/4,A,B) 
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We get: 

The arc AB (GA:=point(i) and GB:=point(
−1+𝑖∗(1+√2)

2
)) the circle of 

diameter -1,i 

Indeed, the angle is measured starting from the axis (−1, 𝑖) and then the angle 0 is the point of 

affix 𝑖. 

24.5.2 Arcs of circle: arc ARC 

See also: 24.5.1 for circles and arcs of circle. 
arc takes three to five arguments: two points A,B (or two complex numbers a,b) and a real number 𝛼 

representing the measure of the arc AB in radians (−2 ∗  𝜋 ≤  𝛼 ≤  2 ∗  𝜋). The fourth and the fifth 
arguments are not mandatory and are names of variables storing the center and the radius of the 
circle the arc is based on. 
The arc AB is then based on the circle of centre: (𝑎 + 𝑏)/2 + 𝑖 ∗ (𝑏 − 𝑎)/(2 ∗ 𝑡𝑎𝑛(𝛼/2)). 
arc(A,B,α) is the arc where we see the segment AB from, along the angle −𝜋 +  𝛼/2 if 2𝜋 >  𝛼 >
0, or under the angle 𝜋 +  𝛼/2 if −2𝜋 <  𝛼 < 0. 
To get the arc capable AB of measure 𝛽 that is to say the arc of where the we see the segment AB 

from, along the angle −𝜋 <  𝛽 <  𝜋, you have to enter: 

arc(A,B,2*(-pi+β)) if 𝜋 >  𝛽 > 0 or arc(A,B,2*(pi+β)) if −𝜋 <  𝛽 < 0 . 

Warning! 
The sign of α gives the direction of the arc AB. For example, arc(A,B,3*pi/2) and arc(A,B,-

pi/2) draw a full circle. 
 
We enter: 

arc(1,i,pi/2) 

We get: 

The arc (1,i) of the circle of center 0 and radius 1 

We enter: 

arc(1,i,pi/2,C,r) 

We get: 

The arc (1,i) of the circle of center C=point(0) and radius r=1 

We enter: 

arc(2,2*i,pi,C,r) 

We get: 

The half-circle of center C=point(1+i) and radius r=sqrt(2), starting 

from the point(2) to the point(2*i) in positive direction. 

Note: 
When circle has four arguments, circle also draws an arc of circle (cf. ??). 

24.5.3 Circumcircle: circumcircle 

circumcircle takes three parameters defining the vertices of a triangle. 
circumcircle draws and returns the circumcircle of this triangle. 
 
We enter: 
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circumcircle(-1,i,1+i) 

We get: 

Circumcircle of the triangle(-1,i,1+i) 

24.5.4 Plot of a conic: conic 

conic takes as argument the expression of a conic. 
conic plots the conic having for equation argument=0. 
 
We enter: 

conic(2*x^2+2*x*y+2*y^2+6*x) 

We get: 

the plot of the ellipse of center -2+i and equation 

2*x^2+2*x*y+2*y^2+6*x=0 

Note: 
Use reduced_conic to get the parametric equation of the conic. 
 
We enter: 

reduced_conic(2*x^2+2*x*y+2*y^2+6*x)[4] 

We get: 

[-2+i+(1+i)*(cos(t)+sqrt(3)*i*sin(t)),t,0,2π,2π/60] 

24.5.5 Ellipse: ellipse 

In plane geometry, ellipse takes one or three parameters: 
– one parameter: 

its equation of variables x and y. ellipse(p(x,y)) plots the conic equation 𝑝(𝑥, 𝑦) = 0 if 

𝑝(𝑥, 𝑦) is a polynomial of degree 2. 
– three parameters: the two foci and a point on the ellipse (or its affix if this affix is not real) or its 

two foci and a real (its half-major axis). 
ellipse(GF1,GF2,GA) plots the ellipse passing by A and of foci F1 and F2 or, 
ellipse(GF1,GF2,a) where a is a real number, plots the ellipse of foci F1 and F2 and half-
major axis |a|. 

 
We enter: 

ellipse(-i,i,1+i) 

We get: 

The ellipse of foci -i, i and passing by 1+i 

We enter: 

ellipse(-i,i,sqrt(5)-1) 

We get: 

The ellipse of foci -i, i and half-major axis 

sqrt(5)-1 
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We enter: 

ellipse(x^2+2*y^2-1) 

or we enter: 

ellipse(sqrt(2)/2,-sqrt(2)/2,1) 

We get: 

The ellipse of center 0 and half-major axis 1 and foci sqrt(2)/2 and 

-sqrt(2)/2 

24.5.6 Excircle: excircle 

excircle has three parameters defining the vertices of a triangle. 
excircle draws and returns the excircle in the inner angle of the first vertex of this triangle. 
 
We enter: 

excircle(-1,i,1+i) 

We get: 

Excircle in the angle of vertex -1 the triangle(-1,i,1+i) is drawn. 

24.5.7 Hyperbola: hyperbola 

In plane geometry, hyperbola takes one or three parameters: 
– one parameter: 

its equation of variables 𝑥 and 𝑦. hyperbola(p(x,y)) plots the conic equation 𝑝(𝑥, 𝑦) = 0 if 

𝑝(𝑥, 𝑦) is a polynomial of degree 2. 
– three parameters: 

its two foci and one of these points (or its affix if this affix is not real) or its two foci and a real 
(its half-major axis). 
hyperbola(GF1,GF2,GA) plots the hyperbola passing by A and of foci F1 and F2 or, 
hyperbola(GF1,GF2,a) where a is a real number, plots the hyperbola of foci F1 and F2 
and half-major axis |a|. 

 
We enter: 

hyperbola(-i,i,1+i) 

We get: 

The hyperbola of foci -i, i and passing by 1+i 

We enter: 

hyperbola(-i,i,1/2) 

We get: 

The hyperbola of foci -i, i and half-major axis 1/2 

We enter: 

hyperbola(x^2+2*y^2-1) 

or we enter: 
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hyperbola(sqrt(6)/2,-sqrt(6)/2,1) 

We get: 

The hyperbola of center 0 and half-major axis 1 and foci sqrt(6)/2 

and -sqrt(6)/2 

24.5.8 Incircle: incircle 

incircle has three parameters defining the vertices of a triangle. 
incircle draws and returns the incircle of this triangle. 
 
We enter: 

incircle(-1,i,1+i) 

We get: 

Incircle of the triangle(-1,i,1+i) 

24.5.9 Locus and envelope: locus 

locus allows to plot the locus of a point which depends on another point to be defined with the 
function element. 
locus also permits to plot the envelop of a line which depends on a point to be defined with the 
function element. 

– locus of a point. 
locus takes two to four arguments. 
The two first argument are names of variables: 
the first argument is the name of the point (for example B) whose we want to know the locus, 
this point being function of the second argument, the second argument is the name of the 
point (for example A) which follows the curve C and to be defined by GA:=element(GC). 
We can eventually specify as third argument the interval in which is the parameter used for the 
setting of C when the second described argument C and specify as fourth argument the value 
of tstep. 
Note: 
Use the command parameq(C) to know the setting of the curve C.  
locus draws the locus of the first argument when the second argument moves as specified in 
the argument given to element. 
Tip: 

Put as few instructions as possible between the definition of 𝑀 and the instruction locus. 

To get the locus of the center of gravity 𝐵 of the triangle of vertices point(−1), point(1) and 𝐴, 

when 𝐴 follows the line of equation 𝑦 =  1, we enter: 

GA:=element(line(i,1+i)) 

GB:=isobarycenter(-1,1,GA) 

GC:=locus(GB,GA) 

We get: 

The line parallel to the x axis passing by i/3 

We enter in the Numeric view: 

equation(GC) 

We get: 
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equation(GC):y=1/3 

– envelop of a line function of a point following a curve. 
locus takes as arguments two names of variables: the first argument is the name of the line 
we want to know the envelop of, and this line is function of the second argument. The second 
argument is the name of the point which moves, to be defined with the function element. 
locus draws the envelop of the first argument when the second argument moves according 
to what has been supplied as argument of element. 
To get the the envelop of the perpendicular bisector of 𝐹𝐻 when 𝐻 follows the line of equation 

𝑥 =  0, we enter: 

GF:=point(1) 

GH:=element(line(x=0)) 

GD:=perpend_bisector(GF,GH) 

locus(GD,GH) 

We get: 

The parabola of focus F and directrix line the y axis, whose equation 

is 2*x-y^2-1=0 

– envelop of a line supplied by an equation depending on a parameter. In this case, you have to 
specify that the parameter is the affix of a point of the line 𝑦 =  0. 

For instance, envelop of a family of lines of equations 𝑦 +  𝑥 𝑡𝑎𝑛(𝑡)  − 2 𝑠𝑖𝑛(𝑡)  =  0 

when 𝑡 ∈  ℝ . (cf. 1) 
 
We enter: 

GH:=element(line(y=0)); 

GD:=line(y+x*tan(affix(M))-2*sin(affix(M))) 

locus(GD,GH) 

We get: 

The astroid of parametric equation 2*cos(t)^3+2*i*sin(t)^3 

To get the envelop when 𝑡 =  0. . 𝜋, we enter: 

locus(GD,GH,t=0..pi) 

We get: 

The part above y = 0 of the astroid of parametric equation 

2*cos(t)^3+2*i*sin(t)^3 

We can also look for the intersection of GD and GE (detailed below) to get the parametric 
equation of the locus. 

GD:=y+x*tan(t)-2*sin(t) 

GE:=diff(GD,t) 

GM:=linsolve([GD=0,GE=0],[x,y]) 

GP:=plotparam(affix(simplify(GM)),t) 

We get: 
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The astroid of parametric equation 

2*cos(t)^3+2*i*sin(t)^3 

indeed, simplify(GM) returns: 
[2*cos(t)^3,2*sin(t)^3] 

24.5.10 Parabola: parabola 

In plane geometry, parabola takes one or two parameters: 
– one parameter: 

its equation of variables x and y. parabola(p(x,y)) plots the conic equation 𝑝(𝑥, 𝑦) = 0 if 

𝑝(𝑥, 𝑦) is a polynomial of degree 2. 
– two parameters: 

two points (or their affixes if the second affix is not real), representing its focus and its vertex, 
or else a point (the vertex), or the affix of its vertex and a real number c. 
parabola(GF,GS) returns and draws the parabola of focus F and vertex S. 
parabola(GS,c) returns and draws the parabola of vertex 𝑆 = 𝑥𝑠 +  𝑖𝑦𝑠 and equation 

 𝑦 =  𝑦𝑆 +  𝑐 ∗  (𝑥 – 𝑥𝑆)
2
. You must know that if 𝑝 is the parameter of the parabola, we have 

𝐹𝑆 =  𝑝/2 and 𝑐 =  1/(2 ∗  𝑝). 
 
We enter: 

parabola (0,i) 

We get: 

The parabola of focus 0 and vertex i 

We enter: 

parabola (0,1) 

We get: 

The parabola of vertex 0 and equation y = x^2 

We enter: 

parabola (x^2-y-1) 

or we enter: 

parabola (-i,1) 

or we enter: 

parabola (i,-i) 

We get: 

The parabola of vertex -i and focus i 

24.5.11 Power of a point according to a circle: powerpc 

If a point 𝐴 is at a distance 𝑑 of the center of a circle 𝐶 of radius 𝑟, the power of 𝐴 with respect to the 

circle 𝐶 equals 𝑑2– 𝑟2. 
 
We enter: 
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powerpc(circle(0,1+i),3+i) 

We get: 

8 

Indeed: 𝑟 = √2 and 𝑑 = √10 then 𝑑2– 𝑟2 =  8 

24.6 Transformation 

24.6.1 Homothety: homothety 

In plane geometry, homothety takes two or three arguments: a point (the center of the homothety), a 
real (the value of the ratio of the homothety) and eventually the geometrical object to be transformed. 
When homothety has two arguments, this function applies on a geometrical object. 
 
We enter: 

h:=homothety(i,2) 

Then: 

h(1+i) 

We get: 

The point 2+i plotted as a black cross (x) 

When homothety has three arguments, homothety draws and returns the transform of the third 
argument in the homothety of center the first argument and ratio the second argument. 
We enter: 

homothety(i,2,1+i) 

We get: 

The point 2+i plotted as a black cross (x) 

We enter: 

homothety(i,2,circle(1+i,1)) 

We get: 

The circle of center 2+i and radius 2 

Note: 

When the value of the homothety ratio is a non real complex number k, homothety(GA,k) is the 
similarity of center the point A, of ratio abs(k) and angle arg(k). 

24.6.2 Inversion: inversion 

In plane geometry, inversion takes two or three arguments: a point (the center of the inversion), a 
real (the value of the ratio of the inversion) and eventually the geometrical object to be transformed. 
When inversion has two arguments, this function applies on a geometrical object. 

If GF:=inversion(GC,k) and GB:=GF(GA), we have 𝐶𝐴 ∗  𝐶𝐵  =  𝑘. 
 
We enter: 
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GF:=inversion(i,2) 

Then: 

GF(circle(1+i,1)) 

We get: 

The vertical line of equation x=1 

We enter: 

GF(circle(1+i,1/2)) 

We get: 

The circle of center 8/3+i and radius 4/3 (passing by the point 4+i) 

When inversion has three arguments, inversion draws and returns the transform of the third argument 
in the inversion of center the first argument and ratio the second argument. 

If A1:=inversion(C,k,A) we have CA ∗  CA1 = k. 

 
We enter: 

inversion(i,2,circle(1+i,1)) 

We get: 

The vertical line of equation x=1 

We enter: 

inversion(i,2,circle(1+i,1/2)) 

We get: 

The circle of center 8/3+i and radius 4/3, passing by the point 4+i 

24.6.3 Orthogonale projection: projection 

In plane geometry, projection takes one or two arguments: a geometrical object and eventually a 
point. 
When projection has one argument, this function applies on a point and projects this point 
orthogonally on the geometrical object. 
 
We enter: 

p1:=projection(line(-1,i)) 

Then: 

p1(1+i) 

We get: 

The point 1/2+3/2*i shows as a black cross (x) 

We enter: 

p2:=projection(circle(-1,1)) 
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p2(i) 

We get: 

The point of affix, sqrt(2)/2+(i)*sqrt(2)/2-1, shows as a black cross 

(x) 

When projection has two arguments, projection draws and returns the transform of the point supplied 
as second argument by the orthogonal projection on the first argument. 
 
We enter: 

projection(line(-1,i),1+i) 

We get: 

The point 1/2+3/2*i shows as a black cross (x) 

We enter: 

projection(circle(-1,1),i) 

We get: 

The point of affix, -1+sqrt(2)/2+(i)*sqrt(2)/2, shows as a black 

cross (x) 

24.6.4 Symmetry line and symmetry point: reflection 

In plane geometry, reflection takes one or two arguments: a point or a line, and eventually the 
geometrical object to be transformed. 
When reflection has one argument, this function applies on a geometrical object: when the first 
argument is a point (or a complex number), it is the symmetry with respect to this point (or with respect 
to point of affixe this complex number) and when the first argument is a line ,it is the symmetry with 

respect to this line. 
 
We enter: 

sp:=reflection(-1) 

Then: 

sp(1+i) 

We get: 

The point -3-i plotted as a black cross (x) 

We enter: 

sd:=reflection(line(-1,i)) 

Then: 

sd(1+i) 

We get: 

The point 2*i plotted as a black cross (x) 
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When reflection has two arguments, reflection draws and returns the transform of the second 
argument in the symmetry defined by the first argument: when the first argument is a point (or a 
complex number) it is the symmetry with respect to this point (or with respect to point of affix this 
complex number) and when the first argument is a line ,it is the symmetry with respect to this line. 
 
We enter: 

reflection(-1,1+i) 

We get: 

The point -3-i plotted as a black cross (x) 

We enter: 

reflection(line(-1,i),1+i) 

We get: 

The point 2*i plotted as a black cross (x) 

24.6.5 Rotation: rotation 

In plane geometry, rotation takes two or three arguments. 
When rotation has two arguments, these are: a point (the center of rotation) and a real (the 
measure of the rotation angle); this function applies on a geometrical object (point, line, etc., ...) 
 
We enter: 

r:=rotation(i,-pi/2) 

Then: 

r(1+i) 

We get, if we have checked radian in the CAS configuration: 

The point 0 plotted as a black cross (x) 

When rotation has three arguments, these are: a point (the center of rotation), a real (the measure 
of the rotation angle) and the geometrical object to be transformed; 
rotation draws and returns the transform of the third argument in the rotation of center the first 
argument and measure of rotation angle the second argument. 
 
We enter: 

rotation(i,-pi/2,1+i) 

We get, if we have checked radian in the CAS configuration: 

The point 0 plotted as a black cross (x) 

We enter: 

rotation(i,-pi/2,line(1+i,-1)) 

We get, if we have checked radian in the CAS configuration: 

The line passing by 0 and -1+2*i 
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24.6.6 Similarity: similarity 

In plane geometry, similarity takes three or four arguments: a point (the center of rotation), a real 
(the value of the ratio 𝑘 of the similarity), a real (the measure 𝑎 of the rotation angle in radians (or 
degrees)) and eventually the geometrical object to be transformed. 
Note: if the ratio 𝑘 is negative, the angle of the similarity is then of measure −𝑎 radians (or degrees). 
When similarity has three arguments, this function applies on a geometrical object. 
 
We enter: 

GS:=similarity(i,2,-pi/2) 

Then: 

GS(1+i) 

We get, if we have chosen radian in the CAS configuration: 

The point -i plotted as a black cross (x) 

We enter: 

GS(circle(1+i,1)) 

We get, if we have chosen radian in the CAS configuration: 

The circle of center -i and radius 2 

When similarity has four arguments, similarity draws and returns the transform of the fourth argument 
in the similarity of center the first argument, of ratio the second argument and angle the third 
argument. 
 
We enter: 

similarity(i,2,-pi/2,1+i) 

We get, if we have chosen radian in the CAS configuration: 

The point -i plotted as a black cross (x) 

We enter: 

similarity(i,2,-pi/2,circle(1+i,1)) 

We get, if we have chosen radian in the CAS configuration: 

The circle of center -i and radius 2 

Note: 
In 2D, the similarity of center the point GA, ratio k and angle a results in: 
similarity(GA,k,a) or by homothety(GA,k*exp(i*a)). 

24.6.7 Translation: translation 

In plane geometry, translation takes one or two arguments: the vector of translation supplied by a 
geometrical vector, or by the list of its coordinates, or by its affix (difference between the coordinates 
of two points, or a complex number) and eventually the geometrical object to be transformed. 
When translation has one argument, this function applies on a geometrical object. 
 
We enter: 
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t:=translation(1+i) 

Then: 

t(-2) 

We get: 

The point -1+i plotted as a black cross (x) 

When translation has two arguments, translation draws and returns the transform of the 
second argument in the translation of vector the first argument. 
 
We enter: 

translation([1,1],-2) 

Or we enter: 

GA:=point(1);GB:=point(2+i);translation(vector(GA,GB),-2) 

Or we enter: 

translation(1+i,-2) 

Or we enter: 

GA:=point(1);GB:=point(2+i);translation(GB-GA,-2) 

We get: 

The point -1+i plotted as a black cross (x) 

We enter: 

translation(1+i,line(-2,-i)) 

We get: 

The line passing by -1+i and 1 

24.7 Measure and graphics 

24.7.1 Measure of a angle: angleat 

angleat takes as argument the name of three points and a point (or the affix of this point supplied as 
a complex number). 
Warning! Take care that the three first arguments are names. 
angleat returns the fourth point, calculates the measure (in radians or in degrees) of the oriented 
angle of vertex the first argument, the second argument is on the first side of the angle and the third 
argument on the second side, and this measure is displayed, along with a label, at the location of the 
fourth point. 
Thus, angleat(GA,GB,GC,GD) designates the measure of the angle in radians (or in degrees) of 

(𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐶⃗⃗⃗⃗  ⃗) and this measure will be displayed, preceded by 𝛼𝐴 =, at the location of point D. 
We enter this command in the Symbolic view. 
 
We enter: 

GA:=point(-1);GB:=point(1+i);GC:=point(i); 
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segment(GA,GB); segment (GA,GC); 

angleat(GA,GB,GC,0.2i) 

We get, if we have checked radian in the CAS configuration (Shift-CAS): 

αA=atan(1/3) is displayed at the point(0.4i) 

24.7.2 Measure of a angle: angleatraw 

angleatraw takes as argument four points (or the affixes of these points supplied as four complex 
numbers). 
angleatraw returns the fourth point, returns the measure (in radians or in degrees) of the oriented 
angle of vertex the first argument, the second point is on the first side of the angle, the third point on 
the second side and the measure is displayed, along with a label, close to the fourth point. 
Thus, angleatraw(GA,GB,GC,GD) designates the measure of the angle in radians (or in degrees) 

of (𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐶⃗⃗⃗⃗  ⃗) and this measure will be displayed at the location of point D. 
 
We enter: 

GA:=point(-1);GB:=point(1+i);GC:=point(i); 

segment (GA,GB); segment (GA,GC); 

angleatraw(GA,GB,GC,0.2i) 

We get, if we have checked radian in the CAS configuration (Shift-CAS): 

atan(1/3) is displayed at the point(0.4i) 

24.7.3 Display of the area of a polygon: areaat 

areaat takes as arguments the name of a circle or of a polygon and a point (or the affix of a point 
supplied as a complex number). 
areaat returns the point, the area of the circle or polygon and displays this area at the location of the 
point with a label. 
Warning! Take care that the first argument is the name of a circle or of a polygon. 
 
We enter: 

t:=triangle(0,1,i) 

areaat(t,(1+i)/2) 

We get: 

1/2 is displayed at the point(1+i)/2 with the label 

We enter: 

cc:=circle(0,2) 

areaat(cc,2.2) 

We get: 

4*pi is displayed at the point(2.2) with a label 

We enter: 
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c:=square(0,2) 

areaat(c,2.2) 

We get: 

4 is displayed at the point(2.2) with a label 

We enter: 

h:=hexagon(0,1) 

areaat(h,1.2) 

We get: 

3*sqrt(3)/2 is displayed at the point(1.2) with a label 

24.7.4 Area of a polygon: areaatraw 

areaatraw takes as arguments a circle or a polygon and a point (or the affix of a point supplied as a 
complex number). 
areaatraw returns the point, the area of the circle or of the polygon and displays this area at the 
location of the point. 
 
We enter: 

areaatraw(triangle(0,1,i),(1+i)/2) 

We get: 

1/2 is displayed at the point(1+i)/2 

We enter: 

areaatraw(circle(0,2),2.2) 

We get: 

4*pi is displayed at the point(2.2) 

We enter: 

areaatraw(square(0,2),2.2) 

We get: 

4 is displayed at the point(2.2) 

We enter: 

areaatraw(hexagon(0,1),1.2) 

We get: 

3*sqrt(3)/2 is displayed at the point(1.2) 

24.7.5 Length of a segment: distanceat 

distanceat is a command which allows to display at a point the length of a segment with a label. 
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We enter this command in the Symbolic view. 
distanceat takes three arguments: the name of two points and a point (or the affix of this point) 
or else the name of two geometrical objects and a point (or the affix of this point). 
Warning! Take care that the two first arguments are names of point. 
distanceat returns the point supplied in third argument, the length of the segment defined by the 
two fist points or the distance between the two geometrical objects and displays this length at the 
location of the third point, preceeded by a label. 
 
We enter (we must give the name of the objects): 

GA:=point(-1);GB:=point(1+i); 

distanceat(GA,GB,0.4i) 

We get: 

"GAB=sqrt(5)" is displayed at the point(0.4i) 

We enter (you must give the name of the objects): 

GC:=point(0);GD:=line(-1,1+i) 

distanceat(GC,GD,i/2) 

We get: 

"GCD=sqrt(5)/5" is displayed at the point(i/2) 

We enter (me must give the name of the objects): 

GK:=circle(0,1); GL:=line(-2,1+3i) 

distanceat(GK,GL,0) 

We get: 

"GKL=sqrt(2)-1" is displayed at the point(0) 

24.7.6 Length of a segment: distanceatraw 

distanceatraw is a command which allows to display at a point the length of a segment, but with no 
label. 
We enter this command in the Symbolic view. 
distanceatraw takes as argument three points (or two points and the affix of a point supplied as a 
complex number) or else two geometrical objects and a point (or the affix of this point). 
distanceatraw returns the point supplied in third argument, the length of the segment defined by the 
two fist points, or the distance between the two geometrical objects, and displays this length at the 
location of the third point. 
 
We enter: 

GA:=point(-1);GB:=point(1+i); 

distanceatraw(GA,GB,0.4i) 

Or we enter directly: 

distanceatraw(point(-1),point(1+i),0.4i) 

We get: 
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sqrt(5) is displayed at the point(0.4i) 

We enter: 

GC:=point(0);GD:=line(-1,1+i) 

distanceatraw(GC,GD,i/2) 

Or we enter directly: 

distanceatraw(point(0),line(-1,1+i),0.4i) 

We get: 

sqrt(5)/5 is displayed at the point(i/2) 

We enter: 

GK:=circle(0,1); GL:=line(-2,1+3i) 

distanceatraw(GK,GL,0) 

Or we enter directly: 

distanceatraw(circle(0,1),line(-2,1+3i),0.4i) 

We get: 

sqrt(2)-1 is displayed at the point(0) 

24.7.7 Perimeter of a polygon: perimeterat 

perimeterat takes as argument the name of a circle or of a polygon and a point (or the affix of a 
point supplied as a complex number). 
perimeterat returns the point, the perimeter of the circle or of the polygon, and displays this 
perimeter at the location of the point with a label. 
We enter this command in the Symbolic view. 
Warning! Take care that the first argument is the name of a circle or of a polygon. 
 
We enter: 

t:=triangle(0,1,i) 

perimeterat(t,(1+i)/2) 

We get: 

2+sqrt(2) is displayed at the point((1+i)/2) with a label 

We enter: 

c:=square(0,2) 

perimeterat(c,2.2) 

We get: 

8 is displayed at the point(2.2) with a label 

We enter: 
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cc:=circle(0,2) 

perimeterat(cc,2.2) 

We get: 

4*pi is displayed at the point(2.2) with a label 

We enter: 

h:=hexagon(0,1) 

perimeterat(h,1.2) 

We get: 

6 is displayed at the point(1.2) with a label 

24.7.8 Perimeter of a polygon: perimeteratraw 

perimeteratraw takes as argument a circle or a polygon, and a point (or the affix of a point supplied 
as a complex number). 
perimeteratraw returns the point, the perimeter of the circle or of the polygon, and displays this 
perimeter at the location of the point. 
We enter this command in the Symbolic view. 
 
We enter: 

perimeteratraw(triangle(0,1,i),(1+i)/2) 

We get: 

2+sqrt(2) is displayed at the point((1+i)/2) 

We enter: 

perimeteratraw(circle(0,2),2.2) 

We get: 

4*pi is displayed at the point(2.2) 

We enter: 

perimeteratraw(hexagon(0,1),1.2) 

We get: 

6 is displayed at the point(1.2) 

We enter: 

perimeteratraw(square(0,2),2.2) 

We get: 

8 is displayed at the point(2.2) 
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24.7.9 Slope of a line: slopeat 

slopeat is a command which allows to display at a point the slope of a line, or of a segment, with a 
label. 
We enter this command in the Symbolic view. 
slopeat takes two arguments: the name of a line (or of a segment), and a point (or the affix of a point 
supplied as a complex number). 
slopeat returns the point, the slope of the line (or of the segment) and displays this slope at the 
location of the point, with a label. 
Warning! Take care that the first argument is the name of a line or of a segment. 
 
We enter: 

GD:=line(1,2i) 

Or we enter: 

GD:= segment (1,2i),i) 

slopeat(GD,i) 

We get: 

"sD=-2" is displayed at the point(i) 

We enter: 

GP:=line(2y-x=3),2*i) 

slopeat(GP,2*i) 

We get: 

"sP=1/2" is displayed at the point(2*i) 

We enter: 

GT:=tangent(plotfunc(sin(x)),pi/4) 

Or we enter: 

GT:=LineTan(sin(x),pi/4) 

Then: 

slopeat(GT,i) 

We get: 

"sT=(sqrt(2))/2" is displayed at the point(i) 

24.7.10 Slope of a line: slopeatraw 

slopeatraw is a command which allows to display at a point the slope of a line or of a segment but 
with no label. 
We enter this command in the Symbolic view. 
slopeatraw takes two arguments: a line (or a segment) and a point (or the affix of a point supplied 
as a complex number). 
slopeatraw returns the point, the slope of the line (or of the segment), and displays this slope at the 
location of the point. 
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We enter: 

GD:=line(1,2i) 

slopeatraw(GD,i) 

Or we enter directly: 

slopeatraw(line(1,2i),i) 

We get: 

-2 is displayed at the point(i) 

We enter: 

GE:= segment (1,2i),i) 

slopeatraw(GE,1) 

Or we enter directly: 

slopeatraw(segment (1,2i),1) 

We get: 

-2 is displayed at the point(1) 

We enter: 

GP:=line(2y-x=3,2*i) 

slopeatraw(GP,2*i) 

Or we enter directly: 

slopeatraw(line(2y-x=3,2*i),2*i) 

We get: 

1/2 is displayed at the point(2*i) 

We enter: 

GT:=tangent(plotfunc(sin(x)),pi/4) 

slopeat(GT,i) 

Or we enter directly: 

slopeatraw(tangent(plotfunc(sin(x)),pi/4),i) 

We get: 

(sqrt(2))/2 is displayed at the point(i) 
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24.8 Measure 

24.8.1 Abscissa of a point or of a vector: abscissa 

In plane geometry, abscissa takes as argument a point, a vector, or a complex number. 
abscissa returns the abscissa of the point or of the vector: 
- if the point A is of cartesian coordinates (𝑥𝐴, 𝑦𝐴), abscissa(GA) returns 𝑥𝐴, 

- if the point B is of cartesian coordinates (𝑥𝐵 , 𝑦𝐵), abscissa(GA-GB) returns 𝑥𝐴– 𝑥𝐵 (because GA-

GB designates the vector 𝐵𝐴⃗⃗⃗⃗  ⃗. 
 
We enter: 

abscissa(point(1+2*i)) 

We get: 

1 

We enter: 

abscissa(point(i)-point(1+2*i)) 

We get: 

-1 

We enter: 

abscissa(1+2*i) 

We get: 

1 

We enter: 

abscissa([1,2]) 

We get: 

1 

24.8.2 Affix of a point or of a vector: affix 

affix takes as argument a point, a vector, or the coordinates of a point or of a 2D vector. 
affix returns the affix of the point or of the vector: 

– if the point A is of cartesian coordinates (𝑥𝐴, 𝑦𝐴), affix(GA) returns 𝑥𝐴 +  𝑖 ∗  𝑦𝐴 
– if the point B is of cartesian coordinates (𝑥𝐵 , 𝑦𝐵), affix(GA-GB) or 

affix(vector(GB,GA)) returns 𝑥𝐴– 𝑥𝐵 +  𝑖 ∗  (𝑦𝐴– 𝑦𝐵) (because GA-GB designates the 

vector 𝐵𝐴⃗⃗⃗⃗  ⃗ and coordinates(vector(GB,GA))returns [𝑥𝐴 +  𝑖 ∗  𝑦𝐴 , 𝑥𝐵 +  𝑖 ∗  𝑦𝐵]. 
 
We enter: 

affix(point(i)) 

We get: 

i 
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We enter: 

affix(point(i)-point(1+2*i)) 

We get: 

-1-i 

24.8.3 Measure of a angle: angle 

angle takes as argument three points (or the affixes of these points supplied as three complex 
numbers) and eventually a string used as label along with the symbol of an arc of circle which 
represents the angle on the figure (the arc of circle is replaced by the symbol of the half of a square in 

the case of the angle equals 𝜋/2 or −𝜋/2). 
angle returns the measure (in radians or in degrees) of the oriented angle of vertex the first 
argument, the second argument is on the first side of the angle and the third argument is on the 
second side. 
Then: 

angle(GA,GB,GC) designates the measure of the angle in radians (or in degrees) of (𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐶⃗⃗⃗⃗  ⃗). 

angle(GA,GB,GC,"") plots the angle (𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐶⃗⃗⃗⃗  ⃗) with as label a small oriented arc. 

angle(GA,GB,GC,"a") plots the angle (𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐶⃗⃗⃗⃗  ⃗) with as label a small oriented arc written a. 
angle(GA,GB,GC,"")[0] or angle(GA,GB,GC,"a")[0] designates the measure of the angle in 

radians (or in degrees) of (𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐶⃗⃗⃗⃗  ⃗). 
 
We enter: 

angle(0,1,1+i) 

We get, if we have chosen radian in the CAS configuration: 

pi/4 

We enter: 

angle(0,1,1+i,"") 

We get, if we have checked radian in the CAS configuration: 

[pi/4,circle(point(0,0),1/5)] and the angle is designated by an arc 

of circle without label. 

We enter: 

angle(0,1,1+i,"a") 

We get, if we have checked radian in the CAS configuration: 

[pi/4,circle(point(0,0),1/5)] and the angle is deisgnated by an arc 

of circle with as label. 

We enter: 

angle(0,1,i,"a") 

We get, if we have checked radian in the CAS configuration: 

[pi/2,polygon(point(1/5,0),point(1/5,1/5),point(0,1/5),point(0,1/5))] 

and the right angle is designated by an half of square with the label 

a. 
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24.8.4 Length of an arc of curve: arcLen 

arcLen takes one or four parameters. 
Warning! Take care to not be in complex mode. 
 

– the parameter is either a circle or an arc of circle, either a polygon. 
 
We enter: 

arcLen(circle(0,1,0,pi/2)) 

We get: 

pi/4 

We enter: 

arcLen(hexagon(0,1)) 

We get: 

6 

– the four parameters are: an expression 𝑒𝑥𝑝𝑟 (resp. a list of two expressions [𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2]), 
the name of a parameter and two values 𝑎 and 𝑏 of this parameter. 

arcLen returns the length of the arc of curve defined by the equation 𝑦 =  𝑓(𝑥)  =  𝑒𝑥𝑝𝑟 
(resp. by 𝑥 =  𝑒𝑥𝑝𝑟1, 𝑦 =  𝑒𝑥𝑝𝑟2) for the values of the parameter between 𝑎 and 𝑏. 
We have then arcLen(f(x),x,a,b)=: 
integrate(sqrt(diff(f(x),x)^2+1),x,a,b) 
or 
integrate(sqrt(diff(x(t),t)^2+diff(y(t),t)^2),t,a,b). 

 
Examples 

– Calculate the length of the arc of circle 𝐴𝐵 (with 𝐴 =  (0, 0) and 𝐵 =  (0, 1)) and angle at 

center 𝜋/2. 
 
We enter: 

arcLen(arc(0,1,pi/2)) 

We get: 

sqrt(2)*pi/4 

– Calculate the perimeter of the triangle 𝐴𝐵𝐶 (with 𝐴 =  (0, 0), 𝐵 =  (0, 1) and 𝐶 =  (1, 1)). 
 
We enter: 

arcLen(triangle(0,1,1+i)) 

We get: 

sqrt(2)+2 

– Calculate the length of the arc of parabola 𝑦 =  𝑥2 to x from 0 to 𝑥 =  1. 
 
We enter: 

arcLen(x^2,x,0,1) 

or 
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arcLen([t,t^2],t,0,1) 

We get: 

(sqrt(5))/2-ln(sqrt(5)-2)/4 

– Calculate the length of the arc of the curve 𝑦 = cosh(𝑥) for 𝑥 from 0 to 𝑥 = ln(2). 
 
We enter: 

arcLen(cosh(x),x,0,log(2)) 

We get: 

3/4 

– Calculate the length of the arc of circle 𝑥 =  𝑐𝑜𝑠(𝑡), 𝑦 =  𝑠𝑖𝑛(𝑡) for 𝑡 from 0 to 𝑡 =  2 ∗  𝜋. 
 
We enter: 

arcLen([cos(t),sin(t)],t,0,2*pi) 

We get: 

2*pi 

24.8.5 Area of a polygon: area 

area returns the area of a circle or of a polygon. 
 
We enter: 

area(triangle(0,1,i)) 

We get: 

1/2 

We enter: 

area(square(0,2)) 

We get: 

4 

24.8.6 Coordinates of a point, a vector or a line: coordinates 

In plane geometry, coordinates takes as argument a point, a complex number, a vector or a line. 
coordinates returns the list of the abscissa and the ordinate of the point, or the vector, or the list of 
affixes of two points of the oriented line. 

– if the point A is of cartesian coordinates (𝑥𝐴, 𝑦𝐴), coordinates(GA) returns [𝑥𝐴 , 𝑦𝐴], 
– if the point B is of cartesian coordinates (𝑥𝐵 , 𝑦𝐵), coordinates(vector(GA,GB)) or 

coordinates(GB-GA) returns [𝑥𝐵– 𝑥𝐴 , 𝑦𝐵– 𝑦𝐴] (whereas B-A returns (𝑥𝐵– 𝑥𝐴) +  𝑖 ∗

 (𝑦𝐵– 𝑦𝐴) because B-A designates the affix of the vector AB in plane geometry), 

– if the vector V is of cartesian coordinates (𝑥𝑉 , 𝑦𝑉), coordinates(GV) or 

coordinates(vector(GA,GV)) returns [𝑥𝑉 , 𝑦𝑉], 
– if a line D is defined by two points A and B, coordinates(GD) returns 

[affix(GA),affix(GB)]. If D is defined by its equation, coordinates(GD) returns 
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[affix(GA),affix(GB)] where A and B are two points of the line D, the vector AB having 
same orientation as d. 

 
We enter: 

coordinates(point(1+2*i)) 

Or we enter: 

coordinates(1+2*i) 

We get: 

[1,2] 

We enter: 

coordinates(point(1+2*i)-point(i)) 

Or we enter: 

coordinates(point(1+2*i)-point(i)) 

We get: 

[1,1] 

We enter: 

coordinates(vector(point(i),point(1+2*i))) 

Or we enter: 

coordinates(vector(i,1+2*i)) 

Or we enter: 

coordinates(vector([0,1],[1,2])) 

We get: 

[1,1] 

We enter: 

coordinates(1+2*i) 

Or we enter: 

coordinates(vector(1+2*i)) 

Or we enter: 

coordinates(vector(point(i),vector(1+2*i))) 

We get: 

[1,2] 

We enter: 
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coordinates(point(i),vector(1+2*i)) 

We get: 

[1,2] 

We enter: 

d:=line(-1+i,1+2*i) 

Or we enter 

d:=line(point(-1,1),point(1,2)) 

Then, 

coordinates(d) 

We get: 

[-1+i,1+2*i] 

We enter: 

d:=line(y=(1/2*x+3/2)) 

We get: 

[(3*i)/2,1+2*i] 

We enter: 

d:=line(x-2*y+3=0) 

We get: 

[(3*i)/2,(-4+i)/2] 

Warning! 
coordinates might also take as argument a sequence or a list of points. Then, coordinates 
returns the sequence or the list of lists of coordinates of these points, for example: 
coordinates(i,1+2*i) or coordinates(point(i),point(1+2*i)) 
returns the sequence: 
[0,1],[1,2] 
and 
coordinates([i,1+2*i]) or coordinates([point(i),point(1+2*i)]) 
returns the matrix: 
[[0,1],[1,2]] so coordinates([1,2]) returns the matrix: 
[[1,0],[2,0]] because [1,2] is considered as the list of two points of affix 1 and 2. 

24.8.7 Rectangular coordinates of a point: rectangular_coordinates 

rectangular_coordinates returns the list of the abscissa and the ordinate of a point supplied by 
the list of its polar coordinates. 
 
We enter: 

rectangular_coordinates(2,pi/4) 

Or we enter: 
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rectangular_coordinates(polar_point(2,pi/4)) 

We get: 

[2/(sqrt(2)),2/(sqrt(2))] 

24.8.8 Polar coordinates of a point: polar_coordinates 

polar_coordinates returns the list of the modulus and the argument of the affixe of a point, of a 

complex number, or of the list of rectangular coordinates. 
 
We enter: 

polar_coordinates(1+i) 

Or we enter: 

polar_coordinates(point(1+i)) 

Or we enter: 

polar_coordinates([1,1]) 

We get: 

[sqrt(2),pi/4] 

24.8.9 Length of a segment and distance between two geometrical objects: 

distance 

distance takes as argument two points (or the affixes of these points supplied as two complex 
numbers) or two geometrical objects. 
distance returns the length of the segment defined by these two points or the distance between the 
two geometrical objects. 
 
We enter: 

distance(-1,1+i) 

We get: 

sqrt(5) 

We enter: 

distance(0,line(-1,1+i)) 

We get: 

sqrt(5)/5 

We enter: 

distance(circle(0,1),line(-2,1+3i)) 

We get: 

sqrt(2)-1 
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24.8.10 Square of the length of a segment: distance2 

distance2 takes as argument two points (or two points and a the affix of a point supplied as a 
complex number). 
distance2 returns the square of the length of the segment defined by these two points. 
 
We enter: 

distance2(-1,1+i) 

We get: 

5 

24.8.11 Cartesian equation of a geometrical object: equation 

equation allows to get the cartesian equation of a geometrical object. 
Warning! Prior to use equation, take care of purging the variables x and y by entering purge(x) and 
purge(y) or x:=’x’ and y:=’y’. 
 
We enter: 

equation(line(point(0,1,0),point(1,2,3))) 

We get: 

(x-y+1=0,3*x+3*y-2*z=0) 

We enter: 

equation(sphere(point(0,1,0),2)) 

We get: 

x^2+y^2+-2*y+z^2-3=0 

which is the equation of the sphere of center (0,1,0) and radius 2. 

24.8.12 Get as answer the value of a measure displayed: 

extract_measure 

extract_measure allows to get the value of a measure which has been displayed. 
extract_measure takes as argument the command which previously displayed this measure. 
 
We enter: 

GA:=point(-1);GB:=point(1+i);GC:=segment(GA,GB) 

extract_measure(distanceat(GA,GB,i)) 

We get: 

sqrt(5) 

We enter: 

extract_measure(distanceatraw(GA,GB,i)) 

We get: 
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sqrt(5) 

We enter: 

extract_measure(slopeat(GC,i)) 

We get: 

1/2 

We enter: 

extract_measure(slopeatraw(GC,i)) 

We get: 

1/2 

24.8.13 Ordinate of a point or of a vector: ordinate 

In plane geometry, ordinate takes as argument a point, a vector, or a complex number. 
ordinate returns the ordinate of the point or of the vector: 

– if the point A is of cartesian coordinates (𝑥𝐴, 𝑦𝐴), ordinate(GA) returns 𝑦𝐴, 

– if the point B is of cartesian coordinates (𝑥𝐵 , 𝑦𝐵), ordinate(GA-GB) returns 𝑦𝐴– 𝑦𝐵 

(A-B designates the vector 𝐵𝐴⃗⃗⃗⃗  ⃗). 
 

We enter: 

ordinate(point(1+2*i)) 

We get: 

2 

We enter: 

ordinate(point(i)-point(1+2*i)) 

We get: 

-1 

We enter: 

ordinate(1+2*i) 

We get: 

2 

We enter: 

ordinate([1,2]) 

We get: 

2 
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24.8.14 Parametric equation of a geometrical object: parameq 

In plane geometry, parameq allows to get the parametric equation of a geometrical object in the form 
of the complex number 𝑥(𝑡)  +  𝑖 ∗  𝑦(𝑡). 
Warning! Prior to use parameq, take care of purging the variable t by entering: purge(t) or 
t:=’t’. 
 
We enter: 

parameq(line(-1,i)) 

We get: 

-t+(1-t)*(i) 

We enter: 

parameq(circle(-1,i)) 

We get: 

-1+exp(i*t) 

We enter: 

normal(parameq(ellipse(-1,1,i))) 

We get: 

sqrt(2)*cos(t)+(i)*sin(t) 

24.8.15 Perimeter of a polygon: perimeter 

perimeter returns the perimeter of a circle or of a polygon. See also the command arcLen. 
 
We enter: 

perimeter(triangle(0,1,i)) 

We get: 

2+sqrt(2) 

We enter: 

perimeter(square(0,2)) 

We get: 

8 

24.8.16 Radius of a circle: radius 

radius takes as argument a circle. 
radius returns the length of the radius of this circle. 
 
We enter: 

radius(circle(-1,i)) 
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We get: 

1 

We enter: 

radius(circle(-1,point(i))) 

We get: 

sqrt(2)/2 

24.8.17 Slope of a line: slope 

slope is either a command, either a parameter of the command line (See 24.3.7) 
When slope is a command, it takes argument a line, a segment, two points or two complex numbers. 
slope returns the slope of the line defined by the segment, the two points, or their affixes. 
 
We enter: 

slope(line(1,2i)) 

Or we enter: 

slope(segment (1,2i)) 

Or we enter: 

slope(point(1),point(2i)) 

Or we enter: 

slope(1,2i) 

We get: 

-2 

We enter: 

slope(line(2y-x=3)) 

We get: 

1/2 

We enter: 

slope(tangent(plotfunc(sin(x)),pi/4)) 

Or we enter: 

slope(LineTan(sin(x),pi/4)) 

We get: 

(sqrt(2))/2 
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24.9 Test 

24.9.1 Check whether three points are collinear: is_collinear 

is_collinear is a boolean function and takes as argument a list or a sequence of points. 
is_collinear equals 1 if the points are collinear, 0 otherwise. 
 
We enter: 

is_collinear(0,1+i,-1-i) 

We get: 

1 

We enter: 

is_collinear(i/100,1+i,-1-i) 

We get: 

0 

24.9.2 Check whether four points are concyclic: is_concyclic 

is_concyclic is a boolean function and takes as argument a list or a sequence of points. 
is_concyclic equals 1 if the points are concyclic, 0 otherwise. 
We enter: 

is_concyclic(1+i,-1+i,-1-i,1-i) 

We get: 

1 

We enter: 

is_concyclic(i,-1+i,-1-i,1-i) 

We get: 

0 

24.9.3 Check whether elements are conjugates: is_conjugate 

is_conjugate allows to know if four points are conjugates, or if two points, two lines, or a line and a 
point are conjugates for a circle or for two lines. 
is_conjugate is a boolean function and takes as arguments two points (resp. two lines, or a circle) 
followed by two points, two lines, or a line and a point. 
is_conjugate equals 1 if the arguments are conjugates, 0 otherwise. 
 
We enter: 

is_conjugate(circle(0,1+i),point(1-i),point(3+i)) 

We get: 

1 
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We enter: 

is_conjugate(circle(0,1),point((1+i)/2),line(1+i,2)) 

Or we enter: 

is_conjugate(circle(0,1),line(1+i,2),point((1+i)/2)) 

We get: 

1 

We enter: 

is_conjugate(circle(0,1),line(1+i,2), line((1+i)/2,0)) 

We get: 

1 

We enter: 

is_conjugate(point(1+i),point(3+i),point(i),point(i+3/2)) 

We get: 

1 

We enter: 

is_conjugate(line(0,1+i),line(2,3+i), line(3,4+i),line(3/2,5/2+i)) 

We get: 

1 

24.9.4 Check whether points or/and lines are coplanar: is_coplanar 

is_coplanar checks whether a list, or a sequence of points, or of lines are coplanar. 
 
We enter: 

is_coplanar([0,0,0],[1,2,-3],[1,1,-2],[2,1,-3]) 

We get: 

1 

We enter: 

is_coplanar([-1,2,0],[1,2,-3],[1,1,-2],[2,1,-3]) 

We get: 

0 

We enter: 

is_coplanar([0,0,0],[1,2,-3],line([1,1,-2],[2,1,-3])) 

We get: 
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1 

We enter: 

is_coplanar(line([0,0,0],[1,2,-3]),line([1,1,-2],[2,1,-3])) 

We get: 

1 

We enter: 

is_coplanar(line([-1,2,0],[1,2,-3]), line([1,1,-2],[2,1,-3])) 

We get: 

0 

24.9.5 Check whether a point is on a geometrical object: is_element 

is_element is a boolean function and takes as argument a point and a geometrical object. 
is_element equals 1 if the point is on the geometrical object, 0 otherwise. 
 
We enter: 

is_element(point(-1-i),line(0,1+i)) 

We get: 

1 

We enter: 

is_element(point(i),line(0,1+i)) 

We get: 

0 

24.9.6 Check whether a triangle is equilateral: is_equilateral  

is_equilateral is a boolean function and takes as argument three points or a geometrical object. 
is_equilateral equals 1 if the three points form an equilateral triangle, or if the geometrical object 
is an equilateral triangle, 0 otherwise. 
We enter: 

is_equilateral(0,2,1+i*sqrt(3)) 

We get: 

1 

We enter: 

GT:=equilateral_triangle(0,2,GC);is_equilateral(GT[0]) 

We get: 

1 
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Indeed, GT[0] designates a triangle because GT is a list composed of the triangle and its vertex GC. 

We enter affix(GC) and we get 1+i*sqrt(3) 

We enter: 

is_equilateral(1+i,-1+i,-1-i) 

We get: 

0 

24.9.7 Check whether a triangle is isoscele: is_isosceles 

is_isosceles is a boolean function and takes as argument three points or a geometrical object. 
is_isosceles equals 1 (resp. 2, 3) if the three points form an isosceles triangle or if the geometrical 
object is an isosceles triangle whose angle between the two equal sides is designated by the first 
(resp. second, third) argument, or equals 4 if the three points form an equilateral triangle, or if the 
geometrical object is an equilateral triangle, 0 otherwise. 
 
We enter: 

is_isosceles(1,1+i,i) 

We get: 

2 

We enter: 

GT:=isosceles_triangle(0,1,pi/4);is_isoceles(GT) 

We get: 

1 

We enter: 

GT:=isosceles_triangle(0,1,pi/4,GC);is_isoceles(GT[0]) 

We get: 

1 

Indeed, GT[0] designates a triangle because GT is a list composed of the triangle and its vertex C. 

We enter affix(GC) and we get (sqrt(2))/2+((i)*sqrt(2))/2 

We enter: 

is_isosceles(1+i,-1+i,-i) 

We get: 

3 

24.9.8 Orthogonality of two lines or two circles: is_orthogonal 

is_orthogonal is a boolean function and takes as argument two lines or two circles. 
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is_orthogonal equals 1 if the two lines or the two circles (i.e if the tangents at their cross points are 
orthogonal), 0 otherwise. 
 
We enter: 

is_orthogonal(line(1,i), line(0,1+i)) 

We get: 

1 

We enter: 

is_orthogonal(line(2,i), line(0,1+i)) 

We get: 

0 

We enter: 

is_orthogonal(circle(0,1),circle(sqrt(2),1)) 

We get: 

1 

We enter: 

is_orthogonal(circle(0,1),circle(2,1)) 

We get: 

0 

24.9.9 Check whether two lines are parallel: is_parallel 

In plane geometry, is_parallel is a boolean function and takes as argument two lines. 
is_parallel equals 1 if the two lines are parallel, 0 otherwise. 
 
We enter: 

is_parallel(line(0,1+i),line(i,-1)) 

We get: 

1 

We enter: 

is_parallel(line(0,1+i),line(i,-1-i)) 

We get: 

0 

24.9.10 Check whether a polygon is a parallelogram: is_parallelogram 

is_parallelogram is a boolean function and takes as argument four points or a geometrical object. 
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is_parallelogram equals 1 (resp. 2, 3, 4) if the four points form a parallelogram (resp. a rhombus, 
a rectangle, a square) or if the geometrical object is a parallelogram (resp. a rhombus, a rectangle, a 
square), 0 otherwise. 
 
We enter: 

is_parallelogram(i,-1+i,-1-i,1-i) 

We get: 

0 

We enter: 

is_parallelogram(1+i,-1+i,-1-i,1-i) 

We get: 

1 

We enter: 

GQ:=quadrilateral(1+i,-1+i,-1-i,1-i);is_parallelogram(GQ) 

We get: 

4 

Warning! 
We must enter: 

GP:=parallelogram(-1-i,1-i,i,GD);is_parallelogram(GP[0]) 

To get: 

1 

Indeed, it is GP[0] which designates a parallelogram because GP is a list composed of a 
parallelogram and its last vertex D. 
If we enter affix(GD), we get -2+i. 

24.9.11 Check whether two lines are perpendicular: is_perpendicular 

In plane geometry, is_perpendicular is a boolean function having 
as argument two lines. 
is_perpendicular equals 1 if the two lines are perpendicular, and equals 0 otherwise. 
 
We enter: 

is_perpendicular(line(0,1+i),line(i,1)) 

We get: 

1 

We enter: 

is_perpendicular(line(0,1+i),line(1+i,1)) 
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24.9.12 Check whether a triangle is right or a polygon is a rectangle: 

is_rectangle 

is_rectangle is a boolean function and takes as argument three or four points, or a geometrical 
object. 
is_rectangle equals 1 (resp. 2 or 3) if the three points form a right triangle, the right angle being 
specified in the first (resp. second, third) argument or if the geometrical object is a right triangle, 
is_rectangle equals 1 (resp. 2) if the four points form a rectangle (resp. a square) or if the 
geometrical object is a rectangle (resp. a square), 0 otherwise. 
 
We enter: 

is_rectangle(1,1+i,i) 

We get: 

2 

We enter: 

is_rectangle(1+i,-2+i,-2-i,1-i) 

We get: 

1 

We enter: 

GR:=rectangle(-2-i,1-i,3,GC,GD);is_rectangle(GR[0]) 

We get: 

1 

Indeed, GR[0] designates a rectangle because GR is a list composed of the rectangle and its vertices 
C and D. 

24.9.13 Check whether a polygon is a rhombus: is_rhombus 

is_rhombus is a boolean function and takes as argument four points or a geometrical object. 
is_rhombus equals 1 (rep 2) if the four points form a rhombus (resp. a square) 
 
or if the geometrical object is a rhombus (resp. a square), 0 otherwise. 
We enter: 

is_rhombus(1+i,-1+i,-1-i,1-i) 

We get: 

1 

We enter: 

GK:=rhombus(1+i,-1+i,pi/4);is_rhombus(GK) 

We get: 

1 

We enter: 
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GK:=rhombus(1+i,-1+i,pi/4,GC,DD);is_rhombus(GK[0]) 

We get: 

1 

Indeed, GK[0] designates a rhombus because GK is a list composed of a rhombus and its vertices GC 
and GD. 
If we enter: normal(coordinates(GC,GD)), we get [-sqrt(2)-1,-sqrt(2)+1],[-

sqrt(2)+1,-sqrt(2)+1]. 
We enter: 

is_rhombus(i,-1+i,-1-i,1-i) 

We get: 

0 

24.9.14 Check whether a polygon is a square: is_square 

is_square is a boolean function and takes as argument four points or a geometrical object. 
is_square equals 1 if the four points form a square or if the geometrical object is a square, 0 
otherwise. 
 
We enter: 

is_square(1+i,-1+i,-1-i,1-i) 

We get: 

1 

We enter: 

GK:=square(1+i,-1+i);is_square(GK) 

We get: 

1 

We enter: 

GK:=square(1+i,-1+i,C,D);is_square(GK[0]) 

We get: 

1 

Indeed, GK[0] designates a square because GK is a list composed of a square and ses vertices C and 
D. 
If we enter affix(GC,GD), we get -1-i,1-i. 
 
We enter: 

is_square(i,-1+i,-1-i,1-i) 

We get: 

0 
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24.9.15 Check whether 4 points form an harmonic division: is_harmonic 

is_harmonic allows to know if four points are in harmonic division. 
is_harmonic is a boolean function and takes as arguments four points. 
is_harmonic equals 1 if the four points are in harmonic division and 0 otherwise. 
 
We enter: 

is_harmonic(0,2,3/2,3) 

We get: 

1 

We enter: 

is_harmonic(0,1+i,1,i) 

We get: 

0 

24.9.16 Check whether lines are in harmonic bundle: 

is_harmonic_line_bundle 

is_harmonic_line_bundle takes as argument a list of lines. 
is_harmonic_line_bundle returns: 
1 if these lines are concurrent in a point, 
2 if they are parallel, 
3 if they are overlapping, 
and 0 otherwise. 
We enter: 

is_harmonic_line_bundle([line(0,1+i),line(0,2+i), 

line(0,3+i),line(0,1)]) 

We get: 

1 

24.9.17 Check whether circles are in harmonic bundle: 

is_harmonic_circle_bundle 

is_harmonic_circle_bundle takes as argument a list of circles. 
is_harmonic_circle_bundle returns: 
1 if these circles form a beam (that is to say if they have by pair the same radical axis), 
2 if these circles are concentric, 
3 if these circles are overlaping, 
and 0 otherwise. 
 
We enter: 

is_harmonic_circle_bundle([circle(0,i),circle(4,i), 

circle(0,point(1/2))]) 

We get: 

1 
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24.10 Exercises of geometry 

24.10.1 Transformations 

– Translation 
Paving: any plane non crossed quadrilateral might form a pavement of the plane as a regular 
pattern. 
We define 4 points A,B,C,D randomly: 
menu Points->Free points->4 random point 
In Symb, we change the name of points so that the quadrilateral 𝐴, 𝐵, 𝐶, 𝐷 is not crossed. 
Then, we define the quadrilateral 𝐴, 𝐵, 𝐶, 𝐷 with the menu Lines->Polygons-

>Quadrilateral and this will be the basis pattern: GE:=quadrilateral(GA,GB,GC,GD) 
GA:=point() 

GB:=point() 

GC:=point() 

GD:=point 

GE:=quadrilateral(GA,GB,GC,GD) 

GG:=segment(GA,GB) 

GH:= segment (GB,GC) 

GI:= segment (GC,GD) 

GJ:= segment (GD,GA) 

GK:=midpoint(GA,GB) 

GL:=reflection(GK,GC) 

GM:=reflection(GK,GD) 

GN:=quadrilateral(GA,GB,GL,GM) 

GO:= segment (GA,GB) 

GP:= segment (GB,GL) 

GQ:= segment (GL,GM) 

GR:= segment (GM,GA) 

translation(GB-GD,[GE,GN]) 

translation(GC-GA,[GE,GN]) 

 
– Inversion 

The Peaucellier inverter 
GA:=element(-1.6..1.6,0.6) 

GD:=circle(1,1) 

GE:=point(1+EXP(i*GA) 

GH:=circle(GE,2.) 

GI:=circle(0,3.) 

GJ:=inter(GH,GI) 

GK:=reflection(GJ,GE) 

GL:=locus(GK,GA) 

GG:=quadrilateral(GE,GJ[0],GK,GJ[1]) 

GB:=segent(0,GJ[0]) 

GC:=segent(0,GJ[1]) 

24.10.2 Loci 

Be a direct triangle 𝑂𝐴𝐵 right in 𝑂, with 𝑂𝐴 =  𝑎 and 𝑂𝐵 =  𝑏. 

Be 𝐷 =  𝐴𝑡 a variable half line so that: (𝑂𝐴⃗⃗ ⃗⃗  ⃗, 𝐴𝑡⃗⃗⃗⃗ )  =  𝑐, 0 ≤  𝑐 ≤  𝜋/2. 

Let 𝐴1 and 𝐵1 be the respective projections of 𝐴 and 𝐵 on 𝐷. 
What is the value of 𝑐 which causes 𝐴1 and 𝐵1 to be mixed in a point named 𝑃 ? Find the loci of 𝐴1 

and 𝐵1 when 𝑐 varies. 

Show that the triangle 𝑃𝐴1𝐵1 remains similar to the triangle 𝑂𝐴𝐵 when 𝑐 varies. 

Find the locus of 𝑀 midpoint of 𝐴1𝐵1 when 𝑐 varies. 
 

GA:=point(0.,3.) 

GB:=point(5.,0.) 

GC:=arc(1.5*i,1.5) 

GD:=(inter(GC,line(GA,GB)))[0] 

GE:=arc(1.5*i,-pi/2.,pi/2) 

GG:=element(0..1.57,0.25) 

GH:=line(y=TAN(GG)*x) 

GI:=projection(GH,GA) 
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GJ:=projection(GH,GB) 

GK:=triangle(GD,GI,GJ) 

GL:=triangle(GD,2.5,1.5*i) 

GM:=midpoint(GI,GJ) 

GN:=trace(GM) 

24.11 Geometry activities 

– Perpendicular bisector of AB 
Create a segment AB. 
Draw the perpendicular bisector of AB, by using the same geometric construction as with a 
compass. 
 
Answer: 
We tap: 
Lines->Segment and we define with the cursor two points A and B and the segment C is 
automatically defined in Symb (GC:= segment (GA,GB)). 
perpen_bisector directly draws the perpendicular bisector of AB. 
To do the same geometric construction as with a compass: 
We tap: Curves->Circles->Circle 
We pick the center B (or we enter Alpha B), we confirm with Enter or with , then we pick the 
point A (or we enter Alpha A) . 
The following is then displayed below the figure: 
circle(GB,GA-GB) (it is the circle D of center B passing by A), we confirm with Enter 
(GD:=circle(GB,GA-GB) is automatically defined in Symb). 
Then, we pick the center A then the point B. 
The following is then displayed below the figure: 
circle(GA,GB-GA) (it is the circle E of center A passing by B), we confirm with Enter 
(GE:=circle(GA,GB-GA) is automatically defined in Symb). 
We can then enter in Symb: 
GG:=line(inter(GD,GE) to plot the line joigning the two points of the intersection of GD 
and GE (inter(GD,GE) is the list of intersection points). 
Or else, we define the intersection with Point->Inter and then, by designing the first 
intersection point, then the second one. 

 
– Midpoint 

Create a segment [AB]. 
Draw the midpoint of AB, either by using the coordinates, either by using the same geometric 
construction as with a compass. 
We enter: GI:=point(coordinates(GA)/2+coordinates(GB)/2) 
or we add to the construction of the perpendicular bisector (cf above): 
GI:=single_inter(GC,GG) 

 
As an exercise of programming, we can also define the function Midpoint. 
(The first letter of the name of the function must be in upper case, because midpoint is a 
CAS command). 
We enter: 

Midpoint(A,B):=point(coordinates(A)/2+coordinates(B)/2) 

or else if we have defined the function Perpendicular_bissector: 

Midpoint(A,B):=single_inter(segment 

(A,B),Perpendicular_bissector(A,B)) 

 
– Isobarycenter 

Create 4 points A,B,C,D. 
Define the isobarycenter of A,B,C,D, by using the coordinates. 
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Answer: 
We enter in Symb: 

GE:=point((coordinates(GA)+coordinates(GB)+coordinates(GC)+ 

coordinates(GD))/4) 

 
As an exercise of programming, we can define the function ISOBAR 
 
Warning! isobarycenter is an existing command. 
 
We enter as name of program ISOBAR and we check CAS. 
We enter (the variables must be in lower case): 
 

(l)->BEGIN 

LOCAL s,d; 

d:=size(l); 

s:=sum(l[k],k,1,d)/d; 

RETURN s; 

END; 

 
By example, we enter: 

ISOBAR(0,1,1+i,i) 

We get: 

(1+i)/2 

 

– Barycenter 
Create 4 points A,B,C,D. 
To define the barycenter of [A,1],[B,-2],[C,1],[D,3], by using the coordinates. 
 
Answer: 
We enter: 

GE:=point((coordinates(GA)-

2*coordinates(GB)+coordinates(GC)+3*coordinates(GD))/3) 

 
As an exercise of programming, we can also define the function BARY 
 

Warning! barycenter is an existing command which returns the barycenter of points 𝐴, 𝐵. .. 
weighted of coefficients 𝛼, 𝛽. ... 
 
We enter BARY as name of the program and we check CAS. 
We enter (the variables must be in lower case) and we assume that 𝑙 is the list 

affix(𝐺𝐴),𝛼,affix𝐺𝐵, 𝛽...: 
 

(l)->BEGIN 

LOCAL s,d; 

d:=size(l); 

s:=sum(l[k],k,2,d,2); 

IF s==0 THEN RETURN "not defined" END; 

  RETURN sum(L[k]*L[k+1],k,1,d,2)/s; 

END; 

 
By example, we enter: 

ISOBAR(0,2,1,1 
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We get: 

1/3 

 

– Bissector of a angle 
Create a triangle ABC. 
Draw the bissector of the angle 𝐴 of the triangle 𝐴𝐵𝐶, by using the same geometric 
construction as with a compass and by using the instruction perpen_bissector which plots 
the perpendicular bisector of a segment. 
 
Answer: 
We tap: 
Lines->Triangle->Triangle and we define with the cursor three points A, B and C and 
then the triangle D as well as its sides are automatically defined in Symb 

(GD:=triangle(GA,GB,GC)), 

GE:= segment ([GA,GB]), 

GG:= segment ([GB,GC]), 

GH:= segment ([GC,GA]). 
We tap: Curves->Circles->Circle 
We assume that 𝐴𝐵 <  𝐴𝐶 so that the circle of center A passing by B intersects the segment 
H which is the segment AC. 
We pick the center A (or we enter Alpha A), we confirm with Enter or with , then we pick the 
point B (or we enter Alpha B) . 
The following is then displayed below the figure: 
circle(GA,GB-GA) which is the circle I of center A passing by B. 
We tap Points->Dep.points->Inter and we designate the circle I, then the segment H 
GJ:=inter(GI,GH) defines the intersection of the circle I with the segment H which is the 
segment AC. 
Then, we select perpen_bissector to plot the perpendicular bisector of BJ 
GK:=perpen_bissector(GB,GJ) 

 
As an exercise of programming, we can also define the functions Bissector and 
Exbissector 
 
Warning! bissector and exbissector are existing commands. 
 
We enter, if we have defined the function Perpendicular_bissector: 
Perpendicular_bissector(GA,GB,GC):=perpen_bissector(single_inter(half

_line(GA,GB), 
circle(A,2)),single_inter(half_line(GA,GC),circle(GA,2))) 

Exbissector (GA,GB,GC):={local GC1:=GA+(GA-GC);  

Bissector (GA,GB,GC1)} 

 
– Offset from a given length 

Given three points A, B and C, we want to build a point D so that 𝐴𝐷 =  𝐵𝐶. 
We use the command circle and we enter: 
GD:= element(circle(GA,GB-GC)) 

The instruction distance(GB,GC) returns the length of the segment BC (units defined in Plot 
view). 
If we want to offset of this length in a given direction, we multiply this length by the unity vector 
of this direction. 
 
Example: 
Given three points A, B and C, build on the half-line 𝐴𝐵 a point 𝐷 such as 𝐴𝐷 =  𝐴𝐶. 
We enter: 

GD:=GA+distance(GA,GC)*(GB-GA)/distance(GA,GB) 

or else 
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GD:=single_inter(circle(GA,GC-GA),half_line(GA,GB)) 

 
– Offset from a given angle 

Given two points A and B, we want to build C so that the angle (𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐶⃗⃗⃗⃗  ⃗) let of measure 

supplied for example 72 degrees or 2 ∗  𝜋/5 radians. 
We enter, if we have checked radian in the CAS settings: 

GD:=rotation(GA,2*pi/5,line(GA,GB)) 

or, if we are in degree (we did not check radian): 

GD:=rotation(GA,72,line(GA,GB)) 

then we enter: 

GC:=element(GD) 

The instruction angle(GA,GB,GC) gives the measure in radians (or in degrees) of the angle 

(𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐶⃗⃗⃗⃗  ⃗), we can then check the construction requested. 
 

Given two points A and B, we want to build C so that the angle (𝐴𝐵⃗⃗⃗⃗  ⃗, 𝐴𝐶⃗⃗⃗⃗  ⃗) is equal to the angle 

(𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  , 𝑂𝑃⃗⃗⃗⃗  ⃗). 
We enter: 

GD:=rotation(GA,angle(GO,GM,GP),line(GA,GB)); 

GC:=element(GD) 

 

– Perpendicular to the line BC passing by A 
Create a point A and a line BC not passing by A. 
Draw the perpendicular to the line 𝐵𝐶 passing by 𝐴, by using the same geometric construction 
as with a compass. 
 
Answer: 
We tap: Points->Point and we define with the cursor the point A, then we tap Lines-
>Line and we define with the cursor the points B and C and the line D is automatically defined 
in Symb (GD:=line(GB,GC)). 
We tap: Curves->Circles->Circle 
We pick the center B (or we enter Alpha B), we confirm with Enter or with , then we pick 
the point A (or we enter Alpha A) . 
The following is then displayed below the figure: 
circle(GB,GA-GB) which is the circle E of center B passing by A. 
We pick the center C (or we enter Alpha C), we confirm with Enter or with , then we pick 
the point A (or we enter Alpha A) . 
The following is then displayed below the figure: 
circle(GC,GA-GC) which is the circle G of center C passing by A. 
We tap Points->Dep.points->Inter and we designate the first intersection point of 
circles E and G. This defines the point H, then we designate their second intersection point and 
this defines the point K. Then, we draw the line HK. 
 

– Perpendicular to the line AB passing by A 
Draw the perpendicular to the line 𝐴𝐵 passing by 𝐴 by using the same geometric construction 
as with a compass. 
 
Answer: 
We tap: 
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Lines->Line and we define with the cursor the points A and B, and the line C is 
automatically defined in Symb (GC:=line(GA,GB)). 
We tap: Curves->Circles->Circle 
We pick the center A (or we enter Alpha A), we confirm with Enter or with , then we pick 
the point B (or we enter Alpha B) . 
The following is then displayed below the figure: 
circle(GA,GB-GA) which is the circle D of center A passing by B. 
We tap Points->Dep.points->inter and we designate the point of intersection (other 
than B) of the circle D with the line C. This defines the point E, then we plot the perpendicular 
bisector of BE. perpen_bissector(GB,GE) draws the perpendicular bisector of two points 
defined by inter(C3,line(GA,GB)), this perpendicular bisector passes by A and is 
perpendicular to AB. 
 
As an exercise of programming, we can also define the function PERP 
 
Warning! perpendicular is an existing command. 
 
We enter as name of program PERP and we check CAS. 
We enter (the variables must be in lower case or names of geometrical objects) and we 
assume that GA is a point and that GD is a line: 
 

(GA,GD)->BEGIN 

LOCAL GM,GE,GL; 

GE:=element(GD); 

IF is_element(GA,GD) THEN 

  GL:=inter(GD,circle(GA,1)); 

  RETURN equation(perpen_bisector(GL)); 

END; 

 IF angle(GE,GA,GD)==pi/2 OR angle(GE,GA,GD)==-pi/2 

  RETURN equation(line(GA,GE)); END; 

  GM:=midpoint(op(inter(GD,circle(GA,GE-GA)))); 

  RETURN equation(line(GA,GM)); 

END; 

 

We enter: 

PERP(point(i),line(0,1+i)) 

We get: 

y=-3*x+1 

We enter: 

PERP(point(i),line(-2,2+2i)) 

We get: 

y=-2*x+1 

We enter: 

PERP(point(1),line(0,1+i)) 

We get: 

y=-x+1 

We enter: 

PERP(point(1),line(-2,1+i)) 

We get: 
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y=-3*x+3 

 
– Parallel to a line passing by A 

Create a point A and a segment BC not passing by A. Draw the parallel to the line BC passing 
by A by using the instruction perpendicular. 
 
Answer: 
We tap with the finger to create three point A, B and C, and the segment BC. 
We enter: 

GD:=perpendicular(GA,line(GB,GC)) 

this plots the perpendicular to 𝐵𝐶 passing by 𝐴 

GP:=perpendicular(GA,GD) 

this plots the perpendicular to 𝐷 passing by 𝐴. 
 
As an exercise of programming, we can define the function PARAL which returns the equation 
of the line parallel to D passing by A (Take care to have the first letter of the name of the 
function in upper case, because parallel is an existing geometry command). 
We enter PARAL as name of program and we check CAS. 
We enter (variable names must be in lower case or names of geometrical objects) and we 
assume that GA is a point and GD is a line: 
 

(GA,GD)->BEGIN 

LOCAL GP:=line(PERP(GA,GD)); 

RETURN PERP(GA,GP); 

}; 

 
We enter: 

PARAL(point(i),line(0,1+i)) 

We get: 

y=x+1 We enter: 

PARAL(point(1),line(-2,2+i)) 

We get: 

y=(1/4)*x-1/4 

 
– Parallels to a line located at a distance 𝒅 of this line. 

Create a point A and a segment BC not passing by A. 
Then, create a point D to define 𝑑=distance(A,D). 

Draw the parallel to the line BC located at a distance 𝑑=distance(A,D) of BC. 
 
Answer: 
We pick on the screen to create three point A, B and C, the segment BC, then the point D 
(𝑑 = distance(A,D)). 
 
We enter: 
GD1:=perpendicular(GB,line(GB,GC)); 

GC1:=circle(GB,distance(GA,GD)); 

GI:=inter(GD1,GC1); 

GE:=GI[0]; 

GF:=GI[1]; 

or we use the complex numbers to define GE and GF: 
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GE:=GB+i*(GC-GB)*distance(GA,GD)/distance(GB,GC) the point E is at a distance d 
= distance(A, D) of the line BC, GF:=GB-i*(GC-
GB)*distance(GA,GD)/distance(GB,GC) the point F is at a distance d = 
distance(A,D) of the line BC (E and F are symmetrical with respect to BC), and then, 
parallel(GE,line(GB,GC)) draws a line parallel to the line BC located at a distance d = 
distance(A,D) of BC. 
parallel(GF,line(GB,GC)) draws the other line parallel to the line BC, located at a 
distance d = distance(A,D) of BC. 
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Chapter 25 The spreadsheet 

 
 

25.1 Generalities 

Once the Spreadsheet application is open, the Menu key gives access to the following functions: 
SUM MEAN AMORT STAT1 REGRS PredY PredX HypZ1mean HypZ2mean 

The spreadsheet is a calculation sheet in the form of a grid, composed of rows and columns forming 
what are called the cells. Cells stores values, commands, or formulas referring to other cells. 

25.2 Screen of the spreadsheet 

The spreadsheet is a table composed of columns designated by two letters in upper case A,B,C,... 
or sometimes in lower case g,l,m, z, and rows numbered 1, 2, .3, ... Thus, A1 designates 
the first cell of the spreadsheet. 

25.2.1 Copy the content of a cell to another 

For instance: 
We enter 1 in A1 and we want to copy downward the formula =A1+1 valid in A2, to get 1,2,3,4,5 in 
the column A. 
There are three ways to do it: choose the one which suits you the most! 

– first way: we tap select (push buttons) to select the block from A2 to A5, and we enter: 
=A1+1, 

– second way: we enter =A1+1 in A2, copy, then select (push buttons) to select from A3 to 
A5, and paste, by choosing the formula among the expressions which are in the clipboard, 

– third way: we put =A1+1 in A2, then we select from A2 to A5, then Edit and Enter 

25.2.2 Relative and absolute referencces 

In a cell, we can enter: 
– a string of characters, 
– an algebraic expression, 
– a formula refering to other cells. These references to the cell storing the formula can be either 

absolute, either relative. Relative references become absolute by adding the symbol $ ahead 
of the letter of the column and/or ahead of the number of the line of the cell to refer to. 

Relative references allow to designate the cells with respect to another: 
Thus, A0 entered in the cell B1 designates the cell located in the preceeding column and the 
preceeding row, and this is the information copied when we copying the formula downward or 
rightward. 
 
Examples: 
Given 1 in A1, we enter the following formula in B2: 

– $A$1+2: the content of B2 is then 3, and if we copy this formula downward, we get 3’s in the 
column B because we copy the same formula $A$1+2 in all the cells of the column B. If we 
copy this formula rightward, we also get 3’s on the first row, because we copy in all the cells of 
the first line the same formula $A$1+2, since $A$1 is the absolute reference of the cell A1. 

– $A1+2: the content of B2 is then 3, and if we copy this formula downward, it will become 
$A2+2 in B2, $A2+2 in B3. Then, the value of B2 depends on the value of A1, the value of B3 
depends on the one of A2, etc., ... 
If we copy this formula rightward, it will become $A1+2 in C2, $A1+2 in D2 ...we get then a row 
of 3’s. $A0 always refer to the column A: A is an absolute reference but 0 designates here the 
preceeding line because $A1 is stored in B2. 
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– A$1+2: the content of B2 is then 3, and if we copy this formula downward, we get 3’s in 
column B, but if we copy this formula rightward, it will become B$1+2 in C2, C$1+2 in D2 etc., 
... 

– =A1+2: the content of B2 is then 3, and if we copy this formula downward, it will become 
=A2+2 in B3, =A3+2 in B4 etc.,.. If we copy this formula rightward, it will become =B1+1 in C2, 
=C1+1 in D2 etc., ... 

25.3 Functions of the spreadsheet 

25.3.1 Function SUM 

SUM does the sum of the cells supplied as argument. 
For instance: SUM(A1:B3) does the sum A1+A2+A3+B1+B2+B3 

25.3.2 Function MEAN 

MEAN 

25.3.3 Function AMORT 

AMORT allows to calculate the amortization of a loan. The syntax is: 
AMORT(range,n,i,pv,pmt,[ppyr=12,cpyr=ppyr,Groupement=ppyr,beg=false,fix=cur

rent,),"Configuration") 

where: 
 range refers to cells in which one pourra lire the results, 
 n is the number of periods of the loan (i.e. number of payments), 
 i is the interest rate, 
 pv is the remaining due sum (present value), 
 pmt is the amount of each payment (per-period payment). 
 
For instance: 
but it seems easier to use the Finance application. 

25.3.4 Function STAT1 

STAT1 allows to do statistics at one variable. 
The syntax is: STAT1(range,[mode],["configuration"]). 
range is the source of data, for example: A1:B3 
mode equals: 

1 if each column is independent, 
2 if the columns are used by pairs (data, frequencies), 
3 if the columns are used by pairs (data, weight), 
4, but it seems easier to use the application: 

Stats-1Var. 

25.3.5 Function REGRS 

REGRS attempts to fit the input data to a specified function (default is linear). 
The syntax is: REGRS(range,[mode],["configuration"]). 
For instance: but it seems easier to use the commands 
linear_regression, exponential_regression, etc., .... 

25.3.6 Functions PredY PredX 

For instance: 
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25.3.7 Functions HypZ1mean HypZ2mean 

For instance: but it seems easier to use the application Inference. 

25.4 Use of the spreadsheet based on examples 

25.4.1 Exercise 1 

Sum of odd integers. 
Write in the spreadsheet: 

– the integers from 1 to 10 in the column A, 
– the squares of integers from 1 to 10 in the column B 
– the odd integers 2𝑘 −  1 for 𝑘 =  1. .10 in the column C, 

– the sum of odd integers ∑ 2𝑗 −  1𝑘
𝑗=1  for 𝑘 =  1. .10 in the column D. 

Calculate ∑ 2𝑗 −  1𝑘
𝑗=1  when 𝑘 ∈  ℕ . 

 
A solution 

– We enter 1 in A1. 
We enter =A1+1 in A2, and then, we copy downward the formula stored in A2: for this we 
select A2...A10 (when select. of the push buttons is visible and we select A2...A10 with 
the cursor) and we enter =A1+1. 

– We put =A1^2 in B1, and then, we copy downward the formula stored in B1: for this we select 
B1...B10 (when select. of the push buttons is visible and we select B1...B10 with the 
cursor) and we enter =A1^2. 

– We put =2*A1-1 in C1, and then, we copy downward the formula stored in C1: for this we 
select C1...C10 (when select. of the push buttons is visible and we select C1...C10 with 
the cursor) and we enter =2*A1-1. 

– We enter 1 in D1. 
We enter =D1+C2 in D2, and then, we copy downward the formula stored in D2: for this we 
select D2...D10 (when select. of the push buttons is visible and we select D2...D10 with 
the cursor) and we enter =D1+C2. 

 
We get: 

 A B C D 

1 1 1 1 1 

2 2 4 3 4 

3 3 9 5 9 

4 4 16 7 16 

5 5 25 9 25 

6 6 36 11 36 

7 7 49 13 49 

8 8 64 15 64 

9 9 81 17 81 

10 10 100 19 100 

 
We will then demonstrate by recurrence that: 

∑ 2𝑗 −  1
𝑘

𝑗=1
= 𝑘2 

when 𝑘 ∈  ℕ The formula is true for 𝑘 =  1. .10 (cf above). 
Let us assume that for  

𝑘 = 𝑛∑ 2𝑗 −  1
𝑘

𝑗=1
= 𝑛2 

so for 𝑘 =  𝑛 +  1 we have 

∑ 2𝑗 −  1
𝑛+1

𝑗=1
=∑ +2(𝑛 +  1) − 1 = 𝑛2 + 2𝑛 + 1 = (𝑛 + 1)2

𝑛

𝑗=1
 

So the formula is demonstated. 
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25.4.2 Exercise 2 

The Pascal triangle and the Fibonacci sequence. 
 
The Fibonacci sequence 

The Fibonacci sequence is the sequence 𝑢 defined by: 

𝑢0 =  1 
𝑢1 =  1 

𝑢𝑛 = 𝑢𝑛−1  +  𝑢𝑛−2 for 𝑛 >  1 
We want to find the 11 first terms of this sequence. 
We use the spreadsheet. 
We put: 
1 in A1 
1 in A2 

We select the column A from 3 to 11 (commands Select. and Go↓ of the push buttons should be 

displayed) and we enter: =A1+A2 
We get in the column A: 
1,1,2,3,5,8,13,21,34,55,89 

 
Pascal triangle 
We want to use the spreadsheet to create the Pascal triangle from 0 to 10. 
For that, we use the relations for 𝑛 ∈  ℕ and 𝑝 ∈  ℕ: 

𝐶𝑛
0 = 1, 𝐶𝑛

𝑛 = 1, 𝐶𝑛
𝑝
= 0 if 𝑝 >  𝑛 and 𝐶𝑛

𝑝
= 𝐶𝑛−1

𝑝
+ 𝐶𝑛−1

𝑝−1
 for 0 <  𝑝 ≤  𝑛. 

We check and enter: 

simplify(comb(j-1,k-1)+comb(j-1,k)-comb(j,k)) 

We get: 

0 

To fill in the spreadsheet: 
We enter 1 in A1 then we copy A1 by pressing the keys Shift Copy, we tap Select (push buttons) 
(which becomes Sel.). 

We choose Go↓ in the push buttons and we select the cells from 1 to 11, then we press the keys 

Shift Paste: as a result, this puts 1’s in the column A. 
We enter 0’s in B1 then we copy B1 with the keys Shift Copy, we press Select (push buttons) 
(which becomes Sel.). 

We choose Go→ in the push buttons and we select the columns from B to K, then we press the keys 

Shift Paste: as a result, this put 0 in the line 1 starting from the column B. 
We enter =A1+B1 in B2 then we copy B2 with on the keys Shift Copy, we press Select (push 
buttons) (which becomes Sel.). 

We choose Go→ in the push buttons and we select the columns from B to K, then we press the keys 

Shift Paste: as a result, this puts 1 in B2 and 0 in the line 2 starting from the column C but this also 
copies the formulas =B1+C1 in C2, =C1+D1 in D2 etc., ..... 
Then, we also copy the formula =A1+B1 in the column B (with the keys Shift Copy, we press 
Select (push buttons) (which becomes Sel.). 

We choose Go↓ in the push buttons and we select the cells from 2 to 11, then we press the keys 

Shift Paste: as a result, this puts in the column B: 0,1,2,3,4..10 . 
Then, we also copy the formula =B1+C1 in the column C (with the keys Shift Copy, we press 
Select (push buttons) (which becomes Sel.). 

We choose Go↓ in the push buttons and we select the cells from 2 to 11, then we press the keys 

Shift Paste (first copy the formula and then choose 0→ Formula): as a result, this puts in the 

column C: 
0,0,1,3,6,10,15,21,28,36,45. 

Likewise, we copy the formula located in D2 (resp. E2...K2) in the column D (resp. E...K). 
 
We get: 

 A B C D E F g H I J K 

1 1 0 0 0 0 0 0 0 0 0 0 
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2 1 1 0 0 0 0 0 0 0 0 0 

3 1 2 1 0 0 0 0 0 0 0 0 

4 1 3 3 1 0 0 0 0 0 0 0 

5 1 4 6 4 1 0 0 0 0 0 0 

6 1 5 10 10 5 1 0 0 0 0 0 

7 1 6 15 20 15 6 1 0 0 0 0 

8 1 7 21 35 35 21 7 1 0 0 0 

9 1 8 28 56 70 56 28 8 1 0 0 

10 1 9 36 84 126 126 84 36 9 1 0 

11 1 10 45 120 210 252 210 120 45 10 1 

 
The Fibonacci sequence and the Pascal triangle 
 
When we do the sum of the diagonals of the Pascal triangle upward, we get the Fibonacci sequence. 
For instance: 

(

 
 
 
 
 
 
 
 
 
 

1 =
  
1 =
  
2 =
  
3 =
  
5 =
  
8 =
  
13 =)

 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 

1  0  0  0  0  0
 ↗  ↗  ↗  ↗  ↗  
1  1  0  0  0  0
 ↗  ↗  ↗  ↗  ↗  
1  2  1  0  0  0
 ↗  ↗  ↗  ↗    
1  3  3  1  0  0
 ↗  ↗  ↗      
1  4  6  4  1  0
 ↗  ↗        
18  5  10  5  5  1
 ↗          
1  6  15  20  15  6)

 
 
 
 
 
 
 
 
 
 

 

 

We enter: 

A:=makemat((j,k)->comb(j,k),11,11) 

L:=sum(A[j-k, k],k=1..j-1)$(j=2..12) 

We get: 

1,1,2,3,5,8,13,21,34,55,89 

We enter: 

L1:=0,sum(A[j-k-1,k-1],k=2..j-2)$(j=3..12) 

We get: 

0,0,1,1,2,3,5,8,13,21,34 

We enter: 

L2:=1,sum(A[j-k-1,k],k=1..j-2)$(j=3..12) 

We get: 

1,1,1,2,3,5,8,13,21,34,55 

We enter: 

[L1]+[L2] 

We get: 
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[1,1,2,3,5,8,13,21,34,55,89] 

To show it, we use the relation for 𝑛 ∈  ℕ: 

𝐶𝑛
0 = 1, 𝐶𝑛

𝑛 = 1, 𝐶𝑛
𝑝
= 0 and 𝐶𝑛

𝑝
= 𝐶𝑛−1

𝑝
+ 𝐶𝑛−1

𝑝−1
 for 0 <  𝑝 ≤  𝑛. 

Be an the series which equals the sum of the upward diagonals of the Pascal triangle. 
We have then: 
𝑎0 =  1, 𝑎1 =  1 and for 𝑛 >  1: 

𝑎𝑛 = ∑ comb(n –  p, p)
floor(

n
2
)

p=0
=  1 +∑ comb(n –  p, p)

floor(
n
2
)

p=1
 

 

𝑎𝑛 =  1 +∑ comb(n –  p − 1, p − 1)
floor(

n
2
)

p=1
+∑ comb(n –  p − 1, p)

floor(
n
2
)

p=1
 

We have for any 𝑛: floor (
𝑛

2
) − 1 = floor (

𝑛−2

2
). 

If 𝑛 =  2𝑘, we have floor(𝑛/2)  =  floor((𝑛 −  1)/2)  +  1 =  𝑘: 

1 +∑ comb(n –  p − 1, p)
floor(

n
2
)

p=1
=∑ comb(n –  1 − p, p) + comb(2k–  1 − k, k)

floor(
n−1
2
)

p=0
= 0 

because comb(2𝑘 −  1 −  𝑘, 𝑘)  =  0 

∑ comb(n –  p − 1, p)
floor(

n
2
)

p=1
=∑ comb(n –  1 − p, p)

floor(
n−1
2
)

p=0
= 𝑎𝑛−1 

∑ comb(n –  p − 1, p − 1)
floor(

n
2
)

p=1
=∑ comb(n –  2 − p, p)

floor(
n−2
2
)

p=0
= 𝑎𝑛−2 

 

because floor (
𝑛

2
) − 1 = floor (

𝑛−2

2
) 

If 𝑛 =  2𝑘 +  1, then we have floor (
𝑛

2
) =  floor (

𝑛 − 1

2
) =  𝑘: 

1 +∑ comb(n –  p − 1, p)
floor(

n
2
)

p=1
=∑ comb(n –  1 − p, p)

floor(
n−1
2
)

p=0
= 𝑎𝑛−1 

∑ comb(n –  p − 1, p − 1)
floor(

n
2
)

p=1
=∑ comb(n –  2 − p, p)

floor(
n−2
2
)

p=0
= 𝑎𝑛−2 

 

because 𝑓𝑙𝑜𝑜𝑟 (
𝑛

2
) − 1 = 𝑓𝑙𝑜𝑜𝑟 (

𝑛−2

2
) 

Thus: 
𝑎0 =  1, 𝑎1 =  1 and for 𝑛 >  1 we have 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 
𝑎𝑛 is then the Fibonacci sequence. 
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Chapter 26 Other Applications 

26.1 Function application 

We enter in the Symbolic view of the Function application: 
F1(X)=SIN(2X)+X 

F2(X)=∂(F1(A),A=X) 

We highlight ∂(F1(A),A=X) and we press EVAL of the push buttons. 
We get, if we are in Radians: 

F2(X)=COS(2*X)*2+1 

In HOME, we enter: 

F1(1) 

We get, if we are in Radians: 

SIN(2)+1 

In HOME, we enter: 

F2(1) 

We get, if we are in Radians: 

COS(2)*2+1 

In HOME, we enter: 

∂(F1(X),X=1) 

We get, if we are in Radians: 

0.167706326906 

26.2 Sequence application 

26.2.1 Fibonnacci sequence  

We enter: 

U1(1)=1 

U1(2)=1 

U1(N)=U1(N-1)+U1(N-2) 

We get by pressing Num: 

the Fibonnacci sequence 

We enter the sequence of the remainders: 

U1(1)=1 
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U1(2)=1 

U1(N)=U1(N-1)+U1(N-2) 

We get by pressinge Num: 

the Fibonnacci sequence 

26.2.2 GCD 

Here is an implementation of Euclid’s algorithm with the HPrime. 
Here is the description of this algorithm: 
We do successive euclidean divisions: 

𝐴 =  𝐵 × 𝑄1 + 𝑅10 ≤  𝑅1 <  𝐵 
𝐵 =  𝑅_1 ×  𝑄_2 +  𝑅_2 0 ≤  𝑅_2 <  𝑅1 
𝑅_1 =  𝑅_2 ×  𝑄_3 +  𝑅_3 0 ≤  𝑅_3 <  𝑅2 

. . . . . . . 
𝑅𝑛−2  =  𝑅𝑛−1 ×  𝑄_𝑛 +  𝑅_𝑛 0 ≤  𝑅_𝑛 <  𝑅𝑛−1 

 
After a finite number of steps (at most 𝐵), there is an integer n such as: 𝑅𝑛 =  0. 
Then we have: 

𝐺𝐶𝐷(𝐴, 𝐵) =  𝐺𝐶𝐷(𝐵, 𝑅1) =  … . 
𝐺𝐶𝐷(𝑅𝑛−1, 𝑅𝑛) =  𝐺𝐶𝐷(𝑅𝑛−1, 0) =  𝑅𝑛 − 1 

Thanks to the Sequence application, we write the series of the remainders. 
We enter the series of remainders 𝑅: 

U1(1)=76 

U1(2)=56 

U1(N)=irem(U1(N-2),U1(N-1)) 

We get by pressing Num: 
76,56,20,16,4,0 then .... the GCD of 76 and 56 is 4 

26.2.3 Bezout identity 

The Euclid’s algorithm allows to trouver a paired value 𝑈, 𝑉 such as: 

𝐴 ×  𝑈 +  𝐵 ×  𝑉 =  𝐺𝐶𝐷(𝐴, 𝐵) 
With the Sequence application,  we will define "the sequence of remainders" 𝑅 and two sequences 𝑈 

and 𝑉, so that at each step we have: 

𝑅𝑛 = 𝑈𝑛 ×  𝐴 + 𝑉𝑛 ×  𝐵. 
If 𝑄 is "the sequence of quotients", 𝑄𝑛 =  𝑖𝑞𝑢𝑜(𝑅𝑛−2, 𝑅𝑛−1) because 𝑄_𝑛 is the integer quotient of 𝑅𝑛−2 
by 𝑅𝑛−1 and we have: 

𝑅𝑛 =  𝑖𝑟𝑒𝑚(𝑅𝑛−2, 𝑅𝑛−1) =  𝑅𝑛−2–𝑄𝑛 × 𝑅𝑛−1 because 𝑅𝑛−2 =  𝑅(𝑛−1)𝑄𝑛 + 𝑅𝑛𝑤𝑖𝑡ℎ 0 ≤  𝑅𝑛 <  𝑅𝑛−1. 

𝑈_𝑛 and 𝑉_𝑛 will then check the same relation of recurrence. We have at the beginning: 
𝑅1 =  𝐴 𝑅2 =  𝐵 
𝑈1 =  1 𝑈2 =  0 because 𝐴 =  1 ×  𝐴 +  0 ×  𝐵 

𝑉1 =  0 𝑉2 =  1 because 𝐵 =  0 ×  𝐴 +  1 ×  𝐵 
We enter in 𝑈1 the series of remainders 𝑅 for 𝐴 =  76 and 𝐵 =  56: 

U1(1)=76 

U1(2)=56 

U1(N)=irem(U1(N-2),U1(N-1)) 

We enter the series of quotients 𝑄 in 𝑈2: 

U2(1)=0 
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U2(2)=0 

U2(N)=iquo(U1(N-2),U1(N-1)) 

We will put 𝑈 in 𝑈_3 and 𝑈_4 in 𝑉 so that at each step we have 76 ∗  𝑈 +  56 ∗  𝑉 =  𝑅. 

Since 𝑅(𝑁)  =  𝑅(𝑁 − 2) − 𝑅(𝑁 − 1) ∗ 𝑄(𝑁) and 𝑄(𝑁)iquo(𝑅(𝑁 − 2), 𝑅(𝑁 − 1)), if we have: 

76 ∗  𝑈(𝑁 −  2)  +  56 ∗  𝑉 (𝑁 −  2)  =  𝑅(𝑁 –  2)(1)  

and 
76 ∗  𝑈(𝑁 −  1)  +  56 ∗  𝑉 (𝑁 −  1)  =  𝑅(𝑁 −  1)(2)  
By doing (1) − (2) ∗ 𝑄(𝑁), we have: 

76 ∗  (𝑈(𝑁 −  2)  −  𝑈(𝑁 −  1)  ∗  𝑄(𝑁))  +  56 ∗  (𝑉 (𝑁 −  2)  −  𝑉 (𝑁 −  1)  ∗  𝑄(𝑁))  = 
𝑅(𝑁 −  2)  −  𝑅(𝑁 −  1)  ∗  𝑄(𝑁)  =  𝑅(𝑁) 

The recurrence relations are then: 
𝑈(𝑁)  =  𝑈(𝑁 −  2)  −  𝑈(𝑁 −  1)  ∗  𝑄(𝑁)  =  𝑈(𝑁 −  2)  −  𝑈(𝑁 −  1)  ∗  𝑖𝑞𝑢𝑜(𝑅(𝑁 − 2), 𝑅(𝑁 −  1)) 
𝑉 (𝑁)  =  𝑉 (𝑁 −  2)  −  𝑉 (𝑁 −  1)  ∗  𝑄(𝑁)  =  𝑉 (𝑁 −  2)  −  𝑉 (𝑁 −  1)  ∗  𝑖𝑞𝑢𝑜(𝑅(𝑁 − 2), 𝑅(𝑁 −  1)) 

 
We enter in U3 the sequence of 𝑈: 
U3(1)=1 

U3(2)=0 

U2(N)=U3(N-2)-U3(N-1)*iquo(U1(N-2),U1(N-1)) 

We enter in U4 the sequence of 𝑉: 
U4(1)=0 

U4(2)=1 

U4(N)=U4(N-2)-U4(N-1)*iquo(U1(N-2),U1(N-1)) 

 
Thus, for each N we have 76*U3(N)+56*U4(N)=U1(N) 
By pressing Num, we get: 

76,0,1,0 (76 = 76 ∗ 1 + 56 ∗ 0) 

56,0,0,1 (56 = 76 ∗ 0 + 56 ∗ 1) 

20,1,1,-1 (20 = 76 ∗ 1 + 56 ∗ −1) 

16,2,-2,3 (16 = 76 ∗ −2 + 56 ∗ 3) 

4,1,3,-4 (4 = 76 ∗ 3 + 56 ∗ −4) 

0,4,-14,19 (0 = 76 ∗ −14 + 56 ∗ 19) 

so 76 ∗ 3 + 56 ∗ −4 = 4 =GCD of 76 and 56 

26.3 Parametric application 

We enter: 

X1(T)=-COS(2T) 

Y1(T)=SIN(3T) 

We get: 

the plot of a curve looking like an α 

26.4 Polar application 

We enter: 
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R1(θ)=COS(3θ) 

We get: 

the plot of a clover 

26.5 Solve application 

We enter in the Symbolic view of the Solve application: 

COS(X)-X 

By pressing Num: 
We enter: 

1 

To start the iteration, and then we press SOLVE (push buttons) to get: 

0.739085133215 

Then, we enter in HOME: 

X 

We get: 

0.739085133215 

the value obtained has been stored in X. 

26.6 Finance application 

We fill in all different fields but one, and we press SOLVE of the push buttons. 
For instance, we want to know the monthly payments of a 10-year loan of $ 100,000 at 4.6 % annual 
interest, we enter: 
 

NbPmt 120 IPYR 4.6 

PV 100,000 PPYR 12 

PMT  CPYR 12 

FV 0.00 Fin Y 

Group Size 12 

 
We highlight PMT and we press SOLVE of the push buttons. 
We get the value of the monthly payment: 

-1,041.21 

The payments of this loan are then of $ 1,041.21 per month. 
Press AMORT of the push buttons. 
We get the amortization table by groups of 12 months: 
 Princ gives the amount of the paid sums 
 Inter gives the amount of the interest 
 Balan gives the amount of the due sums 
 
For example, at the end of the second year, we have: 

Princ=-16,505.07: we have then reimboursed $ 16,505.07 
Inter=-8,484.0: we have paid $ 8,484 of interest 
Balan=83,494.9: $ 83,494.93 are to be reimbursed (100,000 − 16,505.07) 
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By pressing the key PLOT we get the amortization graph. 
We can read: 
1-12 Principal 8,063.12 and Interest 4,431.41 
and by using the right arrow 
13-24 Principal 8,441.95 and Interest 4,052.59 
Thus, we recover the previous values: 
8,063.12+8,441.95=16,505.07 and 4,431.41+4,052.59=8,484.0. 
 
We returns in the application Finance by pressing the key Num. 
If the payments are quaterly, we change: 
NbPmt 40 
and 
PPYR 4 
and we leave 
CPYR 12. 
 
We highlight PMT and we press SOLVE of the push buttons. 
We get the value of the quarterly payments: 
-3,133.03 

The payments of this loan are then of $ 3,133.03 by quarter. 

26.7 Linear Solver application 

This application allows to solve linear systems of two equations at two unknowns 𝑋, 𝑌, or of three 

equations at three unknowns 𝑋, 𝑌, 𝑍. 
Note: 
To solve a linear system of two equations at two unknowns 𝑋, 𝑌, you have to set 2×2 in the push 
buttons. 
The fields of the system are displayed and we only need to enter the coefficients. 
The answer appears at the bottom of the screen. 
 
We enter: 

1*X+1*Y+1*Z=3 

2*X+(-2)*Y+1*Z=1 

3*X+1*Y+1*Z=5 

We get: 

X:1,Y:1,Z:1 

We enter: 

1*X+1*Y+1*Z=3 

2*X+2*Y+2*Z=1 

3*X+1*Y+1*Z=5 

We get: 

No Solutions 
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26.8 Triangle Solver application 

Given a triangle defined by three data: length of side and/or value of angles (cf the case of equalities 
of triangles). 
The application Triangle Solver allows to calculate the length of other sides and/or the value of other 
angles of this triangle. 
Be the triangle of sides 𝐴, 𝐵, 𝐶 such as 𝐴 =  4 𝐵 =  3 𝐶 =  5. 
We want to get the value of the angles of this triangle. 
 
We enter: 

A=4, B=3, C=5 

Tap SOLVE of the push buttons. We get, if we are in degrees: 
α =5.31301E1 (it is the angle opposite to side A) 
β =3.68699E1 (it is the angle opposite to side B) 
δ =90 (it is the angle opposite to side C) 
In Home, if we enter 5.31301E1, highlight 5.31301E1 and press the key Shift a<->b/c, we get: 

53◦7’48.36" 

If we press again the key Shift a<->b/c, we get: 

53.1301 

26.9 1-Var Statistics  

The application Statistics 1-Var allows to do statistics at one variable with or without frequency. 
Example We measure the sizes in cm of 10 people. 
We get: 

150, 165, 170, 165, 160, 170, 160, 175, 165, 180. 

1. Calculate the median, the mean and the standard deviation of this sample. 
We open the application Statistics 1-Var and we use one single column. 
We tap Start (push buttons) and we enter in D1: 
150 Enter 165 Enter.... 

We can, if wished, sort the data with Sort of the push buttons. 
Press Symb, we set H1:D1 and we check that we have Plot1: Histogram 
Press the key Num and tap Stats of the push buttons. 
We get: 
Nb Item 10 

X min 150 

X Q1 160 

X med 165 

X Q3 170 

X max 180 

∑X 1660 

∑X^2 276200 

MoyX 166 

SX 8.432740 

σX 8 
SE X 2.6666667 

 

2. Draw the histogram. 
We first set the Plot Setup (Shift Plot): Width 5 
HRNG 150 180 

XRNG 150 180 

YRNG -1 10 

XTICK 1 YTICK 1 

Then, we press Plot. 
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We get: 

the histogram 

 

3. Display the Box Whisker. 
We press Symb and highlight Plot1: Histogram. 
With Choos (push buttons) we chooses Box Whisker, then we press Plot. 
We get: 

The plot of a box whisker 

 

4. Same exercise by using a column for the frequency. 
We measure the sizes in cm of 10 people. 
We get: 
150:1 

160:2 

165:3 

170:2 

175:1 

180:1 

We press Num and enter in D2: 
150 Enter 160 Enter 165 Enter 170 Enter 175 Enter 180 Enter 

and in D3: 
1 Enter 2 Enter 3 Enter 2 Enter 1 Enter 1 Enter 

We press Symb and we unset H1:D1 and we put: 
H2:D2 and we enter D3 when Freq is highlighted. Thus H2 is checked as well as Plot2: 
Histogram. 
We get the same thing that previously. 
Nb Item 10 

X min 150 

X Q1 160 

X med 167.5 

X Q3 175 

26.10 2-Var statistics  

The application Statistics 2-Var allows to do statistics at two variables. 
Example 
We measure the sizes in cm and the weight in kg of 10 people. 
We get: 
150:41 

165:53 

170:70 

165:63 

160:52 

170:68 

160:62 

175:72 

165:58 

180:75 

1. Calculate the average size and the average weight of these people. 
Calculate the correlation coefficient. 
We open the application Statistics 2-Var and we use two columns. 
Tap Start of the push buttons. 
We enter in C1: 
150 Enter 165 Enter.... 

We enter in C2: 
41 Enter 53 Enter.... 

We can, if we want, sort the data with Sort of the push buttons. 
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Press Symb, we put S1:C1 C2, we set S1 and we check that we have: 
Type1:Linear 

Fit1: m*X+b 

Press the key Num and tap Stats of the push buttons. 
We get: 
Nb Item 10 

Corr 0.91798 

CoefDet 0.84269 

SCov 81.7778 

PCov 73.6 

X max 180 

P 

XY 102660 

By tapping X (push buttons) we have: 
MoyX 166 

P 

X 1660 

P 

X^2 276200 

SX 8.432740 

σX 8 
SE X 2.6666667 

By tapping Y (push buttons) we have: 
MoyY 61.4 

P 

Y 614 

P 

Y^2 38704 

SY 10.5641 

σY 10.0220 
SE Y 3.340659 

 

2. Plot the cloud of dots 
We first set the Plot Setup (Shift Plot): XRNG 145 185 
YRNG 39 77 

XTICK 5 YTICK 2 

Then, we press Plot. 
We get: 

the cloud of dots and the plot of the regression line 

3. Determinate a line of linear regression by the least squares method. 
We get the equation of the line of linear regression by pressing Symb. 
We get: 

Fit1:1.15*X+-129.5 

 

26.10.1 Exercises 

– The aim of this activity is the study of the size (in cm) of a sample of 250 basket players. 

Size 17
3 

17
4 

17
5 

17
6 

17
7 

17
8 

17
9 

18
0 

18
1 

18
2 

18
3 

18
4 

18
5 

18
6 

18
7 

Frequenc
y 

4 8 7 18 23 22 24 32 26 25 18 19 10 8 6 

The activity starts by the calculation of statistic parameters and is followed by the plot of the correlated 
graphs: bar graph, histograms and polygon of cumulated increasing frequency. 
 
We enter: 

Ts:=(173+j)$(j=0..14) 

We get: 
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173,174,175,176,177,178,179,180,181,182,183,184,185,186,187 

We enter: 

Ef:=(4,8,7, 18, 23, 22, 24, 32, 26, 25, 18, 19, 10, 8, 6) 

sum(Ef) 

We get: 

250 

We enter: 

histogram(tran([[Ts],[Ef]])) 

We get: 

 
We enter: 

bar_plo([[T],[Ef]]) 

We get: 

 
 
We enter: 
boxwhisker([T],[Ef]) 

We get: 
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We enter: 

Efc:=(sum(Ef[j],j=1..k)/250.)$(k=1..size(Ef)) 

We get: 

0.016,0.048,0.076,0.148,0.24,0.328,0.424,0.552,0.656,0.756,0.828,0.90

4,0.944,0.976,1.0 

We enter: 

scatterplot([[T],[Efc]]),cumulated_frequencies(trn([[T],[Ef]])) 

We get: 

 
 
We enter: 

evalf(mean([T],[Ef])) 

We get: 

180.104 

We enter: 

evalf(sttdev([T],[Ef])) 

We get: 

3.27859482096 



 464 

We enter: 

histogram(trn([[T],[Ef]])), 

plotfunc(normald(180.104,3.27859482096,x),x=172..188), 

scatterplot(trn([[T],[Ef]/250.])) 

We get: 

 
 
An urn contains 12 red balls and 3 green balls. We propose to simulate the draw of a ball from the urn 
and then of to observe the sampling fluctuation on samples of size 225. Given the content of the urn, 

the probability to draw a green ball is 
1

5
=  0.2. 

Is our simulation valid? We create the function randmultinom 
(cf 13.4.6): 
(n,p,c)->BEGIN 

local k,j,l,r,x,y; 

k:=size(p); 

if size(c)!=k then return "error"; end; 

x:=cumSum(p); 

if x[k]!=1 then return "error"; end; 

y:=MAKELIST([c[j],0],j,1,k); 

for j from 1 to n do 

r:=rand(0,1); 

l:=1; 

while r>x[l] do 

l:=l+1; 

end; 

y[l,2]:=y[l,2]+1 

end; 

return y; 

END; 

 
Warning! Write MAKELIST([c[j],0],j,1,k) with MAKELIST in upper case, or write 
makelist(j->[c[j],0],1,k or seq([c[j],0],j,1,k). 

We enter: 

L:=[randmultinom(225,[4/5,1/5],["R","V"]); 

We get: 

[["R",179],["V",46]] 

We get then 46 times the green ball. 
We first analyses 50 samples of size 225 to see the fluctuation. 

We name: 
N the number of simulations (one simulation is 225 draws), 
n the number of times we got a green ball, 
p the percentage of green balls obtained by this simulation, 
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Lp the sequence of percentages obtained. 
We enter: 
 
test0(N):={ 

local L,p,n,k,Lp; 

Lp:=NULL; 

for k from 1 to N do 

L:=randmultinom(225,[4/5,1/5],["R","V"]); 

n:=L[2,2]) 

p:=n/225.; 

Lp:=Lp,p; 

fpour; 

return Lp; 

}:; 

 
Then: 

plotlist(test0(50)),line(y=2/15),line(y=4/15) 

We get: 

 
 
 
We successively analyse 𝑡 samples of size 𝑛 =  225 for 𝑡 ∈  10, 20, 50, 100, 200, 500. In our case, the 

fluctuation interval at level of 95% is: 𝑝 –
1

√𝑛
𝑝 +

1

√𝑛
 with 𝑝 =

1

5
 and 𝑛 =  225 that is to say 

2

15
,
4

15
. 

To check whether the simulation is correct or not, we write a program checking whether we do have or 

not p laying in the interval 
2

15
,
4

15
 in 95% of the cases. 

We note N the number of simulations (one simulation is 225 draws). 
For the k-nth simulation, (k=1..N), we name: 
L the list of 225 draws obtained, 
n the number of times we got a green ball, 
p the percentage of green balls obtained by this simulation, 
l s the number of draws such as 2/15<p<4/15 when we have done k simulations, 
sn the number of times we got a green ball when we have done k simulations. 
pcn the percentage of green balls obtained by these N*225 draws, which is then sn/(225*N) 
The number of times we have 2/15<p<4/15 is s, or else the percentage pc=s/N. 
We check then if pc>0.95 
 

test0(N):={ 

local s,L,p,n,pc,sn,pcn,k,Le; 

s:=0;sn:=0; 

Le:=NULL; 

for k from 1 to N do 

L:=[randmultinom(225,[4/5,1/5],["R","V"])]; 

n:=L[2,2] 

p:=n/225; 

Le:=Le,p; 

fpour; 
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returns Le; 

}:; 

test(N):={ 

local s,L,p,n,pc,sn,pcn,k,Le; 

s:=0;sn:=0; 

Le:=NULL; 

for k from 1 to N do 

L:=[randmultinom(225,[4/5,1/5],["R","V"])]; 

n:=L[2,2] 

p:=n/225; 

Le:=Le,p; 

if p>2/15 and p<4/15 then s:=s+1; endif; 

sn:=sn+n; 

fpour; 

pc:=evalf(s/N); 

pcn:=evalf(sn/N/225); 

if pc>0.95 then returns pcn,pc,"correct"; otherwise returns pcn,pc,’’not 

correct’’; endif; 

}:; 

 
We enter: 

test(10) 

We get: 

0.203111111111,1.0,"correct" 

We enter: 

test(20) 

We get: 

0.194888888889,0.95,’’not correct’’ 

We enter: 

test(50) 

We get: 

0.194311111111,0.98,"correct" 

We enter: 

test(100) 

We get: 

0.198888888889,0.97,"correct" 

We enter: 

test(200) 

We get: 

0.193777777778,0.99,"correct" 

test(500) 

We get: 
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0.19984,0.984,"correct" 

We enter: 

plotlist([10,20,50,100,200,500],[0.203,0.195,0.194,0.199,0.1940.1999] 

), line(y=0.2) 

We get: 

 

26.11 Inference application 

The application Inference allows to do inferential statistics. 
 
Resuts to keep in mind 
If µ is the mean of a population and 𝑚𝛼 the mean of means of values of a sample of size 𝑛 extracted 

from this population, we have: 𝑚𝛼 =  µ. 
 
If 𝜎 is the standard deviation of a population and σα the standard deviation of the mean of means of 

values of a sample of size 𝑛 extracted from this population, we have: 𝜎𝛼  =
𝜎

√𝑛
. 

 
If 𝜎2 is the variance of a population and 𝑠2 the mean of variances of values of a sample of size n 

extracted from this population: 𝑆2 = 𝑛 −
1

𝑛𝜎
. 

So we have 𝜎𝛼
𝜎

√𝑛
=

𝑆

√𝑛−1
. 

When we have a sample of size 𝑛, of mean 𝑥, and standard deviation 𝑠, we choose by default: 

𝑆 =  𝑠 and 𝑚𝛼 =  𝑥, and then the mean of values of samples of size 𝑛 is of mean 𝑥 and standard 

deviation 
𝑠

√𝑛−1
. 

 
Sum up 

– The mean and the variance of a sum are respectively the sum of the means and the sum of 
the variances. 

– The mean and the variance of a difference are respectively the difference of the means and 
the sum of the variances. 

– The mean of the set of means of the values of a sample of size 𝑛 extracted from a population 

of mean 𝑚 is 𝑚. 
The variance of the set of means of the values of a sample of size n extracted from a 

population of variance 𝜎2 is 
𝜎2

𝑛
. 

The standard deviation of the set of means of the values of a sample of size n extracted from 

a population of standard deviation 𝜎 is 
𝜎

√𝑛
. 
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– The mean 𝑠 of the variances of the set of variances of the values of a sample of size 𝑛 

extracted from a population of variance 𝜎2 is 
𝑛−1

𝑛
𝜎2. 

– The standard deviation of the set of means of the values of a sample of size 𝑛 comes by 
dividing the mean 𝑆 of the variances of the set of variances of the values of a sample of size 𝑛 

by √ 𝑛 − 1: 
the set of the means of the values of a sample of size 𝑛 is of mean 𝑚 and of standard 

deviation 
𝑆

√𝑛−1
. 

26.11.1 Frequency of a parameter and hypothesis based on samples 

Comparison of experimental frequency and theoretical frequency 
In a population, be 𝑝 the frequency of a parameter. 

Be a sample of 𝑛 items which frequency of this parameter is 𝑓. Let us check whether this sample is 
extracted from the population or not. 
For a sample of 𝑛 items, be 𝑋 the random variable counting the size showing the considered 
parameter of probability 𝑝. 𝑋 follows a binomial law of mean 𝑛𝑝 and standard deviation 

√𝑛𝑝(1 −  𝑝). If 𝑛 is large (𝑛 >  50), the binomial law can be approxiamated by the normal distribution. 

The distribution of the frequencies of the parameter of samples of size 𝑛 is of mean 𝑝 and standard 

deviation √(1 − 𝑝)𝑛. 

 
Example 
We count the number of times a player draws an ace when distributing the cards of a 32 card set: for a 
set of 800 distributions, this player has drawn an ace 180 times. Is this player a cheater? 
We have 𝑛 =  800, and the probability to draw an ace is: 

𝑝 =
4

32
=
1

8
. 

So the number 𝑋 of drawing an ace follows a binomial law of mean 𝑛 ∗  𝑝 =  100 and standard 

deviation √𝑛𝑝(1 −  𝑝)  =  10√
7

8
≃ 9.35414346693. 

Let us look for the probability so that 70 <  𝑋 <  130, we enter in Home: 

normald_cdf(100,9.354,130)-normald_cdf(100,9.354,70) 

We get: 

0.998659588108 

Then, we can state that this player is a cheater with a probability to be wrong lower than 
2

1000
. 

 
With the calculator: 
We press Symb and choose: 
Method:Hypothesis Test 

Type Z-Int: 1 π 

Alt Hypoth 𝜋 ≠  𝜋0 
 
We press Num and enter: 
x=180 

n=800 

µ0=0.125 
𝜎=50.25 
𝛼=0.02 
 
We tap Calc of the push buttons and we get: 
Result 0 (Assumption rejected at α=0.02) 

Test Z 8.5523597412 

Test 

b 

p 0.225 

Prob. 1.2059722286E-17 

Crit Z ±2.32634787404 
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Lower 0.0906543... 

Upper 0.15934... 

 
We enter in Home: 

(180-100)/9.35414346693 

We get: 

8.5523597412 

We enter in Home: 

normald_icdf(100,9.35414346693,0.99) 

We get: 

121.760991768 

We enter in Home: 

(121.760991768-100)/9.35414346693 

We get: 

2.32634787407 

We enter in Home for 𝛼 = 0.002: 

normald_icdf(100,9.354,0.001), normald_icdf(100,9.354,0.999) 

We get: 

71.0939670081,128.906032992 

 
Confidence interval of a proportion or a frequency 
 
How to evaluate the frequency 𝑝 of a parameter in a population au view of a sample of size 𝑛. 
Example 
We throw a dice 3,000 times and we have get 490 times the six. Can we state that the dice is regular 
? We have: 

𝑛 =  3000, 𝑓 =
49

300
≃ 0.163333333333, 1 − 𝑓 =

251

300
≃ 0.836666666667 

so 𝑚 =  𝑛𝑓 =  490 and 𝑠 =  √𝑛𝑓(1 −  𝑓) ≃ 20.2476336066 

At the level of 𝛼 =  0.002, we enter in Home: 

normald_cdf(3000*49./300,sqrt(3000*49./300*251/300),500)-

normald_cdf(3000 

We get: 

0.378612513321 

So the probability that 𝑝 is in the interval [480, 500] is 0.378612513321. We can reasonably admit that 
𝑝 = 1/6, that is to say that the dice is regular, because, otherwise, the probability to be wrong would 

be 1 −  0.378612513321 ≃ 0.621387486679 
 
With the calculator: 
We press Symb and choose: 
Method: Confidence interval 
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Type: Z-Int: 1 𝜋 
We press Num and enter: 
x=490 

n=3000 

µ0=0.166666666667 
𝛼=0.05 
We tap Calc of the push buttons and we get: 
C 0.95 

Crit Z ± 1.95996398454 

Lower 0.150105122453 

Upper 0.176561544214... 

With: 
C=0.38 

We tap Calc of the push buttons and we get: 
C 0.38 

Crit Z ± 0.495850347347 

Lower 0.159986734614 

Upper 0.166679932052 

 
 
Comparison of the frequencies of two samples 
 
We have two samples of sizes 𝑛1 and 𝑛2 for which the frequencies of a parameter are 𝑓1 and 𝑓2. If 𝑓1 
and 𝑓2 are different, how to know whether these two samples come from a same population or not ? 
If we do the hypothesis that the two samples come from of a same population, we can estimate the 

frequency p of the entire population by grouping the two samples with 𝑝 =
𝑛1𝑓1+𝑛2𝑓2

𝑛1+𝑛2
. 

The standard deviation of the distribution of the frequencies of the parameter of the sample 1 is  

√
𝑓1(1−𝑓1)

𝑛1
 and the one of the sample 2 is √

𝑓2(1−𝑓2)

𝑛2
. 

We consider the distibution of the values of 𝑓1 − 𝑓2, if the two samples come from a same population: 

the mean of 𝑓1 −  𝑓2 is 0 and the standard deviation 𝑠 of 𝑓1– 𝑓2 is √
𝑝(1−𝑝)

𝑛1
+
𝑝(1−𝑝)

𝑛2
 

Example 

Among the 40 class mates of class 𝐴, 23 have been admitted, and among the 40 of class 𝐵, 17 have 

been. Are the class mates of classes 𝐴 and 𝐵 part of the same population ? 

If they are, the distribution of frequencies 𝑓1– 𝑓2 follows a normal distribution: 

of mean 𝑝 =
40

80
=  0.5 

and standard deviation 𝑠 = √
2∗0.5∗0.5

40
≃  0.111803398875 

We know that 𝑓1 =
23

40
 ≃ 0.575 and 𝑓2 =

17

40
≃ 0.425 then 𝑓1– 𝑓2 =  0.15 and 

𝑓1–𝑓2

𝑠
 ≃ 1.3416407865 

 
We enter: 

normal_cdf(0,0.111803398875,0.15)-normal_cdf(0,0.111803398875,-0.15) 

or we enter: 

normal_cdf(0,1,1.3416407865)-normal_cdf(0,1,-1.3416407865) 

We get: 

0.820287505121 

We enter: 

1-0.820287505121 

We get: 

0.179712494879 



 471 

This means that the we can state that the two classes come from the same population, because if 
would state the contrary, the probability to be wrong would be 17.97 % 
We enter, if we want a result at te level of 5%: 

normal_icdf(0,0.111803398875,0.025),normal_icdf(0,0.111803398875,0.97

5) 

We get: 

-0.219130635144,0.219130635144 

 
We enter, if we want a result at the level of 5%: 

normal_icdf(0,1,0.025),normal_icdf(0,1,0.975) 

We get: 

-1.95996398454,1.95996398454 

As 0.15 is in the interval [−0.219130635144,0.219130635144], we can say that, at the level of 5%, the 
two classes come from the same population. 
 
With the Inference application: 
We press Symb and choose: 
Method: Hypothesis test 

Type: Z-Int: 1 𝜋1 − 𝜋2 
Alt Hypoth: 𝜋1 6= 𝜋2 
We press Num and enter: 

𝑥1=23 
𝑥2=17 
𝑛1=40 
𝑛2=40 
𝛼=0.05 
We tap Calc of the push buttons and we get: 
Result 1 (𝐻0 not rejected at 𝛼=0.05) 
Test Z 1.3416407865 

Test Δ𝑝̂ 0.15 
Prob. 0.179712494879 

Crit Z ±1.95996398454 

Lower -0.0666513904072 

Upper 0.366651390407 

We enter in Home: 

normal_icdf(0.15,0.111803398875,0.025),normal_icdf(0.15,0.11180339887

5, 

0.975) 

We get: 

-0.0691306351442,0.369130635144 

 
The sample 1 has as mean: 

𝑓1 =
23

40
=  0.575 and as variance: 

𝑓1(1 − 𝑓1)

𝑛1
=
0.575 ∗ 0.425

40
 

The sample 2 has as mean: 

𝑓1 =
17

40
=  0.425 and as variance: 
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𝑓2(1 − 𝑓2)

𝑛2
=
0.425 ∗ 0.575

40
 

We consider the distribution of frequencies 𝑓1– 𝑓2: we can say that it has as mean the difference of 
means, i.e.: 

0.575 −  0.425 =  0.15 
and as variance the sum of these two variances, i.e: 
2 ∗ 0.425 ∗ 0.575

40
 

We enter in Home to get the standard deviation of the distribution of frequency 𝑓1– 𝑓2: 

sqrt(2*0.575*0.425/40.) 

We get: 

0.1105384548472 

normal_icdf(0.15,0.1105384548472,0.025),normal_icdf(0.15,0.1105384548

472,0.975) 

We get the critical lower and upper: 

-0.0666513904072,0.366651390407 

26.11.2 Samples extracted from a normal distribution 

Comparison of an experimental mean and a theoretical mean  
 
If the statistical series follows a normal distribution of mean 𝑚 and standard deviation σ, the 

distribution of means 𝑚𝛼 of samples of size 𝑛 follows a normal law of mean 𝑚 and standard deviation 

𝜎𝛼 =
𝜎

√𝑛
. 

If 𝑆 is the mean of standard deviation of samples of size 𝑛 then we have 
𝑆

√𝑛
=

𝜎

√𝑛−1
 and then σα =

𝑆

√𝑛−1
 

 
Example 
We weight 100 400 g-breads taken randomly in a bakery and we get a mean 𝑚1 of 390 g with a 

standard deviation 𝑠1 of 50 g. 
Does the baker observe the weight of its 400 g breads at the significance level of 95 % ? 
Estimate the mean of the population starting from 𝑥 and standard deviation s of this sample. 
 

– It is to compare an experimental mean 𝑚𝛼 = 𝑥 to a theoretical mean µ. 
The hypothesis (𝐻0) is that the difference between these 2 means is not significant i.e. 
(𝐻0): 𝑥  =  µ. The alternate hypothesis (𝐻1) is then (𝐻1): 𝑥  ≠  µ. 
The standard deviation 𝑠 of the sample of 100 elements is 50, we estimate then the standard 
deviation of the population at: 

50 ∗  √
100

99
 ≃  50.25 

Knowing that: 

𝑈 =  
𝑥  −  µ
𝜎

√𝑛

 

significantly follows a reduced centered law because 𝑛 =  100 >  30. 
Then, we consider: 

𝑈 =  
390 −  400

50

√99

≃  −1.98997487421 

 
Given 𝛼, we look for 𝑢𝛼 such as: 

𝑃𝑟𝑜𝑏(−𝑢𝛼 < 𝑈 < 𝑢𝛼) = 1 −  𝛼. 

If 𝛼 =  0.05, we enter: 
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normald_icdf(0.975) 

We get: 

1.95996398454 ≃ 1.96 

We enter: 

normald_icdf(0.025) 

We get: 

-1.95996398454 ≃ -1.96 

So 𝑃𝑟𝑜𝑏(−1.96 < 𝑈 < 1.96) = 0.975 − 0.025 = 0.95 = 1 − 0.05 and we have 𝑢𝛼 =  1.96. 

As 𝑈 ∉] − 𝑢𝛼 , 𝑢𝛼[, the hypothesis (𝐻0) is rejected with a risk of error less than 5%. So, we can 
say with a risk of error less than 5%, that the baker does not respect the weight of 400 g of its 
breads. 

 
With the calculator: 
We press Symb and we choose: 
Hypothesis test 

Type Z-Int: 1 µ 

Alt Hypoth µ ≠ µ0 
We press Num and enter: 

N=100 

µ=400 

σ=50.25 
α=0.05 
We tap Calc of the push buttons and we get: 
Result 0 (Hypothesis rejected at 𝛼=0.05) 
Test Z -1.99 

Test x 390 

Prob Z 0.0466 

Crit Z ±1.9599 

Lower 390.151 

Upper 409.849 

We enter in Home: 

normald_icdf(400,5.025,0.025), normald_icdf(400,5.025,0.975) 

We get: 

390.151180978,409.848819022 

– It is to find an interval at the level of 5%, of center 𝑥, in which 𝑚 is laying with a probability of 
95 %. 
We choose by default: 
𝑥  =  𝑚𝛼 

𝑠 =  𝑠𝛼 =  𝜎 
√𝑛−1

√𝑛
 and 𝑠 =  𝜎𝛼 then the mean of means of samples of size 𝑛 follows a normal 

distribution of mean 𝑥 and standard deviation 
𝜎

√𝑛
=

𝑠

√𝑛−1
 Thus 𝜎 =

500

√99
 ≃ 50.25. 

 
With the calculator: 
We press Symb and we choose: 
Inter of Confidence 

.Type Z-int: 1 µ 

We press Num and enter: 

x 390 

N=100 

𝜎=50.25 
C=0.95 
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We tap Calc of the push buttons and we get: 
C 0.95 

Crit.Z ± 1.96 

Lower 380.1511... 

Upper 399.8488... 

We enter in Home: 

normald_icdf(390,5.025,0.025), normald_icdf(390,5.025,0.975) 

We get: 

380.151180978,399.848819022 

26.11.3 Samples extracted from a Student distribution 

We use the Student law (mostly valid for small samples (𝑛 < 30)): 

The variable 𝑇 =
|𝑚𝛼 −𝑚|

𝑠
√𝑛 follows a Student law of 𝑛 −  1 degrees of freedom. 

 
 
Comparison of an experimental mean to a theoretical mean  
 
We can do the previous exercise with the Student law: 

– We press Symb and we choose: 
Hypothesis test 

Type T-Test: 1 µ 

Alt Hypoth µ ≠ µ0 
We press Num and enter: 
x=390 

S=50 

N=100 

µ0=400 

𝛼=0.05 
We tap Calc of the push buttons and we get: 
Result 0 (Hypothesis rejected at 𝛼=0.05) 
Test T -2 

Test x 390 

Prob T 0.048239... 

DF=99 

Crit T ±1.9842... 

Lower 390.0789 

Upper 409.921 

We enter in Home: 

student_icdf(99,0.025),student_icdf(99,0.975) 

We get: 

-1.98421695159,1.98421695159 

We enter in Home: 

student_icdf(99,0.025)*50/sqrt(100)+400, 

student_icdf(99,0.975)*50/sqrt(100)+400 

We get: 

390.078915242,409.921084758 

 

– We press Symb and we choose: 
Inter of Confidence 
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Type T-int: 1 µ 

We press Num and enter: 
x: 390 

S:=50 

N=100 

C=0.95 

We tap Calc of the push buttons and we get: 
C 0.95 

DF=99 

Crit T ±1.9842 

Min Crit x 380.0789 

Maxi Crit x 399.9210 

We enter in Home: 

student_icdf(99,0.025)*5+390, student_icdf(99,0.975)*5+390 

We get: 

380.078915242,399.921084758 
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Chapter 27 Generalities 

 
 

27.1 Syntax of HOME programs and CAS programs 

Following examples are programs using either only HOME commands, either both HOME and CAS 
commands. 
To enter the programming interface, we enter: 
Shift Program and then New. of the push buttons. 
We get a dialog box with Name and CAS. 
We check CAS to write a CAS program and we put ABC as name, by example, then OK and we enter 
the program. 
The syntax of a program is: 
 

– For an HOME program of name ABC: 
EXPORT ABC(<name of parameters>) 

BEGIN 

LOCAL <name of local variables>; 

<instructions>; 

RETURN <result>; 

END; 

With Shift Program we get the list of valid programs among which ABC. 
 

– For a CAS program of name ABC: (we notice that ABC is not shown in the program) 
(<name of parameters>)->BEGIN 

LOCAL <name of local variables>; 

<instructions>; 

RETURN <result>; 

END; 

With Shift Program we get the list of valid programs among which ABC(CAS). 

27.2 Writing a program slightly different from an existing program 

You have already written a program and you want to write a slightly different program without rewriting 
all from scratch. For example, you have written the CAS program PERP returning the equation of the 
perpendicular to a line through a given point: 
 
(GA,GD)->BEGIN 

LOCAL GM,GE,GL; 

GE:=element(GD); 

IF is_element(GA,GD) THEN 

GL:=inter(GD,circle(GA,1)); 

RETURN equation(perpen_bisector(GL)); 

END; 

IF angle(GE,GA,GD)==pi/2 OR angle(GE,GA,GD)==-pi/2 

THEN RETURN equation(line(GA,GE)); END; 

GM:=midpoint(op(inter(GD,circle(GA,GE-GA)))); 

RETURN equation(line(GA,GM)); 

END; 

 
You want to get the program FOOTP returning the affix of the foot of this perpendicular. 
We enter in the CAS: 
FOOTP:=PERP 

Then, Shift Program 
We see that FOOTP is in the program list. Then, it is enough to edit it and modify it as follows: 
 

GA,GD)->BEGIN 

LOCAL GM,GE,GL; 

GE:=element(GD); 
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IF is_element(GA,GD) THEN 

GL:=inter(GD,circle(GA,1)); 

RETURN affix(GA)); 

END; 

IF angle(GE,GA,GD)==pi/2 OR angle(GE,GA,GD)==-pi/2 

THEN RETURN affix(GE); END; 

GM:=midpoint(op(inter(GD,circle(GA,GE-GA)))); 

RETURN affix(GM); 

END; 

 
We enter: 

FOOTP(point(1),line(-2,2+2i)) 

We get: 

2/5+6i/5 
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Chapter 28 Programming instructions 

 
 

28.1 Variables 

28.1.1 Variables names 

In HOME, there are no symbolic variables and the names of the variables are predefined, such as: 
A..Z for real variables (default value 0), 
L0..L9 for lists (default value { }), 
M0..M9 for matrices (default value [[0]]). 
In CAS, apart the names of HOME variables, the names of the variables are strings composed of 
letters or digits, starting by a letter. 
Warning! All names are not valid, some are already used by the system. 
In CAS, all the variables are symbolics as long as they are not assigned. 
The variables defined in HOME are also valid in the CAS, and the assigned variables defined in the 
CAS are also valid in HOME. 

28.1.2 Comments: comment // 

comment takes as argument a string of characters (take care to use the ") whereas // does not 
require the " but must end by a carriage return character: this means that the argument of comment, 
or what is between // and the the carriage return character, is not taken into account by the program 
and that it is a comment. 
 
We enter the program in a program editor, then we validate it with OK: 

f(x):={comment("f:R->R^2") 

return [x+1,x-1];} 

or: 

f(x):={//f:R->R^2 

return [x+1,x-1];} 

We get: 

the commented definition of the function f(x)=[x+1,x-1] 

28.1.3 Inputs: INPUT input InputStr 

input INPUT allow to enter expressions, InputStr allows to enter strings of characters. input, 
INPUT and InputStr take as argument the name of a variable (resp. a sequence of names of 
variables) or a string of characters (strings giving the user instructions on the value to be entered) and 
the name of a variable (resp. a sequence of strings of characters and a sequence of names of 
variables). 
input, INPUT and InputStr open a dialog box where we can enter the value of the variable 
supplied as argument and where is displayed, as label, the string of characters supplied as argument 
(if any). 
With input, INPUT, we can enter numbers or strings of characters (add "...") or names of variables 
(without "..."). 
With InputStr, we can enter only strings of characters, hence, the "..." are not needed. 
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We enter: 

input(a) 

or: 

input("a=?",a) 

We get: 

a dialog box where we can enter the value of a 

We enter: 
12 in this dialog box, then OK 
then: 

a+3 

We get: 

15 

We enter: 

input("polynomial",p,"value",a) 

We get: 

a dialog box where we can enter the values of p with the label 

"polynomial" and a with the label "value" 

We enter: 

InputStr(a) 

or: 

InputStr("answer=",a) 

We get: 

a dialog box where we can enter the value of a 

We enter: 
12 in this dialog box, then OK 
then: 

a+3 

We get: 

123 

because a is the string of characters "12", and the "+" sign concatenates the two strings "12" and "3". 

28.1.4 Outpouts: print 

print takes as argument a sequence of string of characters or of names of variables. 
print displays the strings of characters and the content of variables on the screen before the answer. 
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We enter: 

a:=12 

then: 

print("a=",a) 

We get: 

"a=",12 is displayed, and the answer is 1 

28.1.5 Assignment instruction: => :=  

To store an object in a variable, in HOME, we use Stoof the push buttons. 
I 
n HOME, we enter for example: 

12 Sto A 

as a result, this stores 12 in the variable A. 
In CAS, or in a CAS program, we enter for example: 

12 => a 

Or we enter 

a:=12 

as a result, this stores 12 in the variable a. 
In CAS, or in a CAS program, we can write: a,b:=12,34 or a,b:=[12,34] 
as a result, this put 12 in the variable a and 34 in the variable b. 
For instance, to put the quotient and the remainder of the Euclidean division respectively in q and r by 
using the CAS command iquorem, we enter: 
q,r:=iquorem(365,12) 

as a result, this stores 30 in the variable q, and 5 in the variable r, because 365 = 30 ∗  12 + 5. 

 
Warning! You must use this carefully because these two assignments are done simultaneously. For 
example: 
a:=1;b:=2; a:=a+b;a:=1;b:=a-b; is equivalent to: 
a:=1;b:=2;c:=a;a:=a+b;b:=c-b; 

so, after that, a equals 3 and b equals -1 (and not 1). 
BUT 
purge(a);a,b:=2,a+1 stores 2 in a and 3 in b. 

28.1.6 Copy without evaluating the content of a variable: CopyVar 

CopyVar takes as arguments the name of two variables. 
CopyVar copy, without evaluating it, the content of the first variable in the second variable. 
 
We enter (mind the order): 

a:=c 

c:=5 

CopyVar(a,b) 

b 
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We get: 

c 

then we enter: 

c:=10 

b 

We get: 

10 

A modification of the content of c also modifies the content of b, because b stores c. 
 
We enter: 

a:=d 

b 

We get: 

10 

We enter: 

purge(c) 

b 

We get: 

c 

because b stores c. 

28.1.7 Function testing the type of its argument: TYPE type 

TYPE is an HOME function returning the type of the object supplied as argument. For example: 
TYPE(1)=TYPE(pi)=0, TYPE(i)=3, TYPE([1,2])=6, TYPE({1,2})=6. 

type is a CAS function returning the type of the object supplied as argument. For example: 
DOM_FLOAT,DOM_INT,DOM_COMPLEX,..,DOM_IDENT,DOM_LIST,DOM_SYMBOLIC,DOM_RAT,..

,DOM_SYMBOLIC,DOM_STRING. 

There are 20 different types, each one represented by an integer from 1 to 20. 
type allows to check for an input error. 
 
We enter: 

type(3.14) 

We get: 

DOM_FLOAT 

We enter: 

type(3.14)+0 

We get: 
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1 

We enter: 

type(3) 

We get: 

DOM_INT 

We enter: 

type(3)+0 

We get: 

2 

We enter: 

type(3% 5) 

We get: 

15 

28.1.8 Function testing the type of its argument: compare 

compare is a function of two arguments returning 1  if they are of different types, or if they are of 
same type and listed in increasing order of type, and 0 otherwise. 
 
We enter: 

compare(1,2) 

We get: 

1 

We enter: 

compare(2,1) 

We get: 

0 

We enter: 

compare("3","a") 

We get: 

1 

We enter: 

compare("a",3) 

We get: 



 484 

0 

We enter: 

compare(3,"a") 

We get: 

1 

We enter: 

compare("a",3) 

We get: 

0 

Indeed, we have: type(3)=DOM_INT=2 and type("a")=DOM_STRING=12 

28.1.9 Stating an assumption about a variable: assume 

assume allows to state an assumption on a variable. 
assume takes as argument a name of variable followed by an equality, or an inequality, representing 
the assumption stated, or else a name of variable followed by a comma and its type. We can put 
several assumptions, provided they are linked by and or or, depending on what we want to do. 
Though, you must use additionally as second argument of assume to specify the type of the variable 
and a range of values for this variable. 
assume returns the name of the variable about which we have stated the assumption, or the type of 
this variable. 
 
Warning! If we state another assumption with assume, the previous assumption is deleted: if you 
want to add another assumption, you must use the command additionally, or put additionally as 
second argument of assume. 
Notes 
This allows to do interactive geometry while doing symbolic computations at the same time. For 
instance, if we put in geometry: 
assume(a=2);assume(b=3); A:=point(a+i*b), the figure will be built with the values given to 
the variables, but the calculations will be performed with the symbolic variables a and b, because for 
all the graphic outputs, and these ones only, the variable is evaluated. 
 
We enter: 

assume(a=2) 

Or we enter directly: 

assume(a=[2,-5,5,0.1]) 

We get: 

a sliding bar allowing to make a vary 

When we make a vary, the command assume(a=2) turns into assume(a=[2.1,-5.0,5.0,0.1]) 
and the following levels are evaluated. If there is nothing on the following level we will get undef as a 
result. 
This means that a may vary between -5 and 5 with a step of 0.1 and that a equals 2.1. 
If on the two following levels we have evalf(a+2) and evalf(a+3), the answers will evoluate 
according to the position of the cursor (cursor at 2.1: we have 4.1 and 5.1, then cursor at 2.2 we 
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have 4.2 and 5.2). but if on the two following levels we have a+2 and a+3, the answers will always 
be a+2 and a+3. 
To assume that the formal variable a is positive, we enter: 

assume(a>0) 

We get: 

a 

We enter: 

assume(a) 

We get: 

assume[DOM_FLOAT,[line[0,+(infinity)]],[0]] 

this means that a is a real variable laying in ]0;+∞[ and that 0 is excluded. 
We know the domain, the interval and the excluded values. 

To assume that the formal variable a is in [2;4[∪]6;∞[, we enter: 

assume((a>=2 and a<4) or a>6) 

We get: 

a 

We enter: 

assume(a) 

We get: 

assume[DOM_FLOAT,[[2,4],[6,+(infinity)]],[4,6]] 

this means that a is a real variable laying in [2;4[ ∪ ]6;∞[ and that 4 and 6 are excluded. 
We know the domain, the interval, and the excluded values. 
 
We enter: 

abs(1-a) 

We get: 

-1+a 

We enter to tell that b is an integer: 

assume(b,integer) 

We get: 

DOM_INT 

We enter: 

assume(b) 

We get: 
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[DOM_INT] 

To tell that b is an integer strictly greater than 5, we enter: 

assume(b,integer); 

assume(b>5,additionally) 

We get: 

DOM_INT 

then 

b 

We enter: 

assume(b) 

We get: 

[DOM_INT] 

Note: 
When assume takes as argument one single equality and the command is entered from the entry line 
of the Geometry screen, as a result, this adds a small cursor at the top right of this screen. The name 
of the parameter is written at the right of the cursor. 
This cursor allows to change the value of the parameter, and this value will be written at the left of the 
cursor. 
 
By example, we enter: 
assume(a=[2,-10,10,0.1]) 

This means that all the calculations will be performed with any value of a, provided that the points 
have exact coordinates, but also that the figure will be plotted with a=2 and that we will be able to 
have this figure vary thanks to the small cursor according to a from -10 to +10, with a step of 0.1. 
If we put assume(a=[2,-5,5), a varies from -5 to +5 with a step of (5-(-5))/100), and if we put 
assume(a=2), a varies from WX- to WX+ and the step is ((WX+)-(WX-))/100. 
 
Warning! As far as geometry is concerned, you have to work with exact coordinates. 
For example: 

A:=point(i);assume(b:=2); B:=point(b); 

then we enter: 

length(A,B); 

We get: 

sqrt((-b)^2+1) 

But: 

A:=point(0.0+i);assume(b:=2); B:=point(b); 

then we enter: 

length(A,B); 

We get the approximate value of √1 +  4: 
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2.2360679775 

 
Warning! A parameter defined by assume is evaluated for graphic outputs only, otherwise you must 
use evalf. 
 
Example. 
We enter: 
dr(m):=ifte(m==2,line(x=1),line(x+(m-2)*y-1)) then in a level of geometry, we enter: 
assume(a=[2.0,-5,5,0.1]) 

dr(evalf(a)) 

which returns line(x=2) when a:=2 and line(y=(-5*x+5)) when a:=2.2, whereas dr(a) 
returns line(y=(-1/(a-2)*x+1/(a-2))) whatever a is and this wil then lead to an error for a=2. 
 
Warning! Mind the difference between assume and element. 
If b:=element(0..3,1,0.1) is entered from the entry line of thea Geometry screen, this adds a 
small cursor at the top right of this screen with b=1 and we will be able to have b vary thanks to the 
small cursor from 0 to 3 with a step of 0.1, but the variable b is not formal! 
 
We enter: 

a;b 

We get: 

(a,1) 

28.1.10 State an additional assumption about a variable: additionally 

additionally allows to state additional assumptions about a variable. Indeed, if we state another 
assumption with assume, the previous assumption is deleted. Thus, if you want to add a new 
assumption, you must use the command additionally or put additionally as second argument 
of assume. 
additionally has the same arguments as assume: a name of variable along with an equality or an 
inequality representing the assumption stated, or else the name and the type of a variable separated 
by a comma. Several assumptions may be suppled, provided that they are linked by and or or, 
depending on what we want to do. 
We must use additionally to specify the type and the range of values of a variable at the same 
time. 
To tell that b is an integer strictly greater than 5, we enter: 

assume(b,integer); 

additionally(b>5) 

or else 

assume(b,integer); 

assume(b>5,additionally) 

We get: 

DOM_INT 

then 

b 

We enter: 

assume(b) 
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We get: 

[DOM_INT] 

28.1.11 Know the assumptions stated about a variable: about 

about takes as argument a name of variable. 
about allows to know the assumptions stated about this variable. 
 
We enter: 

assume(a,real);additionally(a>0) 

or 

assume(a,real);assume(a>0,additionally) 

then, 

about(a) 

We get: 

assume[DOM_FLOAT,[0,+(infinity)],[0]] 

assume[ ] means that we have a list of a specific type. 

The last 0 means that 0 is excluded from the interval [0,+(infinity)]. 
We enter: 

assume(b,real);additionally(b>=0 and b<2) 

or 

assume(b,real);assume(b>=0 and b<2,additionally) 

then, 

about(b) 

We get: 

assume[DOM_FLOAT,[0,2],[2]] 

The last 2 means that 2 is excluded from the interval [0,2[. 
 
We enter: 

about(x) 

We get: 

x 

which means that x is a formal variable. 

28.1.12 Delete the content of a variable: purge 

purge allows to delete the content of a variable or to cancel an assumption stated about this variable. 
We enter: 



 489 

purge(a) 

If a is not assigned, we get in direct mode "a not assigned", otherwise the previous value is 
returned (or the assumptions stated on this variable) and the variable turns back to formal with no 
assumption. 
 
We can also enter: 

purge(a,b) 

to delete the content of variables a and b. 

28.1.13 Delete the content of all the variables: restart 

restart allows to delete the content of all the variables and to cancel the assumptions stated about 
these variables. 
 
We enter: 

A:=point(1+i);assume(n>0); 

then 

restart 

We get: 

[A,n] 

if the variables [A,n] would have been the only assigned variables. 

28.1.14 Access to answers: Ans ans(n) 

Ans (Shift +) or Ans() designates the latest answer, ans must be used when working without 
modifying the lines already validated. Indeed, the questions and the answers are numbered starting 
from 0, and this number does not correspond to the entry lines numbers. Indeed, we can, for example, 
modify the first line after having already entered 4 other lines, and this modification will be  
numbered 4. 
If n ≥ 0, ans(n) designates the answer of number n + 1, 
and, 
if n < 0, ans(n) designates the (−𝑛)-nth previous answer. 
Then: 
ans(0) designates the first answer (the one corresponding to the first requested command). 
 
Warning! If you have deleted some levels, the answers of these levels are not deleted and are taken 
into account by ans(n). 

28.2 Conditionnal instructions  

– IF 
IF < 𝑐𝑜𝑛𝑑 > THEN < 𝑖𝑛𝑠𝑡1 > END 

If the condition < 𝑐𝑜𝑛𝑑 > is true, the instructions < 𝑖𝑛𝑠𝑡1 > are executed, otherwise nothing is 
done. 
 
We enter: 
3=>X 

IF X>0 THEN X+1 END 

or 

IF X>0 THEN X+1;END 
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We get: 

3 

We enter: 
-3=>X 

IF X>0 THEN X+1 END 

or 
IF X>0 THEN X+1;END 

We get: 
-3 

 
– IFTE 

IFTE(𝑐𝑜𝑛𝑑,𝑖𝑛𝑠𝑡1,𝑖𝑛𝑠𝑡2) 
If the condition supplied as first argument is true, the second argument is executed, otherwise 
the third argument is executed. 
 
We enter: 
3=>X 

IFTE(X>0,X+1,X-1) 

We get: 
4 

To define the absolute value, we enter: 
-3=>X 

IFTE(X>0,X,-X) 

We get: 
3 

We enter: 
EXPORT TRIAL0(X,A) 

BEGIN 

RETURN IFTE(X<-ABS(A),-1,IFTE(X<ABS(A),0,1)); 

END; 

Then, we enter: 
TRIAL0(-5,3) 

We get: 
-1 

We enter: 
TRIAL0(-2,3) 

We get: 
0 

We enter: 
TRIAL0(5,3) 

We get: 
1 

 

– IF THEN ELSE END 

IF < 𝑐𝑜𝑛𝑑 >THEN < 𝑖𝑛𝑠𝑡1 > ELSE < 𝑖𝑛𝑠𝑡2 > END 
If the condition < 𝑐𝑜𝑛𝑑 > is true, the instructions < 𝑖𝑛𝑠𝑡1 > is executed, otherwise the 

instructions < 𝑖𝑛𝑠𝑡2 > is executed. 
 
We enter: 
3=>X 

IF X>0 THEN X+1 ELSE X-1 END 

or 
IF X>0 THEN X+1; ELSE X-1; END 

We get: 
3 

We enter: 
-3=>X 

IF X>0 THEN X+1 ELSE X-1 END 

or 
IF X>0 THEN X+1; ELSE X-1; END 

We get: 
-4 

We enter: 
EXPORT TRIAL(X,A) 

BEGIN 
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IF X<-ABS(A) THEN RETURN -1; END; 

IF X<ABS(A) THEN RETURN 0; END; 

RETURN 1; 

END; 

Then, we enter: 
TRIAL(-5,3) 

We get: 
-1 

We enter: 
TRIAL(-2,3) 

We get: 
0 

We enter: 
TRIAL(5,3) 

We get: 
1 

 

– CASE 
CASE ... END 

CASE 

IF < 𝑐𝑜𝑛𝑑1 > THEN < 𝑖𝑛𝑠𝑡1 > END; 
IF < 𝑐𝑜𝑛𝑑2 > THEN < 𝑖𝑛𝑠𝑡2 > END; 
IF < 𝑐𝑜𝑛𝑑3 > THEN < 𝑖𝑛𝑠𝑡3 > END; 
DEFAULT < 𝑖𝑛𝑠𝑡4 >; 
END 

We use CASE to avoid using nested IF. 
< 𝑐𝑜𝑛𝑑1 > is evaluated: 

– if < 𝑐𝑜𝑛𝑑1 > is true, the instructions < 𝑖𝑛𝑠𝑡1 > are executed, and we end CASE by doing 
the instructions following END of CASE. 

– if < 𝑐𝑜𝑛𝑑1 > is false, then < 𝑐𝑜𝑛𝑑2 > is evaluated, if it is true the instructions < 𝑖𝑛𝑠𝑡2 > are 
executed and we end CASE by doing the instructions following END of CASE, etc., ... The 
instruction < 𝑖𝑛𝑠𝑡4 > is done if the three conditions < 𝑐𝑜𝑛𝑑1 >, < 𝑐𝑜𝑛𝑑2 >, < 𝑐𝑜𝑛𝑑3 > are 
false. 

 

CASE 

IF X<-1 THEN -1=>R; END; 

IF X<1; THEN 0=>R; END; 

IF X>=1 THEN 1=>R; END; 

END; 

R; 

 

or else: 
 
CASE 

IF X<-1 THEN -1=>R; END; 

IF X<1 THEN 0=>R; END; 

DEFAULT 1=>R; 

END; 

R; 

 

– IFERR 
The syntax is: 
IFERR < 𝑖𝑛𝑠𝑡0 > THEN < 𝑖𝑛𝑠𝑡1 > ELSE < 𝑖𝑛𝑠𝑡2 > END 

If an error is detected in the instructions < 𝑖𝑛𝑠𝑡0 >, the instructions < 𝑖𝑛𝑠𝑡1 > are executed, 

otherwise the instructions < 𝑖𝑛𝑠𝑡2 > are executed. 
We enter (for example if we do not know the order of the arguments of the command POS): 
 

IFERR(A:=POS(5,[1,3,5,2,4]); THEN 

A:=POS([1,3,5,2,4],5); ELSE 

A:=POS(5,[1,3,5,2,4]); 

END 

 
We get: 
4 
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– CONTINUE 
When CONTINUE; is among instructions of an iteration, this leads to skip the instructions which 
follows it and go to the next iteration. 

We enter to calculate 1 + 2 + 4 + 5 = ∑ 𝑗5
𝑗≠3 𝑎𝑛𝑑 𝑗=1 : 

 

A:=0; 

FOR J FROM 1 TO 5 DO 

IF J==3 THEN CONTINUE; END; 

A:=A+J; 

END; 

We get: 
12 

28.3 Loops 

28.3.1 Instructions FOR FROM TO DO END and FOR FROM TO STEP DO 
END 

We enter: 
S:=0; FOR J FROM 1 TO 5 DO S:=S+J;END 

We get: 
15 

because 1 + 2 + 3 + 4 + 5 = 15 
We enter: 
S:=0; FOR J FROM 2 TO 10 STEP 2 DO S:=S+J;END 

We get: 
30 

because 2 + 4 + 6 + 8 + 10 = 30 

28.3.2 Iterative loops: ITERATE 

To do an iteration, we enter: 
ITERATE(X^2,X,2,3) 

this means that X:=2; FOR J FROM 1 TO 3 DO X^2=>X;END; 
We get: 
256 

because 𝑋 equals 2 then 22 =  4 then 42 =  16 then 162 =  256 

28.3.3 Instruction WHILE DO END 

We enter: 
A:=1; WHILE A<=1 DO A:=A+1; END;A; 

We get: 
2 

We enter: 
S:=0;J:=1;WHILE J<=5 DO S:=S+J;J:=J+1; END;S 

We get as value of S: 
15 

28.3.4 Instruction REPEAT UNTIL 

We enter: 
A:=1; REPEAT A:=A+1 UNTIL A>1;A; 

We get as value of A: 
2 

We enter: 
A:=1; REPEAT A:=A+1 UNTIL A>4;A; 

We get as value of A: 
5 
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28.3.5 Instruction BREAK 

We enter: 
BREAK 

We get: 
The exit from a loop 

For example, to get the approximate value of the sum 6∑
1

𝑗2
∞
𝑗=1 , we decide to not add the terms lower 

than 𝑃 and to not do more than 100 additions. 
We enter: 
EXPORT PI2S6(P) 

BEGIN 

LOCAL J,S,U; 

FOR J FROM 1 TO 100 DO 

U:=1/J^2; 

IF U<P THEN 

BREAK; 

END; 

S:=S+U; 

END; 

RETURN S; 

END; 

 

We enter: 
PI2S6(0.001) 

We get: 
1.61319070033 

We enter: 
PI2S6(0.0001) 

We get: 
1.63498390018 

We enter: 
PI^2/6 

We get: 
1.64493406685 

28.3.6 Function seq 

seq is not an instruction but a function which allows to return the list constituted by the different values 
of the first argument when the second argument varies according to the values of following arguments: 
start value, end value, step (by default, step=1). 
seq(f(k),k,1,3)=[f(1),f(2),f(3)] 

seq(f(k),k,1,5,2)=[f(1),f(3),f(5)] 

The function seq is useful to plot a series of points on the Geometry screen. 
 
Example 
We want to represent the ten first terms of the sequence: 

𝑢𝑛 = (1 +
1

𝑛
)
𝑛

=  𝑓(𝑛) by the points 𝑛 +  𝑖 ∗  𝑓(𝑛). 

 
We open the Geometry application and we enter: 

f(n):=(1+1/n)^n 

seq(point(k+i*f(k)),k,1,10) 

We get: 

We see the points on this Geometry screen 

If we enter: 

for (k:=1;k<11;k++) {point(k+i*f(k));} 
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We get: 

only the last point 

but if if we enter: 

L:=[];for (k:=1;k<11;k++) 

{L:=append(L,point(k+i*f(k)));}:;L; 

We get: 

We see the points on the Geometry screen 

28.4 Comments: // 

// starts a line intended to be a comment. 

28.5 Variables 

In programming, the variables have as names a string of letters or numbers starting by a letter. 
The variables which are locals to the program will be declared by using the key word LOCAL, for 
example: LOCAL A,B,AB,x;. 
In this case, the variables are set to 0. 
To get a formal variable, we write: x:=’x’. 

28.6 Boolean operators: < <= == != > >= 

<,<=,>,>= are boolean infix operators checking for inequality. 
== is a boolean infix operator checking for equality. 
<> or != or ≠ is a boolean infix operator checking for non equality. 
 

– AND and 

AND or and is the boolean infix operator 𝑎𝑛𝑑. 
We enter: 
1 AND 0 

We get: 
0 

We enter: 
1 AND 1 

We get: 
1 

We enter: 
0 AND 0 

We get: 
0 

 

– NOT 

NOT returns the logic inverse of the argument. 
We enter: 
NOT 1 

We get: 
0 

We enter: 
NOT 0 

We get: 
1 
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– OR or 

OR or or is the boolean infix operator 𝑜𝑟. 
We enter: 
1 OR 0 

We get: 
1 

We enter: 
1 OR 1 

We get: 
1 

We enter: 
0 OR 0 

We get: 
0 

 
– XOR 

XOR is the boolean infix operator exclusive 𝑜𝑟. 
We enter: 
1 XOR 0 

We get: 
1 

We enter: 
1 XOR 1 

We get: 
0 

We enter: 
0 XOR 0 

We get: 
0 

 
Input commands 

– CHOOSE 
To choose the value of A among the three values (1,2,3), we enter: 
CHOOSE(A,"TITLE:A=","ONE","TWO","THREE") 

We get: 
A dialogue opens displaying three items: 

if we pick on the first (resp. the second, the third) item, this 

stores 1 (resp. 2, 3) in A 

 
– FREEZE 

We enter: 
FREEZE 

We get: 
the screen freezes, we press a key to quit 

 
– GETKEY 

We enter: 
A:=GETKEY 

We get, if we pressed .: 
48 

We enter: 
A:=GETKEY 

We get, if we did not press any key: 
-1 

 

– ISKEYDOWN 

We enter: 
ISKEYDOWN(48) 

We get, if we did not press the key .: 
0 

We enter: 
ISKEYDOWN(48) 

We get, if we have pressed the key .: 
1 
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– INPUT 

We enter: 
INPUT(C,"TITLE:C=") 

We get: 
A screen allowing to enter a value to be stored in the variable C 

 
– MSGBOX 

We enter: 
A:=3 

MSGBOX(2*A) 

or 
MSGBOX(2*A,0) 

We get: 
6 and OK in the push buttons 

If we tap OK then MSGBOX(2*A) or MSGBOX(2*A,0) returns 1. 
We enter: 
A:=3 

MSGBOX(2*A,1) 

We get: 
6 and CANCEL and OK in the push buttons 

If we press CANCEL then MSGBOX(2*A,1) returns 0. 
If we press OK then MSGBOX(2*A,1) returns 1. 
We enter: 
A:=3 

MSGBOX("A= "+A) 

We get: 
"A= 3" 

 
– PRINT 

We enter: 
A:=3 

PRINT(A) 

We get: 
A:3 

 
– WAIT 

We enter: 
WAIT(5) 

We get: 
A 5 seconde pause of the program 

 
– EDITMAT 

We enter: 
EDITMAT(M) 

We get: 
A matrix editor opens to enter the matrix M 

 
An example of use of GETKEY and ISKEYDOWN. 
The following program let us know the code of each key pressed and ends when pressing the key .. 
 

EXPORT AA() 

BEGIN 

LOCAL A,L; 

L:=[]; 

REPEAT 

REPEAT 

A:=GETKEY; 

UNTIL A!=-1; 

L:=CONCAT(L,A); 

UNTIL ISKEYDOWN(48); 

RETURN L; 

END; 

 

We enter: 
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AA() then Enter 1230. 
We get: 
[42,43,44,47,48] 

 
We can also write the following program, which gives the same result: 
 
EXPORT AAA() 

BEGIN 

LOCAL A,L,N; 

L:=[]; 

N:=0 

WHILE N==0 DO 

REPEAT 

A:=GETKEY; 

UNTIL A!=-1; 

L:=CONCAT(L,A); 

N:=ISKEYDOWN(48); 

END; 

RETURN L; 

END; 

 

We enter: 
AAA() then Enter 1230. 
We get: 
[42,43,44,47,48] 

 
Example of a dice roll: two players A and B roll alternately two dices and keep their scores SA and SB, 
putting aside the score of some rolls (for example some giving at least one 6). They decide to stop 
playing after two minutes. 
The program will display the result of the roll of each of the two players. We notice that the display of 
the roll of player B: MSGBOX(N+1+":B="+B,1)) takes as second parameter 1. CANCEL and OK are 
displayed in the push buttons. If we press CANCEL, MSGBOX(N+1+":B="+B,1) returns 0 and 
otherwise MSGBOX(N+1+":B="+B,1) returns 1. So if we press CANCEL we cancel the play. 
To stop playing, it is enough to press OK (key 5). 
The program displays then the score and the list of the rolls. 
 
EXPORT TWODICES() 

BEGIN 

LOCAL SA,SB,A,B,C,N,L; 

SA:=0; 

SB:=0; 

N:=0; 

L:=[]; 

RANDSEED 

WHILE ISKEYDOWN(5)==0 DO 

A:=(RANDOM 6+RANDOM 6); 

MSGBOX(N+1+":A="+A,0); 

B:=(RANDOM 6+RANDOM 6); 

C:=MSGBOX(N+1+":B="+B,1); 

IF C==-1 THEN 

L[N]:=[A,B]; 

N:=N+1; 

IF A>B THEN 

SA:=SA+1; 

ELSE 

SB:=SB+1; 

END; 

END; 

END; 

RETURN SA,SB,L; 

END; 

28.7 Commands of applications 

– CHECK 



 498 

If the current application is Function, we enter: 
F2(X):=COS(X)+X 

CHECK(2) 

We get: 
The definition of F2 in the Function application and the function F2 

is checked 

 
– UNCHECK 

If the current application is Function, we enter: 
UNCHECK (2) 

We get: 
The function F2 is unchecked 

 
– STARTVIEW 

We enter: 
STARTVIEW(1) 

We get: 
black: 0 

drak grey: 1 

light grey: 2 

white: 3 

Symbolic: 0 

Plot: 1 

Numeric: 2 

Symbolic Setup: 3 

Plot Setup: 4 

Numeric Setup: 5 

First special view (Split Screen Plot Detail):6 

Second special view (Split Screen Plot Table):7 

Third special view (Autoscale): 8 

Fourth special view (Decimal): 9 

Fifth special view (Integer): 10 

Sixth special view (Trig): 11 

HomeScreen: -1 

Home Modes: -2 

Memory Manager: -3 

APP Library: -4 

Application Note Editor: -5 

MatrixCatalog: -6 

ListsCatalog: -8 

ProgramCatalog: -10 

Note Catalog: -12 
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Chapter 29 How to program 

29.1 Conditional instruction IF 

Three stores selling the same wools at the same unit price of $ 𝑝, decide to offer rebates. 
In the store 1, the conditions of the rebates are: 

– 10 % rebate when buying over 5 to less than 10 balls of wool, 
– 20 % rebate when buying at least 10 balls. 

 
In the store 2, the conditions of the rebates are: 

– 1 ball free for 8 bought 
– 2 balls free for 13 bought. 

 
In the store 3, the conditions of the rebates are: 

– 10 % rebate when buying 5 balls, 
– 20 % rebate when buying 10 balls, 

for example, if you buy 7 balls at $ p one, you get the rebate on 5 balls only and pay 2 ∗  p + 5 

∗  0.9 ∗  p = 6.5 ∗  p and if you buy 17 balls, you get the rebate on 10 balls only and on 5 balls 

and you pay 2 ∗  p + 5 ∗  0.9 ∗  p + 10 ∗  0.8 ∗  p = 14.5 ∗  p. 

 
You need 9 balls, which store do you choose? 
You need 15 balls, which store do you choose? 
 
Write the program price(n,p) for each store, returning the price to pay, the number of balls and the 
money spared thanks to the rebate, when buying n balls at a unit price p. 
 
The programs 
 

– price1 

 

(n,p)->BEGIN 

LOCAL p1,p2,n1,n2,r1; 

p1:=0.8*p; 

p2:=0.9*p; 

r1:=irem(n,10); 

IF n<5 THEN return n*p,n,0;END; 

IF 5<=n and n<10 THEN return n*p2,n,n*(p-p2);END; 

IF n>10 THEN return n*p1,n, n*(p-p1);END; 

END; 

 
– price2 

 

(n,p)->BEGIN:={ 

LOCAL r1,q1; 

r1:= irem(n,13); 

q1:=iquo(n,13); 

IF r1>=8 THEN return n*p, n+2*q1+1, 2*q1*p+p; END; 

IF r1<8 THEN return n*p, n+2*q1, 2*q1*p; END; 

END; 

 

– price3 

 

(n,p)->BEGIN 

LOCAL p1,p2,n1,n2,r1; 

p1:=0.8*p; 

p2:=0.9*p; 

r1:=irem(n,10); 

IF r1<5 THEN n1:=n-r1; return n1*p1+r1*p,n,(n-r1)*p-n1*p1;END; 

IF r1>=5 THEN n1:=n-r1; return n1*p1+5*p2+(r1-5)*p,n,(n-r1+5)*p-

n1*p1-5 
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END; 

29.2 FOR and WHILE loops 

29.2.1 Make the calculator count by step of one and display the result  

We want the calculator display: 0, then 1, then 2, etc., … 
 
When not in a program, we enter: 
n:=0; 

then, Enter 
We enter: 
n:=n+1 

then, Enter, Enter, etc., ... 
We get (each press of Enter displays the following number): 
1, then 2, etc., ... 
 
With a CAS program 
 

The FOR loop 
 
We name the program countf, and check CAS. 
In order to display the sequence 0,1,2..p, we enter a program using a FOR loop: 
 

(p)->BEGIN 

LOCAL n; 

 FOR n FROM 0 TO p DO 

  PRINT(n); 

 END; 

RETURN n; 

END; 

 

We notice that: 
n is initialized by the value following FROM, and the value following TO is used to do the loop stop test. 
The instruction n:=n+1, and then the test n<=p is automatically done in a FOR loop. The loop stops 
when the first integer n strictly greater than p is reached. 
We enter in the CAS: 
countf(-1) 

We get: 
0, because the test n<=p is done at the beginning of the loop. 
We enter in the CAS: 
countf(4) 

We get: 
0 

1 

2 

3 

4, 
then 5, because 5 is the first integer strictly greater than p=4 
 
Sum up 
FOR initializes the variable of the FOR, does the test, if true executes the body of the loop (i.e. all the 
instructions up to the END of the FOR), then the variable the FOR is incremented, then the test is done: 
if true executes the body of the loop etc..; and if false executes the instructions following the END of 
the FOR. 
 
The WHILE loop  
We name the program countw and we check CAS. 
In order to display the sequence 0,1,2..p, we enter a program using a WHILE loop: 
 
(p)->BEGIN 
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LOCAL n; 

n:=0; 

WHILE n <=p DO 

 PRINT(n); 

 n:=n+1; 

END 

RETURN n; 

END; 

 

We notice that: 
n must be initialized before the beginning of the loop, 
WHILE does the test n<=p: 
if the test is true it executes the body of the loop (i.e. all the instructions up to the END of the WHILE) 
but, be careful, you have to change 
in the body of the loop the value of at least one variable of the test, so that the test is false at a time,  
to avoid to get an infinite loop, in this case the instruction n:=n+1. Then, WHILE does the test n<=p, 
if true, executes the body of the loop, etc., ..., otherwise executes the instructions following the END of 
the WHILE. 
The loop stops when the first integer n strictly greater than p is reached. 
We enter in the CAS: 
countw(-1) 

We get: 
0, because the test n<=p is done at the beginning of the loop. 
We enter in the CAS: 
countw(4) 

We get: 
0 

1 

2 

3 

4 

then 5, because 5 is the first integer strictly greater than p=4 

29.2.2 Make the calculator count by step of 1 by using a list or a sequence 

Rather than displaying the numbers with the command PRINT, we will put these numbers into a list or 
a sequence. 
 
With a list 
 
The emtpy list is [] and the command l:=append(l,a) adds the element a at the end of the list l. 
 
With a FOR loop 
We name the program countlf and we check CAS. 
In order to display the list [0,1,2..p], we enter the program using a FOR loop: 
 
(p)->BEGIN 

LOCAL n,l; 

l:=[]; 

FOR n FROM 0 TO p DO 

 l:=append(l,n); 

END; 

RETURN l; 

END; 

 
With a WHILE loop 
We name the program countlw and we check CAS. 
In order to display the list [0,1,2..p], we enter the program using a WHILE loop: 
 
(p)->BEGIN 

LOCAL n,l; 

l:=[]; 

n:=0; 

WHILE n <=p DO 
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 l:=append(l,n); 

 n:=n+1; 

END 

RETURN l; 

END; 

 
We enter: 
countlf(4) or countlw(4) 

We get: 
[0,1,2,3,4] 

 

With a sequence 
 
The emtpy sequence is NULL and the command l:=l,a adds the element a at the end of the 
sequence l. 
 
With a FOR loop 
 
We name the program countsf (or we modify the previous program) and we check CAS. 
In order to display the list [0,1,2..p], we enter the program using a FOR loop: 
  
(p)->BEGIN 

LOCAL n,l; 

l:=NULL; 

FOR n FROM 0 TO p DO 

 l:=l,n; 

END; 

RETURN l; 

END; 

 
With a WHILE loop 
 
We name the program countsw (or we modify the previous program) and we check CAS. 
In order to display the list [0,1,2..p], we enter the program using a WHILE loop: 
 
(p)->BEGIN 

LOCAL n,l; 

l:=NULL; 

n:=0; 

WHILE n <=p DO 

l:=l,n; 

n:=n+1; 

END; 

RETURN l; 

END; 

 
We enter: 
countsf(4) or countsw(4) 

We get: 
0,1,2,3,4 

29.3 Approximate value of the sum of a sequence 

29.3.1 Sequence of general term 𝒖𝒏 =
𝟏

𝒏𝟐
 

With no program 
 
We enter in the CAS: 
s:=0;n:=1; 

Then, Enter 
We enter then: 
s:=s+1/n^2;n:=n+1 
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Then, Enter, Enter, etc., ... 
We get (each press of Enter does an additional addition): 
[1,2] 

[5/4,3] 

[49/36,4] 

[205/144,5] 

[5269/3600,6] 

[5369/3600,7] 

[266681/176400,8] etc., ... 
 
With a CAS program 
 
We name the program sumu and we check CAS. 

We enter, to get the sum of 1 +
1

22
+ … +

1

𝑝2
, the program: 

 
(p)->BEGIN 

LOCAL s,n; 

s:=0; 

FOR n FROM 1 TO p DO 

 s:=s+1/n^2; 

 PRINT([s,n]); 

END; 

RETURN [s,n]; 

END; 

 
We enter in the CAS: 
sumu(7) 

We get: 
 
[1,1] 

[5/4,2] 

[49/36,3] 

[205/144,4] 

[5269/3600,5] 

[5369/3600,6] 

[266681/176400,7] 

[266681/176400,8] 

 

We notice that we would need to put PRINT([s,n+1]); to get the same results because in the FOR 
loop the incrementation of n is done when the body of the loop has been executed, but the final result 
is the same because the incrementation of n has been done and since 8>7, the FOR loop stops. 

29.3.2 Sequence of general term 𝒗𝒏 =
(−𝟏)𝒏 + 𝟏

𝒏
 

With no program 
 
We enter in the CAS: 
s:=0;n:=1; 

then, Enter 
We enter then: 
s:=s+(-1)^(n+1)/n;n:=n+1 

Then, Enter, Enter, etc., ... 
We get (each Enter does an additional operation): 
 
[1,2] 

[1/2,3] 

[5/6,4] 

[7/12,5] 

[47/60,6] 

[37/60,7] 

[319/420,8] etc. 
 
With a CAS program 
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We name the program sumv and we check CAS. 

We enter, to get the sum of 1 −
1

2
+
1

3
…+

(−1)𝑝+1

𝑝
, the program: 

 
(p)->BEGIN 

LOCAL s,n; 

s:=0; 

FOR n FROM 1 TO p DO 

 s:=s+(-1)^(n+1)/n; 

 PRINT([s,n]); 

END 

RETURN [s,n]; 

END; 

 
We enter in the CAS: 
sumu(7) 

We get: 
 

[1,1] 

[1/2,2] 

[5/6,3] 

[7/12,4] 

[47/60,5] 

[37/60,6] 

[319/420,7] 

[319/420,8] 

29.3.3 The sequence of general term 𝒘𝒏 =
𝟏

𝒏
 is divergent 

To demonstrate this, we show that for 𝑝 >  1 we have: 

∑
1

𝑘

2𝑝

𝑛=2𝑝−1
≥
1

2
 

With no program 
 
We enter in the CAS: 
s:=1;n:=1;k:=0; 

Then, Enter 
We enter then: 
s:=s+sum(1/k,k=n+1..2*n);n:=2*n;k:=1+k;1+k/2<=s 

Then, Enter,Enter etc ... 
We get (each press of Enter does an additional operation): 
[3/2,2,1] 

[25/12,4,1] 

[761/280,5,1] 

[2436559/720720,6,1] etc. 
 
With a CAS program 
 
We name the program sumdiv and we check CAS. 
To get the sum of n, we enter in the CAS: 
 

sumdiv(p)->BEGIN 

LOCAL s,n,k; 

s:=1; 

n:=1; 

FOR k FROM 1 TO p DO 

 s:=s+sum(1/k,k=n+1..2*n); 

 n:=2*n; 

 1+k/2<=s; 

 PRINT([s,n,k,1+k/2,1+k/2<=s]); 

END 

RETURN [s,n,1+(k-1)/2<=s]; 

END; 
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We enter in the CAS: 
sumdiv(7) 

We get: 
3/2,2,1,true] 

[25/12,4,2,true] 

[761/280,8,3,true] 

[2436559/720720,16,4,true] 

then, [2436559/720720,16,5,true] 
 
Exercise 

Which value of 𝑛 makes ∑
1

𝑘

𝑛
𝑘=1 > 𝑝 ? 

To get the sum of n, we enter in the CAS: 
 

sumsup(p)->BEGIN 

LOCAL s,n; 

s:=0; 

n:=0; 

WHILE s<p DO 

n:=n+1; 

s:=s+1/n; 

END; 

RETURN evalf(s),n; 

END; 

 
We enter in the CAS: 
sumsup(4) 

We get: 
4.02724519544,31 

29.4 Decimal form of a fraction 

29.4.1 With no program 

For example, we want to find the first decimal of 𝑓 =
355

113
 

(𝑓 is a fraction givings 𝜋 with 6 exact decimal places) 
We enter in the CAS: 
f:=355/113;f1:=floor(f);l:=f1;n:=numer(f-f1);d:=denom(f-f1); 

Then, Enter 
We enter then: 
ds,n:=iquorem(10*n,d); L:=L,ds; 

Then, Enter, Enter, etc., ... 
We get (each press of Enter gives one more decimal place): 
[[1,47],3,1] 

[[1,47],3,1,4] 

[[1,47],3,1,4,1] 

[[1,47],3,1,4,1,5] 

[[1,47],3,1,4,1,5,9] 

[[1,47],3,1,4,1,5,9,2] 

The decimal places obtained are in the list l, beginning by the integer part of the fraction f. 
Or else we enter: 
f:=355/113;f1:=floor(f);L:=f1;n:=numer(f-f1);d:=denom(f-f1); 

Then, Enter 
We enter then: 
ds,n:=iquorem(10*n,d):; L:=L,ds:; 

Then, Enter,Enter, etc., ... 
We get: 
["Done","Done"],["Done","Done"] etc. 
Then, we enter: 
l 

We get, after having pressed Enter 30 times: 
[3,1,4,1,5,9,2,9,2,0,3,5,3,9,8,2,3,0,0,8,8,4,9,5,5,7,5,2,2,1,2] 
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As it is difficult to count the number of times we have pressed Enter, we can display, by example, five 
more decimal places each time we press Enter. The first Enter pressed displays the integer part 
followed by five decimal places. We may also wish or not to display 𝑑𝑠 and 𝑛. 
We enter: 
f:=355/113;f1:=floor(f);L:=f1;n:=numer(f-f1);d:=denom(f-f1); 

Then, Enter and then, ds,n:=iquorem(105*n,d); l:=l*10^5+ds; 
or, if we do not want the values of ds and n: 
ds,n:=iquorem(10^5*n,d):; l:=l*10^5+ds; 

We get after the first Enter: 
[14159 33],314159 

(or ["Done","Done"],314159) 

We notice that: 113 ∗  314159 +  33 =  355 ∗  105 
If we press 8 times Enter we get a 41-digit number: the integer part 3, followed by the 40 decimal 
places of 355/113: 
[5309 83],31415929203539823008849557522123893805309 

If we enter: 
l 

We get: 
31415929203539823008849557522123893805309 

Note that 5309 has only 4 digits, so the last decimal places are: 05309 and we have: 

113 ∗  𝑙 +  83 =  355 ∗  1040 

29.4.2 With a CAS program 

We name the program decimal and we check CAS. 
The program decimal returns a sequence l giving the integer part (f1) and the p first decimal 
places (ds) of a fraction f. We use the following functions: 
floor, which gives the integer part of a number, 
numer, which gives the numerator of a simplified fraction, 
denom, which gives the denominator of a simplified fraction, 
iquorem, which gives the quotient and the remainder of the Euclidean division 
ds,n:=iquorem(10*n,d); is equivalent to: 
ds:=iquo(10*n,d); (to get the quotient of 10*n by d) and n:=irem(10*n,d); 
(to get the remainder of 10*n by d). 
 
We enter, Shift Program, then New of the push buttons. 
We get a dialog box with Name and CAS. We check CAS and put as Name: decimal, then OK, and 
we enter the program which gives the integer part and the p decimal places, one by one, of the 
rationnal number f: 
 
(f,p)->BEGIN 

LOCAL n,d,l,f1,j,ds; 

f1:=floor(f); 

l:=f1; 

n:=numer(f-f1); 

d:=denom(f-f1); 

FOR j FROM 1 TO p DO 

 ds,n:=iquorem(10*n,d); 

 l:=l,ds; 

END; 

RETURN l; 

END; 

 
We enter in the CAS: 
decimal(355/311,20) 

We get: 
1,1,4,1,4,7,9,0,9,9,6,7,8,4,5,6,5,9,1,6,3 

We enter in the CAS: 
decimal(355/113,20) 

We get an approximation of 𝜋 to the next 3 ∗  10−7: 
[3,1,4,1,5,9,2,9,2,0,3,5,3,9,8,2,3,0,0,8,8] 

We have indeed: evalf(pi) wihich returns 3.1415926536 
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We can determinate the decimal places by 𝑝 groups of 𝑔 decimal places and return an integer 𝑙. The 

decimal form of the fraction is then 𝑙 ∗  10^( − 𝑝 ∗  𝑔). We name the program decimalg and we 
check CAS (or we modify the program decimal): 
 
(f,p,g)->BEGIN 

LOCAL n,d,l,f1,j,ds; 

f1:=floor(f); 

l:=f1; 

n:=numer(f-f1); 

d:=denom(f-f1); 

FOR j FROM 1 TO p DO 

ds,n:=iquorem(10^g*n,d); 

l:=l*10^g+ds; 

END; 

RETURN l; 

END; 

 

We enter in the CAS: 
decimalg(355/311,8,5) 

We get: 
11414790996784565916398713826366559485530 

We enter in the CAS: 
decimalg(355/113,8,5) 

We get: 
31415929203539823008849557522123893805309 

29.5 29.5 Newton method and Heron algorithm 

29.5.1 29.5.1 Newton method 

Be 𝑓 two times differentiable, having one and only one zero 𝑟 in the interval [𝑎;  𝑏]. 
Let us additionally assume that 𝑓’ and 𝑓’’ has a constant sign on [𝑎;  𝑏]. The Newton method consist in 

fit 𝑟 by the abscissa 𝑥1 of the point common to 𝑂𝑥 and the tangent at the point 𝑀0 to the graph of 𝑓. If 

𝑀0 has for coordinates (𝑥0, 𝑓(𝑥0))(𝑥0 ∈  [𝑎;  𝑏]), the tangent in 𝑀0 has for equation: 

𝑦 =  𝑓(𝑥0) +  𝑓’(𝑥0) ∗  (𝑥 – 𝑥0) and then we have: 

 

𝑥1 =  𝑥0 −
𝑓(𝑥0)

𝑓(𝑥0)
 

 
We can then reiterate the process, and we get a sequence 𝑥_𝑛 converging to 𝑟 

– either by greater values, if 𝑓’ ∗  𝑓’’ >  0 on [𝑎; 𝑏] 
(i.e. if 𝑓’(𝑟)  >  0 and if 𝑓 is convex (𝑓’’ >  0 on [𝑎;  𝑏]) 
or 
if 𝑓’(𝑟)  <  0 and if 𝑓 is concave (𝑓’’ <  0 𝑜𝑛 [𝑎;  𝑏])) 

– either by lower values, if 𝑓’ ∗  𝑓’’ <  0 on [𝑎; 𝑏] 
(i.e. if 𝑓’(𝑟)  <  0 and if 𝑓 is convex (𝑓’’ >  0 on [𝑎;  𝑏]) 
or 
if 𝑓’(𝑟)  >  0 and if 𝑓 is concave (𝑓’’ <  0 on [𝑎;  𝑏])). 
 

The Heron algorithm is a specific case of the application of the Newton method to look for the 

approximate values of √a for a integer. 
In this case 

√a is a zero of 𝑓(𝑥) =  𝑥2 −  𝑎 and 𝑔(𝑥)  =  𝑓’(𝑥)  =  2𝑥 then the sequence of the iterations is supplied 
by: 

𝑥𝑛 + 1 =  𝑥𝑛–
𝑥𝑛
2–  𝑎

2𝑥𝑛
= 
1

2
(𝑥𝑛–

𝑎

𝑥𝑛
) 
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29.5.2 Newton algorithm 

The function newton_rac returns the approximate value, at the nearest 𝑝, of the root of 𝑓(𝑥)  =  0 , 
starting the iteration with 𝑥0. 
We notice that the parameter 𝑓 is a function, and thus, that its derivative is the function 
g:=function_diff(f). 
We look for a approximate value, so we must write: 
x0:=evalf(x0) because if we do not put evalf, the calculations of the iteration we be done in the 
exact way, and hence, will be soon complicated. 
We check at the beginning if the sequence of 𝑥𝑖(𝑖 =  0. . 𝑛) is increasing or decreasing, starting from 

𝑛 =  1, by comparing at the beginning 𝑥1 and 𝑥2. We name the program newton_rac and we check 
CAS. 
The program newton_rac gives a zero of f close to x0 at the nearest p. 
 
We enter the program: 
 
(f,x0,p)->BEGIN 

LOCAL x1,h,g; 

g:=function_diff(f) 

x0:=evalf(x0); 

x0:=x0-f(x0)/g(x0); 

x1:=x0-f(x0)/g(x0); 

IF (x1>x0) THEN 

 h:=p; 

ELSE 

 h:=-p; 

END; 

WHILE (f(x1)*f(x1+h)>0) DO 

 x1:=x1-f(x1)/g(x1); 

END; 

RETURN x1; 

END; 

 
We enter in the CAS: 
f(x):=cos(x)-x 

newtonrac(f,0.4,1e-10) 

We get: 
0.739085133215 

We enter in the CAS: 
cos(0.739085133215)-0.739085133215 

We get: 
2.70006239589e-13 

29.5.3 Heron algorithm 

We name the program heron and we check CAS. 
The program heron gives a fraction approaching sqrt(a) at the nearest p when x0 is close to 
sqrt(a). 
 
We enter: 
 
(a,x0,p)->BEGIN 

LOCAL b; 

b:=x0-p; 

WHILE b^2>a DO 

 x0:=(x0+a/x0)/2; 

 b:=x0-p; 

END; 

RETURN x0; 

END; 

 
We enter in the CAS: 
heron(2,3/2,10^-10) 

We get: 
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66587/470832 

We enter in the CAS: 
decimalg(66587/470832,2,5) 

We get: 
14142135623 

We enter in the CAS: 
f:=heron(2,2,10^-40) 

We get: 
1572584048032918633353217/1111984844349868137938112 

We enter in the CAS: 
r2:=decimalg(f,8,5) 

We get: 
14142135623730950488016887242096980785696 

and √2 ≃  r2 ∗  10−40 
The library of long floating point numbers is not implemented in the HP Prime. 
We use the CAS to check. 
We enter in CAS: 
evalf(r2*10^-40,41) 

We get: 
1.4142135623730950488016887242096980785696 

We enter in CAS: 
evalf(sqrt(2),41) 

Because the CAS rounds off the last decimal place, we get: 
14142135623730950488016887242096980785697 
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Chapter 30 Example of programs 

 
 

30.1 GCD and Bezout identity from Home 

30.1.1 GCD 

We use Euclid’s algorithm. 
 
We enter: 
 
EXPORT GCD(A,B) 

BEGIN 

LOCAL R; 

WHILE B<>0 DO 

 R:=A MOD B; 

 A:=B; 

 B:=R; 

END; 

RETURN A; 

END; 

 
Or else we use the function irem which returns the remainder of the Euclidean division: 
 
EXPORT GCD(A,B) 

BEGIN 

LOCAL R; 

WHILE B<>0 DO 

 R:=CAS.irem(A,B); 

 A:=B; 

 B:=R; 

 END; 

 RETURN A; 

END; 

 
We enter: 
GCD(45,25) 

We get: 
5 

30.1.2 Bezout identity for A and B 

We use Euclid’s algorithm and the variables U,V,R which will vary so that at the step 𝑘 we have 𝐴 ∗
 𝑈𝑘 +  𝐵 ∗  𝑉𝑘 = 𝑅𝑘 . 

Thus, when 𝑅𝑝 is the GCD of 𝐴 and 𝐵, we will have: 

𝐴 ∗  𝑈𝑝 +  𝐵 ∗  𝑉𝑝 = GCD(𝐴, 𝐵). 

At the beginning, we have: 
(1) 𝐴 =  𝑈1 ∗  𝐴 +  𝑉1 ∗  𝐵 (𝑅1 =  𝐴, 𝑈1 =  1, 𝑉1 =  0) 
(2) 𝐵 =  𝑈2 ∗  𝐴 +  𝑉2 ∗  𝐵 (𝑅2 =  𝐵, 𝑈2 =  0, 𝑉2 =  1) 
We want to get: 
𝑅3 = 𝑈3 ∗  𝐴 +  𝑉3 ∗  𝐵 

since 𝑅3 =  𝐴 −  𝐵 ∗  𝑄3 (with 𝑄3 integer quotient of 𝐴 =  𝑅1 by 𝐵 =  𝑅2) we find, by doing (1)– 𝑄3 ∗
 (2): 

𝑈3 = 𝑈1– 𝑄3 ∗  𝑈2 and 𝑉3 = 𝑉1– 𝑄3 ∗  𝑉2 and thus 𝑅3 = 𝑈3 ∗  𝐴 +  𝑉3 ∗  𝐵 and at each step we will have 

𝑅𝑘 = 𝑈𝑘 ∗  𝐴 + 𝑉𝑘 ∗  𝐵 
with the relations: 
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𝑈𝑘 = 𝑈𝑘−2 –  𝑄𝑘 ∗  𝑈𝑘−1 and 𝑉𝑘 = 𝑉𝑘−2 – 𝑄𝑘 ∗  𝑉𝑘−1. 
To write the program, we need 3 lists 𝐿1, 𝐿2, 𝐿3 which will be 3 successive steps of [𝑈𝑘 , 𝑉𝑘 , 𝑅𝑘]. 
At the beginning: 
𝐿1 =  1, 0, 𝑅1 (𝑅1 =  𝐴) 
𝐿2: =  0, 1, 𝑅2 (𝑅2 =  𝐵) 
We calculate 𝐿3: 
𝐿3 is obtained from 𝐿1 and 𝐿2 and if 𝑄3, 𝑅3:=iquorem(R1,R2), on 𝑅3 =  𝑅1 −  𝑅2 ∗  𝑄3 and then 

𝐿3 =  𝐿1 −  𝑄3 ∗  𝐿2. 

Then, 𝑅1 takes the value of 𝑅2, 𝐿1 the value of 𝐿2, 𝑅2 the value of 𝑅3, 𝐿2 the value of 𝐿3, etc., ... 
We stop when 𝑅2 =  0 and then 𝑅1 = GCD(𝐴, 𝐵). 
 
We enter: 
 
EXPORT BEZOUT(A,B) 

BEGIN 

LOCAL L1,L2,L3,Q3,R1,R2,R3; 

R1:=A; 

R2:=B; 

L1:={1,0,R1}; 

L2:={0,1,R2}; 

WHILE B<>0 DO 

 Q3,R3:=CAS.iquorem(R1,R2); 

 R1:=R2; 

 R2:=R3; 

 L3:=L1-Q3*L2; 

 L1:=L2; 

 L2:=L3; 

END; 

RETURN L1; 

END; 

 
We can reduce the number of variables: 
 
EXPORT BEZOUT(A,B) 

BEGIN 

LOCAL L1,L2,L3,Q; 

L1:={1,0,A}; 

L2:={0,1,B}; 

WHILE L2(3)<>0 DO 

 //Q:=iquo(L1(3),L2(3)); 

 Q:=(L1(3)-L1(3) MOD L2(3))/L2(3) 

 L3:=L1-Q*L2; 

 L1:=L2; 

 L2:=L3; 

END; 

RETURN L1; 

END; 

 
We enter: 
BEZOUT(45,10) 

We get: 
1,-4,5 

Which means that 1 ∗ 45 − 4 ∗ 10 = 5 = GCD(45,25) 
We enter: 
BEZOUT(45,25) 

We get: 
-1,2,5 

Which means that −1 ∗ 45 + 2 ∗ 25 = 5 = GCD(45,25) 
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30.2 GCD and Bezout identity from the CAS 

30.2.1 GCD with the CAS with no program 

We can apply Euclid’s algorithm by using the key Enter of the calculator. We enter on the entry line: 
a:=72;b:=33; then we press Enter 
Then, we enter on the entry line: 
r:=irem(a,b);a:=b;b:=r; then we press Enter several times until the last value is null. 
When the last value is null,the GCD of a and b is the value 3 above the 0. 
We can check this thanks to the existing gcd command: 
gcd(72,33) returns 3. 

30.2.2 GCD with a CAS program 

We use the function irem to write the Euclid’s algorithm. 
We check CAS, and we name the program GCD, and we enter: 
 
(a,b)-> 

BEGIN 

LOCAL r; 

WHILE b<>0 DO 

 r:=irem(a,b); 

 a:=b; 

 b:=r; 

END; 

RETURN(a); 

END; 

 
We enter: 
GCD(45,25) 

We get: 
5 

30.2.3 Bezout identity with the CAS, with no program 

We can apply the algorithm giving the coefficients of the Bezout identity by using the Enter key of the 
calculator. We enter on the entry line: 
a:=72;b:=33;l1:=[1,0,a];l2:=[0,1,b] then we press Enter 
Then, we enter on the entry line: 
q:=iquo(l1(3),l2(3));l3:=l1-q*l2;l1:=l2;l2:=l3; then we press Enter several times 
until the last value of the last list is null. 
When this last value is null, the Bezout identity [-5,11,3] is the last list above the 0: this means that 
-5*72+11*33=3]. 
We can check this thanks to the existing iegcd command, giving the Bezout identity:  
iegcd(72,33) returns [-5,11,3]. 

30.2.4 Bezout identity with a CAS program 

We use Euclid’s algorithm and the variables u,v,r which will vary so that at te step 𝑘 we have 𝑎 ∗
 𝑢_𝑘 +  𝑏 ∗  𝑣_𝑘 =  𝑟_𝑘. 
Thus, when rp is the GCD of 𝑎 and 𝑏, we will have: 

𝑎 ∗  𝑢_𝑝 +  𝑏 ∗  𝑣_𝑝 = 𝐺𝐶𝐷(𝑎, 𝑏). 
To write the program, we need 3 lists 𝐿1, 𝐿2, 𝐿3 which will be 3 successive steps of [𝑢_𝑘, 𝑣_𝑘, 𝑟_𝑘]. 
At the beginning: 

𝐿1 =  1, 0, 𝑟1 (𝑟1 =  𝑎) 
𝐿2:=  0, 1, 𝑟2 (𝑟2 =  𝑏) 

We calculate 𝐿3: 
𝐿3 is obtained from 𝐿1 and 𝐿2 and if q3, r3:=iquorem(r1, r2), we have: 𝑟3 =  𝑟1 −  𝑟2 ∗  𝑞3 

and then 𝐿3 =  𝐿1 −  𝑞3 ∗  𝐿2. 

Then, 𝑟1 takes the value of 𝑟2, 𝐿1 the value of 𝐿2, 𝑟2 takes the value of 𝑟3, 𝐿2 the value of 𝐿3, etc., ... 
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We stop when 𝑒2 =  0 and then 𝑟1 = 𝐺𝐶𝐷(𝑎, 𝑏). 
 
We enter: 
 
(a,b)->BEGIN 

LOCAL l1,l2,l3,q; 

l1:=[1,0,a]; 

l2:=[0,1,b]; 

WHILE l2(3)<>0 DO 

 q:=iquo(l1(3),l2(3)); 

 l3:=l1-q*l2; 

 l1:=l2; 

 l2:=l3; 

END; 

RETURN l1; 

END; 

 

We enter: 
BEZOUT(45,10) 

We get: 
1,-4,5 

Which means that 1*45-4*10=5=GCD(45,25) 
We enter: 
BEZOUT(45,25) 

We get: 
-1,2,5 

Which means that −1 ∗ 45 + 2 ∗ 25 = 5 = GCD(45,25) 
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