
χCAS(io)

Bernard.Parisse@univ-grenoble-alpes.fr

2018, 2022

Contents
1 Introduction and installation 2

1.1 Calculator . 3
1.2 Emulator . 3

2 First steps 3

3 Common CAS commands 4
3.1 Expand and factor . 4
3.2 Calculus . 5
3.3 Solvers . 7
3.4 Arithmetic . 8

3.4.1 Integers . 8
3.4.2 Polynomials . 10

3.5 Linear algebra, vectors, matrices . 12

4 Probabilities and statistics 14
4.1 Random numbers . 14
4.2 Probabilities . 14
4.3 1-d statistics . 15
4.4 2-d statistics . 16

5 Graphics 16

6 Programs 20

7 The 2d editor. 23

8 Managing sessions 24
8.1 Modifying a session . 24
8.2 Variables . 25
8.3 Archiving and exchanging with Xcas 25

1

9 Keyboard shortcuts. 25
9.1 KhiCAS 50 and 90 versions (2 files) 25
9.2 KhiCAS short version (1 file)) . 27

10 Remarks 28

11 More complete version for the CG50 28
11.1 MicroPython 1.12 . 28
11.2 3d and 4d graphs . 29
11.3 Interactive geometry application . 29

11.3.1 Modes, graphical and symbolic view 29
11.3.2 Cursors . 31
11.3.3 Measures and legends . 32
11.3.4 Traces . 32

11.4 CAS spreadsheet... 33

12 Copyright and Thanks to. 33

13 Developer infos. 34
13.1 Debugger . 34
13.2 Giac . 35

Abstract

This document explains how to run efficiently χCAS on some Casio calcula-
tors (CG10, CG20, CG50 and Fx-9750GIII, Fx-9860GIII). χCAS is a port of the
Giac/Xcas computer algebra system (CAS) for these calculators.

This document is interactive, you can modify and run commands by clicking
in the ok button or by hitting Enter.

1 Introduction and installation
χCAS is a port of the Giac/Xcas computer algebra system (CAS) for the following
Casio calculators : CG10, CG20, CG50 and Fx-9750GIII, Fx-9860GIII. Beware:

• CAS are not allowed during exams in some countries, it is the user respon-
sability to check the rules before running χCAS in an exam. The authors
shall not be held responsible for misuse of χCAS in exam conditions.

• χCAS is not compatible with exam mode. In countries where CAS calculators
are allowed, there is no reason to forbid χCAS. If many teachers send a mail to
Casio asking for χCAS compatibility, we increase the chances that Casio sign
the addin and make it compatible with exam mode.

Two versions are available for the CG50, a light version that is the same as on CG10
and CG20 (in one file), and a more complete version in two files. The more complete
version has more Xcas commands (like geometry commands), a 3d rendering engine,
some additional apps (like a formal spreadsheet or a financial application) and a port

2

of MicroPython 1.12 with more modules than the Casio port of MicroPython 1.09, cf.
section 11.

1.1 Calculator
To install or update χCAS, get on your computer

• for the FXCG50 the files khicas50.ac2 and khicas50.g3a.

• for the FXCG10 and 20 (works also on the FXCG50 but is less complete) khi-
casen.g3a

• for the FX-9750GIII, Fx-9860GIII, the file khicasen.g1a

Connect the USB cable of the calculator, type F1 for USB key connection and copy
the file(s) khicas50.g3a and khicas50.ac2 or khicasen.g3a or khicasen.g1a)
on the calculator USB-“key” then disconnect the calculator-key from your computer
and wait a few seconds.

1.2 Emulator
If you test on the emulator, (PC, Mac), from the main menu of the calculator (MENU),
go to Memory then F3 (Import/Export), then F1 (Import files), select the file khicasen.g3a
(or khicasen.g1a), type F1 to save to the calculator root directory, confirm with F1
if you upgrade.

Be patient, the transfert will take several minutes. Once the transfert is finished,
you should see the icon of Xcas in the main menu (a snowflake on the CG10/20/50).

If you want to run the complete version for the CG50, replace the file above by
these 2 files khicas50.882 and emucas50.g3a.

Note that χCAS is not compatible with the simulator distributed by Casio on USB
keys in some countries, you must run the emulator. Once installed, the Windows ver-
sion of the emulator can be run under Linux with wine by the following command
wine "C:\Program Files (x86)\CASIO\fx-CG Manager PLUS Subscription for fx-CG50series\fx-CG_Manager_PLUS_Subscription_for_fx-CG50series.exe" /n"fx-CG Manager PLUS Subscription for fx-CG50series" &

2 First steps
From the main menu (MENU), move the cursor to the Xcas icon and hit EXE. This
opens the “shell” (or history) where you can write most Xcas commands.

If you are running the 2 files version and see the message “Unable to load ram
part”, upgrade your calculator OS (version 3.30 or greater).

For example, type 1/2+1/6 then EXE, you should see the result 2/3 displayed
below.

Hint : If you can not find a character on the calculator keyboard, press shift INS.
You can copy a level from the history of commands by hitting the up and down

arrow keys (once or more) and EXE. Then you can modify the command and run it
with EXE. For example, up arrow twice, EXE, replace 1/6 by 1/3 and hit EXE.

3

The last result is stored in ans(), hit the Ans calculator key (shift (-)) to get it.
It is recommended to store the result in a variable if you want to reuse a result later.
There are two ways to store a value in a variable

• right-store with => using the→ key, for example 2=>A stores 2 in variable A.
Now, every time you write A in a computation, it will be replaced by 2.

• left-store with := (shift→), for example A:=2 does the same as 2=>A.

The most popular Xcas commands are available from F1 (algebra) and F2 (cal-
culus), from various shortcuts (cf. section 9), or from the cmds (F4) or shift CAT-
ALOG, where they are shortly explained with an example. Hit F4 (cmds), choose a
submenu, for example Algebra, hit EXE, move the selection to a command, for ex-
ample factor. Now F6 will display a short help with an example. Hit F2 to copy the
example in the commandline. You can run it as is (EXE) or modify it and run it (EXE)
if you want to factor another polynomial.

When a command returns an expression, it is displayed in 2d mode. You can move
with the pad if the expression is larger than the display. Type shift-F3 or ALPHA-F3
to modify the fontsize. Type EXIT to go back to the shell. The 2d view is in fact a 2d
editor that will be explained later.

Now, try to type the command plot(sin(x)). Hint: type F4 (cmd), then select
Graphs.

When a command returns a graph, it will be displayed in a 2d frame. You can
modify the displayed area with + or - (zoom in or out, (-) does a partial zoomout
along Oy), the cursor keys, / (orthonormalisation of the frame), * (autoscale), VAR
or OPTN is a switch to display or hide axis. Type F1 (menu) to modify the graphic
window settings Xmin, Xmax, Ymin, Ymax. Type EXIT to go back to the shell.

The KhiCAS File menu (F6) has an item Clear that will erase the display. This
will not clear the variables, to achieve that type VARS, select the last item (restart)
and confirm with EXE.

Hit MENU to leave χCAS. If you launch another application, the variables and
history will be saved, they will be restored if you come back to χCAS. First time save
is sometimes slow (10 to 20 seconds), next save will run faster.

3 Common CAS commands

3.1 Expand and factor
From F4 commands catalog, select Algebra, or type F1.

• factor : factorization. Shortcut =>* (→ key then *), for example x^4-1=>*

(x− 1) (x+ 1)
(
x2 + 1

)
. Run cfactor to factor over C.

4

• partfrac : expands a polynomial or performs partial fraction expansion over
a fraction. Shortcut =>+ (→ then + key), for example (x+1)^4=>+

x4 + 4x3 + 6x2 + 4x+ 1

or 1/(x^4-1)=>+

1

4 (x− 1)
− 1

4 (x+ 1)
− 1

2 (x2 + 1)
.

• simplify : tries to simplify an expression. Shortcut =>/ (→ key then /), for
example sin(3x)/sin(x)=>/

2 cos (2x) + 1

• ratnormal : rewrite as an irreducible fraction.

3.2 Calculus
From F4 commands catalog, select Calculus, or type F2

• diff : derivative. Shortcut ’ for derivative with respect to x, example

diff(sin(x),x)

cosx

and sin(x)’

cosx

are equivalent. For nth-derivative, add n, for example 3rd derivative diff(sin(x^2),x,3)

−8x3 cos
(
x2
)
− 12x sin

(
x2
)

.

• integrate : antiderivative (1 or 2 or 4 arguments) for example

integrate(sin(x))

− cosx

or integrate(1/(t^4-1),t)

ln |t− 1|
4

− ln |t+ 1|
4

− arctan t

2

for
∫

1
t4−1 dt

Defined integration with 4 arguments, for example integrate(sin(x)^4,x,0,pi)

3

8
π

5

computes
∫ π
0
sin(x)4 dx. For an approximate computation, enter one boundary

as an approx number, for example

integrate(sin(x)^4,x,0.0,pi)

1.1780972451

• limit : limit of an expression. Example limit((cos(x)-1)/x^2,x=0)

−1

2

• tabvar : table of variations of an expression. for example tabvar(x^3-7x+5)
x −∞ “” −

√
21
3 “” 0 “”

√
21
3 “” +∞

y′ =
(
x+

√
21
3

) (
3x−

√
21
)

+∞ “+” 0 “-” −7 “-” 0 “+” +∞
y = x3 − 7x+ 5 −∞ “” 14

√
21+45
9 “” 5 “” −14

√
21+45
9 “” +∞

y′′ −∞ “- ()” −2
√
21 “- ()” 0 “+ ()” 2

√
21 “+ ()” +∞


one can check with the graph plot(x^3-7x+5,x,-4,4)

x

 y

−4 −3 −2 −1 0 1 2 3 4

−5

0

5

10

15

• taylor and series : Taylor expansion or asymptotic serie expansion, for
example

taylor(sin(x),x=0,5)

x− x3

6
+

x5

120
+ x6order_size (x)

Add polynomial if you do not want to have the remainder term.

• sum : discrete summation, for example

sum(k^2,k,1,n)

2 (n+ 1)
3 − 3 (n+ 1)

2
+ n+ 1

6

6

computes
∑n
k=1 k

2,

sum(k^2,k,1,n)=>*

1

6
n (n+ 1) (2n+ 1)

computes the sum and rewrites it factored.

3.3 Solvers
From F4 commands catalog, select Solve.

• solve solves an equation exactly. Takes the variable to solve for as second ar-
gument, unless it is x, for example solve(t^2-1=0,t)

[−1, 1]

.
If exact solving fails, run fsolve for approx solving, either with an iterative
method starting with a guess fsolve(cos(x)=x,x=0.0)

0.739085133215

, or by dichotomy fsolve(cos(x)=x,x=0..1)

[0.739085133215]

.
For complex solutions, run csolve.
It is possible to restrict solutions using assumptions on the variable, for example
assume(m>1)

m

then solve(m^2-4=0,m)

[2]

.

• solve can also solve (simple) polynomial systems, enter a list of equations as
1st argument and a list of variables as 2nd argument, for example intersection of
a circle and a line:

solve([x^2+y^2+2y=3,x+y=1],[x,y])

[[0, 1] , [2,−1]]

7

• Run linsolve to solve linear systems. enter a list of equations as 1st argument
and a list of variables as 2nd argument, example:

linsolve([x+2y=3,x-y=7],[x,y])[
17

3
,−4

3

]
• Run desolve to solve exactly a differential equation. for example, to solve
y′ = 2y, type desolve(y’=2y).
Another example with an initial condition:
desolve([y’=2y,y(0)=1],x,y)
Run odesolve for approx solving or plotode for a graphic representation of
the approx. solution.

• rsolve solves some recurrence relations un+1 = f(un, ...), for example to
solve the arithmetico-geometric recurrence un+1 = 2un + 3, u0 = 1, type:

rsolve(u(n+1)=2*u(n)+3,u(n),u(0)=1)

[4 · 2n − 3]

3.4 Arithmetic
When required, the distinction between integer arithmetic and polynomial arithmetic
is done by a prefix i for integer commands. For example ifactor for integer fac-
torization and factor for polynomial factorization (or cfactor for polynomial fac-
torization over C). Some commands work for integers and polynomials, like gcd and
lcm.

3.4.1 Integers

From F4 catalog, select Arithmetic, Crypto. Shortcut shift S↔D

• iquo(a,b), irem(a,b) quotient and remainder of euclidean division of two
integers.

iquo(23,13),irem(23,13)

1, 10

• isprime(n) checks whether n is prime. This is a probabilisitic test for large
values of n.

isprime(2^64+1)

faux

8

• ifactor(n) factorizes an integer (not too large, since algorithms used are trial
division and Pollard-ρ, there is no space left in memory for quadratic sieve), for
example

ifactor(2^64+1)

67280421310721 · 274177

Shortcut→ then * (=>*)

• gcd(a,b), lcm(a,b) GCD and LCM of two integers or polynomials.

gcd(25,15),lcm(25,15)

5, 75

gcd(x^3-1,x^2-1),lcm(x^3-1,x^2-1)

x− 1,
(
x2 + x+ 1

) (
x2 − 1

)
• iegcd(a,b) returns 3 integers u, v, d such that au + bv = d where d is the

GCD of a et b, |u| < |b| and |v| < |a|.

u,v,d:=iegcd(23,13); 23u+13v

[4,−7, 1] , 1

• ichinrem([a,m],[b,n]) returns (if possible) c such that c = a (mod m)
and c = b (mod n) (if m are n coprime, c exists).

c,n:=ichinrem([1,23],[2,13]); irem(c,23);
irem(c,13)

[93, 299] , 1, 2

• powmod(a,n,m) returns an (mod m) computed by the fast modular power-
ing algorithm

powmod(7,22,23)

1

• asc converts a string to a list of ASCII code, char converts back a list to a
string. These commands may be used to easily write cryptographic algorithms
with string messages.

9

3.4.2 Polynomials

From F4 catalog, select Polynomials. The default variable is x, otherwise you can
specify it as last optional argument. For example degree(x^2*y) or degree(x^2*y,x)
return 2, degree(x^2*y,y) returns 1.

• coeff(P,n) coefficient of xn in P , lcoeff(P) leading coefficient of P , for
example

P:=x^3+3x; coeff(P,1); lcoeff(P)

x3 + 3x, 3, 1

• degre(P) degree of polynomial P

degree(x^3)

3

• quo(P,Q), rem(P,Q) quotient and remainder of euclidean division of P by Q

P:=x^3+7x-5; Q:=x^2+x; quo(P,Q); rem(P,Q)

x3 + 7x− 5, x2 + x, x− 1, 8x− 5

• proot(P) : approx. roots of P (all roots, real and complex)

proot(x^5+x+1)

[−0.754877666247,−0.5− 0.866025403784i,−0.5 + 0.866025403784i, 0.877438833123− 0.74486176662i, 0.877438833123 + 0.74486176662i]

Graphic representation

point(proot(x^5+x+1))

x

 y

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

10

• interp(X,Y) : for two lists of the same size, returns the interpolating polyno-
mial P such that P (Xi) = Yi.

X,Y:=[0,1,2,3],[1,-3,-2,0]; P:=interp(X,Y)=>+

[0, 1, 2, 3] , [1,−3,−2, 0] , −4x
3 + 27x2 − 47x+ 6

6

Graphic representation

scatterplot(X,Y); plot(P,x,-1,4)

x

 y

−1 0 1 2 3 4

−2

0

2

4

6

• resultant(P,Q) : resultant of polynomials P and Q

P:=x^3+7x-5; Q:=x^2+x; resultant(P,Q)

x3 + 7x− 5, x2 + x, 65

• hermite(x,n) : n-th Hermite polynomial (orthogonal for the density e−x
2

dx
on R)

• laguerre(x,n,a) : n-th Laguerre polynomial

• legendre(x,n) : n-th Legendre polynomial (orthogonal for the density dx
on [−1, 1])

• tchebyshev1(n) and tchebyshev2(n) Tchebyshev polynomials of 1st
and 2nd kind defined by :

Tn(cos(x)) = cos(nx), Un(cos(x)) sin(x) = sin((n+ 1)x)

11

3.5 Linear algebra, vectors, matrices
Xcas does not make distinction between vectors and lists. For example,

v:=[1,2]; w:=[3,4]

defines 2 vectors v and w, then dot will compute the scalar product of v and w:
dot(v,w)

11

A matrix is a list of lists of the same size. You can enter a matrix element by
element using the matrix editor (shift-MATR EXE or F6 0). Enter a new variable name
to create a new matrix or the name of an existing variable to edit a matrix. The , key
may be used to insert a line or column, and the DEL key erases the line or column of
the selection (press UNDO if you want to go one step back). For small matrices, it is
also convenient to enter them directly in the commandline, for example to define

A =

(
1 2
3 4

)
A:=[[1,2],[3,4]]

or [[1,2],[3,4]]=>A [
1 2
3 4

]
It is recommended to store matrices in variables!

If a matrix is defined by a formula, then it’s better to use the matrix command
(shift-MATR EXE AC), for example:

matrix(2,2,(j,k)->1/(j+k+1))(
1 1

2
1
2

1
3

)
returns the matrix where coefficient line j and column k is 1

j+k+1 (beware, indices
begin at 0).

Run idn(n) to get the identity matrix of order n and ranm(n,m,law,[parameter])
to get a matrix with random coefficients with dimensions n,m. for example

U:=ranm(4,4,uniformd,0,1)
0.930321054533 0.0115270754322 0.0881637986749 0.536643749103
0.360248812009 0.630750506185 0.0543795586564 0.819389336277
0.251521021593 0.0686232172884 0.178203014191 0.346399624366
0.852082391735 0.614078260958 0.714221911505 0.784336711746


N:=ranm(4,4,normald,0,1)
−1.15067689004 −0.57241508091 −0.751538700822 0.989770363266
−0.00575141421859 0.902209004052 0.455987131429 −1.85967614286
−0.243668831329 −1.61539092837 0.558232005133 −0.159613435564
1.35165685556 −0.16425534864 1.27150836747 0.245690624229


12

For basic arithmetic on matrices, use keyboard operators (+ - *, inverse). Other-
wise, open catalog and select Matrices

• eigenvals(A)

√
33 + 5

2
,
−
√
33 + 5

2

eigenvects(A) [√
33− 3 −

√
33− 3

6 6

]
eigenvalues and eigenvectors of matrix A.

• P,D:=jordan(A)[√
33− 3 −

√
33− 3

6 6

]
,

[√
33+5
2 0

0 −
√
33+5
2

]

finds the Jordan normal form of matrix A, returns matrices P and D such that
P−1AP = D, with D upper triangular (diagonal if A is diagonalizable)

• Ak:=matpow(A,k) 1
66

(√
33− 3

) (√
33+5
2

)k√
33− 1

66

(
−
√
33− 3

) (−√33+5
2

)k√
33 1

132

(√
33− 3

) (√
33+5
2

)k (√
33 + 11

)
+ 1

132

(
−
√
33− 3

) (−√33+5
2

)k (
−
√
33 + 11

)
6
66

(√
33+5
2

)k√
33− 6

66

(
−
√
33+5
2

)k√
33 6

132

(√
33+5
2

)k (√
33 + 11

)
+ 6

132

(
−
√
33+5
2

)k (
−
√
33 + 11

)


computes matrix A to the k-th power, where k is symbolic.

• rref: row reduction to echelon form

• lu: LU factorization of matrix A, returns a permutation P and two matrices L
(lower) and U (upper) such that PA = LU . The result of

P,L,U:=lu(A)

[0, 1] ,

[
1 0
3 1

]
,

[
1 2
0 −2

]
may be passed as an argument to the command linsolve(P,L,U,v)[

0,
1

2

]
to solve a system Ax = b by solving two triangular systems (in O(n2) instead
of O(n3)).

• qr QR factorization of matrix A, Q is orthogonal and R upper triangular, A =
QR.

13

• svd(A) singular value decomposition of matrixA returns U orthogonal, S vec-
tor of singular values, Q orthogonal such that A=U*diag(S)*tran(Q).
The ratio of the largest and the smallest singular value of S is the condition
number of A relative to the Euclidean norm.

4 Probabilities and statistics

4.1 Random numbers
From F4 catalog, select Probabilities then rand()

0.833197717089

(real in [0, 1)) or
n:=6:; randint(n)

“Done”, 4

(integer between 1 and n). Other commands with prefix rand are available, fol-
lowed by the name of the law, for example randbinomial(n,p) returns a random
integer according to binomial law of parameters n, p. For a random vector or matrix,
run ranv or ranm (from Alglin, Matrice submenu), for example for a vector
with 10 random reals according to normal law (mean 0, stddev 1), type

ranv(10,normald,0,1)

[1.09936454094,−2.28261976775, 0.652261860753,−0.690651824321,−0.323190436625, 0.157460267236,−0.324617014178,−0.361127118455,−0.018325111754, 1.11875485898]

4.2 Probabilities
From F4 catalog, select Probabilities (8). There you will find a few distribu-
tion laws: binomial, normald, exponentiald and uniformd. Other distribu-
tion must be keyed in: chisquared, geometric, multinomial, studentd,
fisherd, poisson.

To get the cumulated distribution function, enter the law name then the _cdf suffix
(shortcut: select cdf in the catalog at the end and press F1). Inverse cumulated distri-
bution function follows the same principle with _icdf suffix (shortcut: select cdf in
the catalog and press F2).

Example : find the centered interval I for the normal law of mean 5000, standard
deviation 200, such that the probability to be outside I is 5%

M:=5000; S:=200; normald_icdf(M,S,0.025);normald_icdf
(M,S,0.975)

5000, 200, 4608.00720309, 5391.99279691

14

4.3 1-d statistics
The statistic functions are taking lists as arguments,

l:=[9,11,6,13,17,10]

From F4 catalog, select Statistics:

• mean(l)

11

: arithmetic mean of a list

• stddev(l)

√
105

3

: standard deviation of a list.
Run

stddevp(l)

√
14

to get an unbiaised estimate of the standard deviation of a population from a
sample l

• median(l)

10.0

, quartile1(l)

9.0

,

quartile3(l)

13.0

returns respectivly the median, first and third quartile of a list.

For 1-d statistics with frequencies, replace l by two lists of the same length, the first
list being the values of the serie, the second list the frequencies. For graphic represen-
tations, open catalog, Graphic and select histogram or barplot.

15

4.4 2-d statistics
From F4 catalog, select Statistics:

• correlation(X,Y): correlation of two lists X and Y of the same length.

• covariance(X,Y):: covariance of two lists X and Y of the same length.

• regression computations: run commands with suffix _regression(X,Y), for
example linear_regression(X,Y) returns coefficients m, p of the linear
regression line y = mx+ p.

• linear_regression_plot(X,Y) and all commands of suffix _regression_plot
will display the line (or curve) of the regression. These commands will also print
the R2 coefficient that give information on the quality of adjustment (R2 near 1
is good).

5 Graphics
From F4 catalog, select Graphics (or type the plot shortcut F3) and choose a graphic
command. If you want to have more than one curve on the same graphic, enter several
commands with ; as separator.

• plot(f(x),x=a..b) plot expression f(x) for x ∈ [a, b]. Discretization op-
tion: xstep=, for example plot(x^2,x=-4..4,xstep=1)

x

 y

−4 −3 −2 −1 0 1 2 3 4

0

2

4

6

8

10

12

14

16

Default is 384 evaluations per plot (one per horizontal pixel).

• plotseq(f(x),x=[u0,a,b]) webplot for a recurrent sequence un+1 =
f(un) of first term u0, for example if un+1 =

√
2 + un, u0 = 6, with a plot on

[0, 7]

plotseq(sqrt(2+x),x=[6,0,7])

16

x

 y

0 1 2 3 4 5 6 7

−0.5

0

0.5

1

1.5

2

2.5

3

• plotparam([x(t),y(t)],t=tm..tM) parametric plot (x(t), y(t)) for t ∈
[tm, tM]. Discretization option: tstep=. Example

plotparam([sin(2t),cos(3t)],t,0,2*pi)

x

 y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

• plotpolar(r(theta),theta=a..b) polar plot of r(θ) for θ ∈ [a, b], for
example

plotpolar(sin(3*theta),theta,0,2*pi)

x

 y

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

17

• plotlist(l): plot a list l, i.e. draws a polygonal line with vertices (i, li)
(index i starts at 0).
plotlist([X1,Y1],[X2,Y2],...) polygonal line with vertices the points
of coordinates (Xi, Yi)

• scatterplot(X,Y), polygonscatterplot(X,Y) for two lists X,Y of
the same size, draws the points or a polygonal line of vertices (Xi, Yi)

• histogram(l,class_min,class_size) plots the histogram of data in
l, class size class_size, first class starts at class_min. Example: check
the random generator quality

l:=ranv(500,normald,0,1); histogram(l,-4,0.25
); plot(normald(x),x,-4,4)

−4 −3 −2 −1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

• plotcontour(f(x,y),[x=xmin..xmax,y=ymin..ymax],[l0,l1,...])
plot implicit curves f(x, y) = l0, f(x, y) = l1,

• plotfield(f(t,y),[t=tmin..tmax,y=ymin..ymax]) plot the field
of tangents for the differential equation y′ = f(t, y). Add the optional last pa-
rameter ,plotode=[t0,y0] to plot simultaneously the solution with initial
condition y(t0) = y0. Example y′ = sin(ty) for t ∈ [−3, 3] and y ∈ [−2, 2]

plotfield(sin(t*y),[t=-3..3,y=-3..3],plotode=
[0,1])

18

x

 y

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

N.B.: plotode may be used outside of plotfield.

• For simultaneous plots, write commands separated by ;

If a command returns an arc of curve, the trace mode is active by default on the addin
in 2 parts for the FXCG50 or on the addin for the monochrom model. In this mode,
typing the left or right key will move a pointer on the active arc of curve, and display
the pointer coordinates (and the parameter value for parametric curves), and a tangent
vector (speed). If there are several curves, press up or down to change active curve.
Type F2 to get info on the active curve, then EXE to see a table of value.

From F1 menu, if you select the curve study item (shortcut x, θ, t key), you can add
a normal vector pointing to the center of curvature (F4), and/or the osculating circle
and radius of curvature. From the curve study menu, you can also move the pointer
to a location, or to a remarkable point: root, horizontal or vertical tangent, inflexion
point, intersection with another curve arc (limited to intersection of function graphs on
monochrom Casio). You can also compute an arc length or the area under the curve
between pointer and mark.

When a curve is active, the variables X0,X1,X2,Y0,Y1,Y2 are set with the
expressions of position, speed and acceleration. When you search a root, horizontal
tangent, inflexion, arc length or area under curve, variables are set with the last value.

For display options, press the OPTN key:

• display=color color option: select a color then press F2, for example

plot(sin(x),display=red)

19

x

 y

−4 −2 0 2 4

−1

−0.5

0

0.5

1

• display=line_width_2 to display=line_width_8: change segments
width (including inside polygonal line used to plot a curve). Simultaneous dis-
play options should be added with +. For example display=red+line_width_2

• Circles and rectangles with edges parallel to the coordinate axis may be filled
with display=filled (this attribute might be added to other attributes)

• If you want to define the display window (overwriting the autoscale computa-
tion), select gl_x or/and gl_y and add an x or y interval, for example

gl_x=-2..2;gl_y=-1..4;plot(exp(x))

x

 y

−1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

Note that gl_ commands must preced the plotting command.

• If you want to remove axes, select axes and press F2 (axes=0). Like gl_
commands, axes=0 must preced the plotting command. Axes can be removed
interactively when the graph screen is displayed by pressing SIN.

6 Programs
You can program either with Xcas-like syntax (English or French) or with Python-like
syntax.

20

Example : function defined by an algebraic expression nom_fonction(parametres):=expression
for example simple confidence interval for a frequency p in a sample of size N

F(P,N):=[P-1/sqrt(N),P+1/sqrt(N)]

(P,N) 7→
[
P − 1√

N
P + 1√

N

]
Test F(0.4,30)

[0.217425814165, 0.582574185835]

Second example : more precise confidence interval for a frequency p in a sample
of size N :

f(P,N):=[P-1.96*sqrt(P*(1-P)/N),P+1.96*sqrt
(P*(1-P)/N)]

(P,N) 7→
[
P − 1.96

√
P 1−P

N P + 1.96
√
P 1−P

N

]
To avoid computing twice the same quantity, one can insert a local variable. The com-
mandline is not well adapted to write these kinds of functions. For non algebraic func-
tions, it is best to run the program editor. Press F6, select Script Editor, clear the editor
if it is not empty (F6 Clear) and type with the help of test (F1), loop (F2) for program-
ming structures the following program, in Xcas syntax:

function f(P,N) local D; D:=1.96*sqrt
(P*(1-P)/N); return [P-D,P+D]; ffunction;

(P,N) 7→


{ local D;

D:=1.96*sqrt(P*(1-P)/N);
return([P-D,P+D]);

}


or in Python syntax:

def f(P,N): D=1.96*sqrt(P*(1-P)/N) return
[P-D,P+D]

“Done”

Type EXE to check the syntax. Once the program is correct, save it (F6 2), then type
EXIT. Now you can call your program from the commandline like this
f(0.5,30)

Third example : a loop printing integer squares from 1 to n in Python syntax. Check
that Python syntax is enabled in the F6 or shift-SETUP menu, if it is not checked, check
it. Open F6 Script Editor, if there is some old script source, clear it (F6 Clear). Select
f(x):= from F2 (or from F4, Program, function def), you should get def f(x):.

21

Replace x by n (press F5 to lock the keyboard in alpha lowercase), move to the end
of the line and press shift-EXE to input a newline. Type Shift-PRGM then 3 for,
then F5 J space alpha, then Shift-PRGM then 6 in range(a,b). Type 1,n+1)
then F1 (:). Type shift-EXE to insert a newline then Alpha SPACE, F4 (Cmds), EXE
(1 All), P, R select print with the cursor then type EXE, type j,j^2) then EXE.

def f(n):
for j in range(1,n+1):

print(j,j^2)

Inside Xcas ^ means power, ** is also accepted like in Python.
Now, type EXE (or F6, select 1. Check syntax). If syntax is correct, you will

see Success in the status line. Otherwise, the first error line number and token will
be displayed and cursor will be positionned at the line where the error was detected.
Note that the error may be before this line but it was only detected later. Note also that
if you are using Python syntax compatibility, programming structures are translated
into Xcas, errors are displayed after translation, therefore you might see token errors
like end that were added by the translator.

If the program is correct, you can save it with the F6 menu (save or save as). You
can run it from the commandline by pressing EXIT then for example f(10) should
display all squares from 1 to 10.

The turtle is a nice way to learn programming. The turtle is a small robot that you
can move, it handles a pen that marks its path. Type F6, Script Editor, then F6 Clear.
Type shift-QUIT select efface which means clear the screen. You can access to the
turtle commands using shift-QUIT (move the cursor to a command and press F6 for
help). For example try avance (forward). Checking the syntax (EXE) will display
the turtle window moves. You can enter several moves in your script, and organize
them inside tests, loops and functions. For example:

function square(n)
repete(4,avance n,tourne_gauche);

ffunction:;

efface;
for n from 1 to 10 do

square(10*n);
od;

Another example of non algebraic function: the euclidean algorithm to compute
the GCD of two integers. Press shift-EXE to insert a newline. ! is in the submenu
Programmation_cmds (11, shortcut X, θ, T) or in the test F1 menu. Xcas syntax

function pgcd(a,b)
while b!=0 do

a,b:=b,irem(a,b);
od;
return a;

ffunction

22

Python syntax

def pgcd(a,b):
while b!=0:

a,b=b,a
return a

Check with pgcd(12345,3425)

“Interrompu par l’utilisateur Erreur: Valeur Argument Incorrecte Erreur: Valeur Argument Incorrecte”

If your program has runtime errors or if you want to see it run step by step, run
debug on it, for example
debug(pgcd(12345,3425))

Unlike adaptations of Micro-Python by calculator manufacturers (including Casio),
the Python syntax in Xcas is fully integrated. You can therefore use all Xcas commands
and data types in your programs. This corresponds approximatively to importing
Python modules math, cmath, random, scipy, numpy, turtle, giacpy. There
is also a small pixelised graphic commands set (set_pixel(x,y,c), set_pixel()
to synchronize display, clearscreen(), draw_line(x1,y1,x2,y2,c), draw_polygon([[x1,y1],[x2,y2],...],c),
draw_rectangle(x,y,w,h,c), draw_circle(x,y,r,c), the color+width+filled
c parameter is optional, draw_arc(x,y,rx,ry,t1,t2,c) draws an ellipsis arc).
And you can somewhat replace matplotlibwith graphic commands of χCAS (point,
line, segment, circle, barplot, histogram and all ...plot... com-
mands). Plus you have natural access to data types like rationnals or expressions, and
you can run CAS commands on them. The complete list of commands available on
the calculator is given in appendix. For documentation on commands not listed in the
catalog categories, please refer to Xcas documentation.

7 The 2d editor.
If a computation returns an expression, it will be displayed in the 2d expression editor.
This also happens if you press F3 when the selected level is an expression, or if you
press F3 from the commandline if the line is empty or contains a syntaxically correct
expression.

Once the 2d editor is open, the expression is displayed in full screen and all or part
of the expression is selected. One can run a command on the selection (from the menus
or from the keyboard), or edit (in 1d mode) the selection. This is an efficient way to
rewrite expressions or edit them.

Example 1 : enter

lim
x→0

sin(x)

x

From an empty commandline, type F3 (view), you should see 0 selected. Type x then
EXE, this will replace 0 by x selected. Type SIN, now sin(x) should be selected. Type
the division key (above -), you should see sin(x)

0 with 0 selected, type x then EXE, you
should now see sin(x)

x with x (below the fraction) selected. Type the up arrow key, now

23

sin(x)
x should be selected. Now type F2 4 (for limit). The expression is ready to eval,

type EXE to copy it to the commandline and EXE again to eval it. For the same limit
at +∞, before leaving the 2d editor with EXE, move the selection with the right arrow
key, then type F1 8 (oo) EXE.

Example 2 : ∫ +∞

0

1

x4 + 1
dx

From an empty commandline, type F3 (view), then F2 3 (integrate), you should see:∫ 1

0

0 dx

with x selected. We must modify the 1 (upper bound) and the 0 (integrand). Press left
arrow key, this will select the integrand 0, type 1/(x^4+1) EXE, then left arrow key
F1 8 EXE. Type again EXE to copy to commandline, EXE again to run the computa-
tion, the result will be displayed in the 2d editor, EXE will leave the 2d editor, with the
integral and its value in the history.

Example 3 : compute and simplify∫
1

x4 + 1
dx

From an empty commandline, type F3 (view), then F2 3 (integrate), you should see∫ 1

0

0 dx

Move the selection to the lower bound 0 (right arrow key), type DEL, you should see∫
0 dx

selected. With the down arrow key, select 0, type 1/(x^4+1) EXE, EXE copy to the
commandline, EXE to run the compuation, the result is now displayed in the 2d editor.
With the arrow key, select one of the arctangent, type F1 EXE (simplify), this will make
a partial simplification, do the same on the second arctangent.
For a more complete simplification, we will collect the logarithms. The first step is to
exchange two terms of the main sum so that the logarithms are grouped. Select one of
the logarithm with the arrow keys, then type

• CG10,20,50 : shift-left or right arrow key

• fx-9860GIII: F5 left or right arrow key, then ALPHA

this will exchange the selection with the right or left sibling. Now type ALPHA right
or left arrow key to extend the selection adding the right or left sibling. Once the two
logarithm terms are selected, press F1 2 EXE (factor), decrease the selection to the
numerator, type F4 EXE (All), type the letters l, n, c, this moves in the catalog to the
first command beginning with lnc, select lncollect, EXE and F6 (eval).

24

8 Managing sessions

8.1 Modifying a session
With the up/down cursor keys, you can move in the history, the current level is printed
with reverse colors.

You can move one level in another position with ALPHA-up and ALPHA-down.
You can delete a level with the DEL key (the level is copied into the clipboad).

You can modify an existing level with F3 or ALPHA-F3. With F3, the 2d editor
is called if the level is an expression, with ALPHA-F3 the level is edited in the text
(program) editor. Type EXIT if you want to cancel modifications, or EXE if you con-
firm the modifications. If you confirm the modifications, the commandlines below the
current level will automatically be re-evaled. This way, if you modify for example a
level like A:=1, all levels below that depend on the value of A will be up to date. If
you want to do that several times, it is best to introduce a parameter with the F6 Param-
eter wizzard. Then pressing + or - on the assume(...) or parameter level will
modify the value of the parameter (press * or / for faster move).

8.2 Variables
Press VARS to see which variables are assigned to a value. Select a variable name,
press EXE to copy it to the commandline, DEL will input the command that erases the
variable (confirm with EXE). restart will purge all variables at once (press AC/ON
to clear the history and start a fresh new session). assume is a command to make
assumptions on a variable, like assume(x>5) (> can be accessed from the shift-
PRGM menu).

8.3 Archiving and exchanging with Xcas
On the calculator, go back to the history (type EXIT if you are in the programming
editor or the 2d expression editor). From the F6 menu, you can save/restore sessions
in the calculator flash memory. Files have the xw extensions. They can be copied to
your computer (connect the calc, choose F1 USB key), and there they may be opened
with Xcas or Xcas for Firefox. From Xcas, choose the File menu then Open file, then
select all type of files and open the session file. From Xcas for Firefox, press the Load
button.

Conversely you can save a session from Xcas (choose File, Export to Khicas) or
from Xcas for Firefox (choose Export at the right of the session name).

9 Keyboard shortcuts.

9.1 KhiCAS 50 and 90 versions (2 files)
These shortcuts are valid inside the shell and text programming editor. With default
configuration:

25

• shift INS: table of ASCII characters

• F1-F6, shift-F1 to shift-F6, alpha-F1 to alpha-F6: see legend at screen bottom

• OPTN: fast menu for color options

• shift-OPTN: programming commands

• VARS: variables list

• shift-PRGM: fast menu for programming

• MENU: back to main Casio menu

• shift-SETUP: setup

• EXIT: switch from shell to editor

• shift-EXIT: display logo turtle screen

• ALPHA-EXIT: if alpha is not locked, displays last 2d or 3d graph

• shift angle: fast menu for geometry

• fraction: % inside shell, indentation in editor, force sheet reeval in spreadsheet

• shift-fraction: fast menu for poynomial arithmetic in shell, completion in editor

• touche S↔D: additional apps (spreadsheet, finance, ...). Inside spreadsheet, dis-
play sheet graphs.

• shift ,: ;

• shift→: := or : depends on active interpreter Xcas or Python

• AC/ON: cancel selection or cancel search/replace

• shift CAPTURE: save session or file

• shift CLIP: begin selection or copy selection to clipboard

• shift PASTE: paste clipboard

• shift CATALOG: list of all Xcas commands

• shift FORMAT: programming commands

• shift 6: fast menu with <>_! and comb, rand, binomial,normald|

• shift List: fast list menu

• shift Mat: fast matrix menu

• shift 3: menu rapide algèbre linéaire

• shift EXE: next line in editor

You can modify fast menus shortcuts by editing the file FMENU.py. Delete the file
from Memory Casio application to reset to default configuration.

26

9.2 KhiCAS short version (1 file))
• F1 to F3 : depends on mode (Python/Xcas) and shift/alpha state, see labels

• F4: commands catalog.

• F5: uppercase to lowercase switch. If alpha mode is not active, locks the key-
board in alpha lowercase.

• F6: File menu

• cursor down from shell or shift fraction key from program editor (G key): com-
pletion/online help

• (-) in the text editor: returns the _ character.

• shift PRGM: programming commands or characters

• OPTN: all options

• shift-QUIT: turtle commands

• shift-List: create or edit a list, list commands

• shift-Mat: create or edit a matrix, matrix commands

• S↔D key: real number commands

• yellow shifted S↔D key: integer commands

• angle key: complex commands

• yellow shifted fraction: plot commands

• fraction key: special characters/proba in history, indentation in text editor

• red r key: abs

• red θ key: arg

In programming editor

• shift-cursor key: move to begin/end of line or file

• shift CLIP: begin selection. Move the cursor to the selection end, type DEL to
remove the selection (it will be copied to clipboard) or again shift-CLIP to copy
selection to clipboard without removal. Type AC/ON to cancel selection.

• EXE: if a search/replace is currently active (F6 6) find next word occurence.
Otherwise parse/execute.

• shift EXE: add a newline.

• DEL: remove selection or previous character if no selection active

27

• shift PASTE: copy clipboard

• Shift-INS (touche DEL): remove current line and copy to clipboard

• AC/ON: cancel selection or cancel search/replace or check syntax (like F6 1)

• EXIT: leave text editor to the commandline. Type EXIT again to come back to
the text editor.

10 Remarks
On color models, you must first press MENU before shutting down the calculator with
shift ON. When you press ON again, press MENU to go back in KhiCAS.

If you connect a color model to your PC as a USB disk, you will have to press a
key after you have pressed F1, otherwise nothing happens.

If KhiCAS is inside a long computation, you should be able to interrupt it by press-
ing AC/ON. If it does not interrupt, you may have to press the reset button.

If KhiCAS crashes, you will see a message SYSTEM ERROR etc.. Try to press the
MENU key and open any other application. If you are lucky, this will save your session
and you can go back and reopen KhiCAS without having to reinitialize the calculator.

The memory available for computations is about 500K with the color g3a addin on
the CG50, and 58K on the monochrom g1a addin. On the CG50, it is recommended
to check periodically the remaining free memory by pressing the VAR key. If it is less
than 100K, press MENU, open any other app, press MENU again and reopen KhiCAS
with your session and a fresh unfragmented memory.

11 More complete version for the CG50
The light version in one file is not a full version of Xcas because the maximal size for a
Casio add-in is too small (2 Mo). A more complete version of χCAS for the FXCG50
is distributed in 2 files (one of them is run from a section of the RAM of the FXCG50
that is currently not used by Casio).

This more complete version has more Xcas commands (like geometry commands),
a 3d rendering engine, some additional apps (like a formal spreadsheet or a financial
application) and a port of MicroPython 1.12 with more modules than the Casio port of
MicroPython 1.09.

See section 1 to install.

11.1 MicroPython 1.12
You can select the shell interpreter by typing shift SETUP. The menu background color
of the shell reflects the active interpreter (yellow=MicroPython, magenta or cyan for
Xcas native or Xcas Python compatible).

Available modules: turtle (more complete version, with filled objects), graphic
(more complete than casioplot), matplotl, arit (integer arithmetic), linalg/numpy (linear
algebra, matrices), ulab (scipy compatibility), cas (CAS from Python).

28

11.2 3d and 4d graphs
One can plot 2 variables function or parametric plots, cones, solids, planes, ... For
example type F4 * 5 F2 EXE to draw a cube or shift F41| to select the plot
command, and enter x^2-y^2.

For fonctions plots from C to C, run the plot command with argument a complex
valued expression of 2 variables (real and imaginary parts) like for example plot((x+i*y)^2-9).
For expression depending directly on the complex variable (without requiring real/imag-
inary part), one can use the plot3d command, for example plot3d(x^2-9) (the
plot(x^2-9) command would not work, because it is already used for a graph from
R to R). The modulus is represented along the Oz axis and the argument using raim-
bow colors: from −π in blue magenta to 0 in green (through yellow orange) and from
0 to π via cyan.

If you need precise options, run the plotfunc command, for example
plotfunc((x+i*y)^3-1,[x=-2..2,y=-2..2],nstep=500)
will plot z → z3− 1 from a square in the complex plane centered at origin, size 4 with
a 500 small reectangles discretization.

Beware, the 3d rendering engine is slow on the calculator, therefore the drawing
precision is set to a medium value by default (this impacts mostly objects with angles,
like polyhedrons). You can modify the rendering precision with F2 (faster, less precise)
or F3 (slower, more precise). Tip : you can increase the CPU speed by running the
Ptune3 addin.

If you just want one time a higher precision rendering, type ^ and be patient. If
you want to interrupt this rendering, press DEL. Use the cursor keys to change the
viewpoint, 5 to reset to default viewpoint, and - or + to zoom in/out. While a cursor
key is kept pressed, the precision is lower, when the key is released the last position is
redrawn with the default precision. Type F4 to show/hide a second hidden objet, F5 to
show/hide intermediate points, F6 to show/hide polyhedron edges.

11.3 Interactive geometry application
The geometry application lets you construct figures in the 2d plane or in 3d space. It
is possible to move one point of the figure and observe how the construction evolves,
illustrating some properties (dynamic geometry). Pure geometric constructions may be
mixed with function graphs and other analytic constructions. This application has two
view: the graphic view where the figure is rendered and the symbolic view where you
see the Xcas instructions to construct the figure. The philosophy is similar to Geogebra,
but with Xcas commands instead.

You will find here a short description of this application, cf. here for a more com-
plete documentation of the geometry application, with a few screenshots.

11.3.1 Modes, graphical and symbolic view

Type F6 1 (or S↔D) to display the list of additional applications, then EXE then select
an existing figure or create a new 2d or 3d figure. You may also open the geometry

29

application from an existing graph displayed from the shell (for example after running
plot(sin(x))) by typing F6 then Save figure.

At startup, you are in graphical view in frame mode. The cursor key will modify
the viewpoint (move the frame in 2d, rotate viewpoint in 3d). Press F4 to change mode.
Type EXE to switch to symbolic view or back. For example, type F4 3 to enter point
mode, move the pointer and press EXE where you want to create a point. Or type F4 5
to enter triangle mode move the pointer to each vertex and press EXE on each vertex.
You can move the pointer with the keypad (use shift cursor key for a fast move), or if
there is an existing point, type the name (e.g. type ALPHA A to move the pointer to
the point A if it has already been defined).

In a 3d figure, objects will be created in the yellow plane. Press 4 or 6 to move
this plane. It is recommended to keep a viewpoint with Oz vertical (therefore change
viewpoint only with the right and left cursor keys that make a rotation of axis Oz).

Dynamic geometry howto: switch to pointer mode (F4 2), move near an exising
point and select it with EXE, then move the point with the cursor keys, you will see how
the whole figure depends on that point, this helps conjectures or illustration of some
geometric properties, like the fact that 3 lines of a triangle have a common intersection.

If you type EXIT in the graphical view, it will reset mode to frame mode if you
were not in frame mode, or it will switch to symbolic view if you were in frame mode.
In the symbolic view, you can modifiy existing commands or create new geometric
objects with new commandlines (one line per object). You can save the construction
in text format from F6 menu, note that the file generated will have a .py extension
despite the fact that it is not a Python script. Type EXIT again to leave the geometry
application.

When leaving the geometry application, the figure is saved in an Xcas variable that
has the same identifier than the filename displayed in the symbolic view. You can erase
this Xcas variable if you want to clear the figure.

Example : circumcircle.
From KhiCAS shell, type F6 1 then select new figure 2d EXE. Type F4 5 Triangle,
EXE to create the first vertex, move the pointer with cursor keys and type EXE for the
second vertex, move the pointer again and type EXE to create the 3rd vertex and the
triangle.

Long version, construction of the center: Type F4 7, select 8 Perpen bisector, move
the pointer so that only one edge of the triangle is selected (this is displayed at the
bottom right, something like perpen_bisector D5,D, type EXE will create the
perpendicular bisector. Move the pointer to another edge of the triangle, type EXE to
create the 2nd bisector. You may optionnaly create the 3rd bisector. Then type F4 6,
select 4 Single intersection. Move the pointer to a perpen bisector, type EXE, move
the pointer to another perpen bisector and type EXE. This will create the circumcircle
center. Type F4 4, move the pointer to the center (with the cursor keys or by typing
ALPHA H or the center name if it is not H), then EXE, move to one of the triangle
vertex and press EXE.

Short version with the circumcircle command: Type F4 9, select circumcircle,
select each vertex with pointer move + EXE ((ALPHA A EXE ALPHA B EXE ALPHA
C EXE, replace A, B, C with the vertices names).

Symbolic view version: If you are in the graphical view, type EXIT to move to the

30

symbolic view. Move to the script end and add a newline if required (shift EXE). Enter
c:=circonscrit(A,B,C) EXE

3d Example
Type F6 1 from the shell, then select new 3d figure. Then EXIT or EXE to switch to
the symbolic view. Then F5 c ALPHA shift = F4 uparrow twice, select 3D, EXE 5 for
cube, F6 for help on the cube command, press F2 to copy+paste the first example in
the symbolic view. You should see
c=cube([0,0,0],[1,0,0],[0,1,0])
Type EXE, this display a small cube, type + a few times to zoom in. Then EXE to
switch back to symbolic view. Type shift EXE to begin a new commandline. Now we
define the vertices of the cube with A,B,C,D,E,F,G,H= (type ALPHA A , ALPHA
B etc.). Then type F4 and uparrow 3 times to select Geometry then uparrow 4 times to
select sommets EXE, put c as argument to get sommets(c). Type EXE to display
the cube and the vertices with their names. Type EXE again to go back to symbolic
view. Then shift EXE to enter a new commandline, that will define the plane ABC.
Type ALPHA P = then F2 to open the fast menu lines and 8, this will copy plane(.
This command takes 3 points as argument (or a cartesian equation), here A, B, G,
P=plan(A,B,G,. We now add a color to the plane with the F3 disp fast menu
display=filled+green. Check by EXE EXE. Go to the next line (shift EXE)
and create segment DE ALPHA S = F2 select segment command with EXE, type D, E,
then F3 and give a color
S=segment(D,E,color=cyan) The whole construction should be

c=cube([0,0,0],[1,0,0],[0,1,0])
A,B,C,D,E,F,G,H=sommets(c)
P=plan(A,B,G,display=filled+green)
S=segment(D,E,display=cyan)

Type EXE to display it and use the keypad to change the viewpoint. Type EXE
or EXIT to go back to symbolic view and EXIT to leave the geometry application.
Type F1 to save the figure if you did not save it from the F6 menu. You can ac-
cess analytic geometry information from KhiCAS shell, for example equation(P)
(F4 select Geometry submenu) will return the cartesian equation of the plane P , or
is_orthogonal(P,S) (F4 Geometry) will confirm that the plane P is orthogonal
to the segment S (this should be apparent from 3d rendering).

11.3.2 Cursors

Cursors are parametric values that live in a given inteval and may be moved by 1%
steps from the graphical view. They are created with the element command in the
symbolic view or from F4 menu in the graphical view.

Example : quadratic explorer
This example demonstrates how the curve of the parabola of equation y = ax2+bx+c
depends on the value of a, b, c. Create 3 cursors from F4 menu of the graphical view
(for each cursor F4 uparrow 4 times EXE EXE). In the symbolic view you should have
something like

31

a:=element(-1..1)
b:=element(0..1,0.5)
c:=element(-1..1)

then add the parabole graph, from graphical view, type F4 0 (for 10 Curves) and se-
lect plot, or from the symbolic view shift EXE shift F6 and select plot fill inside the
parenthesis with a*x^2+b*x+c (beware, do not forget the *), then EXE. From the
graphical view, you should see 3 cursors a, b and c and the corresponding graph. You
can now modify the value of a, b, c and see how it affects the shape of the parabola.
Type F4 2 (pointer mode), then F5 a (or b or c) EXE to select a (or (b or c). Type EXE
then the right and left arrow keys, EXE again to stop moving the cursor.

A lot of variations may be done, some of them simpler with one or two cursors and
a curve depending on one or two parameters. For example a line equation explorer with
line(y=a*x+b) or a trigonometic explorer with plot(sin(a*x+b)).

11.3.3 Measures and legends

From the graphical view, type F4 and select 13 Measure. You can compute and display
a measure at some point of the figure. For example after creating a triangle, one can
display the perimeter of the triangle or its area. Type F4 then uparrow twice EXE.
Move the pointer near the triangle, type EXE, move the pointer where you want to
display the measure and type EXE.

From the symbolic view, you can display a legend with the legende() command.
The first argyment of legend may be a point of the figure, or a vector of 2 integers
giving the absolute position in pixels (measured from the top left corner). The second
argument is the legend, it may be a string or any expression.

If the legend is a numeric value, it can be used as a numeric parameter for com-
mands that require such an argument, like transformations (angle of rotation, homoth-
ety ratio...)
r:=legend([20,40],"2")
homothety(A,extract_measure(r),B)

11.3.4 Traces

The trace() command lets you keep track of all the positions of a geometric object
when the figure is recomputed while moving a point

Example Enveloppe of the normals to a parametric curve (here an ellipse)

E:=plotparam([cos(t),2*sin(t)],t=-pi..pi)
a:=element(-pi..pi)
M:=element(E,a)
T:=tangent(M)
N:=perpendiculaire(M,T)
trace(N)

If you change the value of a (F4 2 for pointer mode, F5 a), you will see a curve that
separates the area of normals to the curve and a free area, this is the enveloppe of

32

normals, it is also the evolute of the ellipse
evolute(E,color=red)
You can remove the traces in the graphical view from the F6 menu (last item).

11.4 CAS spreadsheet...
The file menu has an application item that lets you select additional applications: a
formal spreadsheet, a finance app, a periodic table, Shortcut: type S↔D from the
shell or programming editor.

Unlike Casio spreadsheet, the CAS spreadsheet can handle exact or symbolic val-
ues. You can compute cells whose values are fractions, square roots or expressions
containing variables like x, y....

A cell can contain any valid Xcas value, numbers, strings, etc. If you enter a list
of values, or an Xcas command returning a list of values, the list will fill consecutives
cells (downwards or to the right, according to the setup). For example type F1 range(
10 EXE, this will fill 10 cells with numbers from 0 to 9.

Defining a cell content with reference to other cells is similar to other spreadsheet,
begin with =, and enter an expression that may contain cell references (characters :
and $ are available from F3 menu, : is also accessible with shift→). While editing the
cell content, you can select another cell by pressing the up or down cursor key followed
by any other cursor key. To select a range, move to the begin of selection cell, press
shift-CLIP then move to the end of selection and type EXE.

While defining a cell, any Xcas commands may be used (you can get them from F4
menu, or fast menus (F1, F2, shift F1-shift F6, alpha F1-alpha F6 or shift CATALOG).
Programming Xcas structures may also be used as well as Xcas functions that you have
defined. Beware that MicroPython functions are not supported.

A cell can be defined with a command returning a graphic result. Type the S↔D
key to display the graphic corresponding to the graphical output of the whole spread-
sheet.

12 Copyright and Thanks to.
• Giac and χCAS, computing kernel (c) B. Parisse et R. De Graeve, 2022.

• χCAS interface adapted by B. Parisse from Eigenmath source code by Gabrial
Maia and from Xcas source code.

• χCAS license GPL2. See details in the LICENSE.GPL2 file, inside khicasio.zip
or GPL2 on the Free Software Foundation website. The source code of χCAS
and of the required libraries libtommath and USTL are available in the Casio
section of my webpage (see section 13).

• Thanks to the active members of tiplanet and Planete Casio for answering ques-
tions and testing during the time I developed χCAS. Special thanks to LeP-
henixNoir (Prizm/35+eii help), Nemhardy (Prizm), and to critor for articles, tests

33

and advertising. Thanks to all contributors of the Prizm programming portal.
Thanks to Pavel Demin for compilation tricks that spared about 135K.

• Thanks to Camille Margot for her interest in this ports, and to Casio France for
sending me calculators and an emulator license.

13 Developer infos.

13.1 Debugger
Install the cross-gdb tool for the Casio like this

1. install wine

2. install Casio emulator (available from Casio site) with a command like this
wine /path_to/fx-CG_Manager_PLUS_Subscription_for_fx-CG50series_Ver.3.40.exe

3. install gdb-server equivalent

cd .wine/drive_c/Program\ Files\ \(x86\)/CASIO/fx-CG\ Manager\ PLUS\ Subscription\ for\ fx-CG50series/
mv CPU73050.dll CPU73050.real.dll
wget https://www-fourier.univ-grenoble-alpes.fr/~parisse/casio/CPU73050.dll
cp CPU73050.dll CPU73050.dbg.dll

source and other releases for the dll : https://github.com/redoste/fx-CG50_Manager_PLUS-gdbserver).

4. compile gdb for sh3:

wget https://ftp.gnu.org/gnu/gdb/gdb-11.1.tar.gz
cd casio (ou autre repertoire de build)
tar xvfz ../gdb-11.1.tar.gz
mkdir sh3eb-gdb
cd sh3eb-gdb
../gdb-11.1/configure --srcdir=../gdb-11.1 --target=sh3eb-elf

(add –prefix=path if you do not have write access to /usr/local/bin). Then

make
sudo make install

Create two scripts, casioemu for normal emulation

#! /bin/bash
cd ~/.wine/drive_c/Program\ Files\ \(x86\)/CASIO/fx-CG\ Manager\ PLUS\ Subscription\ for\ fx-CG50series
/bin/cp CPU73050.real.dll CPU73050.dll
cd
wine "C:\Program Files (x86)\CASIO\fx-CG Manager PLUS Subscription for fx-CG50series\fx-CG_Manager_PLUS_Subscription_for_fx-CG50series.exe" /n"fx-CG Manager PLUS Subscription for fx-CG50series" > /dev/null &

34

and casiodbg for debug mode

#! /bin/bash
cd ~/.wine/drive_c/Program\ Files\ \(x86\)/CASIO/fx-CG\ Manager\ PLUS\ Subscription\ for\ fx-CG50series
/bin/cp CPU73050.dbg.dll CPU73050.dll
cd
wine "C:\Program Files (x86)\CASIO\fx-CG Manager PLUS Subscription for fx-CG50series\fx-CG_Manager_PLUS_Subscription_for_fx-CG50series.exe" /n"fx-CG Manager PLUS Subscription for fx-CG50series" > /dev/null &

5. For normal emulation run casioemu, for debug emulation run

casiodbg
sh3eb-elf-gdb
target remote localhost:31188

Or in one command if your debug infos are in emucas.elf
sh3eb-elf-gdb -i=mi -ex "target remote localhost:31188" emucas.elf

You can set a breakpoint with b or hb (hbreak (hardware break, this is required
for the first breakpoint).

13.2 Giac
Quick linux install : get libmpfr.so.4 and copy it to /usr/local/lib, check that
/usr/local/lib is in the paths listed in /etc/ld.so.conf and run sudo ldconfig.
Now unarchive casiolocal.tgz, this is a working cross-gcc for Casio calculators with
additional libraries (libc, ustl, tommath). You will also need to install mkg3a to build
addins for the FXCG. Then get giac2.tgz or giacbf.tgz, unarchive and run make. For
the light version get giac90.tgz

If something goes wrong, here are some details. You must install the gcc cross-
compiler for sh3eb CPU, following this tutorial (French). I have configured gcc like
this
../gcc-5.3.0/configure --target=sh3eb-elf --prefix="$HOME/opt/sh3eb-elf" --disable-nls --disable-shared --disable-multilib --enable-languages=c,c++ --without-headers
Unfortunately, there is no support for sh3eb in the newlib (C librairy) of gcc, nor for
libstdc++.

The libc is replaced by libfxcg (for CG50) (it comes from the original SDK with
a few modifications, corrections of small bugs, added missing functions like qsort,
...), In the same folder, you will also find tommath.tgz (big integer support) and
ustl.tar.gz (standard template library) that I also had to modify to make it work
with sh3eb-elf-g++, with partial success, i.e. enough support to build Giac (vec-
tor/string/map supported, I/O on files are not supported, there is a custom iostream
file for cin/cout minimal support). Unarchive and compile with make.

For the monochrom Fx-9860GIII, get giac35.tar.bz2 and run make in the giac35/src0
directory.

35

	Introduction and installation
	Calculator
	Emulator

	First steps
	Common CAS commands
	Expand and factor
	Calculus
	Solvers
	Arithmetic
	Integers
	Polynomials

	Linear algebra, vectors, matrices

	Probabilities and statistics
	Random numbers
	Probabilities
	1-d statistics
	2-d statistics

	Graphics
	Programs
	The 2d editor.
	Managing sessions
	Modifying a session
	Variables
	Archiving and exchanging with Xcas

	Keyboard shortcuts.
	KhiCAS 50 and 90 versions (2 files)
	KhiCAS short version (1 file))

	Remarks
	More complete version for the CG50
	MicroPython 1.12
	3d and 4d graphs
	Interactive geometry application
	Modes, graphical and symbolic view
	Cursors
	Measures and legends
	Traces

	CAS spreadsheet...

	Copyright and Thanks to.
	Developer infos.
	Debugger
	Giac

