
Computer Algebra
and

Mathematics
with

theHP40GS

Renée De Graeve
Version 3.0

March 10, 2011



2

Acknowledgments

It was not believed possible to write an efficient program forcomputer
algebra all on one’s own. But one bright person by the name of Bernard
Parisse didn’t know that...and did it!!!
This is his program for computer algebra (calledERABLE), built for the
second time into anHPcalculator.
The development of this calculator has led Bernard Parisse to modify his
program somewhat so that the computer algebra functions could be edited
and cause the appropriate results to be displayed in the Equation Editor.
Explore all the capabilities of this calculator, as set out in the following
pages.

I would like to thank:

• Bernard Parisse for his invaluable counsel, his remarks on the text,
his reviews, and for his ability to provide functions on demand both
efficiently and graciously.

• Jean Tavenas for the concern shown towards the completion ofthe
first version of this guide.

c© 2005, Renée De Graeve
The reproduction, distribution and/or the modification of this document is
authorised according to the terms of theGNU Free Documentation
License , Version 1.1 or later, published by the Free Software Foundation,
with no Invariant Sections, with no Front-Cover Texts, and with no Back-
Cover Texts.
A copy of this license exists under the section entitled :
GNU Free Documentation License (chapter9, p. 189).



3

Preface

The HP40Gmarked a new stage in the democratisation of the use of
symbolic calculation, on the one hand by its competitive price, and on the
other hand by making it possible to execute, step-by-step, the principle
algorithms taught in mathematics at secondary schools and in the first years
of University.

But it was still necessary to add adequate documentation, preferably
written by a teacher of mathematics. That is what you find in this guide,
written by Renée De Graeve. It contains, naturally, a complete reference of
the functions for symbolic calculation, but also demonstrates, using exam-
ples taken from study for both certificate and diploma, how totake smart
advantage of the calculating power of theHP40GS. The guide ends with
two chapters dedicated to programming: the first for learning to program,
and the second to illustrate the application of algorithmiclanguage to arith-
metic programs as taught in French tertiary schools.

This guide is an update for theHP40GScalculator, with some docu-
mentation improvements in addition to theHP40GSsoftware and speed
improvements.

Bernard Parisse

Lecturer at the University of Grenoble I
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Chapter 1

To Begin

1.1 General Information

1.1.1 Starting the Calculator

Press theONbutton.
TheHOMEscreen is displayed.
As you work, you can use theONbutton to cancel the current operation. In
other words, it has the same function asCANCEL.
To turn the calculator off, pressSHIFT plusON (OFF).
If the calculator fails to respond after several presses of theON ( CANCEL)
button, you can pressONandF3 simultaneously to reinitialise the calcula-
tor.

1.1.2 What You See

>From top to bottom:
1.TheHOMEscreen

1.a The calculator’s status
1.b A horizontal line
1.c A menu bar of commands

2. The keyboard

1. TheHOMEscreen :
1.a The calculator’s status gives theHOMEscreen’s current mode:

5
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• RAD, DEG, or GRDwhen you are working with radians, degrees, or
gradians.

• {FUNCTION} to indicate the name of theAplet currently selected
here, theFunction Aplet .

• N to indicate that you can use the up-arrow to move back throughthe
history.

1.b Horizontal line :
- Above the horizontal line is found an overview of the calculations carried
out in theHOMEscreen.
PRINCIPLE : On the screen, the requested calculation is written on the left,
and the result is written on the right.
- Beneath the horizontal line is the command line.
Using the up-arrow, you can move back through the history and, using
COPYon the menu bar, copy a command or a preceding result into the
command line.
1.c Menu Bar:
The commands on the menu bar are accessible through the six unlabelled
grey keys, which we refer to here as :
F1 F2 F3 F4 F5 F6 .
The menu bar can contain items consisting of groups of commands; they
are marked by a folder icon.
To activate a command on the menu bar, it’s enough to press thecorre-
spondingFi key.
In theHOMEscreen, the menu bar contains two commands:
- STO⊲ which enables you to store a value in a variable, and
- CAS, which enables you to open the Equation Editor to perform computer
algebra.
2. The keyboard :
You have already been introduced to:
TheONkey for starting the calculator or for cancelling the current opera-
tion, andSHIFT ONfor turning the calculator off.
Other keys you must know include:

• The four arrow keys (left, right, up, down), which enable youto move
the cursor while you’re in the Equation Editor, in a menu, andso on,

• TheSHIFT key, which enables you to access two functions with one
key,
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• TheALPHAkey for typing text in upper case, and theSHIFT ALPHA
keys for typing text in lower case. To remain in alphabetic mode, you
must press and hold theALPHAkey.

• X T θ which enable you to typeX, T, θ, N directly, depending on the
active aplet.

• TheENTERkey, which is used to confirm a command.

1.2 Notations

The four arrow keys are represented by four triangles:

△ � � ▽

TheSTO⊲ on theHOMEmenu is represented in the program by:

STO ⊲ or ⊲ or− >

In the Equation Editor, the position of the cursor is represented by:

◭

1.3 Online Help

With this calculator, you’re able to get practical and efficient online help in
either French or English (cf5.1.1).
You are shown an alphabetised list of computer algebra functions. As with
the drop-down menus, you are able to access the functions by pressing the
corresponding letter-keys without having to worry about pressingALPHA.
The help consists of a succinct description of the command, as well as an
example and its result. Each example can be tested withECHO(on the
menu) and can be either used as is or modified. You can view helpfor re-
lated commands by means ofSEE1 SEE2... on the menu. You have to use
EXIT to return, without change, in the Equation Editor.
For more details, refer to the description ofSHIFT 2 (SYNTAX) , sec-
tions3.3.2and3.4.6.
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Chapter 2

Aplets

2.1 APLETKey

TheAPLETkey gives you access to the list of availableAplets .
This calculator in effect enables you to work withAplets .
But what is anAplet ?
An Aplet is a program stored in the calculator, which enables you to easily
obtain three views of a mathematical object (a symbolic view, a numeric
view, and a graphic view) and all this is pre-programmed !
The variousAplets enable you to work with mathematical objects such
as: functions, sequences, statistical data, and so on...
CertainAplets illustrate particular classroom lessons.

2.2 The Various aplets

While you’re inHOME, you can see the name of the selected aplet by look-
ing at the status line.
Here are the possible choices for theAPLETkey:

• Sequence
This Aplet enables you to define sequences having the names:
U1, U2 .. U9, U0
One definesU1(N) :
- To be a function ofN,
- To be a function ofU1(N-1) ,
- To be a function ofU1(N-1) andU1(N-2) .

9
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You define (for example):
U1(N) = N*N+1
and then the values ofU1(1) andU1(2) are automatically calcu-
lated and displayed.
To display the values ofU1(N) , chooseU1, then pressNUM.
You can find other examples that use theSequence Aplet in the
following section, such as the calculation of theGCDof two numbers
(cf 2.3.2), and the calculation of the coefficients of Bézout’s Identity
(cf 2.3.3).

• Function
This Aplet enables you to define functions having the names:
F1(X), F2(X) .. F9(X), F0(X)
One definesF1(X) :
- To be an expression of a function ofX:
For example, the formula:
F1(X) = X*LN(X) defines the function:
f1(x) = x. ln(x)
- To use Booleans (X(0 etc.) if the function is defined in parts :
For example, a formula of the form:
F1(X) = X((X(0)+2(X((X>0) defines the function:
f1(x) = x if x < 0 and
f1(x) = 2 · x if x ≥ 0

• Parametric for tracing curves in parametric coordinates.

• Polar for tracing curves in polar coordinates.

• Solve for solving numeric equations.

• Statistics for working with statistics.

• Inference for working with inferential statistics.

• Quad Explorer for exploring quadratic functions.

• Trig Explorer for exploring trigonometric functions.

2.3 Examples using theSequence Aplet

2.3.1 Notation in Baseb

Given a andb, produce the seriesqn (n ≥ 1) andrn (n ≥ 2) from the
quotients and the remainders of the division ofqi by b, defined by:
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q1 = a
q1 = b · q2 + r2 (0 ≤ r2 < b)
q2 = b · q3 + r3 (0 ≤ r3 < b)
......
qn−1 = b · qn + rn (0 ≤ rn < b)
Note that ifrn+1 = 0, the numberrnrn−1.....r3r2 is notated in baseb of a,
while one assumes2 ≤ b ≤ 10.
Put intoB the value of the base, for example:
7 STO ⊲ B

Put intoA the number to write in baseB (for example,1789 STO ⊲ A )
Define the following two series:
U1(1)=A
U1(2)=FLOOR(A/B)
U1(N)=FLOOR(U1(N-1)/B)
and
U2(1)=0
U2(2)=A MOD B
U2(N)=U1(N-1) MOD B
Therefore,qn=U1(N) andrn=U2(N) .
We obtain :
U2(2)=4 U2(3)=3 U2(4)=1 U2(5)=5 U2(6)=0
and so the notation in base 7 of 1789 is: 5134.

2.3.2 Calculating the GCD

This is an application of Euclid’s Algorithm on theHP40GS.
Here is the description of this algorithm:
If one performs the successive Euclidean divisions:

A = B × Q1 + R1 0 ≤ R1 < B

B = R1 × Q2 + R2 0 ≤ R2 < R1

R1 = R2 × Q3 + R3 0 ≤ R3 < R2

.......

Rn−2 = Rn−1 × Qn + Rn 0 ≤ Rn < Rn−1

then after a finite number of steps (in excess ofB), there exists a whole
numbern such that:Rn = 0.
We have then:
GCD(A,B) = GCD(B,R1) = ...
GCD(Rn−1, Rn) = GCD(Rn−1, 0) = Rn−1
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Using a sequence, one then writes the sequences of remainders.
With theHP40GS, you use theSequence Aplet (APLETkey, then se-
lectSequence , thenSTARTon the menu bar).
To determine the GCD(78,56), you define the sequence:

U1(1) = 78

U1(2) = 56

U1(N) = U1(N− 2) MOD U1(N− 1)
PressNUMto get the numerical list ofU1(N) that is, the list of the

remainders of the successive divisions...
The final non-zero remainder is 2, so theGCD(78, 56) = 2.
REMARK:
In HOME, you can use the variablesA andB to store the two numbers, and
then makeU1(1)=A andU1(2)=B .
It’s also important to note thatA MOD 0 = A.

2.3.3 Calculating the Coefficients of Bézout’s Identity

Euclid’s Algorithm enables you to find a pairU , V such that:
A × U + B × V = PGCD(A,B)

Using the idea of sequence:
Define "the sequence of remainder"Rn and two sequencesUn andVn, such
that at each step one has:
Rn = Un × A + Vn × B.

Seeing that one has:
Rn = Rn−2 − Qn × Rn−1 , Un andVn serve to satisfy the same recur-
rence relation (whereQn is the whole-number quotient ofRn−2 divided by
Rn−1).

One then has (from the beginning):
R1 = A R2 = B
U1 = 1 U2 = 0 sinceA = 1 × A + 0 × B
V1 = 0 V2 = 1 sinceB = 0 × A + 1 × B
With theHP40GS, using theSequence Aplet , you then define the

sequence of remaindersU1 and the sequencesU2 andU3 such that for all
None has:
U1(N)=A*U2(N)+B*U3(N) .
For this, you need the sequence of quotients, which you put into U4.
The sequencesU1, U2 andU3 satisfy the same recurrence relation:
Un = Un−2 − Qn × Un−1 with

Qn = U4(N) = FLOOR(U1(N− 2)/U1(N− 1))



2.4. THESYMB, NUM, PLOTAND MODESKEYS 13

On définit donc :
U1(1) = A

U1(2) = B

U1(N) = U1(N− 2) − U4(N) ∗ U1(N− 1)
U2(1) = 1

U2(2) = 0

U2(N) = U2(N− 2) − U4(N) ∗ U2(N− 1)
U3(1) = 0

U3(2) = 1

U3(N) = U3(N− 2) − U4(N) ∗ U3(N− 1)
U4(1) = 0

U4(2) = 0

U4(N) = FLOOR(U1(N− 2)/U1(N− 1))
It’s important to note that you useU4(N) only for N > 2; you have

therefore defined the two first values (which are useless!) aszero.
NUMthen displays the values of these various sequences, and on the line of
the final non-zero remainder you can read the GCD and the coefficients of
Bézout’s Identity.

2.4 TheSYMB, NUM, PLOTand MODESKeys

In general, anAplet can be viewed in three different ways:
A symbolic view, which corresponds to theSYMBkey
A numeric view, which corresponds to theNUMkey
A graphic view, which corresponds to thePLOTkey
When these keys are SHIFTed (SETUP), this corresponds to choosing the
various available parameters (choosing the parameters of the graphic win-
dow, the step size for the table etc...).
TheSHIFT HOME (MODES)key pressed inHOMEscreen or inAplets ,
corresponds to the choice between Radians, Degrees or Grads.
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Chapter 3

CASuser’s guide

3.1 Terms and Conditions

Use of the CAS Software requires from the user an appropriatemath-
ematical knowledge. There is no warranty for the CAS Software, to
the extent permitted by applicable law. Except when otherwise stated
in writing the copyright holder provides the CAS Software As Is with-
out warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness
for a particular purpose. The entire risk as to the quality and per-
formance of the CAS Software is with you. Should the CAS Software
prove defective, you assume the cost of all necessary servicing, repair
or correction.

In no event unless required by applicable law will any copyright
holder be liable to you for damages, including any general, special, in-
cidental or consequential damages arising out of the use or inability to
use the CAS Software (including but not limited to loss of data or data
being rendered inaccurate or losses sustained by you or third parties
or a failure of the CAS Software to operate with any other programs),
even if such holder or other party has been advised of the possibility
of such damages. If required by applicable law the maximum amount
payable for damages by the copyright holder shall not exceedthe roy-
alty amount paid by Hewlett-Packard to the copyright holder for the
CAS Software

Note that a large part of the HP40GS CAS is (c) Bernard Parisse, Institut
Fourier, Université de Grenoble I, France. This part is alsolicensed under

15
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the LGPL License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
For more details, see
http://www-fourier.ujf-grenoble.fr/~parisse

3.2 Introduction

The wordCAS is a shortcut for Computer Algebra System. This chapter
gives a brief overview on the HP40GS CAS.

3.2.1 What isCAS?

TheCASenables you to perform exact or symbolic calculations. Makesure
you understand the difference between:

• exact or symbolic calculations, which are performed by means of the
CASfunctions. You work inexact mode , with infinite precision,
and

• numeric calculations, which are performed by means of theMATH
key’s MTHmenu, either in theHOMEscreen or inAplets or pro-
grams. You work inapproximate mode , with a precision of
10−12.

Example:
If you’re working in theHOMEscreen:
1/2+1/6 returns 0.6666666666667
whereas inCAS:
1/2+1/6 will return 2/3 .

Each mode has advantages and drawbacks, in exact mode there is no
round-off error, but some computations require much more time and mem-
ory than in numeric mode. For example computing the factorial of 300 is
slightly faster in numeric mode than in exact mode.

3.2.2 How do you perform a symbolic calculation?

TheHP40GShas been designed to use computer algebra functions from a
special environment: the Equation Editor. You can, however, perform com-
puter algebra in theHOMEscreen, as long as you take certain precautions
(cf 3.4), and it is mandatory if you want do symbolic linear algebra,since
the Equation Editor does not handle vectors and matrices.
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To open the Equation Editor, pressCASon the menu bar of theHOME
screen.
To leave the Equation Editor, pressHOMEto return to theHOMEscreen.

Section3.3 describes how to use theCASfunctions from the Equation
Editor, section3.4how to use theCASfunctions from theHOMEscreen and
chapter5 describes theCASfunctions.

3.2.3 Variables

When you use the symbolic calculation functions, you are working with
symbolic variables (variables that do not contain a permanent value). In the
HOMEscreen, a variable of this kind must have a name likeS1..S5,s1..
s5,n1..n5 , but notX which is assigned to a real value (by defaultX
is assigned to 0) and to store for symbolic expressions, the variables are
E0,E1..E9 . In the Equation Editor, all variables may, or may not be,
assigned: for exampleX is not assigned to a real value by default, com-
putingX+X will return 2X. Moreover, Equation Editor variables may have
long names, likeXYor ABC, unlike inHOMEwhere implied multiplication
is assumed (for exampleABCbecomesA*B*C in HOME). For these rea-
sons,variables used in the Equation Editor cannot be used inHOME, and
vice versa. Using the commandPUSH, you can transfer expressions from
theHOMEscreen history to theCAShistory (cf section3.4.4) and using the
commandPOP, you can also transfer expressions from theCAShistory to
theHOMEscreen history (cf section3.4.5).

3.2.4 The current variable

In the Equation Editor, the current variable is the name of the symbolic
variable contained inVX, it is almost alwaysX.
The current variable is alwaysS1 in theHOMEscreen.
SomeCASfunctions depend on a current variable, for example, the function
DERVXcalculates the derivative with respect to the current variable.

Hence in the Equation Editor,
DERVX(2*X+Y) returns 2 ifVX=X, but
DERVX(2*X+Y) returns 1 ifVX=Yand
in theHOMEscreen,
DERVX(2*S1+S2)=2 , but
DERIV(2*S1+S2,S2)=1 .
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3.3 Using the CAS in the Equation Editor

The Equation Editor enables you to type expressions that youwant to sim-
plify, factor, differentiate, integrate, and so on, and then work them through
as if on paper.

TheCASkey on theHOMEmenu bar takes you into the Equation Editor,
and theHOMEkey takes you back out.

This section tells you how to write an expression in the Equation Editor
using the menus (section3.3.1) and the keyboard (section3.3.2), how to
select a sub-expression (section3.3.3), how to call theCASfunctions on a
sub-expression (section3.3.3) and how to store values in the Equation Edi-
tor variables (section3.3.5). Chapter5 explains all the symbolic calculation
functions contained in the various menus, together with examples of use.
You can consult the online help withSHIFT 2 (SYNTAX) (cf 3.3.2), to
get help for the other available functions, and you can useSHIFT MATH
(CMDS) (cf 3.3.2), to type them.

3.3.1 The Equation editor menu

The editor is supplied with a menu bar of menus:

1. TheTOOLmenu contains the commands:

• Cursor mode enables you to go into cursor mode (cf3.3.3).

• Edit expr. enables you to edit (modify) the highlighted
expression.

• Change font enables you to choose to type using large or
small characters (you can make this choice at any time).

• Cut copies the selection into the buffer, then erases the selec-
tion.

• Copy copies the selection into the buffer.

• Paste copies the buffer to the location of the cursor. The
buffer contains, either whateverCopy or Cut has selected the
last time, or the highlighted level when you hitCOPYin the
CAS history toolbar.

2. The ALGB menu contains functions that enable you to perform al-
gebra: factoring, expansion, simplification, substitution...

3. The DIFF menu contains functions that enable you to perform differ-
ential calculus: differentiation, integration, series expansion, limits...
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4. The REWRI menu contains functions that enable you to rewrite an
expression in another form.

5. The SOLV menu contains functions that enable you to solve equa-
tions, linear systems, and differential equations.

6. The TRIG menu contains functions that enable you to transform
trigonometric expressions.

3.3.2 The keyboard in the Equation Editor

The keys mentioned in this section have different functionsdepending on
whether they are pressed in theEquation Editor or in theHOMEscreen.
For the functionality of these keys outside the Equation Editor, refer to sec-
tion 3.4.6, or consult the User’s Guide.

MATHkey

The MATHkey, if pressed in the Equation Editor, displays the functions
used in symbolic calculation. These functions are contained in menus:

• The five preceding menus (cf3.3.1) :
Algebra (ALGB) , Diff&Int (DIFF) , Rewrite (REWRI) ,
Solve (SOLV) , Trig. (TRIG) .

• The Complex menu containing functions that enable you to work
with complex numbers

• TheConstant menu containinge i∞ pi.

• TheHyperb. menu containing hyperbolic functions

• TheInteger menu containing functions that enable you to perform
integer arithmetic.

• TheModular menu containing functions that enable you to perform
calculations inZ/pZ or Z/pZ[X], p being the value contained in the
variableMODULO.

• ThePolynom. menu containing functions that enable you to per-
form calculations with polynomials.
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• TheTests menu containing:
ASSUME UNASSUME(to make hypotheses about the parameters,
and to modify the variableREALASSUMEcf 3.3.5)
> ≥ < ≤ == 6= AND OR NOT
IFTE (to write an algebraic function having the same result as an IF
THEN ELSE)

Refer to section5.1.9, for the list of the functions contained in the various
menus.

SHIFT MATH (CMDS)keys

This key combination opens the list of all theCAScommands available in
theEquation Editor .
In this way, functions that are not presented elsewhere can be called from
this menu, so you don’t have to type them inALPHAmode.

VARSkey

This key, if pressed while you’re in theEquation Editor , displays the
names of the variables defined inCAS.
Take special note ofnamVX, which contains the name of the current vari-
able.
To see the contents of a variable, all you have to do is highlight its name
and pressF2 for VIEWon the menu bar.
To change the contents of a variable, highlight its name and pressF3 for
EDIT on the menu bar.
Note also on the menu bar:
PURGE, which enables you to destroy an existing variable,
RENAME, which enables you to change the name of an existing variable,
NEW, which enables you to define a new variable: just enter the contents
(object ), then the (name).
For more details, refer to section3.3.5.

SHIFT 2 (SYNTAX) keys

While you’re in the Equation Editor, the key combinationSHIFT 2 (SYNTAX)
opens theCAS HELP ONmenu.
To get help in French, choose Français on theCFGmenu, which enables
you to change your configuration (cf5.1.1).
If there is noCASfunction selected in the editor, the menu shows a list of
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functions available in theEquation Editor . Just highlight a function
and pressOKto see the help for that function.
If there is aCASfunction selected in the editor, for example:
FACTOR(45) , the CAS HELP ONmenu directly opens the help topic
for FACTOR. The help consists of a short description of the command, as
well as an example and its result. Each example can be copied into the
Equation Editor by means ofECHOon the menu bar, where it can be
used as is or modified.
Note that in the help examples,VX=X is used as the current variable. If
that is not the case for you, the example will be automatically transformed,
taking your value ofVX into account , when you transfer it withECHO.
You can also go directly to see the help of a command pointed toby See:
with SEE1, SEE2... on the menu bar.

SYMBkey

Pressing theSYMBkey in the Equation Editor enables you to access the
CAShistory.
The history of the calculations performed inCASdiffers from the history
of the calculations performed inHOME.
As in theHOMEscreen history, the requested calculations are written on the
left, and the results are written on the right. Using the up-arrow, you can
move back through the history.
PressCOPYto copy the current CAS history level in the buffer in order to
paste it later withTOOL->Paste in the Equation Editor.
PressENTER, or ECHOon the menu bar, to replace the current Equation
Editor selection by the current CAS history level.
PressONto leave the CAS history without any changes.

SHIFT SYMBor SHIFT HOMEkeys

While you are working in the Equation Editor, the key combination:
SHIFT SYMB (SETUP)orSHIFT HOME (MODES)open theCAS MODES
screen to define the CAS configuration and it is similar toCFGmenu (the
first item in theALGBmenu on the menu bar, cf5.1.1).
This enables you to specify:
- The name of the variable contained inVX, by typing its name next to
Indep var. ,
- The value ofMODULO, by typing its value next toModulo ,
- Whether you want to work inexact mode (or inapproximate mode ,
if you’ve chosenApprox with CHKon the menu bar)
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- Whether you want to work in real mode (or in complex mode, if you’ve
chosenComplex with CHKon the menu bar)
- Whether you want to work inDirect mode (or inStep by Step
mode, if you’ve chosenStep/Step with CHKon the menu bar)
- Whether you want polynomials to be written in decreasing order accord-
ing to exponent (or increasing order, if you’ve chosenIncr Pow with
CHKon the menu bar)
- Whether you want numerical factors suppressed (or not, if you’ve chosen
Num.Factor with CHKon the menu bar)
- Whether you want to work innon-rigorous mode (or inrigorous
mode, if you’ve chosenRigorous with CHKon the menu bar so as not to
neglect the absolute values!)
- Whether you want to simplify non-rational expressions if you’ve chosen
Simp Non-Rational (or not, if you clear the selection by pressingCHK
on the menu bar).
UseOKor ENTERto confirm your choices.

SHIFT , key

While you are working in the Equation Editor, the key combination:
SHIFT ,(MEMORY) plays the role of an "undo" key.
This is very useful when you’ve made a mistake, because it enables you to
cancel the last command.

PLOTkey

When you pressPLOTin the Equation Editor, a dialog box asks you if you
want to graph a function, a parametric curve, or a polar curve.
Depending on what you choose, the highlighted expression iscopied into
the appropriate aplet, to the location that you have specified as the destina-
tion.
NOTE : This supposes that the current variable is also the variable of the
function or curve you want to graph: when the expression is copied, it is
evaluated, and the current variable (variable contained inVX) is changed to
X, T , or θ, depending on the type of plot.
NOTE : If the function depends on a parameter, it is preferable to give the
parameter a value before pressingPLOT. If, however, you want the param-
eterised expression to be copied with its parameter, then the name of the
parameter must consist of a single letter other thanX, T , or θ, so that
there is no confusion.
If the highlighted expression has real values :
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theFunction Aplet or Polar Aplet can be chosen, and the graph
will be of Function or Polar type.
If the highlighted expression has complex values :
theParametric Aplet must be chosen, and the graph will be ofParametric
type.
If you choose:

• the Function Aplet , the highlighted expression is copied into
the chosen functionFi , and the current variable is changed toX dur-
ing the copy.

• the Parametric Aplet , the real part and the imaginary part of
the highlighted expression are copied into the chosen functionsXi,
Yi , and the current variable is changed toT during the copy.

• the Polar Aplet , the highlighted expression is copied into the
chosen functionRi , and the current variable is changed toθ during
the copy.

NUMkey

Pressing theNUMkey in the Equation Editor causes the highlighted expres-
sion to be replaced by a numeric approximation.
NUMputs the calculator into approximate mode.

SHIFT NUMkey

Pressing theSHIFT NUMkey in the Equation Editor causes the highlighted
expression to be replaced by a rationnal number.
SHIFT NUMputs the calculator into exact mode.

VIEWSkey

Pressing theVIEWSkey in the Equation Editor enables you to move the
cursor with the� and� arrows to see the entire highlighted expression.
Then pressOKon the menu bar to return in the Equation Editor.

Short-cut keys

Note: In the Equation Editor, the following short-cut keys are available on
the keyboard:
SHIFT 0 for ∞
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SHIFT 1 for i
SHIFT 2 to open theCAS HELP ON
SHIFT 3 for π
SHIFT 5 for <
SHIFT 6 for >
SHIFT 8 for ≤
SHIFT 9 for ≥
SHIFT NUMto put the calculator into exact mode
NUMto put the calculator into approximate mode.

3.3.3 Expressions, subexpressions, selection

When you type expressions in the Equation Editor, the operator that you
are typing always carries over to the adjacent or selected expression.
You don’t have to preoccupy yourself with where the parentheses go... just
select!
You need to view a mathematical expression as a binary tree, and the four
arrow keys as enabling you move through the tree in a natural fashion:
The right and left arrow keys enable you to move from one branch to an-
other,
The up and down arrow keys enable you to go up and down a particular
tree,
The SHIFT-up and SHIFT-down arrow keys enable you to make multiple
selection (cf page26example 3).

How do you select?

There are two ways of going into selection mode :

• The up-arrow△ takes you into selection mode and selects the ele-
ment adjacent to the cursor.
Example:

1 + 2 + 3 + 4 △

selects 4, then△ selects the entire tree 1+2+3+4.

• The right-arrow� takes you into selection mode and selects the
branch adjacent to the cursor.
Pressing� again augments the selection, adding the next branch to
the right.
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Example:

1 + 2 + 3 + 4 �

selects 3 + 4, then� selects 2+3+4, then� selects 1+2+3+4.

• NOTE: If you are typing a templated function with multiple argu-
ments (such as

∑

,
∫

, SUBST, or the like), the right arrow� enables
you to move through the template by changing the location of the
cursor. In effect, the left and right arrow, keys� and� enable you
to move from one argument to another. In this case, you alwaysuse
the up arrow△ to select (cf3.3.4).

Examples of the way this Equation Editor works:
PressCASon the menu bar to open the Equation Editor, then type the ex-
pressions in the examples.

• Example 1
Typing:

2 + X × 3 − X

returns:
2 + X · 3− X

Press� � � to select the expression,
then theENTERkey to produce:

2 + 2 · X

Typing:
2 + X � × 3 − X

returns:
(2 + X) · 3− X

Press� � to select the expression,
then theENTERkey to produce:

6 + 2 · X

Typing:
2 + X � × 3 △ − X
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returns:
(2 + X) · (3− X)

Press� � � to select the expression,
then theENTERkey to produce:

−(X2 − X− 6)

• Example 2
To express:

X2 − 3 · X + 1

type:
X xy 2 � − 3 X + 1

To express:
−X2 − 3 · X + 1

type:
(−) X xy 2 � � − 3 X + 1

In effect, you must select−X2 before typing the rest.

• Example 3
To express:

1

2
+

1

3
+

1

4
+

1

5

Here, the tree ends in a+, and there are four branches; each of these
branches ends in a÷ and has two leaves.

PressCASon the menu bar to open the Equation Editor, then type the
first branch:

1÷ 2

then select this branch with
�

Then, type
+

and the second branch:
1÷ 3

then select this branch with
�
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Then, type
+

and the third branch:
1÷ 4

then select this branch with
�

Then, type
+

and the fourth branch:
1÷ 5

then select this branch with
�

At this point, the desired expression :

1

2
+

1

3
+

1

4
+

1

5

is in the Equation Editor, and1
5

is selected.

To move back through the tree and select:

1

3
+

1

4

type
� �

to select the1
3
, then press

SHIFT�

which enables you to select two contiguous branches, the onealready
selected and the one to the right of it, like this:

1

3
+

1

4

Advantage : If you want, you can calculate the selected part by press-
ing ENTER.
This produces:

1

2
+

7

12
+

1

5
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with the 7
12 selected.

If you want to perform the partial calculation

1

2
+

1

5

you must first perform a permutation so that the1
2

and the1
5

are side
by side. To do this, type:

SHIFT�

which exchanges the selected element with its neighbour to the left.
This produces:

7

12
+

1

2
+

1

5

with the 7
12

still selected. Press :

�SHIFT�

to select :
1

2
+

1

5

PressingENTERthen produces the result.

• Summing up:SHIFT� enables you to select the selected element
and its neighbour to the right.SHIFT� enables you to exchange the
selected element with its neighbour to the left. The selected element
remains selected, even if you move it.

How to modify an expression

If you’re typing an expression, theDEL key enables you to erase what
you’ve typed.

If you’re selecting, you can:
- Cancel the selection without deleting the expression, by typing :

DEL

The cursor moves to the end of the deselected portion.
- Replace the selection with an expression, just by typing the desired ex-
pression
- Transform the selected expression by applying aCASfunction to it: you
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call the function via one of theCASmenu options.
- Delete the selected expression by typing:

ALPHA SHIFT DEL (ALPHA CLEAR)

- Delete a selected unary operator "the top of the tree" by typing:

SHIFT DEL (CLEAR)

For example, to replaceSIN(expr) with COS(expr) , selectSIN(expr) ,
then pressSHIFT DEL and pressCOS.
- Delete a binary infix operator and one of its argument by selecting the
argument you want delete and typing:

SHIFT DEL (CLEAR)

For example : if you have the expression 1+2, you select 1, then SHIFT
DELdeletes 1+ and it leaves only 2.
So, to deleteF(X)= of the expressionF(X)= X2 − X + 1 you selectF(X) ,
then pressSHIFT DEL, and this producesX = X2 − X + 1 (you have deleted
the unary operatoraF), thenSHIFT DEL, producesX2 − X + 1 (you have
deletedX and the operator=).
- Delete a binary operator by editing the expression, you select :

Edit expr.

from theTOOLmenu on the menu bar, and then make the correction.
- Copy an element from the CAS history. You access to the CAS history by
pressingSYMB. In the history, pressingENTERor selectingECHOon the
menu bar inserts the copy where the cursor is, or in place of the selection.
You can also useCOPY, on the history menu bar, to copy the selection in the
buffer, or the commandsCut, Copy and Paste from theTOOLmenu
on the Equation Editor menu bar to delete, copy and paste expressions as
you would with any text editor (cf.3.3.1).

The cursor mode

The cursor mode enables you to select a large expression quickly. To go
into cursor mode, select:
Cursor mode in theTOOLmenu,
then use the arrow keys to include your selection in a box (when you release
the arrow key, the expression pointed to by the cursor is enclosed).
Then, pressENTERto select the contents of the box.
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To see everything

By selectingChange font from theTOOLmenu on the menu bar, you
can increase or decrease the font size of the expression. This enables you
to view a large expression in its entirety when you need to.
If this is insufficient to see the whole expression, then you’ll need to go into
cursor mode:
selectCursor mode in theTOOLmenu, then use the arrow key�, and
then useENTERto quit cursor mode,
or you can also press:
theVIEWSkey, then use the arrow key�, and pressOKon the menu bar to
quit VIEWSscreen.

3.3.4 Accessing theCASfunctions

While you are in the Equation Editor, you can access allCAS functions,
and you can access them in various ways.

General principle:
When you have written an expression in the Equation Editor, all you have
to do is pressENTERto evaluate the selection (or the entire expression, if
nothing is selected).

How to type
∫

and
∑

∑

is found on the keyboard, all you have to do is type:

SHIFT + (
∑

)

The symbol
∫

is also found on the keyboard, it can be produced by typing:

SHIFT d/dX (

∫

)

The symbols
∫

and
∑

are treated as prefix functions with multiple argu-
ments.
∫

and
∑

are automatically placed before the selected element, if there is
one (hence "prefix functions").
You can move the cursor with the arrow keys:

� �

Enter the expressions according to the rules of selection explained earlier,
but you must first go into selection mode by pressing△.
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NOTE: Do not use the indexi to define a summation, becausei designates
the complex-number solution ofx2 + 1 = 0.
∑

performs exact calculations if its argument has a dicrete primitive else
∑

performs approximate calculations, even in exact mode. Forexample in
exact, or numeric mode :

4
∑

k=0

1

k!
= 2.70833333334

whereas in exact mode :

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
=

65

24

the symbol ! is obtained by typingSHIFT ×.
Note that

∑

can symbolically calculate summations of rational fractions
and hypergeometric series that allow a discrete primitive.
Example :
If you type:

4
∑

K=1

1

K · (K + 1)

then select the entire expression and pressENTER, you obtain:

4

5

If you type:
∞
∑

K=1

1

K · (K + 1)

then select the entire expression and pressENTER, you obtain:

1

How to call infix functions

These functions are typed between their arguments, for example :
AND | MOD ,are infix functions.
You can either:
- type them inAlpha mode (usingAND MOD), then type the arguments,
or
- call them by selecting aCASmenu option or by pressing a key, provided
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you have already written and selected the first argument.
You move from one argument to the other by using the arrow keys� �.
The comma, enables you to write a complex number:
when you type1 + 2 · i or (1,2) , the parentheses are automatically placed
when you type the comma.
If you want to type (-1,2), you must of course select -1 beforeyou type the
comma.

How to call prefix functions

These functions are typed before their arguments (which is the usual case).
To call a prefix function:
you can type the first argument, select it, then call the function using a
menu,
or, you can call the function using a menu or a keystroke inAlpha mode,
then type the arguments.
The following example illustrates the different ways of calling a prefix
function.
Example:
Say you want to factor the expressionx2 − 4, then find its value forx = 4.
You know thatFACTORis the function for factoring, and that this function
is found in theALGBmenu.
You also know thatSUBSTis the function for substituting a value for a
variable in an expression, and that this function is found intheALGBmenu
as well.

First possibility: Function call, then arguments
Press theF2 key to activate theALGBon the menu bar, then highlight
FACTORand pressENTER.
FACTOR( ◭) is displayed in the editor, with the cursor between the paren-
theses.
Type your expression, using the rules of selection given earlier:

X Xy 2 � − 4 � � �

The following is now selected:

FACTOR(X2 − 4)

PressingENTERthen produces the result:

(X + 2) · (X− 2)
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The result is selected, and replaces the command.
You do not see this, but after eachENTER, the display is written to the
history, so in this case,FACTOR(X2 − 4) and the answer(X + 2) · (X− 2)
are written to the history (pressSYMBto see the history and then pressON
to return to the Equation Editor).
At this point, you can erase the preceding result withALPHA SHIFT DEL
(CLEAR) , because the result is selected.
Press the key that activatesALGBon the menu bar, then highlightSUBST
and pressENTER.

SUBST(◭, •)
is displayed in the editor, with the cursor between the parentheses at the l
ocation of the first argument.
Type your expression, using the rules of selection given earlier:
NOTE: Here, SUBSThas two arguments, so you must go into selection
mode using△ :

X Xy 2 △ △ − 4 � X = 4 � �

The following is now selected:

SUBST(X2 − 4, X = 4)

PressingENTERthen produces the result:

42 − 4

The result is selected, and replaces the command. PressingENTERthen
yields the simplified result:

12

Naturally, SUBST(X2 − 4, X = 4) , 42 − 4 and 12 are all written to the
history.
REMARK:
When you call aCASfunction that has arguments, you can type it inAlpha
mode with its parentheses.

Second possibility: Arguments, then function call
First of all, type the expression and select it using the rules of selection
given earlier.
In this case, type:

X Xy 2 � − 4 � �

Then callFACTOR:
press the keyF2 that activatesALGBon the menu bar, then highlightFACTOR
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and pressENTER.
This produces:

FACTOR(X2 − 4)

PressingENTERthen yields the result:

(X + 2) · (X− 2)

The result is selected, and replaces the command.
Naturally, FACTOR(X2 − 4) and (X + 2) · (X− 2) are both written to the
history.
Recall now that because your result is selected, you can apply another com-
mand to it.
At this point, then, callSUBST: press the keyF2 that activatesALGBon
the menu bar, then highlightSUBSTand pressENTER.

SUBST((X + 2) · (X− 2),◭)

is displayed in the editor, with your expression as the first argument be-
tween the parentheses, and with the cursor at the location ofthe second
argument.
All you have to do then is type:
X = 4 then,� �, followed byENTER.
This produces:

(4 + 2) · (4− 2)

PressingENTERthen yields:
12

Naturally,SUBST(X2 − 4, X = 4), (4 + 2) · (4− 2) and 12 are all written
to the history.
REMARK:
If you call a CAS function while you’re writing an expression, whatever
is currently selected is copied into the function’s first or "main" argument.
If nothing is selected, the cursor is placed at the appropriate location for
completing the arguments.

3.3.5 Equation editor variables

You can store objects in variables, then access an object by using the name
of its variable.
NOTES:
1- Variables used inCAScannot be used inHOME, and vice versa.
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2- In HOMEor in the program editor, useSTO⊲ (represented here asSTO⊲ or
⊲ or ->) to store an object in a variable.
3- InCAS, use theSTOREcommand (cf.3.3.5) to store a value in a variable.
4- TheVARSkey displays a menu that contains all the available variables.
Pressing this key while you are inHOMEdisplays the names of the variables
defined inHOMEand in theAplets .
Pressing this key while you are in the Equation Editor displays the names
of the variables defined inCAS.

To store an object in aCASvariable : STORE

In CAS, it is necessary to use theSTOREcommand to store an object in a
variable, or to use theVARSkey in the Equation Editor (and then choose
NEWor EDIT on the menu bar; cf.3.3.2).
All you need to provide is the name of the variable.
STOREis found in theALGBmenu on the Equation Editor menu bar.
Example:
Type:

STORE(X2 − 4, ABC)

Or, type:
X2 − 4

then select it and callSTORE,
then typeABC, then,ENTERconfirms the definition of the variableABC.
To destroy the variable, use theVARSkey in the Equation Editor (then
choosePURGEon the menu bar; cf.3.3.2), or invoke theUNASSIGNcom-
mand on theALGBmenu by typing (for example):

UNASSIGN(ABC)

PredefinedCASvariables

VXcontains the name of the current symbolic variable.
Generally this isX, so you should not useX as the name of a numeric
variable, or erase the contents ofX with the UNASSIGNcommand in the
ALGBmenu after having done a symbolic calculation by typing, forexam-
ple,UNASSIGN(X).

EPS contains the value of epsilon used in theEPSX0 command (cf.
5.11.2).

MODULOcontains the value ofp for performing symbolic calculations
in Z/pZ or in Z/pZ[X]. You can change the value ofp either with the
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MODSTOcommand in theMODULARmenu, (by typing, for example,MODSTO(13)
to give p a value of 13), or useSHIFT SYMBto open theCAS MODES
screen and changeModulo .

PERIODmust contain the period of a function before you can find its
Fourier coefficients (cf.5.9.4).

PRIMIT contains the primitive of the last integrated function.
REALASSUMEcontains a list of the names of the symbolic variables

that are considered reals. If you’ve chosen theCmplx vars option on the
CFGconfiguration menu, these are by default:
X, Y, t, S1, S2 , as well as any integration variables that are in use.
Of course, if you’ve chosen theReal vars option on theCFGconfigura-
tion menu, all symbolic variables are considered reals (cf.5.1.1). You can
also use an assumption to define a variable such asX>1.
In a case like this, you use theASSUME(X>1)command to makeREALASSUME
containX>1. The commandUNASSUME(X)destroys all the assumptions
we’ve previously made aboutX.

To see or to modify all these variables, as well as those that you’ve
defined inCAS, pressVARSin the Equation Editor, then onEDIT on the
menu bar (cf.3.3.2).

3.4 CASin the HOMEscreen

You can use many computer algebra functions directly in theHOMEscreen,
as long as you take certain precautions. CAS functions that take matrices
arguments work only fromHOME. For the description of these functions see
chapter4.

3.4.1 HOMEvariables

You can not use the same variable names inHOMEas in the Equation Edi-
tor. For exampleX can not be used as a symbolic variable, since theA..Z
variables names are numeric variables, and always contain areal value (0
by default).
The names of the symbolicHOMEvariables are :
S1..S5, s1..s5, n1..n5 .
Unlike with Equation Editor variables, it is not possible toassign a value
to a HOMEsymbolic variable: note thats1..s5 andn1..n5 are some-
times returned byQUADand ISOLATE respectively instead of a sign (it
should be replaced by±1 to get both solutions inQUAD, for instance,
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QUAD(S1*S1-9,S1) returnss1*6/2 ) or instead of an integer (e.g. for
isolation inside a trigonometric function, for instance,ISOLATE(SIN(S1),S1)
returns3.14..+n1 ).
If you want to store symbolic expressions inHOMEyou must use the sym-
bolic expression variablesE0..E9 . If you want to store lists of symbolic
expressions inHOMEyou must use the variablesL0..L9 .

3.4.2 Storing an object in aHOMEvariable : STO⊲

STO⊲ enables you to store an object in aHOMEvariable.STO⊲ is obtained
by pressingF1 on theHOMEmenu bar or on program editor menu bar,. A
variable can store only one kind of object, this kind is determined by the
variable name (see above).
For example, type:
S12 + 2× S1 STO ⊲ E1, then,
DERIV(E1, S1)
you get :
2 ∗ S1 + 2.

3.4.3 Some tricks and examples.

CAS functions may be accessed fromHOME, either from theCASsubmenu
of theMATHkey’s menu bar (F4 key), or directly (type the function name
in alpha mode). Note that:

• Certain calculations will be performed in approximate modebecause
numbers are interpreted as reals instead of integers inHOME. To do
exact calculations, you should use the commandXQ, it converts an
approximate argument into an exact argument. For example, if you
work with Radians :

ARG(XQ(1 + i)) =
π

4

ARG(1 + i) = 0.7853...

FACTOR(XQ(45)) = 32 ∗ 5
FACTOR(45) = 45

• The symbolicHOMEvariableS1 serves as the current variable for the
relevantCASfunctions inHOME. For example :

DERVX(S12 + 2× S1) = 2 ∗ S1 + 2
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The result2 ∗ S1 + 2 does not depend on the Equation Editor vari-
ableVX). Note that a fewCASfunction can not work insideHOME
because they require to change the current variable.

• Remember that you must use :
S1,S2,..S5,s1,s2,..s5,n1,n2,..n5 for symbolic variables
andE0,E1,..E9 to store symbolic expressions. For example, if
you type :

S12 − 4× S2 STO ⊲ E1

then you have :
DERVX(E1) = S1 ∗ 2

DERIV(E1, S2) = −4

INTVX(E1) = 1/3 ∗ S13 − 4 ∗ (S2 ∗ S1)

• If you want to work with symbolic matrices, you must store them
in L0, L1..L9 , because symbolic matrices are interpreted in the
same these matrices are interpreted in the same way as lists of lists
(whereas numeric matrices are stored inM0, M1..M9 ). The CAS
linear algebra instructions accept list of lists as input.
For example, if you type inHOME:

XQ({{S2 + 1, 1}, {
√
2, 1}}) STO ⊲ L1

then you have :

TRAN(L1) = {{S2 + 1,
√
2}, {1, 1}}

Some numeric linear algebra instructions do not work on listof lists,
but will after a conversion byAXL, like:
DET(AXL(L1))) STO ⊲ E1

you get :
S2− (−1 +

√
2)

Section4 describes CAS instructions that work only from HOME, in-
cluding some CAS symbolic linear algebra instructions. Formore in-
formation you can also use the on-line help (HELPor e.g.HELPWITH
TRAN) or look at the HP49G, HP49G+ or HP48GII CAS documen-
tation available from:
http://www-fourier.ujf-grenoble.fr/~parisse
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3.4.4 Send expressions fromHOMEinto the CAShistory :
PUSH

In theHOMEscreen, you can use thePUSHcommand to send expressions
into theCAShistory.
In theHOMEscreen, you type:
PUSH(S1+1)
andS1+1 is written to theCAShistory.

3.4.5 Retrieve expressions written to theCAShistory in
HOME: POP

In the HOMEscreen, you can use thePOPcommand to retrieve the last
expression written to theCAShistory.
In theHOMEscreen, you type:
POP
and, for example,S1+1 is written to theHOMEscreen history andS1+1 is
removed from theCAShistory.

3.4.6 The keyboard in theHOMEscreen

MATHkey

This opens the menu of mathematical functions.
This key, if pressed in theHOMEscreen, open a window containing the
mathematical (numeric) functions grouped by theme, since the MTH option
on the menu bar (F1 key) is selected by default.
If you chooseCASon this window’s menu bar (F4 key), you’ll find the
same menus as when you press theMATHkey in the Equation Editor: this
gives you access to all available computer algebra functions, grouped by
theme, from theHOMEscreen.

SHIFT F6 keys

The key combinationSHIFT F6(CAS on the menu bar) opensCAS
MODESscreen, which enables you change theCASconfiguration from the
HOMEscreen (cf3.3.2).
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SHIFT 2 (SYNTAX) keys

The key combinationSHIFT 2 (SYNTAX) placesHELPWITHin the
command line. All you need to do then is complete the line withthe name
of the command orCASfunction for which you want help. You can enter
the name of aCASfunction with MATHandCASon this window’s menu
bar (F4 key), but take care to omit the parentheses.
For example:HELPWITH DERVXopens theCAShelp topic onDERVX.
If you want generalCAShelp in theHOMEscreen, pressHELP, thenENTER.
This gives you help on theCASfunctions available in theHOMEscreen.
To get help in French, choose Français in theCFGmenu, which enables
you to change your configuration (cf5.1.1).
Each example can be copied into theHOMEscreen history by means of
ECHOon the menu bar, where it can be used as is or modified, and natu-
rally, the variableX of the example is replaced automatically byS1.
In addition, the examples are sometimes modified automatically to change
in HOMEscreen, reals to integers using theXQfunction.
For example, you type in theHOMEscreen:

HELPWITH PROPFRAC

or
HELP then you selectPROPFRAC in CAS HELP ON

You obtain the example forPROPFRAC:

PROPFRAC(XQ(
43

12
)) = 3 +

7

12

whereas if, in the equation editor, you selectPROPFRACon theCAS HELP
ON, the example is :

PROPFRAC(
43

12
)

but typing inHOME:

PROPFRAC(
43

12
)

gives
3.5833..



Chapter 4

The CASfunctions only
valid in HOME screen

These functions have as arguments matrix or vectors and return matrix or
vectors.

4.1 Linear systems

In this paragraph, we call "augmented matrix" of the systemA · X = B
(or matrix "representing" the systemA · X = B), the matrix obtained
augmenting the matrixA to the right with the column vectorB.

4.1.1 Resolution of a linear system of equations :REF

REFsolves a linear system of equations written in matrix form:

A · X = B

The argument ofREF is the augmented matrix of the system (the matrix
obtained augmenting matrixA to the right with the column vectorB).
The result is a matrix[A1,B1] : A1 has zeros under its principal diagonal,
and the solutions of:

A1 · X = B1

are the same as:
A · X = B

41
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For example, solve the system:
{

3 · x + y = −2
3 · x + 2 · y = 2

Typing:
REF([[3, 1,−2][3, 2, 2]])

gives:
[

1 1
3

−2
3

0 1 4

]

So,y = 4 andx = −2/3 − 4/3 = −2

4.1.2 Resolution of a linear system of equations :rref

rref solves a linear system of equations written in matrix form:

A · X = B

TThe argument ofrref is the augmented matrix of the system (the matrix
obtained augmenting matrixA to the right with the column vectorB).
The result is a list containing the list of pivot elements used by the command
and a matrix[A1,B1] : A1 has zeros both above and under its principal
diagonal, and the solutions of:

A1 · X = B1

are the same as:
A · X = B

It is interesting to userref in step-by-step mode.
For example, to solve the system:

{

3 · x + y = −2
3 · x + 2 · y = 2

Typing
rref([[3, 1,−2][3, 2, 2]])

gives :
{

{1 1}
[

3 0 −6
0 1 4

]}
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Typing
rref([[1, S1][S1, 1]])

gives :
{

{S12 − 1, 1}
[

S12 − 1 0
0 −(S12 − 1)

]}

4.2 Polynomials

4.2.1 List of factors : FACTORS

FACTORShas either a polynomial or a list of polynomials as argument.
FACTORSreturns a list containing the factors of the polynomial and their
exponents.
Typing:

FACTORS(S12 − 2 ∗ S1 + 1)

gives:
{S1− 1, 2.}

Typing:
FACTORS(S14 − 2 ∗ S12 + 1)

gives:
{S1− 1, 2 , S1 + 1, 2}

Typing:
FACTORS({S13 − 2 ∗ S12 + 1, S12 − S1})

gives:

{{S1− 1, 1 , 2 ∗ S1 + −1 +
√
5, 1 , 2 ∗ S1− (1 +

√
5), 1 , 4,−1},

{S1, 1 , S1− 1, 1}}

4.2.2 Rational function given by its roots and poles :FCOEF

FCOEFhas as argument a vector whose components are the roots and poles
of a rational functionF [x], followed by their multiplicity.
FCOEFreturns the rational functionF [x].
Typing:

FCOEF([1, 2, 0, 3, 2,−1])
gives:

S13 ∗ (S1− 1)2/(S1− 2)
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4.2.3 Roots and poles ofa rational function :FROOTS

FROOTShas a rational functionF [x] as argument.
FROOTSreturns a vector whose components are the roots and the polesof
F [x], followed by their multiplicity.
Typing:

FROOTS(
S15 − 2 · S14 + S13

S1− 2
)

gives:
[2,−1, 0, 3, 1, 2]

The result means that:2 is a pole of order 1,0 is a triple root, and1 is a
double root ofF [x] = x5−2·x4+x3

x−2 since(x − 1)2 · x3 = x5 − 2 · x4 + x3.

4.2.4 Grœbner basis :GBASIS

GBASIS has two arguments : a vector of polynomials with several vari-
ables and the vector of names of these variables.
GBASIS returns a Grœbner basis of the polynomial ideal built by the poly-
nomials which are in the first argument.
We choose to write the polynomial variables with the order ofthe last ar-
gument and to write the polynomials in decreasing power. IfI is an ideal
and if (Gk)k∈K is a Grœbner basis of this idealI then if F is a non zero
polynomial inI, the greatest power term ofF is divisible by the greatest
power term of aGk.
Property : If you do an euclidian division ofF by its correspondantGk,
then if you continue with the remainder of this division, we have at end, a
null remainder.
Typing :

GBASIS([2 · S1 · S2− S22, S12 − 2 · S1 · S2], [S1, S2])

gives :
[S12 − S22, 2 · S1 · S2− S22, S23]

4.2.5 Grœbner reduction :GREDUCE

GREDUCEhas three arguments : a polynomial with several variables, a
vector made with polynomials which are a Grœbner basis and a vector of
names of these variables.
GREDUCEreturns the reduction (+ a constant) of the polynomial givenin
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the first argument with respect to the Grœbner basis given in the second
argument.
Typing :

GREDUCE(S1 ∗ S2− 1, [S12 − S22, 2 ∗ S1 ∗ S2− S22, S23], [S1, S2])

gives :
(S22 − 2)/2

that is to sayY2 − 2 is the reduce polynomial of2 · X · Y− 2 (Y2 − 2 is the
remainder of2 · (X · Y− 1) by G2 = 2 · X · Y− Y2).

4.2.6 Lagrange’s polynomial :LAGRANGE

LAGRANGEhas as argument a matrix with two rows andn columns:
the first row corresponds to the abscissa valuesxi, and the second row
corresponds to ordinate valuesyi (i = 1..n).
LAGRANGEreturns the polynomialP of degreen− 1, so thatP (xi) = yi.
Typing:

LAGRANGE([[1, 3], [0, 1]])

gives:
S1− 1

2

in fact x−1
2 = 0 for x = 1 and x−1

2 = 1 for x = 3

4.2.7 GCD of a list : LGCD

LGCDdenotes the gcd (greatest common divisor) of a list of whole numbers
or of a list of polynomials.
LGCDreturns theGCDof all whole numbers of the list or theGCDof all
polynomials of the list.
Typing:

LGCD({125, 45, 35})
gives:

5

Typing:

LGCD({S12 + 2 ∗ S1 + 1, S13 + 1, S12 − 1, S12 + S1})

gives :
S1 + 1
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4.2.8 resultant of two polynomials:RESULTANT

RESULTANThas two polynomials as arguments.
RESULTANTreturns the resultant of the two polynomials. The resultant
of two polynomials is non zero if and only if the polynomials are prime
together. It is the determinant of their Sylvester matrixS.
The Sylvester matrixS of two polynomialsA[X] =

∑i=n
i=0 aiX

i andB[X] =
∑i=m

i=0 aiX
i is a square matrix withm + n rows and columns; its firstm

rows are made from the coefficients ofA[X]:










s11 = an s12 = an−1 · · · s1(n+1) = a0 0 · · · 0
s21 = 0 s22 = an · · · s2(n+1) = a1 s2(n+2) = a0 · · · 0

...
...

...
. . .

...
.. .

...
sm1 = 0 sm2 = 0 · · · sm(n+1) = am−1 sm(n+2) = am−2 · · · a0











and the followingn rows are made in the same way from the coefficients
of B[X]:
(

s(m+1)1 = bm s(m+1)2 = bm−1 · · · s(m+1)(m+1) = b0 0 · · · 0
...

...
...

. ..
...

. . .
...

)

For example, typing:

RESULTANT(S13 − S2 ∗ S1 + S3, 3 ∗ S12 − S2)

gives:
−(4 ∗ S23 − 27 ∗ S32)

4.2.9 Division by the PGCD :SIMP2

SIMP2 has two whole numbers (or two lists of whole numbers with the
same length) as arguments. These two whole numbers are considered as
representing a fraction.
SIMP2 returns the simplified fraction, represented as a list of twowhole
numbers.
Typing:

SIMP2(18, 15)

gives:
{6, 5}

Typing:
SIMP2({18, 28}, {15, 21})
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gives:
{6, 5, 4, 3}

SIMP2 has two polynomials (or two lists of polynomials with the same
length) as arguments. These two polynomials are consideredas represent-
ing a rational fraction.
SIMP2 returns the simplified rational fraction, represented as a list of two
polynomials.
Typing:

SIMP2(S13 − 1, S12 − 1)

gives:
{S12 + S1 + 1, S1 + 1}

4.2.10 Sturm’s sequences :STURM

STURMhas a polynomialP as argument.
STURMreturns a list containing the Sturm’s sequences ofP and their mul-
tiplicities.
The Sturm sequenceR1, R2, ... can be obtained from a square-free factor
F of P as follows:
R1 is the opposite of the remainder of the euclidean division ofF by F ′;
then,R2 is the opposite of the remainder of the euclidean division ofF ′ by
R1,
and so on, untilRk = 0.
For example, type:

STURM(S13 + 1)

You obtain:
{[1], −1, [S13 + 1, −3 · S12 − 1], 1.}

The first element of the list denotes that the denominator ofP (that is, the
element with−1 power), is 1.

4.2.11 Zeros of a polynomial :ZEROS

ZEROShas two arguments: a polynomialP and a variable name.
ZEROSreturns a list containing the zeros ofP with respect to the given
variable,WITHOUT their multiplicity.
Type:

ZEROS(S14 − 1, S1)
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gives:
- in real mode (change the mode withSHIFT F6 andUNCHK Complex)

{−1, 1}

- in complex mode (change the mode withSHIFT F6 andCHK Complex)

{i,−1,−i, 1}

4.3 Rational fractions

4.3.1 Numerator and denominator of a fraction :FXND

FXNDhas a rational fraction as argument, and returns a list containing the
simplified numerator and denominator of this fraction.
Typing:

FXND(3/6)

gives :
{1, 2}

Type:
FXND((S12 − 1)/(S1− 1))

You obtain:
{S12 − 1, S1− 1}

4.4 Modular calculations

4.4.1 Resolution of a linear system of equations :RREFMOD

RREFMODsolves a system of linear equationsAX = B in Z/pZ.
The argument is the matrixA augmented with the vectorB as its rightmost
column. The result is a matrix composed ofA1 andB1, whereA1 has zeros
both above and under its principal diagonal, and the systemA1X = B1 is
equivalent toAX = B.
To solve, inZ/13Z :

{

x + 2 · y = 9
3 · x + 10 · y = 0

Typing :
MODSTO(13)
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RREFMOD([[1, 2, 9][3, 10, 0]])

gives :
[[2, 0, 6], [0, 4,−1]]

that is,2.X = 6 and4.Y = −1 or, which is the same,X = 3 Y = 3 (since
−4 ∗ 3 = 1 (mod13)).

4.5 Variables

4.5.1 The symbolic variables of an expression :LNAME

LNAMEhas an expression as argument, and returns a vector whose compo-
nents are the symbolic variable names the expression contains.
Typing :

LNAME(S1 ∗ S2 ∗ SIN(S1))

gives :
[S1, S2]

4.5.2 The variables of an expression :LVAR

LVAR has an expression as argument, and returns a vector such thatthe
original expression is a rational fraction with respect to the components of
this vector.
Typing :

LVAR(S1 ∗ S2 ∗ SIN(S1))

gives :
[SIN(S1), S1, S2]

4.6 Numeric calculus

4.6.1 Omit the values smaller than EPS :EPSX0

EPSX0 has as argument an expression; in the expression, it replaces all
numeric values whose magnitude is smaller thanEPSwith zero and returns
the result.
Type:

EPSX0(0.001 + S1)
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You obtain (whenEPS=0.01 ) :

0 + S1

You obtain (whenEPS=0.0001 ) :

.001 + S1

4.6.2 Solve numerically a system :MSLV

MSLVsolves numerically a system of non-polynomial equations.
MSLVhas three vectors as arguments: a vector containing the equations, a
vector containing the system’s variables, and a vector containing an initial
guess for the solution.
MSLVreturns a vector containing an approximate solution of the given sys-
tem of equations.
While the command is running, the first display line shows the last estimate−→
V , and the second line shows the modulo of∆

−→
V

For example, type:

MSLV([SIN(S1) + S2, S1 + SIN(S2) − 1], [S1, S2], [0, 0])

You obtain:
[1.82384112611, −.968154636174]

List of values : TABVAL

TABVALhas an expression and a list of numbers as arguments.
TABVALreturns a list. This list holds two lists : the list of numbersgiven
as input and the list of the value the expression where the variable S1 is
replaced by the list of numbers given as input.
For example, typing:

TABVAL(S12 + S1, {1, 2, 3, XQ(
√
5})

gives:
{{1, 2, 3,

√
5}, {2, 6, 12, 5 +

√
5}}

4.6.3 Time for evaluation of the answer :TEVAL

TEVALhas a command as argument.
TEVALreturns the list of the answer and the time for the evaluationof this
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answer (unit=second).
For example, typing:

TEVAL(FACTOR(S12 − 1))

gives:
{(S1− 1) ∗ (S1 + 1), 0.2991}

4.6.4 Numeric approximation : XNUM

XNUMhas either an expression or an array as argument.
XNUMenables approximate mode and returns the numeric approximation
of its argument.
Type:

XNUM(
√
2)

You obtain:
1.41421356237

4.6.5 Exact value :XQ

XQhas a real numeric expression as argument.
XQenables exact mode and returns either a rational or a real approximation
of the expression.
Typing:

XQ(1.41421)

gives:
66441

46981

Typing:
XQ(1.414213562)

gives: √
2

4.7 The lists

4.7.1 Concatenation :AUGMENT

AUGMENThas as arguments two vectors, or two lists, or a list and an ele-
ment.
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AUGMENTconcatenates its arguments.
Typing:

AUGMENT({1, 2}, 3)

gives:

{1, 2, 3}

Typing:

AUGMENT({1, 2}, {3, 4})

gives:

{1, 2, 3, 4}

4.7.2 Map a function to a list : MAP

MAPhas two arguments: a list and a function defining an holomorphic
operator.
MAPapplies the operator to the list, and returns the result.
Typing:

MAP(1, 0, 2, EXP(S1)

gives:

{EXP(1), EXP(0), EXP(2)}

4.8 Quadratic forms

4.8.1 Matrice to quadratic form : AXQ

AXQhas two arguments: a symmetric matrixA representing a quadratic
form q and a vector whose components are the quadratic form’s variables.
AXQreturns the quadratic formq.
Typing :

AXQ([[0, 1], [1, 0]] , [S1, S2])

gives :

2 ∗ S2 ∗ S1
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4.8.2 Gauss decompsition :GAUSS

GAUSShas two arguments: a quadratic formq and a vector whose compo-
nents are the quadratic form’s variables.
GAUSSreturnsq expressed as a sum of squares.
Typing:

GAUSS(2 · S1 · S2 , [S1, S2])

gives:

−2 · (S2− S1

2
)2 +

1

2
· (S2 + S1)2

4.8.3 Matrix of a quadratic form : QXA

QXAhas two arguments: a quadratic formq and a vector whose components
are the form’s variables.
QXAreturns the matrixA associated withq.
Typing :

QXA(2 ∗ S1 ∗ S2 , [S1, S2])

gives :
[[0, 1], [1, 0]]

and withSHOW
[

0 1
1 0

]

4.8.4 Sylvester decomposition :SYLVESTER

SYLVESTERhas one argument: a symmetric matrix representing a quadratic
form q.
SYLVESTERreturns a list of two elements: the diagonal elements of the
diagonal matrixB (obtained expressingq as a sum of squares) and the ma-
trix of change of baseQ.
We have:

tQ · B · Q = A

Typing:
SYLVESTER([[0, 1], [1, 0]])

gives :

{[1
2
,−2] ,

[

1 1
−1
2

1
2

]

}
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4.9 Functions of multiple variables

4.9.1 The rotor : CURL

Heren = 3.
CURLhas two arguments: the value [E1, E2, E3] of a vectorial func-
tion (application fromR3 in R3) and a vector ofR3 denoting the variable
names.
CURLreturns the rotor of [E1, E2, E3].

CURL([E1, E2, E3], [S1, S2, S3]) = [
∂E3

∂S2
− ∂E2

∂S3
,
∂E1

∂S3
− ∂E3

∂S1
,
∂E2

∂S1
− ∂E1

∂S2
]

Type:
CURL([S1 ∗ S3,−S22, 2 ∗ S1 ∗ S2], [S1, S2, S3])

You obtain:
[2 ∗ S1, S1− S2 ∗ 2, 0]

4.9.2 The gradient :DERIV

DERIV has two arguments: the value of an applicationE1 from Rn in R
and a vector ofRn denoting the variable names.
DERIV returns the gradient ofE1 ([∂E1

∂S1 , ∂E1
∂S2 , ∂E1

∂S3 ] if n = 3).
Type:

DERIV(2 ∗ S12 ∗ S2− S1 ∗ S33, [S1, S2, S3])
After simplification, you obtain:

[4 · S2 · S1− S33, 2 · S12,−(3 · S1 · S32)]

4.9.3 The divergence :DIV

DIV has two arguments: the value [E1, E2, E3] of a vectorial function (ap-
plication fromRn in Rn) and a vector ofRn denoting the variable names.
DIV returns the divergence of [E1, E2, E3].

DIV([E1, E2, E3], [S1, S2, S3]) =
∂E1

∂S1
+

∂E2

∂S2
+

∂E3

∂S3
(heren = 3)

Typing:
DIV([S1 ∗ S3,−S22, 2 ∗ S1 ∗ S2], [S1, S2, S3])

gives:
S3− 2 ∗ S2
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4.9.4 The hessian :HESS

HESShas two arguments: the value of an applicationE1 from Rn in R and
a vector ofRn denoting the variable names.
HESSreturns a list containing the hessian ofE1, the gradient ofE1 and
the vector of the variable names.
Typing :

HESS(2 ∗ S12 ∗ S2− S1 ∗ S3 , [S1, S2, S3])

gives :

{





2 · 2 · S2 2 · 2 · S1 −1
2 · 2 · S1 0 0

−1 0 0



 , [4 · S1 · S2− S3, 2 · S12,−S1] , [S1, S2, S3]}

Now, to obtain the critical points ofE1, you must type:

SOLVE([4.S1.S2− S3, 2.S12,−S1] , [S1, S2, S3])

4.9.5 The laplacian :LAPL

LAPL has two arguments: the value of an applicationE1 from Rn in R and
a vector ofRn denoting the variable names.
LAPL returns the laplacian ofE1 (∂2E1

∂S12 + ∂2E1
∂S22 + ∂2E1

∂S32 if n = 3).
Type:

LAPL(2 ∗ S12 ∗ S2− S1 ∗ S33 , [S1, S2, S3])

You obtain:
4 ∗ S2− 6 ∗ S1 ∗ S3

4.10 Equations

4.10.1 Members of an equation :EXLR

EXLRhas an equation as argument (you have to type==).
EXLRreturns a list containing the left and right hand sides of theequation.
Type:

EXLR(XQ(2 · S1 + 1 == 3/2))

You obtain:
{2 · S1 + 1, 3/2}



56CHAPTER 4. THECASFUNCTIONS ONLY VALID IN HOME SCREEN

4.11 Matrices

4.11.1 Matrix to list : AXL

WhenAXL is given a matrix as argument, it returns the same matrix rewrit-
ten as a list of lists. Vice versa,AXL transforms a list of lists into a matrix.
Typing:

AXL(XQ([[1, 1/2], [3, 4]]))

gives:

{{1, 1/2}, {3, 4}}

Typing:

AXL(XQ({{1, 1/2}, {3, 4}}))

gives:

[[1, 1/2], [3, 4]]

But typing:

AXL([[1, 1/2], [3, 4]])

gives:

{{1, 0.5}, {3, 4}}

and typing

AXL({{1, 1/2}, {3, 4}})

gives:

[[1, 0.5, [3, 4]]

4.11.2 Symbolic matrix to numeric matrix : AXM

If given a symbolic matrix as argument,AXMreturns an equivalent (but
approximate) numeric matrix.
Type:

AXM([[1/2, 2], [3, 4]])

You obtain:

[[0.5, 2], [3, 4]]
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4.11.3 Basis vectors :BASIS

BASIS has as argument a list of vectors, defining a vectorial subspace of
Rn.
BASIS returns a list containing the vectors of a basis of the vectorial sub-
space.
For example, type:

BASIS({[1, 2, 3], [1, 1, 1], [2, 3, 4]})

You obtain:
{[1, 0,−1], [0, 1, 2]}

4.11.4 Cholesky matrix :CHOLESKY

CHOLESKYhas as argument a square matrixM, positive by definition.
CHOLESKYreturns an upper triangular matrixP so that:
tP ∗ P = M

Typing:
CHOLESKY([[1, 1], [1, 5]])

gives :
[

1 1
0 2

]

4.11.5 Map an operator to a diagonalizable matrix :DIAGMAP

DIAGMAPhas two arguments: a diagonalizable matrix and an expression
defining an holomorphic operator.
DIAGMAPapplies the operator to the matrix, and returns the result.
Typing:

DIAGMAP([[1, 1], [0, 2]], EXP(S1))

gives:
[

EXP(1) EXP(2) − EXP(1)
0 EXP(2)

]

4.11.6 Hadamard product :HADAMARD

HADAMARDhas two matricesA andB, with the same size, as arguments.
HADAMARDreturns the element-by-element product betweenA andB.
Type:

HADAMARD(XQ([[1/2, 2], [3, 4]]), XQ([[5, 6], [7, 8]]))
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or
HADAMARD(XQ({{1/2, 2}, {3, 4}}), XQ({{5, 6}, {7, 8}})

You obtain:
[[5/2, 12], [21, 32]]

but
HADAMARD([[1/2, 2], [3, 4]], [[5, 6], [7, 8]])

or
HADAMARD({{1/2, 2}, {3, 4}}, {{5, 6}, {7, 8}}

You obtain:
[[2.5, 12], [21, 32]]

4.11.7 Hilbert matrix : HILBERT

HILBERT has an integern as argument.
HILBERT returns the square Hilbert matrix of ordern whose elements are
given by:

ai,j =
1

i + j − 1

Type:
HILBERT(4)

You obtain, pressingENTER, then↑, and thenSHOW:








1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7









4.11.8 Basis of an intersection :IBASIS

IBASIS has as arguments two lists of vectors, defining two vectorialspaces.
IBASIS returns a list containing the vectors of a basis of the intersection
between these two vectorial spaces.
Typing:

IBASIS({[1, 2]}, {[2, 4]})
gives:

{[1, 2]}
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4.11.9 basis of the image :IMAGE

IMAGE has as argument a matrix representing a linear applicationf in
terms of the standard basis.
IMAGEreturns a list of vectors; they are a basis of the image off .
Typing:

IMAGE([[1, 2, 3], [2, 1, 3], [3, 1, 4]])

gives :

{[1, 0,−1/3], [0, 1, 5/3]}

4.11.10 Jordan matrix : JORDAN

JORDANhas a matrixA, of ordern, as argument.
JORDANreturns a list composed by the minimal polynomialM of A, the
characteristic polynomialP of A, the list of the eigenvectors and charac-
teristic vectors (each vector is preceded by its characteristic value), and the
vector of then eigenvalues ofA.
Type:

JORDAN([[4, 1,−2], [1, 2,−1], [2, 1, 0]])

or

JORDAN({{4, 1,−2}, {1, 2,−1}, {2, 1, 0}})

You obtain pressingENTER, then↑, and thenSHOW:

{S13 − 6 · S12 + 12 · S1− 8, S13 − 6 · S12 + 12 · S1− 8,

{[1, 0, 0], [2, 1, 2], [1, 0, 1]}, [2, 2, 2]}

4.11.11 Basis of the kernel :KER

KERhas as argument a matrix representing a linear applicationf in terms
of the standard basis.
KERreturns a list of vectors; they are a basis of the kernel off .
Typing:

KER([[1, 2, 3], [2, 1, 3], [3, 1, 4]])

gives:

{[1, 1,−1]}
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4.11.12 Make a matrix :LCXM

LCXMhas as arguments two integers,n andp, and an expression ofS1 (a
row number) and ogS2 (a column number) and yielding the value ofai,j .
LCXMreturns an · p matrix having coefficientsai,j . Type:

LCXM(2, 3, S1 + S2)

You obtain:

[[1 + 1, 1 + 2, 1 + 3], [2 + 1, 2 + 2, 2 + 3]]

and then after simplification :

[[2, 3, 4], [3, 4, 5]]

4.11.13 List of several elements :MAD

MAD has a square matrixA, of ordern, as argument.
MAD returns a list containing the determinant ofA, the inverse ofA, a list
containing the matrix coefficients of a polynomialQ, and of the character-
istic poloynomialP of A.
We have:

P (x) = (−1)n · det(A − x · I)

The polynomial with matrix coefficientsP (A) − P (x) · I is divisible by
A − x · I (since its value is zero forx = A). Let Q(x) be their quotient.
SinceP (A) = 0, we haveP (A) − P (x) · I = −P (x) · I = (A − x ·
I) · Q(x).
Therefore,Q(x) is also the co-matrix ofA− x · I and the following holds:
Q(x) = I ·xn−1 + ...+B0, whereB0 is the co-matrix ofA (with the sign
exchanged ifn is even!).
Type:

MAD([[1, 1/2], [1, 3]])

or
MAD({{1, 1/2}, {1, 3}})

You obtain:

{5/2, [[6/5,−1/5], [−2/5, 2/5]], {[[1, 0], [0, 1]], [[−3, 1/2], [1,−1]]}, S12 − 4 ∗ S1 + 5/2}

or pressingENTER, then↑, and thenSHOWgives:
{

5

2
,

[

6
5 −−1

5
−2
5

2
5

]

, {
[

1 0
0 1

]

,

[

−3 1/2
1 −1

]}

, S12 − 4 · S1 +
5

2
}
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4.11.14 Characteristic polynomial :PCAR

PCARhas a matrixA, of ordern, as argument.
PCARreturns the characteristic polynomialP of A (P [x] = (−1)n·det(A−
x · I)) Type:

PCAR([[4, 1,−2], [1, 2,−1], [2, 1, 0]])

or

PCAR({{4, 1,−2}, {1, 2,−1}, {2, 1, 0}})

You obtain:

S13 − 6 ∗ S12 + 12 ∗ S1− 8

4.11.15 Minimal polynomial : PMINI

PMINI has a matrixA as argument.
PMINI returns another matrix, whose first "zero row" is ended by themin-
imal polynomial ofA.
For example, type:

PMINI([[1, 0], [0, 1]])

In step-by-step mode, you obtain:
L2=L2-L1




1 0 0 1 1
1 0 0 1 S1
1 0 0 1 S12





L3=L3-L1




1 0 0 1 1
0 0 0 0 S1 − 1
1 0 0 1 S12





Reduction result




1 0 0 1 1
0 0 0 0 S1 − 1
0 0 0 0 S12 − 1





The row :
0,0,0,0,S1-1 gives the minimal polynomial ofA. So, the minimal

polynomial ofA:

[

1 0
0 1

]

is:

S1− 1
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4.11.16 Q*R decomposition :qr

qr has a square matrix as argument.
qr factors the matrix as Q*R, where Q is an orthogonal matrix andR is a
triangular matrix.
Typing:

qr([[3, 5], [4, 5]])

gives:

{
[

3
5

4
5

4
5 − 3

5

]

,

[

5 7
0 1

]

}

4.11.17 System to matrix :SYST2MAT

SYST2MAThas two arguments: a vector containing a system of linear
equations (= or == is not allowed and so=0 is omitted), and a vector whose
elements are the system’s variables.
SYST2MATrewrites the system in matrix notation, and returns the matrix.
For example, type:

SYST2MAT([S1 + S2, S1− S2− 2], [S1, S2])

You obtain:
[

1 1 0
1 −1 −2

]

4.11.18 Transposed matrix :TRAN

TRANhas a matrixA as argument.
TRANreturns the input matrixA transposed.
Typing :

TRAN(XQ([[1, 1/2], [3, 4]]))

gives:
[[1, 3], [1/2, 4]]

Typing :
TRAN(XQ({{1, 1/2}, {3, 4}}))

gives:
{{1, 3}, {1/2, 4}}

But typing :
TRAN([[1, 1/2], [3, 4]]))
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gives:
[[1, 3], [0.5, 4]]

4.11.19 Vandermonde matrix :VANDERMONDE

VANDERMONDEhas as argument a vector whose components are denoted
by xi for i = 0..n − 1.
VANDERMONDEreturns the corresponding Vandermonde matrix (thek-th
row of the matrix is the vector whose components arexk

i for i = 0..n − 1
andk = 0..n − 1).
Type:

VANDERMONDE([1, 2, 3])

You obtain:
[[1, 1, 1], [1, 2, 4], [1, 3, 9]]

Suppose thatE1=6, E2=2*S1+S1*S2 and then type:

VANDERMONDE([E1, E2, E3])

You obtain pressingENTER, then↑, and thenSHOW:





1 6 36
1 2 · S1 + S1 · S2 (2 · S1 + S1 · S2)2
1 E3 E32





4.12 The permutations

Permutations are defined with the image list{P (1), P (2)...P (n)}.
For example, definining the permutationP asP = {3, 2, 1} means that:
P (1) = 3, P (2) = 2, P (3) = 1.
A cycle is denoted with a list containing the images of an element through
the cycle; for example, defining a cycleC asC = {3, 2, 1} means that:
C(3) = 2, C(2) = 1, C(1) = 3.
Accordingly, a decomposition into cycles is denoted with a list of lists.

4.12.1 Cycles to permutation :C2P

C2Phas a list of cycles as argument.
C2P returns the permutation having the input list as decomposition into
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cycles (see alsoP2C).
Typing:

C2P({{1, 3, 5}, {2, 4}})
gives:

{3, 4, 5, 2, 1}

4.12.2 Composition :CIRC

CIRC has two permutations as arguments.
CIRC returns the permutation obtained by composition: (1stargument◦
2ndargument).
Typing:

CIRC({3, 4, 5, 2, 1}, {2, 1, 4, 3, 5})
gives :

{4, 3, 2, 5, 1}

4.12.3 Decomposition into cyclesP2C

P2Chas a permutation as argument.
P2C returns its decomposition into cycles and its signature.
Typing:

P2C({3, 4, 5, 2, 1})
gives :

{{{1, 3, 5}, {2, 4}},−1}

4.13 The isometries

4.13.1 Isometry’s characteristics elements :ISOM

ISOM has as argument a matrix representing a two or three-dimensional
linear isometry.
ISOM returns the list of the isometry’s characteristics elements and either
+1 (for direct isometries) or-1 (for indirect isometries).
For example, type:

ISOM([[0, 0, 1], [0, 1, 0], [1, 0, 0]])

You obtain:
{[1, 0,−1],−1}
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This result means that the isometry is a simmetry with respect to the plane
x − z = 0.
If you type:

ISOM(

√
2

2
·
[

1 −1
1 1

]

)

You obtain:
{ACOS(

√

(1/2), 1}

therefore, this isometry is a rotation of
π

4
radians.

4.13.2 Isometry’s matrix : MKISOM

In a three-dimensional space,MKISOMhas the list of the characteristics
elements of an isometry, and either+1 (denoting a direct isometry) or-1
(denoting an indirect isometry) as arguments,
In a two-dimensional space,MKISOMhas the characteristic element of an
isometry (either an angle or a vector) and either+1 (denoting a direct isom-
etry) or-1 (denoting an indirect isometry) as arguments.
MKISOMreturns the matrix representing the given isometry.
For example, type:

MKISOM({[−1, 2,−1], π}, 1)

You simplify the answer typing :
XQ( then↑ andCOPY, then) ENTER
this gives the matrix of a rotation with axis[−1, 2,−1] and angleπ :





−2
3

−2
3

1
3

−2
3

1
3

−2
3

1
3

−2
3

−2
3





For example, type:
MKISOM({π},−1)

You obtain the matrix of a symmetry with respect to the origin:

[[−1, 0, 0], [0,−1, 0], [0, 0,−1]]

Type:

MKISOM({[1, 1, 1], π

3
},−1)
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You obtain (after simplification) the matrix of a rotation with axis[1, 1, 1]
and angleπ

3 combined with a symmetry with respect to the planex+y+z =
0:





0 −1 0
0 0 −1

−1 0 0





Type:

MKISOM(
π

2
, 1)

You obtain the matrix of a rotation ofπ2 radians in two dimensions:

[[0,−1], [1, 0]]

(becauseCOS(1/2 ∗ π) = 0 andSIN(1/2 ∗ π) = 1)
Type:

MKISOM([1, 1],−1)
You obtain the matrix of a symmetry with respect toy = x in two dimen-
sions:

[[0,−1], [−1, 0]]



Chapter 5

CASReference from the
Equation Editor

When you press onCASin theHOMEmenu bar, you open the Equation Ed-
itor in wich you can do symbolic calculus. In this chapter, wedescribe the
computer algebra functions as used from the Equation Editor(see section
3.4and chapter4 if you want to useCASfunctions fromHOME).

5.1 CASmenu bar

The Equation Editor has a menu bar : it is theCASmenu bar.
TOOL, ALGB, DIFF , REWRI, SOLVand TRIG compose theCASmenu
bar.
Only theTOOLmenu contains commands, the other menus contain the al-
gebraic functions that can be written inAlpha mode and have on its first
line the sub-menuCFGenable you to change your configuration.

5.1.1 Change your configuration :CFG

All the menus, exceptTOOLdisplay the state of your configuration and
enable you to change it.
For example, say that you see the following on the first line ofa menu:

CFG : R = X S

67
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This means that :
(1) you are in exact-real mode,
(2) X is the current variable, and
(3) you are working in Step by step mode (S).
If you highlightCFGand pressOK, a menu is displayed with this at its head:

CFG : R = STEP ↑ X 13 ||

This means that :
(1) you are in exact-real mode,
(2) Step by step mode is selected,
(3) polynomials are written with their terms in ascending order by expo-
nent,
(4) X is the current variable,
(5) modular calculations are carried out inZ/13Z (p = 13), and
(6) you are working in Rigorous mode (that is, using absolutevalues).
You can change this configuration by selecting any of the following:
Quit cfg (when you’re finished making changes)
Complex (or Real )
Approx (or Exact )
Direct (or Step/Step if you want to work in Step by Step mode)
1 + x + x2... (or ...x2 + x + 1) how polynomials will appear,
Sloppy (or Rigorous , if you want to work in absolute values)
Num. factor (or Symb factor )
Cmplx vars (or Real vars if you want all symbolic variables to be
treated as reals cf.3.3.5)
English (or Français if you want the line-based help to be in French)
Default cfg (configurationR = STEP ↓ X 13 ||.
PressOKto validate each of your choices.
PressingCANCELtakes you out of theCFGmenu (as does choosingquit
cfg and confirming it withOK).
The name of the current variable contained inVX, as well as the value
of the variableMODULO, can be changed by means of theSHIFT SYMB
(SETUP) keystroke, or by using theVARSkey (see3.3.2and3.3.2).
REMARKS :
- You can also change your configuration with theSHIFT SYMB (SETUP)
(or SHIFT HOME (MODES)) keystrokes pressed in the Equation Editor
(see section3.3.2).
- In CAS, angles are always expressed inRadians .
When you are inHOMEscreen, you can use theMODESmenu (theSHIFT
HOMEkeystrokes) to open theHOME MODESscreen and to changeANGLE
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MEASUREor open theCAS MODESscreen with theSHIFT F6(CAS on
the menu bar) to change your CAS configuration.

5.1.2 Step/Step Mode

You choose Step by Step mode (Step/Step , abbreviatedS) when you
want to see the details of the calculations.
The details of the calculations are displayed on the screen and you can view
the next step by pressingOK.
When the screen is not big enough to display all the information, directional
arrowsH andN appear on the edge of the screen. You can then scroll the
screen to see more information by using the arrow keys▽ △.
If you do not need to see the details of the calculations, chooseDirect
mode (abbreviatedD).

5.1.3 TOOLmenu

The functions contained in theTOOLmenu are described in section3.3.1.
Cursor mode
Edit expr.
Change font
Cut
Copy
Paste

5.1.4 ALGBmenu

COLLECT
DEF
EXPAND
FACTOR
PARTFRAC
QUOTE
STORE
|
SUBST
TEXPAND
UNASSIGN
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5.1.5 DIFF menu

DERIV
DERVX
DIVPC
FOURIER
IBP
INTVX
lim
PREVAL
RISCH
SERIES
TABVAR
TAYLOR0
TRUNC

5.1.6 REWRImenu

DISTRIB
EPSX0
EXPLN
EXP2POW
FDISTRIB
LIN
LNCOLLECT
POWEXPAND
SINCOS
SIMPLIFY
XNUM
XQ

5.1.7 SOLVmenu

DESOLVE
ISOLATE
LDEC
LINSOLVE
SOLVE
SOLVEVX
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5.1.8 TRIG menu

ACOS2S
ASIN2C
ASIN2T
ATAN2S
HALFTAN
SINCOS
TAN2CS2
TAN2SC
TAN2SC2
TCOLLECT
TEXPAND
TLIN
TRIG
TRIGCOS
TRIGSIN
TRIGTAN

5.1.9 The MATHkey

It contains, in addition to the previously described menus (Algebra , Diff&Int ,
Rewrite , Trig. , Solve ) we have :
Complex (i ABS ARG CONJ DROITE IM - RE SIGN)
Constant (e i∞π)
Hyperb. (ACOSH ASINH ATANH COSH SINH TANH)
Integer (DIVIS EULER FACTOR GCD IDIV2 IEGCD IQUOT IREMAINDER
ISPRIME? LCM MOD NEXTPRIME PREVPRIME)
Modular (ADDTMOD DIVMOD EXPANDMOD FACTORMOD GCDMOD INVMOD
MODSTO MULTMOD POWMOD SUBTMOD)
Polynom. (EGCD FACTOR GCD HERMITE LCM LEGENDRE PARTFRAC
PROPFRAC PTAYL QUOT REMAINDER TCHEBYCHEFF)
Reals (CEILING FLOOR FRAC INT MAX MIN)
Tests (ASSUME UNASSUME> ≥ < ≤ == 6= AND OR NOT IFTE)
Refer to sections3.3.1and3.3.2for descriptions of these menus.

5.2 Integers (and Gaussian Integers)

All the functions in this section are found in theMATHkey’s Integer
menu, exceptIABCUV ICHINREM PA2B2, which is in theSHIFT MATH
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(CMDS) key’s menu.
For certain functions, you can use Gaussian integers (numbers of the form
a + ib, wherea andb are integers) in the place of integers.

5.2.1 Unlimited precision

The calculator can manage integers with unlimited precision, such as the
following:

100!

The symbol ! is obtained by typingSHIFT ×
The decimal value of100! is very large, but you can view it by using the
VIEWSkey.

5.2.2 The divisors of a number :DIVIS

DIVIS gives the divisors of a number.
Typing :

DIVIS(12)

gives:

12 OR 6 OR 3 OR 4 OR 2 OR 1

NOTE : DIVIS(0) = 0 OR 1

5.2.3 The Euler index :EULER

EULERreturns the Euler index for a whole number.
EULER(n) is equal to the number of whole numbers less thann and prime
with n.
Typing:

EULER(21)

gives:

12

In other words:
E={2,4,5,7,8,10,11,13,15,16,17,19} is the set of whole numbers less than
21 and prime with 21. There are 12 members of the set, so Cardinal(E)=12.
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5.2.4 Decomposition into prime factors :FACTOR

FACTORdecomposes an integer into its prime factors.
Typing:

FACTOR(90)

gives:

2 · 32 · 5

5.2.5 The greatest common divisor :GCD

GCDreturns the greatest common divisor of two integers.
Typing:

GCD(18, 15)

gives:

3

In Step by step mode, typing:

GCD(78, 24)

gives:
78 mod 24 = 6

24 mod 6 = 0

Result 6
PressingENTERthen causes6 to be written to the Equation Editor.

5.2.6 Resolution ofau + bv = c : IABCUV

IABCUV(A,B,C) returnsU AND Vso thatAU+BV=C.
It is of course necessary thatCmust be a multiple ofGCD(A,B) to obtain
a solution.
Typing :

IABCUV(48, 30, 18)

gives :

6 AND − 9
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5.2.7 Chinese remainders :ICHINREM

ICHINREM(A AND P,B AND Q)returnsC AND R.
The numbersX = C + k · R wherek ∈ Z are such that :
X = A mod P andX = B mod Q.
A solutionXalways exists whenPandQare mutually prime, (GCD(P,Q)=1 )
and in this case, all the solutions are congruent moduloR = P · Q.
Typing :

ICHINREM(7 AND 10, 12 AND 15)

gives :
−3 AND 30

that is to say that the solutions are such that :
X = −3 mod 30

EXAMPLE :
Gives the solutions of :

{

X = 3 (mod 5)
X = 9 (mod 13)

Typing :
ICHINREM(3 AND 5, 9 AND 13)

gives :
−147 AND 65

that is to say that the solutions are such that :
X = −147 mod 65

5.2.8 Quotient and remainder of two integers :IDIV2

IDIV2 returns the quotientANDthe remainder of the Euclidean division
between two integers.
Typing:

IDIV2(148, 5)

gives:
29 AND 3

In step-by-step mode, the calculator shows the division process like it is
taught at school. The division is carried out as if in longhand, using the
so-called "gallows" algorithm.
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5.2.9 Bézout’s Identity : IEGCD

IEGCD(A,B) returns the value of Bézout’s Identity for two integers.
In other words,IEGCD(A,B) returnsU AND V = D, with U, V, D
such that:
AU+BV=DandD=GCD(A,B) .
Typing:

IEGCD(48, 30)

gives
2 AND − 3 = 6

In other words:2 · 48 + (−3) · 30 = 6 and gcd(48,30)=6
In Step by step mode, we get:
[z,u,v]:z=u*48+v*30
[48,1,0]
[30,0,1]*-1
[18,1,-1]*-1
[12,-1,2]*-1
[6,2,-3]*-2
Result : [6,2,-3]
puisENTERouOK,

2 AND − 3 = 6

to be written to the Equation Editor.

5.2.10 The integer Euclidean quotient :IQUOT

IQUOT returns the integer quotient of the Euclidean division of two inte-
gers.
Typing:

IQUOT(148, 5)

gives:
29

In Step by step mode, the division is carried out as if in longhand:

148 | 5
48 | − − −
3 | 29

PressOKto execute the division step by step, then pressENTERto write
the result29 to the Equation Editor.
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5.2.11 The integer remainder :IREMAINDER

IREMAINDERreturns the integer remainder from the Euclidean division
of two integers.
IREMAINDERis found in theMATHkey’s Integer menu.
Typing:

IREMAINDER(148, 5)

gives:
3

IREMAINDERworks with integers or with Gaussian integers, which is
what distinguishes it fromMOD.
EXAMPLE

IREMAINDER(2 + 3 · i, 1 + i)

returnsi
Try calculating:

IREMAINDER(148!, 5! + 2)

(The symbol! is obtained by typingSHIFT ×).
In Step by step mode, the division is carried out as if in longhand, using

the so-called "gallows" algorithm (see5.2.10for an example).

5.2.12 Test of pseudo-primality :ISPRIME?

ISPRIME?(N) returns1. (TRUE) if N is a pseudo-prime, and0. (FALSE)
if N is not prime.
DEFINITION: For numbers less than1014, pseudo-prime and prime mean
the same thing. But for numbers greater than1014, a pseudo-prime is a
number with a large probability of being prime (cf. Rabin’s Algorithm,
section 7.6).
Typing:

ISPRIME?(13)

gives:
1.

Typing:
ISPRIME?(14)

gives:
0.



5.2. INTEGERS (AND GAUSSIAN INTEGERS) 77

5.2.13 The least common multiple :LCM

LCMreturns the least common multiple of two integers.
Typing:

LCM(18, 15)

gives:
90

5.2.14 Remainder of the Euclidean division :MOD

MODis an infix function that has two integers as arguments.
MODreturns the remainder of the Euclidean division of the arguments.
Typing:

3 MOD 2

produces the result:
1

MODaccepts real numbers (7.5 mod 2.1 = 1.2), but not Gaussian inte-
gers (cf section5.5.3).

5.2.15 The smallest pseudo-prime greater thanN: NEXTPRIME

NEXTPRIME(N) returns the smallest pseudo-prime greater thanN.
Typing:

NEXTPRIME(75)

gives:
79

5.2.16 Resolution ofa2 + b2 = p with integers: PA2B2

PA2B2 decompose a prime integerp congruent to 1 modulo 4, as follows:
p = a2 + b2.
The calculator gives the result asa + b · i
Typing :

PA2B2(17)

gives :
4 + i
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that is,17 = 42 + 12

Typing :
PA2B2(29)

gives :
5 + 2 · i

that is,29 = 52 + 22

5.2.17 The greatest pseudo-prime less thanN: PREVPRIME

PREVPRIME(N) returns the greatest pseudo-prime less thanN.
Typing:

PREVPRIME(75)

gives:
73

5.3 Modular Calculations

All the functions in this section are found in theMATHkey’s Modular
menu exceptDIV2MOD, which is in theSHIFT MATH (CMDS)key’s
menu.
You can carry out calculations in modulop that is, inZ/pZ or in Z/pZ[X].
NOTE: For some commands,p must be prime.
ALL THE EXAMPLES IN THIS SECTION USE A VALUE FORp OF 13 .
It’s assumed that you have already typed:

MODSTO(13)

or that you have used theSHIFT SYMB (SETUP) keystroke to switch
MODULOto 13 . The representation is the symetric representation (-5 in-
stead of 8 modulo 13).

5.3.1 Addition in Z/pZ or in Z/pZ[X] : ADDTMOD

ADDTMODperforms an addition inZ/pZ.
Typing:

ADDTMOD(2, 18)

gives:
−6
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ADDTMODperforms an addition inZ/pZ[X].
Typing:

ADDTMOD(11X + 5, 8X + 6)

gives:
6X− 2

5.3.2 Quotient and remainder in Z/pZ[X]: DIV2MOD

The arguments ofDIV2MODare two polynomialsA[X] andB[X] . The
result is aANDcontaining both the quotient and the remainder of the eu-
clidean division ofA[X] by B[X] in Z/pZ[X].
Typing:

DI2VMOD(X3 + X2 + 1, 2 · X2 + 4)

you obtain inZ/13Z :

−(6X + 6) AND − (2X + 1)

sinceX3 + X2 + 1 = (2 · X2 + 4) · X+1
2 + 5·X−4

4
2 ∗ (−6) = 1 mod 13 and
4 ∗ (−3) = 1 mod 13

5.3.3 Division in Z/pZ or in Z/pZ[X] : DIVMOD

The arguments are two integersA andB. WhenB has an inverse inZ/pZ,
the result isA

B simplified asZ/pZ, else there is an error message.
Typing:

DIVMOD(5, 3)

gives:
6

The arguments are two polynomialsA[X] andB[X]. The result is a
rationale fractionA[X]

B[X] simplified asZ/pZ[X].
Typing:

DIVMOD(2X2 + 5, 5X2 + 2X− 3)

gives:

−4X + 5

3X + 3
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5.3.4 To expand and simplify expressions in Z/pZ or in Z/pZ[X]
: EXPANDMOD

EXPANDMODhas as an argument a integer expression.
EXPANDMODexpands this expression inZ/pZ.
Typing:

EXPANDMOD(2 ∗ 3 + 5 ∗ 4)

gives:

0

EXPANDMODhas as an argument a polynomial expression.
EXPANDMODexpands this expression inZ/pZ[X].
Typing:

EXPANDMOD((2X2 + 12).(5X− 4))

gives:

−(3X3 − 5X2 + 5X− 4)

5.3.5 To factor polynomials in Z/pZ[X] : FACTORMOD

FACTORMODhas as an argument a polynomial.
FACTORMODfactors this polynomial inZ/pZ[X], providing thatp ≤ 97

andp is prime.
Typing:

FACTORMOD(−(3X3 − 5X2 + 5X− 4))

gives:

−((3X− 5)(X2 + 6))

5.3.6 GCD of the two polynomials in Z/pZ[X] : GCDMOD

GCDMODhas two polynomials as arguments.
GCDMODcalculates the GCD of the two polynomials inZ/pZ[X].
Typing:

GCDMOD(2X2 + 5, 5X2 + 2X− 3)

gives:

−(6X− 1)
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5.3.7 Inverse in Z/pZ : INVMOD

INVMODhas as an argument an integer.
INVMODcalculates the inverse of the integer inZ/pZ.
Typing:

INVMOD(5)

gives (since5 ×−5 = −25 = 1 (mod 13)) :

−5

5.3.8 To put a value in theMODULOvariable : MODSTO

You use theMODSTOcommand to set the value of theMODULOvariablep.
THE EXAMPLES IN THIS SECTION ALL USE A VALUE FORp OF 13 that
is, they assume that you have already typed:

MODSTO(13)

5.3.9 Multiplication in Z/pZ or Z/pZ[X] : MULTMOD

MULTMODperforms a multiplication inZ/pZ.
Typing:

MULTMOD(11, 8)

gives:
−3

MULTMODperforms a multiplication inZ/pZ[X].
Typing:

MULTMOD(11X + 5, 8X + 6)

gives:
−(3X2 − 2X− 4)

5.3.10 Power in Z/pZ or in Z/pZ[X] : POWMOD

POWMOD(A,N)calculatesA to the power ofN in Z/pZ[X], andPOWMOD(A(X),N)
calculatesA(X) to the power ofN in Z/pZ[X].
TheMODULOvariablep must be a prime number less than 100.
Typing:

POWMOD(11, 195)
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gives ifp = 13:
5

In effect:1112 = 1 mod 13 so11195 = 113 = 5 mod 13
Typing:

POWMOD(2X + 1, 5)

gives:
6 · X5 + 2 · X4 + 2 · X3 + X2 − 3 · X + 1

since:
10 = −3 (mod 13) 40 = 1 (mod 13) 80 = 2 (mod 13)
32 = 6 (mod 13).

5.3.11 Subtraction in Z/pZ or in Z/pZ[X] : SUBTMOD

SUBTMODperforms a subtraction inZ/pZ.
Typing:

SUBTMOD(29, 8)

gives:
−5

SUBTMODperforms a subtraction inZ/pZ[X].
Typing:

SUBTMOD(11X + 5, 8X + 6)

gives:
3X− 1

5.4 Rational Numbers

Calculate:
123

12
+

57

21

After you pressENTER, you get the result:

363

28

If you now invoke theXNUMfunction on theREWRITEmenu, or if you
press theNUMkey, you get the following result:

12.9642857143
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If you mix the two representations, for example:

1

2
+ 0 . 5

the calculator asks to go intoapprox mode to do the calculation. After
respondingyes , you get:

1.

You’ll then need to go back into exact mode (CFG, etc... or by typing
SHIFT NUM).

5.4.1 Then-th Bernoulli’s number : IBERNOULLI

IBERNOULLI has as an integern as argument.
IBERNOULLI returns thenth Bernoulli’s numberB(n).
We have :

t

et − 1
=

+∞
∑

n=0

B(n)

n!
tn

Remember that the Bernoulli’s polynomialsBk are defined as :

B0 = 1

Bk
′(x) = kBk−1(x)
∫ 1

0

Bk(x)dx = 0

Then, the Bernoulli’s numbers are defined as:
B(n) = Bn(0)
Typing :

IBERNOULLI(6)

gives :
1

42

5.4.2 Whole-number and fractionnal part : PROPFRAC

PROPFRACis found in theMATHkey’s POLYNOMIALmenu.
PROPFRAC( A

B
) writes the fractionA

B in the form:

Q +
R

B
avec 0 ≤ R < B
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Typing:

PROPFRAC(
43

12
)

gives:

3 +
7

12

5.4.3 Symbolic summation :
∑

To calculate symbolic summations of rational fractions andhypergeometric
series that allow a discrete primitive, you can use the symbol

∑

which can
be produced by typing :SHIFT + (see also3.3.4).
Example:
If you type :

∞
∑

K=1

1

K · (K + 1)

then select the entire expression and pressENTER, you obtain:

1

If you type:
5
∑

K=1

1

K · (K + 1)

then select the entire expression and pressENTER, you obtain:

5

6

5.5 Real Numbers

Calculate:
EXP(π ×

√
20)

When you press theENTERkey, the response is:

EXP(2×
√
5× π)

If you then invoke theXNUMfunction on theREWRITEmenu or press the
NUMkey, the result is:

1263794.7537

In theMATHkey’s Real menu, you’ll find theFLOORfunction and in the
MATHkey’s Integer menu, you’ll find theMODfunction.
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5.5.1 The whole part :FLOOR

FLOORhas as an argument a real number, and returns its whole part.
Typing:

FLOOR(3.53)

gives:
3

5.5.2 TheΓ function : GAMMA

GAMMAreturns the values of theΓ function at the given point.
TheΓ function is defined as:

Γ(x) =

∫ +∞

0

e−ttx−1dt

We have :
Γ(1) = 1

Γ(x + 1) = x · Γ(x)

Typing :
GAMMA(5)

gives :
24

Typing :

GAMMA(
1

2
)

gives : √
π

5.5.3 Remainder of the Euclidean division :MOD

MODis an infix function that has two integers or reals as argumentsa andb.
MODreturns the remainder of the Euclidean division of the argumentsa
andb or the realr such thata = b ∗ q + r with q integer and0 ≤ r < b or
b < r ≥ 0.
Typing:

3 MOD 2

produces the result:
1
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Typing :
3.2 MOD 2.1

produces the result :
1.1

because we have3.2 = 2.1 + 1.1 and0 ≤ 1.1 < 2.1

Typing:
3.2 MOD − 2.1

produces the result:
−1.

because we have3.2 = (−2.1) ∗ (−2) + 1. and−2.1 < −1. ≤ 0
Typing :

7.5 MOD 2.15

produces the result :
1.05

because we have7.5 = 2.15 ∗ 3 + 1.05 and0 ≤ 1.05 < 2.15

5.5.4 The derivatives of the Digamma function :PSI

PSI has a numbera and an integern as arguments .
PSI returns the value of then-th derivative of the Digamma function ata.
The function Digamma is the derivative ofln(Γ(x)).
Typing :

PSI(3, 1)

gives :

−5

4
+

1

6
· π2

5.5.5 The Digamma function :Psi

Psi has as argument a numbera.
Psi returns the value of the Digamma function ata.
The Digamma function is defined as the derivative ofln(Γ(x)), so we have
:
PSI(a,0)=Psi(a) .
Typing :

Psi(3)

gives (press onNUM) :
.922784335098
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5.6 Complex Numbers

NOTE : Complex numbers of the forma + b · i, wherea andb are real
numbers, can be notated(a, b) or a + b · i.
The operators+,-,*,/,^ can be used for complex numbers.
Type:

(1 + 2 · i)2

Then pressENTER.
If you are not in complex mode, the calculator asks to change modes. After
respondingYES, you get:

−(3− 4 · i)
It’s worth noting that this expression will not be simplifiedfurther: in exact
mode, the result is always notated such that the real part of the complex
number is positive.
In theMATHkey’s Complex menu you will find the following functions, all
of which have complex numbers as parameters:

ABSto determine the modulus of the parameter,
ARGto determine the argument of the parameter,
CONJto determine the conjugate of the parameter,
DROITEtakes two complex numbersz1, z2 as parameters, and returns the
equation of the line through the Cartesian points,z1, z2.
IM to determine the imaginary part of the parameter,
- to determine the opposite of the parameter,
REto determine the real part of the parameter,
SIGN to determine the quotient of the parameter divided by its modulus.

5.6.1 Argument of a complex number :ARG

Typing:
ARG(3 + 4 · i)

produces (given that inCAS, you’re working inRadians ):

ATAN(
4

3
)

REMARK:
You can do the same calculation inHOME, but you get a numeric result
(0.64250... , if you’re working inRadians )
In HOME, typing:

ARG(XQ(3 + 4 · i))
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produces:

ATAN(
4

3
)

5.6.2 Conjugate of a complex number :CONJ

Typing:
CONJ(1 + 2 · i)

produces the result:
1− 2 · i

NOTE: If you choseReal vars from theCFGconfiguration menu, then
CONJ(Z)=Z ; if you choseCmplx vars , CONJ(Z) will be different
fromZ as long asZ is not in the list that contains the variableREALASSUME.
It is often preferable to write the expression as a quoted expression:
QUOTE(expression) , to avoid having to rewrite it. For example, if you
selectReal vars and then type:

SUBST(QUOTE(CONJ(Z)), Z = 1 + i)

you get:
CONJ(1 + i)

whereas:
SUBST(CONJ(Z), Z = 1 + i)

produces:
1 + i

Of course, if you have selectedCmplx vars , andZ is not in the list that
contains the variableREALASSUME, then typing:

SUBST(CONJ(Z), Z = 1 + i)

gives:
CONJ(1 + i)

5.6.3 Equation of the line :DROITE

DROITEtakes two complex numbersz1, z2 as parameters.
DROITEreturns the equation of the line through the Cartesian points,z1, z2.
Typing:

DROITE((1, 2), (0, 1))
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or:

DROITE(1 + 2 · i, i)

returns:

Y = X− 1 + 2

Then,ENTERproduces:

Y = X + 1

5.7 Algebraic Expressions

All functions in this section can be found in theALGBmenu on the menu
bar.

5.7.1 Factors over the integers :COLLECT

COLLECThas an expression as a parameter.
COLLECTcombines like terms, and factors the expression over the inte-
gers.
Examples :
To factor over the integers:

x2 − 4

type:

COLLECT(X2 − 4)

which gives in real mode :

(X + 2) · (X− 2)

To factor over the integers:

x2 − 2

type:

COLLECT(X2 − 2)

which gives:

X2 − 2
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5.7.2 Distributivity : EXPAND

EXPANDhas an expression as a parameter.
EXPANDexpands and simplifies this expression.
Typing:

EXPAND((X2 +
√
2 · X + 1) · (X2 −

√
2 · X + 1))

gives:
X4 + 1

5.7.3 Factorization :FACTOR

FACTORhas an expression as a parameter.
FACTORfactors this expression.
Example:
To factor :

x4 + 1

Key in:

FACTOR(X4 + 1)

FACTORcan be found in theALGBmenu.
In real mode, the result is:

(X2 +
√
2 · X + 1) · (X2 −

√
2 · X + 1)

In complex mode (usingCFG), the result is:

(2 · X + (1 + i) ·
√
2) · (2 · X− (1 + i) ·

√
2) · (2 · X + (1− i) ·

√
2) · (2 · X− (1− i) ·

√
2)

16

5.7.4 Change the order of variables :REORDER

REORDERhas two arguments: an expression and the names of variables
separated withAND.
REORDERreorders the input expression following the order of variables
given by its second argument.
Typing:

REORDER(X2 + 2 · X · A + A2 + Z2 − X · Z, A AND X AND Z)

gives:
A2 + 2 · X · A + X2 − Z · X + Z2
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5.7.5 Partial simplifications : SEVAL

SEVALhas an expression as argument.
SEVALsimplifies the expression, operating on all but the top-level operator
of the expression.
Typing :

SEVAL(SIN(3 · X− X) + SIN(X + X))

gives :

SIN(2 · X) + SIN(2 · X)

5.7.6 Substitute a value for a variable :|

| is an infix operator used to substitute a value for a variable in an expres-
sion (a bit like the following functionSUBST).
| has two parameters: an expression dependent on a parameter,and an
equality (parameter=substitute value).
| substitutes the specified value for the variable in the expression.
Typing:

X2 − 1 |X = 2

gives:

22 − 1

5.7.7 Substitute a value for a variable :SUBST

SUBSThas two parameters: an expression dependent on a parameter,and
an equality (parameter=substitute value).
SUBSTsubstitutes the specified value for the variable in the expression.
Typing:

SUBST(A2 + 1, A = 2)

gives:

22 + 1

5.8 Polynomials

All functions (except DEGREE) in this section can be found intheMATH
key’s Polynom. menu.
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5.8.1 Resolution ofA[X]U[X]+B[X]V[X]=C[X] : ABCUV

This command applies the Bézout identity likeEGCDbut, now, the argu-
ments are three polynomials,A, B, C (Cmust be a multiple ofGCD(A,B) ):
ABCUV(A[X],B[X],C[X]) returnsU[X] AND V[X] , whereU,V sat-
isfy the following:

C[X] = U[X] ∗ A[X] + V[X] ∗ B[X]
Typing:

ABCUV(X2 + 2 · X + 1, X2 − 1, X + 1)

gives:
1

2
AND

−1
2

Typing:
ABCUV(X2 + 2 · X + 1, X2 − 1, X3 + 1)

gives:
X2 − X + 1

2
AND − X2 − X + 1

2

5.8.2 Chinese remainders :CHINREM

CHINREMhas twoANDas arguments : eachANDhas two polynomials as
components.
CHINREM(A[X] AND R[X],B[X] AND Q[X]) returns anANDwith
two polynomials as componentsP[X] andS[X] . This polyonimalsP[X]
andS[X] satisfying the following relations whenGCD(R[X],Q[X])=1 :
S[X] = R[X] · Q[X],
P[X] = A[X](modR[X]) andP[X] = B[X](modQ[X]).
There is always a solutionP[X] , if R[X] andQ[X] are mutually primes,
and all solutions are congruent moduloS[X] = R[X] · Q[X].
Find the solutionsP [X] of:

{

P [X] = X (mod X2 + 1)
P [X] = X − 1 (mod X2 − 1)

Typing:
CHINREM(X AND X2 + 1, X− 1 AND X2 − 1)

gives:

−X2 − 2 · X + 1

2
AND − X4 − 1

2

that is,P [X] = −X2−2·X+1
2 (mod − X4−1

2 )
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5.8.3 Cyclotomic polynomial :CYCLOTOMIC

CYCLOTOMIChas an integern as argument.
CYCLOTOMICreturns the cyclotomic polynomial of ordern. This is a
polynomial having then-th pritmitive roots of the unity as zeros.
For example, whenn = 4 the fourth roots of the unity are:{1, i,−1,−i};
among them, the primitive roots are:{i,−i}.
Therefore, the cyclotomic polynomial of order4 is (X − i).(X + i) =
X2 + 1.
Another example, typing:

CYCLOTOMIC(20)

gives :
X8 − X6 + X4 − X2 + 1

5.8.4 degree of a polynomial :DEGREE

DEGREEhas as an argument a polynomial in the current variable.
DEGREEreturns the degree of this polynomial.
NOTE: The degree of a null polynomial is-1 .
TheDEGREEcommand must be entered using theALPHAkeys.
Typing:

DEGREE(X2 + X + 1)

returns:
2

5.8.5 Quotient and remainder :DIV2

The arguments ofDIV2 are two polynomialsA[X] andB[X].
DIV2 returns the quotientANDthe remainder of the euclidean division be-
tween the two polynomialsA[X] andB[X].
Typing:

DIV2(X2 + 2 · X + 1, X)

gives:
X + 2 AND 1

The step-by-step mode can be of interest here, because it displays the inter-
mediate steps of the division process.
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5.8.6 Bézout’s Identity :EGCD

This function returns Bézout’s Identity, theEGCD(Extended Greatest Com-
mon Divisor). In other words,EGCD(A(X), B(X)) returnsU(X) AND
V(X) = D(X) , with D, U, V such that:

D(X) = U(X) · A(X) + V(X) · B(X)
Typing:

EGCD(X2 + 2 · X + 1, X2 − 1)

gives:
1 AND − 1 = 2 · X + 2

Typing:
EGCD(X2 + 2 · X + 1, X3 + 1)

gives:
−(X− 2) AND 1 = 3 · X + 3

5.8.7 Factorize a polynomial :FACTOR

FACTORhas a polynomial as an argument.
FACTORfactors this polynomial.
Typing:

FACTOR(X2 − 2)

gives:
(X +

√
2) · (X−

√
2)

Typing:
FACTOR(X2 + 2 · X + 1)

gives:
(X + 1)2

Typing:
FACTOR(X4 − 2 · X2 + 1)

gives:
(X− 1)2 · (X + 1)2

Typing:
FACTOR(X3 − 2 · X2 + 1)

gives:
(X− 1) · (2 · X− 1 +

√
5) · (2 · X− (1 +

√
5))

4
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5.8.8 GCD of two polynomials :GCD

GCDreturns the GCD (Greatest Common Divisor) of two polynomials.
Typing:

GCD(X2 + 2 · X + 1, X2 − 1)

gives:
X + 1

5.8.9 Hermite polynomial : HERMITE

HERMITEhas as an argument a whole numbern.
HERMITEreturns the Hermite polynomial of degreen. This is a polyno-
mial of the following type:

Hn(x) = (−1)n · e x
2

2

dn

dxn
e

−x
2

2

That means that :
for n ≥ 0

H
′′

n (x) − xH
′

n(x) + nHn(x) = 0

and forn ≥ 1

Hn+1(x) − xHn(x) + nHn−1(x) = 0

H
′

n(x) = nHn−1(x)

Typing:
HERMITE(6)

produces the result:

64 · X6 − 480 · X4 + 720 · X2 − 120

5.8.10 To evaluate a polynomial :HORNER

HORNERhas two arguments : a polynomialP[X] and a numbera.
HORNER(P[X],a) returns the polynomialQ[X] (quotient ofP[X] di-
vided byX-a ) ANDthe valueP[a] .
Typing :

HORNER(X3 + 1, 2)

gives :
X2 + 2 · X + 4 AND 9
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Typing :

HORNER(X4 + 2 · X3 − 3 · X2 + X− 2, 1)

gives :

X3 + 3 · X2 + 1 AND − 1

5.8.11 LCM of two polynomials : LCM

LCMreturns the LCM (Least Common Multiple) of two polynomials.
Typing:

LCM(X2 + 2 · X + 1, X2 − 1)

gives:

(X2 + 2 · X + 1) · (X− 1)

5.8.12 Legendre polynomial :LEGENDRE

LEGENDREhas as an argument a whole numbern.
LEGENDREreturns the polynomialLn, a non-null solution of the differen-
tial equation:

(x2 − 1) · y′′ − 2 · x · y′ − n(n + 1) · y = 0

Forn ≥ 0, we have the Rodriguès Formula:

Ln(x) =
1

n!2n

dn

dxn
(x2 − 1)n

and forn ≥ 1, we have:

(n + 1)Ln+1(x) = (2n + 1)xLn(x) − nLn−1(x)

Typing:

LEGENDRE(4)

gives:

35 · X4 − 30 · X2 + 3

8
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5.8.13 Partial fraction expansion :PARTFRAC

PARTFRAChas as an argument a rational fraction.
PARTFRACreturns the partial fraction decomposition of this rational frac-
tion.
Example :
To perform a partial fraction decomposition of a rational function, for ex-
ample:

x5 − 2 × x3 + 1

x4 − 2 × x3 + 2 × x2 − 2 × x + 1

you use thePARTFRACcommand.
Type:

PARTFRAC(
X5 − 2 ∗ X3 + 1

X4 − 2 ∗ X3 + 2 ∗ X2 − 2 ∗ X + 1
)

In real and direct mode, this produces:

X + 2 +
X− 3

2 · X2 + 2
+

−1
2 · X− 2

In complex mode, this produces:

X + 2 +
1−3·i

4

X + i
+

−1
2

X− 1
+

1+3·i
4

X− i

5.8.14 Whole-number and fractional part : PROPFRAC

PROPFRAChas as an argument a rational fraction.
PROPFRACrewrites this rational fraction so as to bring out its whole-
number part.
PROPFRAC(A(X)/ B(X)) writes the rational fractionA[X]

B[X] in the form:

Q[X] +
R[X]

B[X]

whereR[X] = 0, or 0 ≤ deg(R[X]) < deg(B[X]).
Typing:

PROPFRAC(
(5 · X + 3) · (X− 1)

X + 2
)

gives:

5 · X− 12 +
21

X + 2
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5.8.15 Rewrite in order of the powers of (X − a) : PTAYL

PTAYLtakes two parameters: a polynomialP [X] and a number a.
PTAYLrewrites the polynomialP [X] in order of its powers ofX − a.
Typing:

PTAYL(X2 + 2 · X + 1, 2)

produces the polynomial Q[X]:

X2 + 6 · X + 9

NOTE THAT:
P(X) = Q(X− 2)

5.8.16 Euclidean quotient:QUOT

The arguments ofQUOTare two polynomialsA[X] andB[X].
QUOTreturns the quotient of the two polynomialsA[X] andB[X] divided
in decreasing order by exponent.
Typing:

QUOT(X2 + 2 · X + 1, X)

gives:
X + 2

5.8.17 Euclidean remainder :REMAINDER

The arguments ofREMAINDERare two polynomialsA[X] andB[X].
REMAINDERreturns the remainder from the division of the two polynomi-
alsA[X] andB[X] divided in decreasing order by exponent.
Typing:

REMAINDER(X3 − 1, X2 − 1)

gives:
X− 1

5.8.18 Number of zeros in[a, b[ : STURMAB

STURMABhas three arguments: a polynomialP (X) and two numbersa
andb.
STURMABreturns the number of zeros ofP in [a, b[.
For example, typing:

STURMAB(X2 · (X3 + 2),−2, 0)
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gives:
1

Typing :
STURMAB(X2 · (X3 + 2),−2, 1)

gives:
3

5.8.19 First and 2nd-species Tchebycheff polynomials :
TCHEBYCHEFF

TCHEBYCHEFFhas as an argument an integern.
If n > 0, TCHEBYCHEFFreturns the polynomialTn such that:

Tn[x] = cos(n · arccos(x))

Forn ≥ 0, we have:

Tn(x) =

[n/2]
∑

k=0

C2k
n (x2 − 1)kxn−2k

Forn ≥ 0 we also have:

(1 − x2)T
′′

n (x) − xT
′

n(x) + n2Tn(x) = 0

Forn ≥ 1, we have:

Tn+1(x) = 2xTn(x) − Tn−1(x)

If n < 0, TCHEBYCHEFFreturns the 2nd-species Tchebycheff polynomial:

Tn[x] =
sin(n · arccos(x))

sin(arccos(x))

Typing:
TCHEBYCHEFF(4)

gives:
8 · X4 − 8 · X2 + 1

In effect:
cos(4 · x) = Re((cos(x) + i · sin(x))4)
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cos(4 · x) = cos(x)4 − 6 · cos(x)2 · (1 − cos(x)2) + ((1 − cos(x)2)2

cos(4 · x) = T4(cos(x)) Typing:

TCHEBYCHEFF(−4)

gives:
8 · X3 − 4 · X

In effect:
sin(4 · x) = sin(x) · (8 · cos(x)3 − 4 · cos(x)).

5.9 Functions

All the functions in this section can be found in theDIFF menu on the
menu bar, exceptDEF, which is in theALGBmenu, andIFTE , which is in
theMATHkey’s Tests menu.

5.9.1 Define a function :DEF

DEFhas as argument an equality between (1) the name of a function(with
parentheses containing the variable), and (2) an expression defining the
function.
DEFdefines this function and returns the equality.
Typing:

DEF(U(N) = 2N + 1)

produces the result:
U(N) = 2N + 1

Typing:
U(3)

then returns:
9

Another DEFexample

Calculate the first six Fermat numbersF1..F6 and say whether they’re
prime.
So, you want to calculateF (k) = 22k

+ 1 for k = 1..6.
Typing the formula :

222

+ 1
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gives a result of 17. You can then invoke theISPRIME?() command,
which is found in theMATHkey’s Integer menu.
The response is1. , which meansTRUE. Using the history (which you
access by pressing theSYMBkey), you put the expression222

+ 1 into the
Equation Editor withECHO, and change it to:

223

+ 1

Or better, define a function F(K) by selectingDEF from theALGBmenu
(on the menu bar), and typing:

DEF(F(K) = 22
K

+ 1)

The response is22
K

+ 1, andF is now listed amongst the variables (which
you can verify using the VARS key.)
ForK = 5, you then type:

F(5)

which gives:
4294967297

You can factorF (5) with FACTOR, which you’ll find in theALGBmenu
on the menu bar.
Typing:

FACTOR(F(5))

gives
641 · 6700417

Typing:
F(6)

gives:
18446744073709551617

UsingFACTORto factor it then yields:

274177 · 67280421310721

NOTE: Pay careful attention to the position of the dot in :

2 . 5the approximate representation of
5

2

versus
2 · 5 = 10
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Define a function with conditions : IFTE

IFTE has three arguments: a Boolean (note the use of= = to test for
equality), and two expressionsexpr1, expr2.
IFTE evaluates the condition, then returnsexpr1 if the condition is true,
or expr2 if the condition is false.
Typing:

STORE(2, N)

IFTE(N == 0, 1,
N + 1

N
)

produces the result:
3

2

It is easy to define functions usingIFTE . For example:

DEF(F(X) = IFTE(X == 0, 1,
SIN(X)

X
))

defines the functionf such that:

f(x) =

{

1 si x = 0
sin(x)

x
si x 6= 0

5.9.2 Derivative and partial derivative : DERIV

DERIV has two arguments: an expression (or a function) and a variable.
DERIV returns the derivative of the expression (or the function) with re-
spect to the variable given as the second parameter (used forcalculating
partial derivatives).
Example:
Calculate:

∂(x · y2 · z3 + x · y)

∂z

Typing:

DERIV(X · Y2 · Z3 + X · Y , Z)

gives:

3 · X · Y2 · Z2
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5.9.3 Derivative : DERVX

DERVXhas one argument: an expression.
DERVXcalculates the derivative of the expression with respect tothe vari-
able stored inVX.
For example, given:

f(x) =
x

x2 − 1
+ ln(

x + 1

x − 1
)

Calculate the derivative off .
Type:

DERVX(
X

X2 − 1
+ LN(

X + 1

X− 1
))

or, if you have stored the definition off(x) in F that is, if you have typed:

STORE(
X

X2 − 1
+ LN(

X + 1

X− 1
), F)

then type:

DERVX(F)

or, if you have definedF (X) usingDEFthat is, if you have typed:

DEF(F(X) =
X

X2 − 1
+ LN(

X + 1

X− 1
))

then type:
DERVX(F(X))

The result is a complicated expression. PressingENTERsimplifies it, giv-
ing:

− 3 · X2 − 1

X4 − 2 · X2 + 1

5.9.4 Fourier coefficients :FOURIER

FOURIERhas two parameters: an expressionf(x) and a whole number
N .
FOURIERreturns the Fourier coefficientcN of f(x), considered to be a
function defined over interval[0, T ] and with periodT (T being equal to
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the contents of the variablePERIOD).
If f(x) is a discrete series, then:

f(x) =

+∞
∑

N=−∞

cNe
2iNxπ

T

Example:
Determine the Fourier coefficients of a periodic functionf with period2 ·π
and defined over interval[0 2 · π[ by f(x) = x2.
Typing:

STORE(2 · π , PERIOD)

FOURIER(X2, N)

The calculator do not know thatN is a whole number, so you have to replace
EXP(2 ∗ i ∗ N ∗ π) with 1 and then simplify the expression. We get:

2 · i · N · π + 2

N2

So if N 6= 0, then:

cN =
2 · i · N · π + 2

N2

Typing:
FOURIER(X2, 0)

gives:
4 · π2

3

so if N = 0, then:

c0 =
4 · π2

3

5.9.5 Partial integration : IBP

IBP has two parameters: an expression of the formu(x) · v′(x) andv(x).
IBP returns theANDof u(x) · v(x) and of−v(x) · u′(x) that is, the terms
that one must calculate when one performs a partial integration.
It remains then to calculate the integral of the second term of theAND, then
add it to the first term of theANDto obtain a primitive ofu(x) · v′(x).
Typing:

IBP(LN(X), X)
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gives:
X · LN(X) AND − 1

One completes the integration by callingINTVX:

INTVX(X · LN(X)AND− 1)

which produces the result:

X · LN(X) − X

REMARK: If the first IBP (or INTVX) parameter is anANDof two ele-
ments,IBP concerns itself only with the second element of theAND, adding
the integrated term to the first element of theAND(so that you can perform
multiple IBP in succession).

5.9.6 Integrals :
∫

To calculate an integral, you can use the symbol
∫

which is found on the
keyboard and it can be produced by typing :SHIFT d/dX .
You have just to enter the arguments (you can move the cursor with the
arrow keys� and�). For more details cf.3.3.4.
You can put+∞ or−∞ as limit of the integral.
EXAMPLE

For the following expression, determine the limit when a approaches +(:
∫ a

2

(
x

x2 − 1
+ ln(

x + 1

x − 1
)) dx

In the Equation Editor, type:

∫ +∞

2

(
X

X2 − 1
+ LN(

X + 1

X− 1
)) dX

NOTE: To obtain the symbol+∞, type:

(−) (−) ∞ (SHIFT 0)

This produces:

+∞− 7 · LN(3)
2

and, after simplification:
+∞
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5.9.7 Primitive and definied integral : INTVX

INTVX has one argument : une expression.
INTVX calculates a primitive of its argument with respect to the variable
stored inVX.
Exercise 1
Calculate a primitive ofsin(x) × cos(x).
Typing:

INTVX(SIN(X) · COS(X))
gives, in Step by step mode:

COS(X) · SIN(X)

Int[u′ ∗ F(u)] with u = SIN(X)

PressingOKthen sends the result to the Equation Editor:

SIN(X)2

2

Exercise 2
Given:

f(x) =
x

x2 − 1
+ ln(

x + 1

x − 1
)

Calculate a primitive off .
Type:

INTVX(
X

X2 − 1
+ LN(

X + 1

X− 1
))

Or, if you have stored the definition off(x) in F, that is, if you have already
typed:

DEF(F(X) =
X

X2 − 1
+ LN(

X + 1

X− 1
))

then type:
INTVX(F)

Or, if you have usedDEFto defineF(X) , that is, if you have already typed:

DEF(F(X) =
X

X2 − 1
+ LN(

X + 1

X− 1
))

then type:
INTVX(F(X))
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The result in all cases is equivalent to:

X · LN(X + 1

X− 1
) +

3

2
· LN(|X− 1|) +

3

2
· LN(|X + 1|)

We obtain absolute values only inRigourous mode.
Exercise 3
Calculate:

∫

2

x6 + 2 · x4 + x2
dx

Typing:

INTVX(
2

X6 + 2 · X4 + X2
)

gives a primitive:

−3 · ATAN(X) − 2

X
− X

X2 + 1

REMARK:
You can also type:

∫ X

1

2

X6 + 2 · X4 + X2
dX

which gives the primitive which is zero forX = 1:

−3 · ATAN(X) − 2

X
− X

X2 + 1
+

3 · π + 10

4

Exercise 4
Calculate:

∫

1

sin(x) + sin(2 · x)
dx

Typing:

INTVX(
1

SIN(X) + SIN(2 · X) )

gives the result:

1

6
· LN(|COS(X) − 1|) +

1

2
· LN(|COS(X) + 1|)+

−2
3

· LN(|2 · COS(X) + 1|)

REMARK: If the argument toINTVX is theANDof two elements,INTVX
concerns itself only with the second element of theAND, and adds the result
to the first argument.
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5.9.8 To calculate limits :LIMIT or lim

LIMIT or lim has two arguments: an expression dependent on a variable,
and an equality (a variable = the value to which you want to calculate the
limit).
You can omit the name of the variable and the sign=, when this name is in
VX).
It is often preferable to use a quoted expression:
QUOTE(expression) , to avoid rewriting the expression in normal form
(i.e., not to have a rational simplification of the arguments) during the exe-
cution of theLIMIT command.
Typing, for example:

LIMIT(QUOTE((2X− 1) · EXP( 1

X− 1
)), X = +∞)

gives:
+∞

To find a right limit you type, for example:

LIMIT(
1

X− 1
, QUOTE(1 + 0))

gives (ifX is the current variable) :

+∞

To find a leftt limit you type, for example:

LIMIT(
1

X− 1
, QUOTE(1− 0))

gives (ifX is the current variable) :

−∞

Ii is not necessary to quote the second argument, when it is written with =
for example :

LIMIT(
1

X− 1
, X = 1 + 0)

gives :
+∞
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EXERCISES

Forn > 2 in the following expression, find the limit asx approaches 0:

n · tan(x) − tan(n · x)

sin(n · x) − n · sin(x)

You can use theLIMIT command to do this.
Typing:

LIMIT

(

N · TAN(X) − TAN(N · X)
SIN(N · X) − N · SIN(X) , 0

)

gives:

2

NOTE To find the limit asx approachesa+ (respa−), the second argument
is written :
X = A + 0 (respX = A− 0), see also5.9.8.

For the following expression, find the limit asx approaches+∞ :

√

x +

√

x +
√

x −
√

x

Typing:

LIMIT(

√

X +

√

X +
√
X−

√
X,+∞)

produces (after a short wait):
1

2

NOTE:
The symbol∞ is obtained by typingSHIFT 0 .
To obtain−∞ type:

(−) ∞

To obtain+∞ type:

(−) (−) ∞

You can also find the symbol∞ in theMATHkey’s Constant menu.
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5.9.9 Plot of an expression :PLOT

PLOThas an expression as argument.
PLOTasks you to select anAplet and then stores this expression in an
Aplet variable.
For example, type:

PLOT(X2 + X)

You select theAplet Function , and you choose to save the expression
X2 + X in F2. In the history the answer is :

X2 + X

To obtain the plot of the expression stored inF2, you have to quit theCAS
(pressHOME) and then open theAplet Function , select the function
F2, then press onPLOT

5.9.10 Add the plot of an expression :PLOTADD

PLOTADDhas an expression as argument.
PLOTADDasks you to select anAplet and then stores this expression in
anAplet -variable.
a Typing:

PLOTADD(X2 − X)

You select theAplet Function , and you choose to save the expression
X2 − X in F3. In the history the answer is :

X2 − X

To obtain the plot of the expressions stored inF2 and F3, you have to
quit theCAS(pressHOME), to open theAplet Function , then select the
functionsF2 andF3, and press onPLOT.

5.9.11 Evaluate a primitive :PREVAL

PREVALhas three parameters: an expressionF(VX) dependent on the
variable contained inVX, and two expressionsA andB.
For example ifVXcontainsX, and ifF is a function,PREVAL (F(X),A,B)
returnsF(B)-F(A) .
PREVALis used for calculating an integral defined from a primitive:it eval-
uates this primitive between the two limits of the integral.
Typing:

PREVAL(X2 + X, 2, 3)
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gives:
6

5.9.12 Primitive and definied intégral :RISCH

RISCHhas two parameters: an expression and the name of a variable.
RISCH returns a primitive of the first parameter with respect to thevariable
specified in the second parameter.
Typing:

RISCH((2 · X2 + 1) · EXP(X2 + 1), X)

gives:
X · EXP(X2 + 1)

REMARK: If the RISCH parameter is theANDof two elements,RISCH
concerns itself only with the second element of theAND, and adds the result
to the first argument..

5.9.13 Discrete antiderivative :SIGMA

SIGMAhas two arguments: the first argument is a functionf(x) of a vari-
ablex given as the second argument.SIGMAreturns the discrete antideriva-
tive of the input function, that is, the functionG that satisfies the relation:
G(x + 1) − G(x) = f(x).
For example, typing :

SIGMA(X · X!, X)
gives :

X!

because(X + 1)! − X! = X · X!

5.9.14 Discrete antiderivative :SIGMAVX

SIGMAVXhas as argument a functionf of the current variableVX.
SIGMAVXreturns the discrete antiderivative of the input function,that is a
functionG that satisfies the relation:G(x + 1) − G(x) = f(x).
For example, type:

SIGMAVX(X2)

You obtain:
2 · X3 − 3 · X2 + X

6

because2(X + 1)3 − 3(X + 1)2 + X + 1 − 2X3 + 3X2 − X = 6X2
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5.9.15 Variation table : TABVAR

TABVARhas as a parameter an expression with a rational derivative.
TABVARreturns the variation table for the expression in terms of the cur-
rent variable.
Typing:

TABVAR(LN(X) + X)

In Step by step mode, this gives:
F =: (LN(X) + X)
F′ =: ( 1

X
+ 1

→: X+1
X

Variation table :
[

−∞ ? 0 + +∞ X
? ? −∞ ↑ +∞ F

]

5.10 Taylor and asymptotic Expansions

All functions in this section can be found in theDIFF menu on the menu
bar.
It is customary to write the expansions in ascending order byexponent of
the variable; you set this up by choosing1 + x + x2... in CFG.

5.10.1 Division in increasing order by exponent :DIVPC

DIVPChas three arguments: two polynomialsA(X) andB(X) (whereB(0) 6=
0), and a whole numbern.
DIVPC returns the quotientQ(X) of the division ofA(X) by B(X) , in
increasing order by exponent, and with deg(Q) ≤ n or Q = 0.
Q[X] ( is then the limitednth-order expansion ofA[X]

B[X] in the vicinity of X
= 0.
Typing:

DIVPC(1 + X2 + X3, 1 + X2, 5)

gives:

1 + X3 − X5

NOTE: When the calculator asks to go into "increasing powers" mode, re-
spondyes .
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5.10.2 Limitednth-order expansion : SERIES

SERIES has three arguments : an expression dependent on a variable,an
equality (the variablex = the valuea to which you want to calculate the
expansion) and a whole number (the ordern of the limited expansion).
You can omit the name of the variable and the sign=, when this name is in
VX)
SERIES returns the limitednth-order expansion of the expression in the
vicinity of x = a.

• Expansion in the vicinity ofx = a
Example:
Give a limited 4th-order expansion ofcos(2 × x)2 in the vicinity of
x = π

6 .
For this you use theSERIES command.
Typing:

SERIES(COS(2 · X)2, X =
π

6
, 4)

gives:

(
1

4
−

√
3h + 2h2 +

8
√
3

3
h3 − 8

3
h4 + O(

h5

4
)|
h = X− π

6

• Expansion in the vicinity ofx=+∞ or x=- ∞
Example 1:
Give a 5th-order expansion ofarctan(x) in the vicinity of x=+∞,
taking as infinitely smallh = 1

x .
Typing:

SERIES(ATAN(X), X = +∞, 5)

gives:

(
π

2
− h +

h3

3
− h5

5
+ O(

π · h6
2

)|
h =

1

X

Example 2:
Give a 2nd-order expansion of(2x−1)e

1

x−1 in the vicinity ofx=+∞,
taking as infinitely smallh = 1

x .
Typing:

SERIES((2X− 1) · EXP( 1

X− 1
), X = +∞, 3)
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gives:

(
12 + 6h + 12h2 + 17h3

6 · h + O(2 · h3)|
h =

1

X

Example 3:
Give a 2nd-order expansion of(2x−1)e

1

x−1 ) in the vicinity ofx=- ∞,
taking as infinitely smallh = − 1

x .
Typing:

SERIES((2X− 1) · EXP( 1

X− 1
), X = −∞, 3)

gives:

(
−12 + 6h− 12h2 + 17h3

6h
+ O(−(2h3))|

h = −1

X

• Unidirectional expansion
You must be inRigourous mode (PressDIFF , thenCFG, then
chooseRigourous and thenQuit config. ).
To perform an expansion in the vicinity ofx = a where x > a, use a
positive real (such as 4. or 4.0) for the order; to perform an expansion
in the vicinity of x = a where x < a, use a negative real (such as
-4.0 or -4.) for the order
Example 1:

Give a 3nd-order expansion of(1+X)
1

X

X3 in the vicinity ofX = 0+.
Typing:

SERIES(
√
X2 + X3, X = 0, 3.0)

gives:

1

16
· h4 +

−1
8

· h3 +
1

2
· h2 + h + O(h5)|h = X

Example 2:

Give a 3nd-order expansion of(1+X)
1

X

X3 in the vicinity ofX = 0−.
Typing:

SERIES(
√
X2 + X3, X = 0,−3.0)

gives:

(
−1
16

· h4 +
−1
8

· h3 +
−1
2

· h2 + h + O(h5)|h = −X
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Example 3:

Give a 3nd-order expansion of(1+X)
1

X

X3 in the vicinity ofX = 0.
Typing:

SERIES(
√
X2 + X3, X = 0, 3)

gives:
SERIIESError : Unabletofindsign

Note :
If you are in Sloppy mode the three previous examples give the
same answer than in the vicinity ofX = 0+

5.10.3 Limited expansion in the vicinity of 0 :TAYLOR0

TAYLOR0has a single argument: the function ofx to expand. It returns
the function’s limited 4th-relative-order expansion in the vicinity of x = 0
(if x is the current variable).
Typing:

TAYLOR0(
TAN(P · X) − SIN(P · X)
TAN(Q · X) − SIN(Q · X) )

gives:
P3

Q3
+

P5 − Q2 · P3
4 · Q3 · X2

NOTE: "th-order" means that the numerator and the denominator are ex-
panded to the 4th relative order (here, the 5th absolute order for the numer-
ator, and for the denominator, which is given in the end, the 2nd order (5-
3), seeing that the exponent of the denominator is 3).

5.10.4 Truncate at ordern − 1 : TRUNC

TRUNCenables you to truncate a polynomial at a given order (used toper-
form limited expansions).
TRUNChas two arguments: a polynomial andXn.
TRUNCreturns the polynomial truncated at ordern−1; that is, the returned
polynomial has no terms with exponents≥ n.
Typing:

TRUNC((1 + X +
1

2
· X2)

3

, X4)

gives:

1 + 3 · X +
9

2
· X2 + 4 · X3
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5.11 Conversion Functions

All functions in this section can be found in theREWRITEmenu on the
menu bar.

5.11.1 Distributivity of multiplication : DISTRIB

DISTRIB enables you to apply the distributivity of multiplication in re-
spect to addition in a single instance.
DISTRIB enables you, when you apply it several times, to carry out the
distributivity step by step.
Typing:

DISTRIB((X + 1) · (X + 2) · (X + 3))

gives:
X · (X + 2) · (X + 3) + 1 · (X + 2) · (X + 3)

5.11.2 Disregard small values :EPSX0

EPSX0has as a parameter an expression inX, and returns the same expres-
sion with the values less thanEPSreplaced by zeroes.
Typing:

EPSX0(0.001 + X)

gives, ifEPS=0.01 :
0 + X

or, if EPS=0.0001 :
.001 + X

5.11.3 Transform exp(n*ln(x)) as a power of x :EXP2POW

EXP2POWtransforms an expression of the formexp(n × ln(x)), rewriting
it as a power ofx.
Typing:

EXP2POW(EXP(N · LN(X)))
gives:

XN

Take careful note of the difference between this function and LNCOLLECT,
as shown in the following examples:
LNCOLLECT(EXP(N · LN(X))) = EXP(N · LN(X))
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LNCOLLECT(EXP(LN(X)/3)) = EXP(LN(X)/3)
EXP2POW(EXP(LN(X)/3)) = 3

√
X

5.11.4 Transform a trigonometric expression into com-
plex exponentials :EXPLN

EXPLNtakes as an argument a trigonometric expression.
EXPLNtransforms the trigonometric function into exponentials and loga-
rithms without linearising it.
EXPLNputs the calculator into complex mode.
Typing:

EXPLN(SIN(X))

gives:
EXP(i · X) − 1

EXP(i·X)

2 · i

5.11.5 Distributivity : FDISTRIB

FDISTRIB has an expression as argument.
FDISTRIB enables you to apply the distributivity of multiplication with
respect to addition all at once.
Typing:

FDISTRIB((X + 1) · (X + 2) · (X + 3))

gives:

X · X · X + 3 · X · X + X · 2 · X + 3 · 2 · X + X · X · 1 + 3 · X · 1 + X · 2 · 1 + 3 · 2 · 1

after simplification (ENTER) :

X3 + 6 · X2 + 11 · X + 6

5.11.6 Linearise the exponentials :LIN

LIN has as an argument an expression containing exponentials and trigono-
metric functions.
LIN converts trigonometric expressions to exponentials and then linearises
the complex exponentials (in terms ofexp(n · x))).
LIN puts the calculator into complex mode when dealing with trigonomet-
ric functions.
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Example 1
Typing:

LIN((EXP(X) + 1)3)

gives:
3 · EXP(X) + 1 + 3 · EXP(2 · X) + EXP(3 · X)

Example 2
Typing:

LIN(SIN(X))

gives:

−(
i

2
· EXP(i · X)) +

i

2
· EXP(−(i · X))

Example 3
Typing:

LIN(COS(X)2)

gives:
1

4
· EXP(−(2 · i · X)) +

1

2
+

1

4
· EXP(2 · i · X)

5.11.7 Regroup the logarithms :LNCOLLECT

LNCOLLECThas as an argument an expression containing logarithms.
LNCOLLECTregroups the terms in the logarithms. It is therefore preferable
to use an expression that has already been factored (usingFACTOR).
Typing:

LNCOLLECT(LN(X + 1) + LN(X− 1))

gives:
LN((X + 1)(X− 1))

5.11.8 Transform a power :POWEXPAND

POWEXPANDwrites a power in the form of a product.
Typing:

POWEXPAND((X + 1)3)

gives:
(X + 1) · (X + 1) · (X + 1)

This allow you to do the developpement of(x + 1)3 in step by step, using
DISTRIB several times on the precedent result.
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5.11.9 Simplify : SIMPLIFY

SIMPLIFY simplifies an expression automatically.
As with all automated simplification routines, however, oneshould not ex-
pect miracles.
Typing:

SIMPLIFY(
SIN(3 · X) + SIN(7 · X)

SIN(5 · X) )

gives, after simplification:

4 · COS(X)2 − 2

5.11.10 Evaluation of reals :XNUM

XNUMhas an expression as a parameter.
XNUMputs the calculator into approximate mode and returns the numeric
value of the expression.
Typing:

XNUM(
√
2)

gives:

1.41421356237

5.11.11 Rational approximation :XQ

XQhas a real numeric expression as a parameter.
XQputs the calculator into exact mode and gives a rational or real approxi-
mation of the expression.
Typing:

XQ(1.41421)

gives:
66441

46981

Typing:

XQ(1.414213562)

gives: √
2
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5.12 Equations

All the functions in this section are found in theSOLVmenu on the menu
bar.

5.12.1 The zeros of an expression :ISOLATE

ISOLATE returns the values that are the zeros of an expression or an equa-
tion.
ISOLATE has two parameters: an expression or equation, and the name of
the variable to isolate (ignoringREALASSUME).
Typing:

ISOLATE(X4 − 1 = 3, X)

gives in real mode:

(X =
√
2) OR (X = −

√
2)

and in complex mode:

(X =
√
2 · i) OR (X = −

√
2) OR (X = −(

√
2 · i)) OR (X =

√
2)

5.12.2 Solve equations :SOLVE

SOLVEhas as two parameters:
(1) either an equality between two expressions, or a single expression (in
which case= 0 is implied), and
(2) the name of a variable.
SOLVEsolves the equation inR in real mode and inC in complex mode
(ignoringREALASSUME).
Typing:

SOLVE(X4 − 1 = 3, X)

gives, in real mode:

(X = −
√
2) OR (X =

√
2)

or, in complex mode:

(X = −
√
2) OR (X =

√
2) OR (X = −i ·

√
2) OR (X = i

√
2)
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5.12.3 Solve equations :SOLVEVX

SOLVEVXhas as a parameter either
(1) an equality between two expressions in the variable contained inVX,
or
(2) a single such expression (in which case= 0 is implied).
SOLVEVXsolves the equation.
Example 1
Typing:

SOLVEVX(X4 − 1 = 3)

gives, in real mode:

(X = −
√
2) OR (X =

√
2)

or, in complex mode, even if you have chosenX as real :

(X = −
√
2) OR (X =

√
2) OR (X = −i ·

√
2) OR (X = i

√
2)

Example 2
Typing:

SOLVEVX((X− 2) · SIN(X))

gives, in real mode:

(X = −2 · π · n1) OR (X = 2 · π · n1) OR (X = 2)

5.13 Systems

All the functions in this section are found in theSOLVmenu on the menu
bar.

5.13.1 Solve linear system :LINSOLVE

LINSOLVE enables you to solve a system of linear equations.
It’s assumed that the various equations are of the formexpression = 0.
LINSOLVE has two arguments: the first members of the various equations
separated byAND, and the names of the various variables separated byAND.
Example 1
Typing:

LINSOLVE(X + Y + 3 AND X− Y + 1, X AND Y)
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gives:
(X = −2) AND (Y = −1)

or, in Step by step mode (CFGetc...):
L2=L2-L1
[

1 1 3
1 −1 1

]

ENTER
L1=2L1+L2
[

1 1 3
0 −2 −2

]

ENTER
Reduction Result
[

2 0 4
0 −2 −2

]

ENTER
The following is then written to the Equation Editor:

(X = −2) AND (Y = −1)

Example 2
Type:

(2 · X + Y + Z = 1) AND (X + Y + 2 · Z = 1) AND (X + 2 · Y + Z = 4)

Then, invokeLINSOLVE
and type the unknowns:

X AND Y AND Z

and press theENTERkey.
The following result is produced if you’re in Step by step mode (CFGetc...):
L2=2L2-L1





2 1 1 −1
1 1 2 −1
1 2 1 −4





puisok

L3=2L3-L1





2 1 1 −1
0 1 3 −1
1 2 1 −4




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...and so on until, finally:
Reduction Result





8 0 0 4
0 8 0 −20
0 0 −8 −4





then pressENTERand

(X = −1

2
) AND (Y =

5

2
) AND (Z = −1

2
)

is written to the Equation Editor.

5.13.2 Solve non linear system :SOLVE

SOLVEaccepts non-linear equations if they are polynomial.
Otherwise,MSLVshould be used inHOMEto get a numerical solution.
It’s assumed that the various equations are of the formexpression = 0.
SOLVEhas as arguments, the first members of the various equations sepa-
rated byAND, and the names of the various variables separated byAND.
Typing:

SOLVE(X2 + Y2 − 3 AND X− Y2 + 1, X AND Y)

gives:

(X = 1) AND (Y = −
√
2) OR (X = 1) AND (Y =

√
2)

5.14 Differential Equations

All the functions in this section are found in theSOLVmenu on the Equa-
tion Editor menu bar.

5.14.1 Solve of differential equations :DESOLVE

DESOLVEenables you to solve differential equations (for linear differential
equations having constant coefficients, it is better to useLDEC).
DESOLVEhas two arguments : the differential equation wherey′ is written
d1Y(X) (or the differential equation and the initial conditions separated
by AND), and the unknownY(X) .
You have to be in real mode.
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Example 1
Solve:

y′′ + y = cos(x)

y(0) = c0 y′(0) = c1

Typing:
DESOLVE(d1d1Y(X) + Y(X) = COS(X), Y(X))

gives:

Y(X) = cC0 · COS(X) +
X + 2 · cC1

2
· SIN(X)

cC0 andcC1 are integration constants (y(0) = cC0 y′(0) = cC1).
You can then assign values to the constants using theSUBSTcommand.
To produce the solutions fory(0) = 1, type:

SUBST(Y(X) = cC0 · COS(X) +
X + 2 · cC1

2
· SIN(X), cC0 = 1)

which gives:

Y(X) =
2 · COS(X) + (X + 2 · cC1) · SIN(X)

2

Example 2 :
Solve:

y′′ + y = cos(x)

y(0) = 1 y′(0) = 1

It is possible to solve for the constants from the outset.
Typing

DESOLVE((d1d1Y(X) + Y(X) = COS(X))AND(Y(0) = 1)AND(d1Y(0) = 1), Y(X))

Gives :

Y(X) = COS(X) +
X + 2

2
· SIN(X)

5.14.2 Laplace transform and inverse Laplace transform :
LAP and ILAP

LAP is the Laplace transform of the expression given as argument. We
consider this expression as the value of a function of the variable stored in
VX.
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ILAP is the inverse Laplace transform of the expression given as argument.
We consider this expression as the value of a function of the variable stored
in VX.
Laplace tranform (LAP) and inverse Laplace transform (ILAP ) are useful to
solve linear differential equations with constant coefficients, for example:

y′′ + p · y′ + q · y = f(x)

y(0) = a y′(0) = b

The following relations hold:

LAP(Y)(X) =

∫ +∞

0

e−X.TY(T)dT

ILAP(F)(X) =
1

2.i.π

∫

C

eZ.XF(Z)dZ

whereC is a closed contour enclosing the poles ofF.
The following property is used:

LAP(Y′)(X) = −Y(0) + X · LAP(Y)(X)
The solutionY of
Y′′ + P · Y′ + Q · Y = F(x), Y(0) = A, Y′(0) = B is then:

ILAP(
LAP(F(X)) + (X + P) · A + B

X2 + P · X + Q
)

Example:
Solve:

y′′ − 6 · y′ + 9 · y = x · e3·x

y(0) = a

y′(0) = b

Typing:
LAP(X · EXP(3 · X)) ENTER

gives:
1

X2 − 6 · X + 9

Typing:

ILAP(
1

X2−6·X+9
+ (X− 6) · A + B

X2 − 6 · X + 9
)

gives the solutiony :

(
X3

6
− (3 · A− B) · X + A) · EXP(3 · X)
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5.14.3 Linear differential equations having constant coef-
ficients : LDEC

LDECenables you to directly solve linear differential equations having con-
stant coefficients.
The parameters are the second member and the characteristicequation.
Solve:

y′′ − 6 · y′ + 9 · y = x · e3·x

Typing:
LDEC(X · EXP(3 · X), X2 − 6 · X + 9)

gives:

−(
(18 · X− 6) · cC0− (6 · X · cC1 + X3)

6
· EXP(3 · X))

cC0 andcC1 are integration constants (y(0) = cC0 and y′(0) = cC1).

5.15 Trigonometric Expressions

All the functions in this section are found in theTRIG menu on theCAS
menu bar.

5.15.1 Transform the arccos into arcsin :ACOS2S

ACOS2Shas as an argument a trigonometric expression.
ACOS2Stransforms the expression by replacing :

arccos(x) with
π

2
− arcsin(x).

Typing:
ACOS2S(ACOS(X) + ASIN(X))

gives, when simplified :
π

2

5.15.2 Transform the arcsin into arccos :ASIN2C

ASIN2C has as an argument a trigonometric expression.
ASIN2C transforms the expression by replacing :

arcsin(x) with
π

2
− arccos(x).

Typing:
ASIN2C(ACOS(X) + ASIN(X))
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gives, when simplified:
π

2

5.15.3 Transform the arcsin into arctan :ASIN2T

ASIN2T has as an argument a trigonometric expression.
ASIN2T transforms the expression by replacing :

arcsin(x) with arctan(
x√

1 − x2
) .

Typing:
ASIN2T(ASIN(X))

gives:

ATAN(
X√

1− X2
)

5.15.4 Transform the arctan into arcsin :ATAN2S

ATAN2Shas as an argument a trigonometric expression.

ATAN2S transforms the expression by replacingarctan(x) with arcsin(
x√

1 + x2
).

Typing:
ATAN2S(ATAN(X))

gives:

ASIN(
X√

X2 + 1
)

5.15.5 Transform exponential into hyperbolic functions :
EXP2HYP

EXP2HYPhas an expression enclosing exponantials as argument.
EXP2HYPtransforms this expression with the relation :
exp(a) = sinh(a) + cosh(a).
Typing :

EXP2HYP(EXP(A))

gives :
SINH(A) + COSH(A)

Typing :
EXP2HYP(EXP(−A) + EXP(A))

gives :
2 · COSH(A)
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5.15.6 Transform in terms of tan(x/2) :HALFTAN

HALFTANhas as an argument a trigonometric expression.
HALFTANtransformssin(x), cos(x) andtan(x) in the expression, rewrit-

ing them in terms oftan(
x

2
).

Typing:

HALFTAN(
SIN(2 · X)

1 + COS(2 · X) )

gives, after simplification:
TAN(X)

Typing:
HALFTAN(SIN(X)2 + COS(X)2)

gives (SQ(X) = X2):

(

2 · TAN( X
2
)

SQ(TAN( X
2
)) + 1

)2

+

(

1− SQ(TAN( X
2
))

SQ(TAN( X
2
)) + 1

)2

or, after simplification:
1

5.15.7 Transform the complex exponentials into sin and
cos : SINCOS

SINCOStakes as an argument an expression containing complex exponen-
tials.
SINCOSthen rewrites this expression in terms ofsin(x) andcos(x).
Typing:

SINCOS(EXP(i · X))
gives after turning on complex mode, if necessary :

COS(X) + i · SIN(X)

5.15.8 Transform tan(x) with sin(2x) and cos(2x) :TAN2CS2

TAN2CS2takes as an argument a trigonometric expression.

TAN2CS2transforms this expression by replacingtan(x) with
1 − cos(2 · x)

sin(2 · x)
.

Typing:
TAN2CS2(TAN(X))
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gives:
1− COS(2 · X)
SIN(2 · X)

5.15.9 Replace tan(x) with sin(x)/cos(x) :TAN2SC

TAN2SChas as an argument a trigonometric expression.

TAN2SCtransforms this expression by replacingtan(x) with
sin(x)

cos(x)
.

Typing:

TAN2SC(TAN(X))

gives:
SIN(X)

COS(X)

5.15.10 Transform tan(x) with sin(2x) and cos(2x) :TAN2SC2

TAN2SC2has as an argument a trigonometric expression.

TAN2SC2transforms this expression by replacingtan(x) with
sin(2 · x)

1 + cos(2 · x)
.

Typing:

TAN2SC2(TAN(X))

gives
SIN(2 · X)

1 + COS(2 · X)

5.15.11 Reconstruct the sine and the cosine of the same
angle : TCOLLECT

TCOLLECThas as an argument a trigonometric expression.
TCOLLECTlinearises this expression in terms ofsin(n · x) andcos(n · x),
then (inReal mode ) reconstructs the sine and cosine of the same angle.
Typing:

TCOLLECT(SIN(X) + COS(X))

gives:
√
2 · COS(X− π

4
)
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5.15.12 Develop transcendental expressions :TEXPAND

TEXPANDhas as argument a transcendental expression (that is an expres-
sion with trigonometric or exponantial or logarithmic functions.
TEXPANDdevelops this expression in terms ofsin(x), cos(x), exp(x) or
ln(x).
Example 1
Typing:

TEXPAND(EXP(X + Y))

gives:

EXP(X) · EXP(Y)

Example 2
Typing:

TEXPAND(LN(X ∗ Y))

gives:

LN(Y) · LN(X)

Example 3
Typing:

TEXPAND(COS(X + Y))

gives:

COS(Y) · COS(X) − SIN(Y) · SIN(X)

Example 4
Typing:

TEXPAND(COS(3 · X))

gives:

4 · COS(X)3 − 3 · COS(X)

Example 5
Typing:

TEXPAND(
SIN(3 · X) + SIN(7 · X)

SIN(5 · X) )

gives, after pressingENTERto simplify:

4 · COS(X)2 − 2
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5.15.13 Linearise une trigonometric expression :TLIN

TLIN has as an argument a trigonometric expression.
TLIN linearises this expression in terms ofsin(n · x) andcos(n · x).
Example 1
Typing:

TLIN(COS(X) · COS(Y))
gives:

1

2
· COS(X− Y) +

1

2
· COS(X + Y)

Example 2
Typing:

TLIN(COS(X)
3
)

gives:
1

4
· COS(3 · X) +

3

4
· COS(X)

Example 3
Typing:

TLIN(4 · COS(X)2 − 2)

gives:
2 · COS(2 · X)

5.15.14 Simplify usingsin(x)2 + cos(x)2 = 1 : TRIG

TRIG has as an argument a trigonometric expression.
TRIG simplifies this expression using the identitysin(x)2 + cos(x)2 = 1.
Typing:

TRIG(SIN(X)2 + COS(X)2 + 1)

gives:
2

5.15.15 Simplify using the cosines :TRIGCOS

TRIGCOShas as an argument a trigonometric expression.
TRIGCOSsimplifies this expression, using the identitysin(x)2+cos(x)2 =
1 to rewrite it in terms of cosines.
Typing:

TRIGCOS(SIN(X)4 + COS(X)2 + 1)

gives:
COS(X)4 − COS(X)2 + 2
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5.15.16 Simplify using the sines :TRIGSIN

TRIGSIN has as an argument a trigonometric expression.
TRIGSIN simplifies this expression, using the identitysin(x)2+cos(x)2 =
1 to rewrite it in terms of sines.
Typing:

TRIGSIN(SIN(X)4 + COS(X)2 + 1)

gives:

SIN(X)4 − SIN(X)2 + 2

5.15.17 Simplify using the tangents :TRIGTAN

TRIGTANhas as an argument a trigonometric expression.
TRIGTANsimplifies this expression, using the identitysin(x)2+cos(x)2 =
1 to rewrite it in terms of tangents.
Typing:

TRIGTAN(SIN(X)4 + COS(X)2 + 1)

gives:

2 · TAN(X)4 + 3 · TAN(X)2 + 2

TAN(X)4 + 2 · TAN(X)2 + 1

5.15.18 Simplification with complex exponentials :TSIMP

TSIMP has an expression as argument.
TSIMP simplifies the expression rewriting it in function of complex expo-
nentials, and then reducing the number of variables (enabling complex
mode in the process).
UseTSIMP only as a last resort.
Typing:

TSIMP(
SIN(3 · X) + SIN(7 · X)

SIN(5 · X) )

You obtain after simplification (that is, after copying the result 2 times):

EXP(i · X)4 + 1

EXP(i · X)2
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5.16 Version number of your CAS :VER

VERreturns the version number of yourCAS.
Typing:
VER
gives:

4.20050219

This result means that you have a version 4CAS, dated 19 February 2005.
Instead,VERSIONreturns the version number of the calculator’sROMas a
whole.
Type inHOMEscreen:
VERSION
You obtain:

Version HP39− E Copyright HP 19932004
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Chapter 6

Worked Exercises with the
HP40

6.1 Introduction

Begin by selectingCAS:
to do this, pressF6 for CASon the menu bar.
The various commands used in this chapter are found:
- in the Equation Editor menus:
ALGB (CFG DEF FACTOR SUBST TEXPAND)
DIFF (DERIVX DERIV INTVX LIMIT TABVAR)
REWRITE (DISTRIB LIN POWEXPAND XNUM)
SOLV (LINSOLV)
and in theMATHkey’s menu:
Complex (DROITE RE IM)
Integer (IEGCD ISPRIME? PROPFRAC) .
Next, put the calculator into exact real algebraic mode:
to do this, pressALGBon the menu bar and highlightCFG, then pressOK
on the menu bar.
It suffices then to chooseDefault cfg , thenOKon the menu bar, but
you can also chooseDirect mode or Step by step mode (Step/step ),
then quit the configuration menu withCANCELon the menu bar.
Do not forget that you must pressENTERafter each command!
In the remainder of this chapter, you will find portions of the1999 mathe-
matical proof of Brevet d’Amiens, and the 1999 mathematicalproof (series

135
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S) of Bac.
The examples illustrate as many features of theHP40GSas possible...
It is worth noting, though, that it is still up to the student to take care to
check the calculations and to know what course to follow whencarrying
out calculations.

6.2 Exercises on Brevet

6.2.1 Exercise 1

GivenA:
3
2 − 1
1
2 + 1

calculate the result ofA in the form of an irreducible fraction, showing each
step of the calculation.
In the Equation Editor, enter the value ofA by typing:
3 ÷ 2 � − 1 � � ÷ 1 ÷ 2 � + 1

� selects the denominator.
ENTERsimplifies the denominator, giving:

3
2
− 1
3
2

Then, select the numerator using�,
ENTERsimplifies the numerator, giving:

1
2
3
2

△ selects the entire fraction, andENTERsimplifies the fraction, giving:

1

3

6.2.2 Exercise 2

Given the numberC:

C = 2
√

45 + 3
√

12 −
√

20 − 6
√

3

write C in the formd
√

5, whered is a whole number.
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In the Equation Editor, we enter the value ofC by typing:
2
√

45 � � + 3
√

12 � � − √
20 � � − 6

√
3

� � � selects−6
√
3 and

� selects−
√
20

▽▽ selects−
√
20

Invoke theFACTORcommand, which is found in theALGBmenu.
PressingENTERthen causes 20 to be factored into22 · 5.
△ selects

√
22 · 5 andENTERreturns2

√
5

� selects−2
√
5

SHIFT� exchanges3
√
12 with −2

√
5

� selects2
√
45

▽ � ▽ selects45.
Invoke theFACTORcommand, which is found in theALGBmenu.
PressingENTERthen causes 45 to be factored into32 · 5.
△ selects

√
32 · 5 andENTERreplaces

√
32 · 5 with 3

√
5,

△ selects2 · 3
√
5,

SHIFT� selects2 · 3
√
5 and−2

√
5, and thenENTERcompletes the oper-

ation and gives:
4
√
5.

It remains to transform3
√
12 and to see that this term is combined with

−6
√
3.

The result is:
C = 4

√
5

6.2.3 Exercise 3

Given the expressionD = (3x − 1)2 − 81.
1.Expand and reduceD.
2.FactorD.
3.Solve the equation:(3x − 10)(3x + 8) = 0.
4.EvaluateD for x = 5.

1. First, writeD into the Equation Editor.
typing:
3 X − 1 � � xy 2 � − 81

Select(3X− 1)2 (� �), then pressENTERto expand the expression.
This gives:
9X2 − 6X + 1− 81

To do the expansion step by step, pressMEMORY (SHIFT ,) to recall the
previous expression, then invokePOWEXPANDfor (3.X− 1)2, then execute
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DISTRIB a couple of times on the result to obtain:
9X2 − 6X + 1

△ selects the entire expression, then pressingENTERreduces it to:
9X2 − 6X− 80

2. Search forD in the history (SYMBkey), then highlightD and press
ENTERto confirm your choice.
InvokeFACTORto obtain:
(3X + 8)(3X− 10)
You can also retrieve the original expression, select81 to factor it into34 ,
and work out the difference between the two squares...
3. Invoke theSOLVEXcommand, then pressENTERto obtain:

(X = −8

3
) OR (X =

10

3
)

4. Search forD in the history (SYMBkey), then highlightD and press
ENTERto confirm your choice.
InvokeSUBST, then complete the second argument:
X=-5
Then press� � � andENTERto obtain :
(3 · (−5) − 1)2 − 81

PressingENTERonce more yields the result:
175
therefore,D = 175 whenX = −5.

6.2.4 Exercise 4

A baker produces two different assortments of biscuits and macaroons.
A packet of the first assortment contains 17 biscuits and 20 macaroons.
A packet of the second assortment contains 10 biscuits and 25macaroons.
Both packets cost90 c.
Calculate the price of one biscuit, and the price of one macaroon.

Let x be the price in cents of one biscuit, andy the price of one maca-
roon.
The problem is then to solve:

{

17x + 20y = 90
10x + 25y = 90

In the Equation Editor, type:
LINSOLVE(17 · X + 20 · Y− 90 AND 10 · X + 25 · Y− 90 , X AND Y)
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If you are working in Step by step mode, this produces:

L2 = 17L2 − 10L1
[

17 20 −90
10 25 −90

]

L1 = 45L1 − 4L2
[

17 20 −90
0 225 −630

]

Reduction Result
[

765 0 −90
0 225 −630

]

PressingENTERthen produces the result:

(X = 2) AND (Y =
14

5
)

If you select
14

5
, and press theNUMkey (or invokeXNUM), you get:

(X = 2) AND (Y = 2.8)

In other words, the price of one biscuit is2 c, and the price of one macaroon
is 2.8 c.
NOTE: If the calculator has gone intoApprox mode, put it back into
Exact mode usingCFG.

6.2.5 Exercise 5

Say thatA andB are points having the coordinates:
A(-1 ; 3) andB(-3 ; -1), where the unit of measure is the centimetre.
1/ Find exact length ofAB in centimetres.
2/ Determine the equation of the lineAB.
First Method
Type:
STORE((-1,3),A)
accept the change toComplex mode, if necessary.
STORE((-3,-1),B)
The vector

−−→
AB has coordinatesB− A.

1/ Typing:
ABS(B− A)
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gives:
2
√
5

2/ Apply theDROITEcommand, on theMATHkey’s Complex menu:

DROITE(A, B)

gives:
Y = 2 · X + 5

PressingENTERthen produces the result:

Y = 2 · X + 5

Or second Method
1/ Typing:

(−3,−1) − (−1, 3)
gives:

−2− 4 · i
Apply theABScommand to get:

ABS(−2− 4i)

gives:
2
√
5

2/ Typing:
DROITE((−1, 3), (−3,−1))

gives:
Y = 2 · (X−−1) + 3

PressingENTERthen produces the result:

Y = 2 · X + 5

6.3 Exercises on Bac

6.3.1 Exercise 1

Terms of exercise 1

Let m be a point on the circleC of centerO and radius 1. Consider the
imageM of m defined on their affixes by the transformationF : z− >
1
2z2 − z. Whenm moves on the circleC, M will move on a curveΓ. The
object of this exercice is to study and plotΓ.
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1. Let t ∈ [−π, π] andm the point onC of affix z = ei·t. Find the
coordinates ofM in terms oft.

2. Comparex(−t) with x(t) andy(−t) with y(t). Show thatΓ has a
symmetry center.

3. Computex′(t) and find the variations ofx over [0, π].

4. Same question fory.

5. Show the variations ofx andy in the same table.

6. Put the points ofΓ corresponding tot = 0, π/3, 2π/3, π and draw
the tangent toΓ at these points. Draw the part ofΓ corresponding to
t ∈ [0, π]. DrawΓ.

Correction

The object of this exercise is to trace the curveΓ described byM and given
by 1

2 · z2 − z, whenm, given byz describes a circleC with centerO and
having a radius of 1. Lett be a real number in[−π, π], and letm be the
point of C given byz = ei·t.

1. Calculating the coordinates ofM :
First, maket theVXvariable (SHIFT SYMB (SETUP) keys and then
Indep var : t )
Then, enter the expression12 · z2 − z into the Equation Editor.
In the Equation Editor, type:

ALPHA Z xy 2 � ÷ 2 � − ALPHA Z � �

The expression
Z2

2
− Z is selected.

Sincez = ei·t, invokeSUBSTand complete the second argument by
typing:

SUBST(
Z2

2
− Z, Z = EXP(i× t))

which gives:
EXP(i · t)2

2
− EXP(i · t)

Then, you linearise the expression with the command:
LIN
The result (after accepting the switch to Complex mode) is:

1

2
· EXP(2 · i · t) + −1 · EXP(i · t)



142 CHAPTER 6. WORKED EXERCISES WITH THE HP40

• Now store the result with theSTOREcommand by typing:

STORE(
1

2
· EXP(2 · i · t) + −1 · EXP(i · t), M)

then pressingENTER.
To calculate the real part of this expression, enter the command:

RE

which returns:

COS(t · 2) − 2 · COS(t)
2

We suppose thatVXcontainst (SHIFT HOME (MODES)then
Indep var : t ).
Then, define the functionx(t) by invokingDEF:
NOTE: You will need to type= X(t) , then exchangeX(t)

with the expressionCOS(t·2)−2·COS(t)
2

. To do this, highlightX(t)
with � and typeSHIFT�. Highlight the entire expression and
select theDEFcommand:

DEF (X(t) =
COS(t · 2) − 2 · COS(t)

2
)

Then pressENTER.
To calculate the imaginary part of this expression, type thecom-
mand:
IM(M)
which returns:

SIN(t · 2) − 2 · SIN(t)
2

Then, define the functiony(t) (in the same way as you defined
x(t)):

DEF(Y(t) =
SIN(t · 2) − 2 · SIN(t)

2

Then pressENTER.

2. To find an axis of symmetry forΓ, calculatex(−t) andy(−t) by
typing:

X(−t) ENTER
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which produces:
COS(t · 2) − 2 · COS(t)

2

In other words:x(−t) = x(t)
Then type:

Y(−t) ENTER
which produces:

−SIN(t · 2) + 2 · SIN(t)
2

In other words:y(−t) = −y(t)
If M1(x(t), y(t)) is part ofΓ, thenM2(x(−t), y(−t)) is also part of
Γ.
SinceM1 andM2 are symmetrical with respect to thex-axis , we can
deduce that thex-axis is an axis of symmetry forΓ.

3. Calculate x´(t):
Typing:

DERVX(X(t))

returns:
2 · (−2 · SIN(t · 2) − 2 · (−SIN(t)))

4

or, after simplification (ENTER), the reponse is :

−SIN(t) · (2 · COS(t) − 1)

You can now define the functionx′(t) by invokingDEF:
Note: You will need to type= X1(t) , then exchangeX1(t) with
the expression−SIN(t) · (2 · COS(t) − 1). To do this, highlightX1(t)
(�) and typeSHIFT �. This returns:

DEF( X1(t) = −SIN(t) · (2 · COS(t) − 1))

Then pressENTER.

4. Calculate y’(t):
Typing:

DERVX(Y(t))
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returns:
2 · (2 · COS(t · 2) − 2 · COS(t))

4

and, after simplification (ENTER), the response is :

2 · COS(t)2 − COS(t) − 1

Invoke FACTOR to factor the expression:

FACTOR(2 · COS(t)2 − COS(t) − 1)

then press ENTER, the response is:

(COS(t) − 1) · (2 · COS(t) + 1)

You can now define the functiony′(t) (in the same way as you de-
finedx′(t)):

DEF( Y1(t) = (COS(t) − 1) · (2 · COS(t) + 1))

5. Variations ofx(t) andy(t)
For this, you tracex(t) andy(t) on the same graph.
We suppose thatt is contained inVX (SHIFT SYMB (SETUP))
TypeX(t) in the Equation Editor and pressENTER.
Then press thePLOT key.
SelectFunction using the dialog box, and selectF1 as the desti-
nation.
Then, do the same thing withY(t) , makingF2 the destination.
To graph the functions: quitCAS(using theON (CANCEL)button),
choose the Function aplet, and checkF1 andF2. You will have to
set the window’s parameters (SHIFT PLOT), then pressPLOT to
see the graphs.
Back in the Equation Editor (press theHOMEkey, thenCASon the
menu bar), we can get exact outputs from the curveΓ :

• Values ofx(t) andy(t)
Find the values ofx(t) andy(t) for t = 0, π

3 , 2·π
3 , π by typing

in succession (ENTERis pressed twice in most cases for further
simplification):

X(0) ENTER
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Response:−1
2

X(
π

3
) ENTER ENTER

Response:−3
4

X(2× π

3
) ENTER ENTER

Response:14
X(π) ENTER ENTER

Response:32
Y(0) ENTER

Response:0

Y(
π

3
) ENTER ENTER

Response:−
√

3
4

Y(2× π

3
) ENTER ENTER

Response:−3·
√

3
4

Y(π) ENTER ENTER

Response:0

• Slope of the tangents (m = y′(t)
x′(t) )

Find the values ofy
′(t)

x′(t) for t = 0, π
3 , 2·π

3 , π by typing in suc-
cession:

LIMIT(
Y1(t)

X1(t)
, t = 0) ENTER

Response:0

LIMIT(
Y1(t)

X1(t)
, t = π ÷ 3) ENTER

Response (answerYESwhen askedUNSIGNED INF. SOLVE?):
∞

LIMIT(
Y1(t)

X1(t)
, t = 2× π ÷ 3) ENTER
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Response:0

LIMIT(
Y1(t)

X1(t)
, t = π) ENTER

Response (answerYESwhen askedUNSIGNED INF. SOLVE?):
(
Here, then, are the variations ofx(t) andy(t):

t 0 π
3

2π
3 π

x′(t) 0 − 0 +
√

3 + 0
x(t) −1

2 ↓ −3
4 ↑ 1

4 ↑ 3
2

y(t) 0 ↓ −
√

3
4 ↓ −3

√
3

4 ↑ 0
y′(t) 0 − −1 − 0 + 2
m 0 ∞ 0 ∞

• The curveΓ :
Now graph the parametric curve.
In the Equation Editor, typeX(t) + i× Y(t), then pressENTER.
Then press:
PLOT, and selectParametric using the dialog box, specify-
ing X1,Y1 as the destination.
To make the graph of the curveΓ : quit CAS(using theHOME
button), then choose theParametric aplet. CheckX1(T),
Y1(T) , and choose default values inPLOT SETUP.

6.3.2 Exercise 2 (specialty)

Terms of exercise 2

Forn a strictly positive integer, we define

an = 4 × 10n − 1, bn = 2 × 10n − 1, cn = 2 × 10n + 1

1. a/ Computea1, b1, c1, a2, b2, c2, a3, b3 andc3.
b/ Find how many digits the decimal representation ofan and cn

have. Show thatan andcn are divisible by 3.
c/ Using a list of prime smaller than 100, show thatb3 is prime.
d/ Show that for every integern > 0, bn × cn = a2n. Deduce the
prime factor decomposition ofa6.
e/ Show that GCD(bn, cn)=GCD(cn, 2). Deduce thatbn andcn are
prime together.



6.3. EXERCISES ON BAC 147

2. Consider the equation:

(1) b3x + c3y = 1

where the integersx andy are the unknown.
a/ Show that (1) has at least one solution
b/ Apply Euclide’s algorithm toc3 andb3 and find a solution to (1).
c/ Find all solutions of (1)

Correction

Define the following for a natural whole number:

an = 4 × 10n − 1, bn = 2 × 10n − 1 andcn = 2 × 10n + 1

Begin by typing:
DEF(A(N) = 4 · 10N − 1)

DEF(B(N) = 2 · 10N − 1)

DEF(C(N) = 2 · 10N + 1)

1. Now do the following:
Calculate

• a) Simply type (in succession):

A(1)

Result: 39
B(1)

Result: 19
C(1)

Result: 21
A(2)

Result: 399
B(2)

Result: 199
C(2)

Result: 201
A(3)
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Result: 3999
B(3)

Result: 1999
C(3)

C(3)

Result: 2001

• b) Number of digits, and divisibility
In this, the calculator is used only to try out different values of
n ...
Show that the whole numbersk such that:

10n ≤ k < 10n+1

have(n + 1) digits in decimal notation.
We have:

10n < 3 · 10n < an < 4 · 10n < 10n+1

10n < bn < 2 · 10n < 10n+1

10n < 2 · 10n < cn < 3 · 10n < 10n+1

soan, bn, cn have(n + 1) digits in decimal notation.
Moreover,dn = 10n − 1 is divisible by 9, since its decimal
notation can only end in 9.
We also have:

an = 3 · 10n + dn

and
cn = 3 · 10n − dn

soan andcn are both divisible by 3.

• c) b3 is a prime number
Typing:

ISPRIME?(B(3))

gives:
1.

which means true.
To prove thatb3 = 1999 is a prime number, it is necessary to
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show that 1999 is not divisible by any of the prime numbers
less than or equal to

√
1999.

As 1999 < 2025 = 452, that means testing the divisibility of
1999 byn = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41.
1999 is not divisible by any of these numbers, so we can con-
clude that 1999 is prime.

• d) a2n = bn × cn

Typing:
B(N) · C(N)

produces:

4 · (10N)2 − 1

after applying the EXP2POW command. This is the valuea2n.
Decomposition ofa6 into its prime factors:
Typing:

FACTOR(A(6))

yields:
3 · 23 · 29 · 1999

• e) bn andcn are relatively prime.
In this part, the calculator is useful only for trying out different
values ofn...
To show thatcn andbn are relatively prime, it is enough to re-
mark that

cn = bn + 2

That means that the common divisors ofcn andbn are the com-
mon divisors ofbn and 2, as well as the common divisors of
cn and 2. bn and 2 are relatively prime becausebn is a prime
number different from 2. So:

PGCD(cn, bn) = PGCD(cn, 2) = PGCD(bn, 2) = 1

2. Given the equation:
b3 · x + c3 · y = 1

• a) It has at least one solution, as it is actually a form of Bézout’s
Identity.
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In effect, Bézout’s Theorem says:
If a andb are relatively prime, there existx andy such that:

a · x + b · y = 1

Therefore, the equation:

b3 · x + c3 · y = 1

has at least one solution.

• b) Typing:
IEGCD(B(3), C(3))

returns:
1000 AND − 999 = 1

In other words:

b3 × 1000 + c3 × (−999) = 1

so we have a particular solution:
x = 1000, y = −999.
The rest can be done on paper:
c3 = b3 + 2 andb3 = 999 × 2 + 1
so,b3 = 999 × (c3 − b3) + 1, or:

b3 × 1000 + c3 × (−999) = 1

• c) In this part, the calculator is not used for finding the general
solution.
We have:

b3 · x + c3 · y = 1

and
b3 × 1000 + c3 × (−999) = 1

so, by subtraction:

b3 · (x − 1000) + c3 · (y + 999) = 0

or:
b3 · (x − 1000) = −c3 · (y + 999)
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According to Gauss’s Theorem,c3 is prime withb3, soc3 is a
divisor of (x − 1000).
So, there existsk ∈ Z such that:

(x − 1000) = k × c3

and
−(y + 999) = k × b3

Solving for x and y, we get:

x = 1000 + k × c3

and
y = −999 − k × b3

for k ∈ Z
This gives us:

b3 · x + c3 · y = b3 × 1000 + c3 × (−999) = 1

The general solution for allk ∈ Z is therefore:

x = 1000 + k × c3

y = −999 − k × b3

6.3.3 Exercise 3 (non-specialty)

Terms of exercise 2

Forn an integer, define:

un =

∫ 2

0

2x + 3

x + 2
e

x

n dx

1. a/ Defineg over [0, 2] by g(x) =
2x + 3

x + 2
.

Find the variations ofg over [0, 2]. Show that for every realx in

[0, 2],
3

2
≤ g(x) ≤ 7

4
.

b) Show that for every realx in [0, 2]:
3

2
e

x

n ≤ g(x)e
x

n ≤ 7

4
e

x

n .

c) After integration, show that :

3

2
n(e

2

n − 1) ≤ un ≤ 7

4
n(e

2

n − 1)
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d) Using lim
h→0

eh − 1

h
= 1.

show that ifun has a limitL asn → ∞, then3 ≤ L ≤ 7

2
.

2. a) Show that for everyx in [0, 2]:
2x + 3

x + 2
= 2 − 1

x + 2
.

Find the value ofI =
∫ 2

0
2x+3
x+2 dx.

b) Show that for everyx in [0, 2]: 1 ≤ e
x

n ≤ e
2

n .
Deduce that1 ≤ un ≤ e

2

n I.
c) Show that (un) is convergent and find it’s limitL.

Correction

Before you begin, check that the calculator is in exact real mode withX as
the current variable; if not, selectDefault cfg in CFG.
Given:

un =

∫ 2

0

2x + 3

x + 2
e

x

n dx

1. Do the following:

2. • Variation ofg(x) = 2x+3
x+2 for x ∈ [0, 2]

Typing:

DEF(G(X) =
2X + 3

X + 2
)

then:
TABVAR(G(X))

yields:
−∞ + −2 + +∞ X
2 ↑ ∞ ↑ 2 F

The first line gives the sign ofg’(x) according tox , and the
second line the variations ofg (x) . Note that forTABVARthe
function is always calledF.
We can deduce, then, thatg(x) increases over[0, 2].
If you were in Step by step mode (for this, chooseStep/step
and thenOKon theCFGmenu bar), you would obtain (although
the function is labelledF):

F =:
2 · X + 3

X + 2
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PressENTER:

F′ :=
2 · (X + 2) − (2 · X + 3)

SQ(X + 2)

Using the down-arrow▽, scroll down the screen:

→ 1

(X + 2)2

Then pressENTERto obtain the table of variations.
If you are not in Step by step mode, you can also request the
calculation of the derivative by typing:

DERVX(G(X))

which produces the preceding calculation.
To calculateg(0) andg(2), type:

G(0)

Response:32
G(2)

Response:74
whence the inequality:

3

2
≤ g(x) ≤ 7

4
for x ∈ [0, 2]

.

• b) The calculator is not needed here... simply stating that :

e
x

n ≥ 0 pourx ∈ [0, 2]

is sufficient to show that, forx ∈ [0, 2], we have:

3

2
e

x

n ≤ g(x)e
x

n ≤ 7

4
e

x

n

• c) To integrate the preceding inequality, type:

∫ 2

0

e
X
N dX
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which produces:
N · e 2

N − N

We can then deduce that:

3

2
(ne

2

n − n) ≤ un ≤ 7

4
(ne

2

n − n)

To justify the preceding calculation, it is necessary to assume
thatn · e x

n is a primitive ofe
x

n .
If you are not sure, you can type:

INTVX(EXP(
X

N
))

The simplified result is:N · e X
N

• d) To find the limit of(ne
2

n − n) whenn → +∞:

LIMIT(N · EXP(2
N
) − N , N = +∞)

The result is:
2

NOTE :
The variableVXis set equal toN; use theSHIFT SYMB (SETUP)
keys to resetVX to X.
To check the result, we can say that:

lim
x→0

ex − 1

x
= 1

and that therefore:

lim
n→+∞

e
2

n − 1
2
n

= 1

or, simplifying:

lim
n→+∞

(e
2

n − 1) · n = 2

If the limit L of un exists asn tends to+∞ in the inequalities
in 1b), we get:

3

2
· 2 ≤ L ≤ 7

4
· 2
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3. • a) Do the following:
g(x) = 2 − 1

x+2 and the calculation ofI =
∫ 2

0
g(x)dx

Typing:
PROPFRAC(G(X))

returns:

2− 1

X + 2

To calculate the integralI, type:

∫ 2

0

G(X)dX

This produces:
−(LN(2) − 4)

Working by hand:2x + 3 = 2(x + 2) − 1, so :

g(x) = 2 − 1

x + 2

Then, integrating term by term between 0 and 2 produces:

∫ 2

0

g(x)dx = [2x − ln(x + 2)]x=2
x=0

that is, sinceln 4 = 2 ln 2 :

∫ 2

0

g(x)dx = 4 − ln 2

• b) The calculator is not needed here... simply stating thate
x

n

increases forx ∈ [0, 2] is sufficient to yield the inequality:

1 ≤ e
x

n ≤ e
2

n

Then, through multiplication,g(x) being positive over[0, 2],
we get:

g(x) ≤ g(x)e
x

n ≤ g(x)e
2

n

and then, integrating:

I ≤ un ≤ e
2

n I
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• c) Convergence ofun

Find the limit ofe
2

n whenn → +∞:

LIMIT(EXP(
2

N
) , N = +∞)

This returns:
1

In effect, 2
n tends to 0 asn tends to+∞, soe

2

n tends toe0 = 1
asn tends to+∞.
As n tends to+∞, un is the portion betweenI and a quantity
that tends toI (cf. inequalities 2b)).
So then,un converges, and its limit isI.
We have therefore shown that:

L = I = 4 − ln 2

6.4 Conclusion

You can see that, by that making good use of theHP40GScalculator , you
can use it for a large proportion of the calculations...
It is necessary to note, however, that arithmetic does require more reason-
ing. Here, the calculator enables you to check your work...
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Programming

7.1 Implementation

7.1.1 How to edit and save a program

>From theHOMEscreen, to get access to the catalogue of programs, press
theSHIFT 1 (PROGRAM)keys.
A screen then appears containing the list of available programs and a menu
bar (EDIT NEW SEND RECV RUN).
To create a new program, pressF2 (NEW).
You are asked for the name of the program.
NOTE: If you are not inAlpha mode, pressF4 (A..Z) to go into it!
Type its name, then pressF6 (OK) .
You enter your program, and your work is automatically savedwhen you
leave the editor by pressingHOMEor SHIFT 1 (PROGRAM).

7.1.2 How to correct a program

If the syntax is invalid, the calculator displays:
Invalid Syntax Edit program? Respond by pressingF6 (YES) .
The calculator automatically positions the cursor where the compiler has
detected the error. All you need do then is correct it!

157
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7.1.3 How to run a program

To run a program, open the catalogue of programs by pressingSHIFT 1
(PROGRAM).
A screen is then displayed containing the list of available programs and the
menu barEDIT NEW SEND RECV RUN.
Highlight the name of the program and pressF6 (RUN) .

7.1.4 How to modify a program

To modify a program (and overwrite the old one), open the catalogue of
programs by pressingSHIFT 1 (PROGRAM). A screen is then displayed
containing the list of available programs and the menu barEDIT NEW
SEND RECV RUN.
Highlight the name of the program and pressF1 (EDIT) .
If you want to save and edit the old program under a new name, then:
- Open the catalogue of programs (SHIFT 1 (PROGRAM))
- PressF2 (NEW) and type the new name, then pressF6 (OK) . The Ed-
itor opens.
- PressVARS, then the letterP to highlightProgram .
- Using the arrows, highlight the name of the old program, then pressF4
(VALUE) (to selectVALUEon the menu bar), thenF6 (OK) .
This copies the text of the old program into the editor.

7.2 Comments

It is important to comment your programs.
In writing algorithms, a comment commonly starts with// and ends at the
end of the line.
In theHP40GS, a comment starts with@and ends at the end of the line or
at the next@, whichever comes first.
NOTE:
Do not forget to put a space after the@.
The character @ is obtained by typingSHIFT VAR (CHARS), then high-
lighting the character and choosingECHOon the menu bar (orECHO1
ECHO1 OKto have two characters@).
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7.2.1 SHIFT 1 (PROGRAM)keys

This key combination, if pressed inHOME, displays the screen :
PROGRAM CATALOG
It shows:
- a list of the programs that you’ve written, and
- a menu bar containing the commands:
EDIT NEW RUN SEND RECV.
EDIT enables you to edit the highlighted program,
NEWenables you to create a new program,
RUNenables you to run the highlighted program (cf7.1),
SENDandRECVare functions that enable your calculator to talk to your
computer or another calculator.
For example:
If you pressSENDon the menu bar, it asks:
HP39/40 (Wire) or Disk Drive
You highlightHP39/40 (Wire) to send a program to anotherHP40GS,
or you highlightDisk Drive to send a program to a computer.
Then pressOKon the menu bar.
For example, here is how you connect a Linux computer to theHP40GS
so as to use the program C-Kermit version 7 (which you can find at the
URL www.columbia.edu/kermit , or which you can download via
anonymous ftp from the sitekermit.columbia.edu ):
Connect the calculator to a data transfer cable.
On the computer, type:
kermit
set line /dev/ttyS0 (or S1... depending on the number of your
serial port)
set speed 9600
set carrier-watch off
serv
On theHP40GS:
Highlight the program calledNAME, then pressSENDon the menu bar and
highlightDisk drive . Then pressOKon the menu bar, and the program
calledNAMEon theHP40GSis copied into your computer.
OR:
PressRECVon the menu bar and highlightDisk drive . Then pressOK
on the menu bar, and the calculator displays a list of theHP40GSprograms
on your computer. (Naturally, you have to have already created a directory
on your computer where theHP40GSprograms are stored).
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You then highlightGCD, and the program calledGCDon your computer is
copied into theHP40GS.
For Windows users, the connectivity program is found on the URL :
http://www.hp.com/calculators/france .
To find out more about the use of Kermit with HP calculators, visit the
URL: http://www.columbia.edu/kermit/hp48.html

7.3 Variables

7.3.1 Their names

These are the containers in which you can store values, numbers, expres-
sions, and other objects.
With theHP40GS, only the 26 letters of the alphabet, and the Greek letter
θ are available for storing real numbers.

7.3.2 The concept of local variables

Local variables are used to protect user variables from modifications after
a program call. This concept does not exist natively on theHP40GS(only
global variables are supported).
For advanced users, it is however possible to mimic the localvariables
mechanism using theCAShistory andPUSHandPOP. Say for example that
our program use the variablesA, B, C . At the beginning we canPUSH
A thenPUSH BthenPUSH C. This will save the values ofA, B andC in
theCAShistory. At the end of the program we restore the value ofA, B and
C usingPOPand store the value inC, B andA, it must be donein reverse
order since theCAShistory is a stack container (LIFO=Last In First Out).

7.3.3 The concept of parameters

It is not possible for programs written on theHP40GSto natively pass pa-
rameters. Hence you cannot use theHP40GSprogramming language to
write functions having parameters.
For advanced users, it is possible to mimic parameters usingtheCAShis-
tory. The callerPUSHa list of parameters in theCAShistory, then runs the
program, that will have as first instruction aPOPinstruction. This mech-
anism does not work in conjonction with the local variables turnaround
above. If you want to combine both concepts, you can choose a list vari-
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able for parameter transmission and return value, and use local variables as
described above.

7.4 User entry

7.4.1 Algorithmic syntax

So that the user is able to enter a value for the variableA during the course
of the program’s execution, one writes in algorithms:
input A
And for entering values intoA andB, one writes:
input A,B

7.4.2 HP40GSsyntax

INPUT A;"TITRE";"A=";;0:
If it annoys you to have to type all the punctuation in theINPUT command,
you might prefer to use thePROMPTor PROMPTSTOcommand instead
(thanks to Jean Yves!).
PROMPTSTO(A)or PROMPT Aopens a window that asks you to enter the
value of A.
In the remainder of this guide, programs that were written before the exis-
tence of PROMPT use the subroutineIN , which enables you to enter two
values intoA andB.

7.5 Output

7.5.1 Algorithmic syntax

In algorithms one writes:
display "A=",A

7.5.2 HP40GSsyntax

DISP 3;"A="A: 3 represents the number of the line whereA will be dis-
played
Or:
MSGBOX "A="A:
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7.6 The sequence of statements, or "action"

An action is a sequence of one or more statements.

7.6.1 Algorithmic syntax

In algorithmic language, you use the space or the linebreak to terminate the
statement.

7.6.2 HP40GSsyntax

: indicates the end of the statement.

7.7 The assignment statement

A value or an expression is stored in a variable by means of an assignment.

7.7.1 Algorithmic syntax

In algorithms, one writes (for example):
2*A->B
to store2*A in B.

7.7.2 HP40GSsyntax

The arrow is obtained by means of theSTO⊲ key on the menu bar.
One types (for example):
2*A-> B that mean :
press2*A then pressSTO⊲ on the menu bar then pressB.

7.8 Conditional statements

7.8.1 Algorithmic syntax

Conditional statements have two syntax :
If condition then
action
endif
and also :
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If condition then
action1 else
action2
endif
Example:
If A = 10 ou A < B then
B-A->B else
A-B->A
endif

7.8.2 HP40GSsyntax

IF condition THEN
action :
END:
and also :
IF condition THEN
action1 : ELSE
action2:
END:
NOTE au== to denote the condition of equality.
Example :
IF A==10 OR A<B THEN
B-A->B : ELSE
A-B-> A
END:

7.9 FOR statement

7.9.1 Algorithmic syntax

For I = A to B do action endfor
and also :
For I = A to B (step P) do action endfor

7.9.2 HP40GSsyntax

FOR I = A TO B STEP 1 ; action : END:
and also :
FOR I = A TO B STEP P ; action : END:
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7.10 WHILE statement

7.10.1 Algorithmic syntax

While condition do action endwhile

7.10.2 HP40GSsyntax

WHILE condition REPEAT action : END:

7.11 Boolean Expressions

A condition is a function that has a Boolean as a value, that is, it is either
TRUEor FALSE.

7.11.1 Algorithmic syntax

To express a condition, simply use the operators:
= > > ≤ ≥ 6=

7.11.2 HP40GSsyntax

NOTE: for theHP40GScalculator, equality is denoted by:
==
Otherwise, the operators are the same.

7.12 Logical Operators

7.12.1 Algorithmic syntax

To express complex conditions, use the logical operators:
or and not

7.12.2 HP40GSsyntax

Or, and, not are represented on theHP40GSasOR, AND, NOT
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7.13 Lists

7.13.1 Algorithmic syntax

In algorithms, you use{ } to define a list.
For example,{} designates a void list, and {1, 2, 3} is a list with three
elements.
The+ is used to concatenate two lists, or a list and an element, or an element
and a list:
{1, 2, 3} -> TAB
TAB + 4 -> TAB (TABnow designates{1, 2, 3, 4}
TAB[2] indicates the second element ofTAB, here2.

7.13.2 HP40GSsyntax

The list variables have the following names:L0, L1, L2,... L9 .
You use{ } to delimit a list.
For example,{1, 2, 3} is a list with three elements.
But {} does not designate a void list; to clear a list you must use thecom-
mandCLRVAR, e.g.:
CLRVAR L0
will initialise the listL0 as void. You can also use the commandSUBwhich
extract a sub-list (ifL1={1,2,3,4} thenSUB L2;L1;2;3 make the
list L2={2,3} ) and so,SUB L1;L1;2;1 to initialise the listL1 as void.
Following are some useful commands:
MAKELIST(I*I, I, 1, 10, 2) designates a list of the squares of
the first five odd whole numbers (2 indicates the step ofI ).
L1(I) designates the Ith element of the list.
CONCAT (L1, {5}) designates a list having the element5 in addition
to the elements of the listL1 .
You can also use:
AUGMENT(L1,5) , which designates a list having the element5 in addi-
tion to the elements of the listL1 .
SUB L2; L1; 2; 4 is a command that copies intoL2 the elements of
L1 having indices from 2 to 4.
NOTE the difference between functions and commands:
Functions return a value, and they have parentheses enclosing their argu-
ments (which are separated by commas), whereas
Commands do not return values, and their arguments are written directly
after the name of the command (and are separated by semi-colons).
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7.14 Example: The Sieve of Eratosthenes

7.14.1 Description

To find the prime numbers less than or equal toN :

1. Write the numbers from 1 toN in a list.

2. Cross out 1, and let 2 be the first value ofP .
If P ∗ P ≤ N , then taking the numbers fromP to N .

3. Cross out all the multiples ofP from P ∗ P onward.

4. AugmentP by 1, If P ∗ P is less than or equal toN , then taking the
non-excluded numbers fromP to N .

5. ChangeP to the smallest non-excluded number betweenP andN .

6. Repeat steps 3, 4 and 5 untilP ∗ P exceedsN .

7.14.2 Algorithmic syntax

Function sieve(N)
local TAB PRIMES I P
//TAB and PRIMES are lists
{} ->TAB
{} ->PRIMES
//do steps 1 and 2
for I = 2 to N do

TAB+I -> TAB
endfor
0 + TAB -> TAB
2-> P
//TAB is the list 0 2 3 4 ..N
//1 has been excluded by replacing it with 0

while P*P ≤ N do

//exclude all multiples of P from P*P onward
for I = P to FLOOR(N/P) do

//FLOOR(N/P) designates the integer part of N/P
0 -> TAB[I*P]

endfor
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P+1-> P
//Find the smallest non-excluded number
//between P and N

while (P*P ≤ N) and (TAB[P]=0) do

P+1 -> P
endwhile

endwhile
//write the result to the list PRIMES
for I = 2 to N do

If TAB[I] 6= 0 then

PRIMES + I -> PRIMES
endif

endfor
Result: PRIMES

7.14.3 HP40GSsyntax

Following is the programSIEVE:
The user must input a value for N.
At the end, the listL2 contains the prime numbers less than or equal toN.

INPUT N;"CRIBLE";"N=";;10:
ERASE:
MAKELIST(I,I,1,N,1) -> L1:
0 -> L1(1):
2->P:

WHILE P*P ≤ N REPEAT

FOR I = P TO INT(N/P) STEP 1;
0->L1(I*P):

END:
DISP 3;""L1:
P+1->P:

WHILE P*P ≤ N AND L1(P) == 0 REPEAT

P+1->P:
END:

END:
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{2}->L2:
@ on sait que 2 est premier
FOR I=3 TO N STEP 1;

IF L1(I) 6= 0 THEN

CONCAT(L2,{I}) ->L2:
END:

END:
DISP 3 ;"PREM" L2:
FREEZE:
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Arithmetic Programs

8.1 GCD and Euclid’s Algorithm

Given the two whole positive numbersA andB, find theirGCD (Greatest
Common Divisor).
Euclid’s Algorithm is based on the recursive definition ofGCD:

GCD(A, 0) = A

GCD(A,B) = GCD(B,A mod B)ifB 6= 0

whereA mod B designate the remainder of the Euclidean division ofA
by B.
Here is the description of this algorithm:
Perform the successive Euclidean divisions:

A = B × Q1 + R1 0 ≤ R1 < B

B = R1 × Q2 + R2 0 ≤ R2 < R1

R1 = R2 × Q3 + R3 0 ≤ R3 < R2

.......

After a finite number of steps, there exists a whole number n such that:
Rn = 0.
One then has:
GCD(A,B) = GCD(B,R1) = ... =
GCD(Rn−1, Rn) = GCD(Rn−1, 0) = Rn−1.

169
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8.1.1 Algorithmic syntax

- Iterative version
If B 6= 0, calculateR = A mod B. Then, makeA equal toB, andB equal
to R, and repeat the calculation untilB = 0. TheGCD is thenA.

Function GCD(A,B)
Local R

While B 6= 0 do

A mod B ->R
B ->A
R ->B

endwhile
Result: A
endfunction

- Recursive version
One simply writes the recursive definition given earlier.

Function GCD(A,B)

If B 6= 0 then

Result: GCD(B,A mod B)
Else

Result: A
endif
endfunction

8.1.2 HP40GSsyntax

- Iterative version for two whole numbers
First, type the subroutineIN , which enables the user to enter two numbers
A andB :

INPUT A;"A";;;1:
INPUT B;"B";;;1:
ERASE:

Then type theGCDprogram:

RUN IN:
DISP 3;"PGCD "{A,B}:
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WHILE B 6= 0 REPEAT

A MOD B ->R:
B ->A:
R ->B:
END:
DISP 4;"PGCD "A:
FREEZE:

- Recursive version for two whole numbersA andB
You cannot create recursive functions on theHP40GS... but you can create
the programGCDR:

DISP 3;"PGCD "{A,B}:
FREEZE:

IF B 6= 0 THEN

A MOD B ->R:
B ->A:
R ->B:
PGCDR:
ELSE
DISP 3;"PGCD "A:
FREEZE:
END:

First, the values ofA andB are stored.
The programGCDRdisplays the GCD that it is in the process of calculating.
The recursive callGCDRreturns you to theGCDRprogram, which you must
execute by pressingRUNon the menu bar.
TheGCDRprogram then displays the intermediate GCD calculations.
You can also replaceGCDRin the preceding program withRUN GCDRto
avoid having to pressRUNon the menu bar, and to suppress the display of
the intermediate values, so that you can use this program in alarger pro-
gram that caters for input and output:
>From the recursive programGCDR, we can derive the recursive program
PR:

IF B 6= 0 THEN

A MOD B ->R:
B ->A:
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R ->B:
RUN PR:
END:

The programPR can be inserted into a larger program catering for input
and output:

PROMPT A:
PROMPT B:
RUN PR:
ERASE:
MSGBOX A:

- Iterative version for two complex numbers.
If you use the symbolic calculation functionIREMAINDERin place ofMOD
in the preceding programs,GCD(or PR) can then have Gaussian whole
numbers as parameters on condition that you replace the names of the vari-
ablesA, B and R with Z1, Z2 and Z3, and that you change the test for
completion. When creating the new version start by recallingthe contents
of the earlier version, as described in 6.1.4. Here is the iterative version:

PROMPT Z1:
PROMPT Z2:
ERASE:
DISP 3;"PGCD "{Z1,Z2}:

WHILE ABS(Z2) 6= 0 REPEAT

XNUM(IREMAINDER(XQ(Z1),XQ(Z2)) ->Z3:
Z2 ->Z1:
Z3 ->Z2:
END:
DISP 4;"PGCD "Z1:
FREEZE:

- Iterative version for two polynomials.
The variablesE1, E2,... enable you to store expressions, which is
what you must do if you deal with polynomials! If you use the symbolic
calculation functionREMAINDERin place ofMODin the preceding pro-
grams,GCD(or PR) can then have polynomials as parameters on condition
that you replace the names of the variablesA, B andRwith E1, E2, E3 ,
and that you change the test for completion. TheCASmust be inExact
andDirect modes for this program.
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PROMPT E1:
PROMPT E2:
ERASE:

WHILE DEGREE(E2) 6= -1 REPEAT

REMAINDER(E1,E2) ->E3:
E2 ->E1:
E3 ->E2:
END:
DISP 4;"PGCD "E1:
FREEZE:

You enter (for example):
E1 = S12 − 1 andE2 = S12 − 2 ∗ S1 + 1 to find the GCD equal to2*S1-2 .

8.2 Bézout’s Identity

Bézout’s function (A,B) returns the list{U, V, PGCD(A,B)} (whereU
andV are such that:
A × U + B × V = PGCD(A,B).

8.2.1 Iterative version without lists

Euclid’s Algorithm enables us to find a pairU andV such that:
A × U + B × V = PGCD(A,B)
In effect, if we callA0 andB0 the values theA andB at the start, then we
have:

A = A0 × U + B0 × V avec U = 1 and V = 0

B = A0 × W + B0 × X avec W = 0 and X = 1

You then deriveA, B, U, V, W, X in such a way that the two relations
above are always satisfied.
If:
A = B × Q + R 0 ≤ R < B (R = A mod B and Q = E(A/B))
then:

R = A − B × Q = A0 × (U − W × Q) + B0 × (V − X × Q) =

A0 × S + B0 × T avec S = U − W × Q and T = V − X × Q
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It remains then to repeat the process with:
B in the role ofA (B->A W->U X->V ), and
R in the role ofB (R->B S->W T->X )
whence the algorithm:

Function Bezout (A,B)
local U,V,W, X, S, T, Q, R
1->U 0->V 0->W 1->X

While B 6= 0 do

A mod B->R
FLOOR(A/B)->Q
//R=A-B*Q
U-W*Q ->S
V-X*Q ->T
B->A
W->U
X->V
R->B
S->W
T->X

endwhile
Result: {U, V, A}
endfunction

8.2.2 Iterative version with lists

You can simplify the algorithmic syntax below by using fewervariables:
for this, use the listsLA, LB, LR to store the triplets{U, V, A} , {W,
X, B} and{S, T, R} . This is quite easy, as the calculator knows how
to add lists of the same length (by adding elements with the same index),
as well as how to multiply a list by a number (by multiplying each of the
list’s elements by the number).

Function Bezout (A,B)
local LA LB LR
{1, 0, A}->LA
{0, 1, B}->LB

While LB[3] 6= 0 do
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LA-LB*E(LA[3]/LB[3])->LR
LB->LA
LR->LB
endwhile
Result : LA
endfunction

8.2.3 Recursive version with lists

Bézout’s Function can be recursively defined by:
Bezout(A, 0) = {1, 0, A}
If B 6= 0, is it necessary to defineBezout(A,B) as a function of

Bezout(B,R) when
R = A − B × Q and Q = FLOOR((A/B).
We have:

Bezout(B,R) = LT = {W,X, pgcd(B,R)}
avec W × B + X × R = pgcd(B,R)

with

W × B + X × (A − B × Q) = gcd(B,R) or

X × A + (W − X × Q) × B = gcd(A,B).

whence, ifB 6= 0 and ifBezout(B,R) = LT , we have:

Bezout(A,B) = {LT [2], LT [1] − LT [2] × Q, LT [3]}.

function Bezout (A,B)
local LT Q R

If B 6= 0 then

FLOOR(A/B) ->Q
A-B*Q->R
Bezout(B,R)->LT Result: {LT[2], LT[1]-LT[2]*Q, LT[3]}

else Result: {1, 0, A}
endif
endfunction
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8.2.4 Recursive version without lists

If you use global variables forA, B, D, U, V, T , you can view the
function Bezour as usingA, B to calculate the values forU, V, D
(AU+BV=D) by means of a local variableQ.
One can then write:

program Bezour
local Q

If B 6= 0 then

FLOOR(A/B) ->Q
A-B*Q->T
B->A
T->B
Bezour
U-V*Q->T
V->U
T->V

else
1->U
0->V
A->D

endif

8.2.5 HP40GSsyntax

- Iterative version with lists
Here, you also use the programIN , which enables the user to enter two
numbersA andB:

INPUT A;"A";;;1:
INPUT B;"B";;;1:
ERASE:

Now type theBEZOUTprogram:

RUN IN:
DISP 3;"BEZOUT "{A,B}:
{1,0,A} ->L1:
{0,1,B} ->L2:

WHILE L2(3) 6= 0 REPEAT
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L1-L2*FLOOR(L1(3)/L2(3)) ->L3:
L2 ->L1:
L3 ->L2:
END:
DISP 4;"U V PGCD "L1:
FREEZE:

- Recursive version without lists
Type the programBEZOUR, using the commands (thanks to Bernard!!!):
PUSH(the commandPUSH(A) stores the contents ofA on theCASstack),
and
POP(thePOPcommand retrieves values stored on theCASstack)
PUSHandPOPcan simulate the local variableQWe have replaced in the
translation (cf8.2.4) the variablesRandWby the temporary variableT.
PROGRAM BEZOUR
IF B 6= 0 THEN

PUSH (FLOOR(A/B)):
A MOD B->T:
B->A:
T->B:
RUN BEZOUR:
U-V*POP->T:
V->U:
T->V:
ELSE

1->U:
0->V:
A->D:

END:

PUSH (FLOOR(A/B)) has the effect of putting the different values
of FLOOR(A/B) onto a stack, andPOPrecovers them.
T is an auxiliary variable.
BEZOURtakes, as user input, the values of the global variablesA andB,
and assigns values to the global variablesUandV such that:
A · U + B · V = GCD(A, B). We can then write the final programBEZOURT,
which caters for the input of A and B and the output of{U, V, D} :
PROGRAM BEZOURT

PROMPT A:
PROMPT B:
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RUN BEZOUR:
ERASE:
MSGBOX {U,V,D}:

REMARKS (cf. iterative version for two complex8.1.2):
If you use the symbolic calculation functionsIREMAINDERandIQUOT(XQ(Z1),XQ(Z2))
in place ofMODandFLOOR(A/B) in the preceding programs, thenBEZOUT
andBEZOURcan take Gaussian integers as parameters, on condition that
you replace the names of the variablesA, B, R... with Z1, Z2,
Z3... .
If you use the symbolic calculation functionREMAINDERin place ofMOD
in the preceding programs, thenBEZOUTandBEZOURcan take polynomi-
als as parameters, on condition that you replace the names ofthe variables
A, B, R... with E1, E2, E3... and that you change the test for
completion.

8.3 Decomposition into prime factors

8.3.1 Algorithmic syntax

- Initial algorithm
Let N be a whole number.
For all numbersD from 2 toN , test the divisibility ofN by D.
If D is a divisor ofN , then find the divisors ofN/D, and so on... with
N/D taking the role ofN . The process stops whenN = 1.
As divisors are found, they are stored in the listFACT.

function facprimes(N)
local D FACT
2->D
{} -> FACT

While N 6= 1 do

If N mod D = 0 then
FACT + D -> FACT
N/D -> N

Else
D+1 -> D

endif
endwhile
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Result: FACT
endfunction

- First improvement
One only tests the divisors D that are between 2 andFLOOR(

√
N).

In effect, if N = D1 ∗ D2, then we can say:
Let D1 ≤ FLOOR(

√
N), and letD2 ≤ FLOOR(

√
N); otherwise, we

would have:
D1 ∗ D2 ≥ (FLOOR(

√
N) + 1)2 > N .

function facprimes(N)
local D FACT
2-> D
{} -> FACT

While D*D ≤ N do

If N mod D = 0 then
FACT + D -> FACT
N/D -> N

Else
D+1-> D

endif
endwhile
FACT + N -> FACT
Result: FACT
endfunction

- Second improvement
One looks to see whether 2 is a divisor ofN , then one tests only the odd
divisorsD that are between 3 andFLOOR(

√
N).

In the listFACT, each divisor is written followed by its exponent:
decomp(12)={2,2,3,1}.

function facprimes(N)
local K D FACT
{}->FACT
0 -> K
While N mod 2 = 0 do

K+1 -> K
N/2 -> N

endwhile
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If K 6= 0 then

FACT + {2 K} -> FACT
endif
3-> D

While D*D ≤ N do

0 -> K
While N mod D = 0 do

K+1 -> K
N/D -> N

endwhile

If K 6= 0 then

FACT + (D K( -> FACT
endif
D+2 -> D

endwhile
{\tt If N $\neq 1$ 1 then}
\begin{verbatim} FACT + {N 1} -> FACT
endif
Result: FACT
endfunction

8.3.2 HP40GSsyntax

This is a translation of the last algorithm.
The HP40GScalculator does not understand {}, so to initialiseL1 as an
empty list you must type:
CLRVAR L1
or SUB L1;L1;2;1 .
Here is the programFACTPRIMES:

INPUT N;"N";;;1:
ERASE:
0 ->K:
CLRVAR L1:
WHILE N MOD 2 == 0 REPEAT
1+K -> K:
N/2 -> N:
END:
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IF K 6= 0 THEN

{2,K} ->L1:
END:
3 ->D:

WHILE D*D ≤ N REPEAT

0 -> K:
WHILE N MOD D == 0 REPEAT
K+1 -> K:
N/D -> N:
END:

IF K 6= 0 THEN

CONCAT (L1,{D,K}) -> L1:
END:
2+D -> D:
END:

IF N 6= 1 THEN

CONCAT (L1, {N,1}) -> L1:
END:
DISP 3; "FACT" L1:
FREEZE:

8.4 CalculatingAP mod N

8.4.1 Algorithmic syntax

- First algorithm
This algorithm uses two local variables,POWERandI .
Write an iterative program such that at each stage,POWERrepresentsAI (mod N).

function powermod (A, P, N)
local POWER, I
1 -> POWER
for I = 1 to P do

A*POWER mod N -> POWER
endfor
Result: POWER
endfunction\
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- Second algorithm
This algorithm uses a single local variablePOW, but it variesP such that at
each stage of the iteration we have:
result = POW ∗ AP (bmodN)

function powermod (A, P, N)
local POW
1 -> POW
While P>0 do

A*POW mod N -> POW
P-1 ->P

endwhile
Result: POW
endfunction

- Third algorithm
One can easily modify this program by taking into account that:
A2∗P = (A ∗ A)P.
Therefore when P is even, we have the relation:
PUI ∗ AP = PUI ∗ (A ∗ A)P/2 (mod N)
and when P is odd, we have the relation:
PUI ∗ AP = PUI ∗ A ∗ AP−1 (mod N).
We are left with a very fast algorithm forAP (mod N).

function powermod (A, P, N)
local POW
1->POW
While P<0 do

If P mod 2=0 then
P/2->P
A*A mod N->A

Else
A*POW mod N ->POW
P-1->P

endif
endwhile
Result: POW
endfunction

It goes without saying that ifP is odd, thenP-1 is even.
One can then write:
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function powermod (A, P, N)
local POW
1->POW
While P<0 do

If P mod 2=1 then A*POW mod N->POW
P-1->P

endif
P/2-(>P
A*A mod N->A

endwhile
Result: POW
endfunction

8.4.2 HP40GSsyntax

The calculation ofAp mod N is treated in the program on the probability
method of Mr Rabin. Please refer to theHP40GSversion of that program
(cf 8.6).

8.5 The function "isprime"

8.5.1 Algorithmic syntax

- Initial algorithm
Write a Boolean function ofN that is equal toTRUEwhenN is prime

andFALSEwhen it is non-prime.
For this, find whetherN has a divisor6= 1 and≤ FLOOR(

√
N) (the whole

part of the square root ofN).
The case whereN=1 is treated separately!
Here, the Boolean variablePRIME is used, which isTRUEby default, and
which is set toFALSE if a divisor ofN is found.

Function isprime(N)
local PRIME, I, J

FLOOR((
√
N)− > J

If N = 1 then
FALSE->PRIME

else
TRUE->PRIME
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endif
2->I

While PRIME and I ≤ J do

If N mod I=0 then
FALSE->PRIME

else
I+1->I

endif
endwhile
Result: PRIME
endfunction

- First improvement
Of course, we can test to see ifN is even, then look only for odd divisors of
N.

function isprime(N)
Local PRIME, I, J

FLOOR(
√
N)− > J

If (N = 1) or (N mod 2 = 0) and (N 6=2) then

FALSE->PRIME
else

TRUE->PRIME
endif
3->I

While PRIME and I ≤(J do

If N mod I = 0 then
False -> PRIME}

else
I+2->I

endif
endwhile
Result: PRIME
endfunction

- Second improvement
We can test to see ifN is divisible by 2 or 3, then look only for divisors of
N that are of the form6 × k − 1 oo6 × k + 1.
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function isprime(N)
local PRIME, I, J

FLOOR(
√
N)− > J

If (N = 1) or (N mod 2 = 0) or (N mod 3 = 0) then
FALSE-(PRIME

else
TRUE->PRIME

endif
If N=2 or N=3 then

TRUE->PRIME
endif
5->I

While PRIME and I ≤ J do

If (N mod I = 0) or (N mod (I + 2) = 0) then
FALSE->PRIME

else
I + 6 -> I

endif
endwhile
Result: PRIME
endfunction
end{verbatim}
\subsection{{\tt HP40GS} syntax}
\begin{verbatim}
INPUT N;"N";;;1:
IF N MOD 2== 0 OR N MOD 3==0 OR N==1 THEN
0 ->P:
ELSE
1->P:
END:
IF N==2 OR N==3 THEN
1->P:
END:
5->I:

FLOOR(
√
N)− > J :

WHILE I ≤ J AND P REPEAT
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IF N MOD I==0 OR N MOD (I+2)==0 THEN
0 ->P:
ELSE
I+6 ->I:
END:
END:
ERASE:
DISP 5;P:
FREEZE:

8.6 Mr Rabin’s probability method

If N is prime, then all numbersK less thanN are prime withN , so ac-
cording to Fermat’s Little Theorem we have:
KN−1 = 1 (mod N)
If N is not prime, the integersK such that:
KN−1 = 1 (mod N)
are very few indeed.
A numberN such thatKN−1 = 1 (mod N) for 20 random tries ofK is
called a pseudo-prime number. The probability method of Rabin consists
of choosing a random numberK (1 < K < N ) and calculating:
KN−1 (mod N)
If KN−1 = 1 (mod N)), another random number is tried, whereas if
KN−1 6= 1 (mod N), it is certain thatN is not prime.
If KN−1 = 1 (mod N) is obtained for 20 tries ofK, one can conclude
thatN is prime with a very small probability of error.

Naturally, this method is used to test whether large numbersare pseudo-
primes, but the commandISPRIME? use the Miller-Rabin method. This
method use also Fermat’s Little Theorem and is also a probabilist method.
It conclude thatN is prime with a very small probability of error (less than
(0.25)20 if you make 20 random tries ofK or on the order of10−12).

8.6.1 Algorithmic syntax

Let us suppose that:
Random(N) returns a random whole number between 0 andN − 1.
Calculation of:
KN−1 mod N
is carried out using the very fast algorithm developed earlier (cf page181.
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NOTE the statement:
powermod(K, P, N) , the function that calculatesKP mod N.

Function isprime(N)
local K, I, P
1->I
1->>P
While P = 1 and I < 20 do

Random(N-2)+2->K
powermod(K, N-1, N)->P
I+1->I

endwhile
If P =1 then

Result: TRUE
else

Result: FALSE
endif
endfunction

8.6.2 HP40GSsyntax

PROMPT N:
RANDSEED TIME:
1->I:
1->P:
WHILE I < 20 AND P==1 REPEAT

FLOOR( RANDOM * (N-2))+2->K:
N-1->M:
@ Calcul de K puissance M mod N dans P.
1->P:
WHILE 0 < M REPEAT

IF M MOD 2 == 0 THEN
M / 2 -> M :
(K * K) MOD N ->K :

ELSE
K*P MOD N -> P:
M - 1 -> M:

END:
END:
@ P contient K puissance M mod N et M=N-1.
I+1 ->I:
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END:
ERASE:
IF P==1 THEN

DISP 3;"PREMIER " N:
ELSE

DISP 3;"NON PREMIER " N:
END:
FREEZE:

REMARK: You can also use the computer algebra functionPOWMOD, sub-
stituting:
MODSTO(N):
POWMOD(K,N-1) -> P:
for the statements between the comments ( @ ). This results in:

PROMPT N:
RANDSEED TIME:
1->I:
1->P:
WHILE I < 20 AND P==1 REPEAT

FLOOR( RANDOM * (N-2))+2->K:
MODSTO(N):
POWMOD(K,N-1)-> P:
I+1 ->I:

END:
ERASE:
IF P==1 THEN

DISP 3;"PREMIER " N:
ELSE

DISP 3;"NON PREMIER " N:
END:
FREEZE:
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GNU Free Documentation
License

Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc. 59 TemplePlace, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy

and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of freedom: to assure everyone

the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit fortheir work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the samesense. It
complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether itis published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the

terms of this License. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, andis addressed as "you".
A "Modified Version" of the Document means any work containingthe Document or a portion of it, either copied verbatim, or with modifica-

tions and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the

publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within
that overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connectionwith the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License.

The "Cover Texts" are certain short passages of text that arelisted, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general
public, whose contents can be viewed and edited directly andstraightforwardly with generic text editors or (for imagescomposed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formattersor for automatic translation to
a variety of formats suitable for input to text formatters. Acopy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-conformingsimple HTML designed for human modification. Opaque formats include PostScript,
PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTMLproduced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright

notices, and the license notice saying this License appliesto the Document are reproduced in all copies, and that you addno other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
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3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering morethan 100, and the Document’s license notice requires Cover Texts, you must

enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may addother material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public has access to downloadanonymously at no charge
using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when youbegin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the

Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section ofthe Document). You may use the same title as a previous version if the original publisher
of that version gives permission. * B. List on the Title Page,as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five). * C.
State on the Title page the name of the publisher of the ModifiedVersion, as the publisher. * D. Preserve all the copyright notices of the Document.
* E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. * F. Include, immediately after the copyright
notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum
below. * G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice. *
H. Include an unaltered copy of this License. * I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled "History" in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describingthe Modified Version as
stated in the previous sentence. * J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four years before the Document itself, or ifthe original publisher of
the version it refers to gives permission. * K. In any sectionentitled "Acknowledgements" or "Dedications", preserve the section’s title, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.* L. Preserve all the Invariant
Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. *
M. Delete any section entitled "Endorsements". Such a section may not be included in the Modified Version. * N. Do not retitleany existing section
as "Endorsements" or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections orappendices that qualify as Secondary Sections and contain no material copied
from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titlesto the list of Invariant
Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties–for
example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end ofthe list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by thisLicense give permission to use their names for publicity foror to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified

versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License,and multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it,
in parentheses, the name of the original author or publisherof that section if known, or else a unique number. Make the sameadjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents, forming one section entitled "His-
tory"; likewise combine any sections entitled "Acknowledgements", and any sections entitled "Dedications". You mustdelete all sections entitled
"Endorsements."

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies

of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, anddistribute it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volumeof a storage

or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document. If theCover Text requirement
of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole
aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing

Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant
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Sections in addition to the original versions of these Invariant Sections. You may include a translation of this Licenseprovided that you also include
the original English version of this License. In case of a disagreement between the translation and the original Englishversion of this License, the
original English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to

copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this Licensewill not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new

versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this

License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license

notices just after the title page:
Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of theGNU Free

Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being LIST THEIR
TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is includedin the section entitled
"GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant. If you have no Front-Cover
Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel underyour choice of free

software license, such as the GNU General Public License, topermit their use in free software.
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