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Abstract. These notes present some fundamental results and examples in the theory of al-

gebraic group actions, with special attention to the topics of geometric invariant theory and
of spherical varieties. Their goal is to provide a self-contained introduction to more advanced

lectures.

Introduction

These notes are based on lectures given at the conference “Hamiltonian actions: invariants and
classification” (CIRM Luminy, April 6 - April 10, 2009). They present some fundamental results
and examples in the theory of algebraic group actions, with special attention to the topics of
geometric invariant theory and of spherical varieties.

Geometric invariant theory provides very powerful tools for constructing and studying moduli
spaces in algebraic geometry. On the other hand, spherical varieties form a remarkable class of
algebraic varieties with algebraic group actions. They generalize several important subclasses such
as toric varieties, flag varieties and symmetric varieties, and they satisfy many stability and finite-
ness properties. The classification of spherical varieties by combinatorial invariants is an active
research domain, and one of the main topics of the conference.

The goal of these notes is to provide a self-contained introduction to more advanced lectures
by Paolo Bravi, Ivan Losev and Guido Pezzini on spherical and wonderful varieties, and by Chris
Woodward on geometric invariant theory and its relation to symplectic reduction.

Here is a brief overview of the contents. In the first part, we begin with basic definitions and
properties of algebraic group actions, including the construction of homogeneous spaces under
linear algebraic groups. Next, we introduce and discuss geometric and categorical quotients, in the
setting of reductive group actions on affine algebraic varieties. Then we adapt the construction of
categorical quotients to the projective setting.

The prerequisites for this part are quite modest: we assume familiarity with fundamental notions
of algebraic geometry, but not with algebraic groups. It should also be emphasized that we only
present the most basic notions and results of the theory; for example, we do not present the
Hilbert-Mumford criterion. We refer to the notes of Woodward for this and further developments;
the books by Dolgachev (see [1]) and Mukai (see [8]) may also be recommended, as well as the
classic by Mumford, Kirwan and Fogarty (see [9]).

The second part is devoted to spherical varieties, and follows the same pattern as the first part:
after some background material on representation theory of connected reductive groups (highest
weights) and its geometric counterpart (U -invariants), we obtain fundamental characterizations
and finiteness properties of affine spherical varieties. Then we deduce analogous properties in the
projective setting, and we introduce some of their combinatorial invariants: weight groups, weight
cones and moment polytopes. The latter also play an important role in Hamiltonian group actions.

In this second part, we occasionally make use of some structure results for reductive groups
(the open Bruhat cell, minimal parabolic subgroups), for which we refer to Springer’s book [13].
But apart from that, the prerequisites are still minimal. The books by Grosshans (see [3]) and
Kraft (see [5]) contain a more thorough treatment of U -invariants; the main problems and latest
developments on the classification of spherical varieties are exposed in the notes by Bravi, Losev
and Pezzini.
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1. Geometric invariant theory

1.1. Algebraic group actions: basic definitions and properties

Throughout these notes, we consider algebraic varieties (not necessarily irreducible) over the field
C of complex numbers. These will just be called varieties, and equipped with the Zariski topology
(as opposed to the complex topology) unless otherwise stated. The algebra of regular functions on
a variety X is denoted by C[X]; if X is affine, then C[X] is also called the coordinate ring. The
field of rational functions on an irreducible variety X is denoted by C(X).

Definition 1.1. An algebraic group is a variety G equipped with the structure of a group, such
that the multiplication map

µ : G×G −→ G, (g, h) 7−→ gh

and the inverse map
ι : G −→ G, g 7−→ g−1

are morphisms of varieties.
The neutral component of an algebraic group G is the connected component G0 ⊂ G that

contains the neutral element eG.

Examples 1.2. 1) Any finite group is algebraic.
2) The general linear group GLn, consisting of all invertible n×nmatrices with complex coefficients,
is the open subset of the space Mn of n×n complex matrices (an affine space of dimension n2) where
the determinant ∆ does not vanish. Thus, GLn is an affine variety, with coordinate ring generated
by the matrix coefficients aij , where 1 ≤ i, j ≤ n, and by 1

∆ . Moreover, since the coefficients of the
product AB of two matrices (resp. of the inverse of A) are polynomial functions of the coefficients
of A, B (resp. of the coefficients of A and 1

∆ ), we see that GLn is an affine algebraic group.
3) More generally, any closed subgroup of GLn (i.e., defined by polynomial equations in the matrix
coefficients) is an affine algebraic group; for example, the special linear group SLn (defined by
∆ = 1), and the other classical groups. Conversely, all affine algebraic groups are linear, see
Corollary 1.13 below.
3) The multiplicative group C∗ is an affine algebraic group, as well as the additive group C. In fact,
C∗ ∼= GL1 whereas C is isomorphic to the closed subgroup of GL2 consisting of matrices of the

form
(

1 t
0 1

)
.

4) Let Tn ⊂ GLn denote the subgroup of diagonal matrices. This is an affine algebraic group,
isomorphic to (C∗)n and called an n-dimensional torus.

Also, let Un ⊂ GLn denote the subgroup of upper triangular matrices with all diagonal coef-
ficients equal to 1. This is a closed subgroup of GLn, isomorphic as a variety to the affine space
Cn(n−1)/2. Moreover, Un is a nilpotent group, its ascending central series consists of the closed
subgroups Zk(Un) defined by the vanishing of the matrix coefficients aij , where 1 ≤ j − i ≤ n− k,
and each quotient Zk(Un)/Zk−1(Un) is isomorphic to Ck.

The closed subgroups of Un are called unipotent. Clearly, any unipotent group is nilpotent;
moreover, each successive quotient of its ascending central series is a closed subgroup of some Ck,
and hence is isomorphic to some C`.
5) Every smooth curve of degree 3 in the projective plane P2 has the structure of an algebraic
group (see e.g. [4, Proposition IV.4.8]). These elliptic curves yield examples of projective, and
hence non-affine, algebraic groups.

We now gather some basic properties of algebraic groups:

Lemma 1.3. Any algebraic group G is a smooth variety, and its (connected or irreducible) com-
ponents are the cosets gG0, where g ∈ G. Moreover, G0 is a closed normal subgroup of G, and the
quotient group G/G0 is finite.

Proof. The variety G is smooth at some point g, and hence at any point gh since the multiplication
map is a morphism. Thus, G is smooth everywhere.
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Since G is a disjoint union of cosets gG0, and each of them is connected, they form the connected
components of G; in particular, there are finitely many cosets. Also, the inverse ι(G0) is a connected
component (since i is an isomorphism of varieties), and hence equals G0. Thus, for any g ∈ G0,
the coset gG0 contains eG; hence gG0 = G0. Therefore, G0 is a closed subgroup of G. Likewise,
gG0g−1 = G0 for all g ∈ G. �

Definition 1.4. A G-variety is a variety X equipped with an action of the algebraic group G,

α : G×X −→ X, (g, x) 7−→ g · x
which is also a morphism of varieties. We then say that α is an algebraic G-action.

Any algebraic action α : G×X → X yields an action of G on the coordinate ring C[X], via

(g · f)(x) := f(g−1 · x)

for all g ∈ G, f ∈ C[X] and x ∈ X. This action is clearly linear.

Lemma 1.5. With the preceding notation, the complex vector space C[X] is a union of finite-
dimensional G-stable subspaces on which G acts algebraically.

Proof. The action morphism α yields an algebra homomorphism

α# : C[X] −→ C[G×X], f 7−→
(
(g, x) 7→ f(g · x)

)
,

the associated coaction. Since C[G×X] = C[G]⊗ C[X], we may write

f(g · x) =
n∑
i=1

ϕi(g)ψi(x),

where ϕ1, . . . , ϕn ∈ C[G] and ψ1, . . . , ψn ∈ C[X]. Then

g · f =
n∑
i=1

ϕi(g−1)ψi

and hence the translates g · f span a finite-dimensional subspace V ⊂ C[G]. Clearly, V is G-
stable. Moreover, we have h · (g · f) =

∑n
i=1 ϕi(g

−1h−1)ψi for any g, h ∈ G, and the functions
h 7→ ϕi(g−1h−1) are all regular. Thus, the G-action on V is algebraic. �

This result motivates the following:

Definition 1.6. A rational G-module is a complex vector space V (possibly of infinite dimension)
equipped with a linear action of G, such that every v ∈ V is contained in a finite-dimensional
G-stable subspace on which G acts algebraically.

Examples of rational G-modules include coordinate rings of G-varieties, by Lemma 1.5. Also,
note that the finite-dimensional G-modules are in one-to-one correspondence with the homomor-
phisms of algebraic groups f : G → GLn for some n, i.e., with the finite-dimensional algebraic
representations of G.

Some linear actions of an algebraic group G do not yield rational G-modules; for example, the
G-action on C(G) via left multiplication, if G is irreducible and non-trivial. However, we shall only
encounter rational G-modules in these notes, and just call them G-modules for simplicity. Likewise,
the actions of algebraic groups under consideration will be assumed to be algebraic as well.

Example 1.7. Let G = C∗; then

C[G] = C[t, t−1] =
∞⊕

n=−∞
C tn.

Given a C∗-variety X, any f ∈ C[X] satisfies

(t · f)(x) = f(t−1 · x) =
∞∑

n=−∞
tn fn(x),

where the fn ∈ C[X] are uniquely determined by f . In particular, f =
∑
n fn. Since tt′ ·f = t·(t′ ·f)

for all t, t′ ∈ C∗, we obtain
t · fn(x) = tnfn(x)
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for all t ∈ C∗ and x ∈ X. This yields a decomposition

C[X] =
∞⊕

n=−∞
C[X]n,

where each t ∈ C∗ acts on C[X]n via multiplication by tn. It follows that the product in C[X]
satisfies

C[X]mC[X]n ⊂ C[X]m+n

for all m,n, i.e., the preceding decomposition is a Z-grading of the algebra C[X].
Conversely, any finitely generated Z-graded algebra without non-zero nilpotent elements yields

an affine C∗-variety, by reversing the preceding construction. Also, the C∗-modules correspond to
Z-graded vector spaces.

More generally, the coordinate ring of the n-dimensional torus Tn is the algebra of Laurent
polynomials,

C[t1, t−1
1 , . . . , tn, t

−1
n ] =

⊕
(a1,...,an)∈Zn

Cta1
1 · · · tan

n ,

and the actions of Tn on affine varieties (resp. the Tn-modules) correspond to Zn-graded affine
algebras (resp. vector spaces).

Definition 1.8. Given two G-varieties X, Y , a morphism of varieties f : X → Y is equivariant if
it satisfies f(g · x) = g · f(x) for all g ∈ G and x ∈ X. We then say that f is a G-morphism.

Proposition 1.9. Let G be an affine algebraic group, and X an affine G-variety. Then X is
equivariantly isomorphic to a closed G-subvariety of a finite-dimensional G-module.

Proof. We may choose finitely many generators f1, . . . , fn of the algebra C[X]. By Lemma 1.5, the
translates g·fi, where g ∈ G and i = 1, . . . , n, are all contained in a finite-dimensional G-submodule
V ⊂ C[X]. Then V also generates the algebra C[X], and hence the associated evaluation map

ι : X −→ V ∗, x 7−→
(
v 7→ v(x)

)
is a closed immersion; ι is equivariant by construction. �

Definition 1.10. Given a G-variety X and a point x ∈ X, the orbit G · x ⊂ X is the set of all
g · x, where g ∈ G. The isotropy group (also called the stabilizer) Gx ⊂ G is the set of those g ∈ G
such that g · x = x; it is a closed subgroup of G.

Here are some fundamental properties of orbits and their closures:

Proposition 1.11. With the preceding notation, the orbit G·x is a locally closed, smooth subvariety
of X, and every component of G ·x has dimension dim(G)−dim(Gx). Moreover, the closure G · x
is the union of G · x and of orbits of strictly smaller dimension. Any orbit of minimal dimension
is closed; in particular, G · x contains a closed orbit.

Proof. By Lemma 1.3, G · x consists of finitely many orbits of G0; moreover, (Gx)0 ⊂ (G0)x ⊂ Gx
and these closed subgroups have all the same dimension. As a consequence, we may assume G to
be connected.

Consider the orbit map
αx : G −→ X, g 7−→ g · x.

Clearly, αx is a morphism with fiber Gg·x = gGxg
−1 at any g ∈ G, and with image G · x. Thus,

G · x is a constructible subset of X, and hence contains a dense open subset of G · x. Since G
acts transitively on G · x, this orbit is open in its closure, and is smooth. The formula for its
dimension follows from a general result on the dimension of fibers of morphisms (see e.g. [14,
Corollary 15.5.5]), and the remaining assertions are easily checked. �

Examples 1.12. 1) Consider the action of the multiplicative group C∗ on the affine n-space Cn
by scalar multiplication:

t · (x1, . . . , xn) := (tx1, . . . , txn).
Then the origin 0 is the unique closed orbit, and the orbit closures are exactly the lines through 0.
2) Let C∗ act on C2 via

t · (x, y) := (tx, t−1y).
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Then the closed orbits are the origin and the “hyperbolae” (xy = c), where c 6= 0. The other orbit
closures are the coordinate axes.
3) The natural action of SL2 on C2 has 2 orbits: the origin and its complement. The isotropy group
of the first basis vector e1 is U2

∼= C, and the open orbit SL2 ·e1 = C2 \ {0} is a classical example
of a non-affine variety.
4) Consider the action of the product GLm×GLn on the space Mm,n of m× n matrices, via

(A,B) · C := BCA−1.

Then the orbits are exactly the matrices of a prescribed rank r, where 0 ≤ r ≤ min(m,n). In
particular, there is an open orbit, consisting of matrices of maximal rank, and the origin is the
unique closed orbit.

Applying Proposition 1.11 to algebraic group homomorphisms yields the following:

Corollary 1.13. (i) Let f : G → H be a homomorphism of algebraic groups. Then the image of
f is a closed subgroup. If the kernel of f is trivial, then f is a closed immersion.
(ii) Any affine algebraic group is linear.

Proof. (i) Consider the action of G on H via g · h := f(g)h. Then there exists a closed orbit by
Proposition 1.11. But the orbits are all isomorphic via the action of H by right multiplication;
hence f(G) = G · eH is closed.

If f has a trivial kernel, then it yields a bijective morphism ϕ : G → f(G). Since f(G) is a
smooth variety, it follows that ϕ is an isomorphism by a corollary of Zariski’s Main Theorem (see
e.g. [14, Corollary 17.4.7]).

(ii) Let G be an affine algebraic group, acting on itself by left multiplication. For the correspond-
ing action on the algebra C[G], we may find a finite dimensional G-submodule V which generates
that algebra. The induced homomorphism G → GL(V ) is injective, and thus a closed immersion
by (i). �

Another useful observation on orbits is the following semi-continuity result:

Lemma 1.14. Let G be an algebraic group and X a G-variety. Then the set

{x ∈ X | dim(G · x) ≤ n}
is closed in X for any integer n. Equivalently, the sets

{x ∈ X | dim(Gx) ≥ n}
are all closed in X.

Proof. Consider the morphism

β : G×X −→ X ×X, (g, x) 7−→ (x, g · x).

Then the fiber of β at any point (g, x) is (gGx, x); thus, all irreducible components of this fiber
have the same dimension, dim(Gx). Now the second assertion follows from semi-continuity of the
dimension of fibers of a morphism (see e.g. [14, Theorem 15.5.7]). �

Next, we obtain an important result due to Chevalley:

Theorem 1.15. Let G be a linear algebraic group, and H ⊂ G a closed subgroup. Then there
exists a finite-dimensional G-module V and a line ` ⊂ V such that the stabilizer G` is exactly H.

Proof. Consider the action of G on itself by left multiplication. Then the stabilizer of the closed
subvariety H is H itself. Thus, H is also the stabilizer of the ideal I(H) ⊂ C[G]. We may choose
a finite-dimensional vector space W ⊂ I(H) which generates that ideal; since I(H) is an H-
module, we may further assume that W is H-stable. Then W is contained in a finite-dimensional
G-submodule V ⊂ C[G]. Clearly, H is the stabilizer of W ; thus, H is also the stabilizer of the line
∧nW of the G-module ∧nV , where n := dim(W ). �

The preceding result may be rephrased in terms of the natural action of G on the projective
space P(V ) (the space of lines in V ): any closed subgroup of G is the stabilizer of a point in the
projectivization of a G-module. In turn, this is the starting point for the construction of quotients
of linear algebraic groups by closed subgroups:
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Theorem 1.16. Let G be a linear algebraic group, and H a closed subgroup. Then the coset space
G/H has a unique structure of G-variety that satisfies the following properties:
(i) The quotient map π : G→ G/H, g 7→ gH is a morphism.
(ii) A subset U ⊂ G/H is open if and only if π−1(U) is open.
(iii) For any open subset U ⊂ G/H, the comorphism π# yields an isomorphism C[U ] ∼= C[π−1(U)]H

(the algebra of H-invariant regular functions on π−1(U)).
Moreover, G/H is smooth and quasi-projective.

Proof. We use ideas and results from the theory of schemes (see e.g. [4, Chapter III], especially
III.9 and III.10) which are quite relevant in this setting. By Theorem 1.15, we may choose a G-
module V and a point x ∈ P(V ) such that H = Gx. Let X := G · x, and p : G → X, g 7→ g · x
the orbit map. Then p is a surjective G-morphism, and its fibers are the cosets gH, where g ∈ G.
By generic smoothness and equivariance, π is a smooth morphism. Hence π is open: it satisfies (i)
and (ii).

We now show that p satisfies (iii); equivalently, the natural map OX → (p∗OG)H is an isomor-
phism. Consider the diagram

G×H µ−−−−→ G

p1

y p

y
G

p−−−−→ X
where µ denotes the multiplication map (g, h) 7→ gh, and p1 stands for the first projection. Clearly,
this square is commutative; this yields a morphism

f : G×H −→ G×X G

(where G×XG denotes the fibred product), which is easily seen to be bijective. Moreover, the first
projection G×X G→ G is smooth, since it is obtained by base change from the smooth morphism
p. As G is smooth, G ×X G is smooth as well, and hence f is an isomorphism (by [14, Corollary
17.4.7] again). Since p is flat, this yields an isomorphism of sheaves

p∗(p∗OG) ∼= p1∗(µ∗OG).

But p1∗(µ∗OG) = p1∗OG×H = OG ⊗ C[H]. Taking H-invariants yields the isomorphism

p∗(p∗OG)H ∼= OG = p∗OX .

Since p is faithfully flat, this yields in turn the desired isomorphism (p∗OG)H ∼= OX . �

Definition 1.17. A variety X is homogeneous if it is equipped with a transitive action of an
algebraic group G. A homogeneous space is a pair (X,x), where X is a homogeneous variety, and
x a point of X called the base point.

By Theorem 1.16, the homogeneous spaces (X,x) under a linear algebraic group G are exactly
the quotient spaces G/H, where H := Gx, with base point the coset H.

1.2. Quotients of affine varieties by reductive group actions

Definition 1.18. Given an algebraic group G and a G-variety X, a geometric quotient of X by
G consists of a morphism π : X → Y satisfying the following properties:
(i) π is surjective, and its fibers are exactly the G-orbits in X.
(ii) A subset U ⊂ Y is open if and only if π−1(U) is open.
(iii) For any open subset U ⊂ Y , the comorphism π# yields an isomorphism C[U ] ∼= C[π−1(U)]H .

Under these assumptions, the topological space Y may be identified with the orbit space X/G
equipped with the quotient topology, in view of (i) and (ii). Moreover, the structure of variety on
Y is uniquely defined by (iii) (which may be rephrased as the equality of sheaves OY = (π∗OX)G).
In particular, if X is irreducible, then so is Y , and we have the equality of function fields C(Y ) =
C(X)G.
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For example, the geometric quotient of a linear algebraic group by a closed subgroup (acting
via right multiplication) exists by Theorem 1.16. In general, a geometric quotient need not exist,
as seen from the following :

Examples 1.19. 1) As in Example 1.12.1, consider the action of G = C∗ on X = Cn by scalar
multiplication. Then there is no geometric quotient, since 0 lies in every orbit closure. But the
open subset Cn \ {0} admits a geometric quotient, the natural map to the projective space Pn−1.
2) Let G = C∗ act on C2 via t · (x, y) := (tx, t−1y), as in Example 1.12.2. Then X := C2 \ {0}
is a G-stable open subset in which all orbits are closed, but which admits no geometric quotient.
Indeed, C(X)G = C(xy); thus, the G-orbits (x = 0) and (y = 0) are not separated by G-invariant
rational functions.
3) Let G = C act on X = C3, viewed as the space of polynomials of degree at most 2 in a variable
x, by translation on x:

t · (ax2 + 2bx+ c) := a(x+ t)2 + 2b(x+ t) + c = ax2 + 2(ax+ b)t+ at2 + 2bt+ c.

Then all orbits are closed, and contained in the fibers of the map

π : C3 −→ C2, (a, b, c) 7−→ (a, ac− b2).

Specifically, the fiber over (x, y) consists of one orbit if x 6= 0, and of two orbits if x = 0 but y 6= 0;
all these orbits have trivial isotropy group. Moreover, the fiber over (0, 0) is the line ` defined by
b = c = 0, and consisting of the G-fixed points. It follows that C(X)G = C(a, ac− b2) and that X
admits no geometric quotient, nor does the G-stable open subset X \ ` consisting of orbits with
trivial isotropy group.

By a theorem of Rosenlicht (see e.g. [11, Section 2.3]), any irreducible G-variety X contains a
non-empty open G-stable subset X0 which admits a geometric quotient Y0 = X0/G. Then

dim(Y0) = dim(X)−max
x∈X

dim(G · x) = dim(X)− dim(G) + min
x∈X

dim(Gx)

in view of Lemma 1.14 and of Proposition 1.11.
However, as shown by the preceding example, there is no obvious choice for X0. Also, one may

look for a quotient of the whole X in a weaker sense; for example, parametrizing the closed orbits.
Such a space of closed orbits exists in Examples 1 (where it is just a point) and 2 (the affine line
with coordinate xy), but not in Example 3.

More generally, we shall show that the space of closed orbits exists for algebraic groups that are
reductive in the following sense:

Definition 1.20. A linear algebraic group G is reductive if it does not contain any closed normal
unipotent subgroup.

We shall need a representation-theoretic characterization of reductive groups, based on the
following:

Definition 1.21. Let G be an algebraic group, and V a (rational) G-module. Then V is simple
(also called irreducible) if it has no proper non-zero submodule. V is semi-simple (also called
completely reducible) if it satisfies one of the following equivalent conditions:
(i) V is the sum of its simple submodules.
(ii) V is isomorphic to a direct sum of simple G-modules.
(iii) Any submodule W ⊂ V admits a G-stable complement, i.e., a submodule W ′ such that
V = W ⊕W ′.

Example 1.22. Let G be a unipotent group. Then every simple G-module is trivial, i.e., is iso-
morphic to C where G acts trivially. Otherwise, replacing the (nilpotent) group G with a quotient,
we may assume that the centre Z(G) acts non-trivially. By Schur’s lemma, each g ∈ Z(G) acts via
multiplication by some scalar χ(g) ∈ C∗. The assignement g 7→ χ(g) yields a group homomorphism
Z(G) → C∗, which must be constant since Z(G) ∼= Cn as varieties. Thus, Z(G) acts trivially, a
contradiction.

It follows that any non-zero module under a unipotent group contains non-zero fixed points. This
is a version of the Lie-Kolchin theorem, see e.g. [13, Theorem 6.3.1].
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Theorem 1.23. The following assertions are equivalent for a linear algebraic group G:
(i) G is reductive.
(ii) G contains no closed normal subgroup isomorphic to the additive group Cn for some n ≥ 1.
(iii) G (viewed as a Lie group) has a compact subgroup K which is dense for the Zariski topology.
(iv) Every finite-dimensional G-module is semi-simple.
(v) Every G-module is semi-simple.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii) is a deep result whose proof lies beyond the scope of these notes; see for example

[12, Chapter 5] and its references.
(iii) ⇒ (iv): Let V be a finite-dimensional G-module, and W ⊂ V a submodule. Since K is

compact, W admits a K-stable complement W ′. But since K is Zariski dense in G, it follows that
W ′ is G-stable.

(iv) ⇒ (v) easily follows from the fact that each G-module is an increasing union of finite
dimensional G-submodules, and (v) ⇒ (iv) is obvious.

(iv) ⇒ (i): Let H be a closed normal unipotent subgroup of G, and consider a non-zero finite-
dimensional G-module V . Then V H is non-zero as well, by the preceding example. But V H is
stable by G, since H is a normal subgroup; thus, V H admits a G-stable complement W . Clearly,
WH = 0; therefore, W = 0 by the preceding argument. In other words, H fixes V pointwise. Since
G ↪→ GL(V ) for some G-module V , it follows that H is trivial. �

We now come to the main result of this section:

Theorem 1.24. Let G be a reductive algebraic group, and X an affine G-variety. Then:
(i) The subalgebra C[X]G ⊂ C[X] (consisting of regular G-invariant functions) is finitely generated.
(ii) Let f1, . . . , fn be generators of the algebra C[X]G. Then the image of the morphism

X −→ Cn, x 7−→
(
f1(x), . . . , fn(x)

)
is closed and independent of the choice of f1, . . . , fn.
(iii) Denote by

π = πX : X −→ X//G

the surjective morphism defined by (ii). Then every G-invariant morphism f : X → Y , where Y is
an affine variety, factors through a unique morphism ϕ : X//G→ Y .
(iv) For any closed G-stable subset Y ⊂ X, the induced morphism Y//G → X//G is a closed
immersion. In other words, the restriction of πX to Y may be identified with πY . Moreover, given
another closed G-stable subset Y ′ ⊂ X, we have πX(Y ∩ Y ′) = πX(Y ) ∩ πX(Y ′).
(v) Each fiber of πX contains a unique closed G-orbit.
(vi) If X is irreducible, then so is X//G. If in addition X is normal, then so is X//G.

Proof. The main ingredient is the Reynolds operator, defined as follows. For any G-module V ,
the invariant subspace V G admits a unique G-stable complement VG, the sum of all non-trivial
G-submodules of V . The Reynolds operator

RV : V −→ V G

is the projection associated with the decomposition V = V G⊕VG. If f : V →W is a morphism of
G-modules, and fG : V G →WG denotes the induced linear map, then clearly RW ◦ f = fG ◦RV .
In particular, if f is surjective, then so is fG.

When V = C[X], we set
RX := RC[X] : C[X] −→ C[X]G.

Then RX is C[X]G-linear, i.e., we have for any a ∈ C[X]G and b ∈ C[X]:

RX(ab) = aRX(b),

as follows by considering the morphism of G-modules C[X]→ C[X], b 7→ ab.
We now claim that the ring C[X]G is Noetherian. To see this, consider an ideal I of C[X]G, and

the associated ideal J := IC[X] of C[X]. Then J is G-stable, and JG = RX(J) = IRX
(
C[X]

)
= I.

Since C[X] is Noetherian, this implies readily our claim.
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In turn, the claim implies assertion (i) in the case that X is a finite-dimensional G-module, say
V . Indeed, the C∗-action on V by scalar multiplication yields a positive grading

C[V ] =
∞⊕
n=0

C[V ]n

where C[V ]n denotes the space of homogeneous polynomial functions of degree n. This grading is
clearly G-stable, and hence restricts to a positive grading of the subalgebra C[V ]G. Since the latter
is Noetherian, it is finitely generated in view of the graded Nakayama lemma.

In the general case, we may equivariantly embed X into a G-module V ; then the surjective G-
homomorphism C[V ]→ C[X] induces a surjective homomorphism C[V ]G → C[X]G. Thus, C[X]G

is finitely generated; this completes the proof of (i).
For (ii), let I ⊂ C[X]G be a maximal ideal, and J = IC[X] as above. Recall that J ∩C[X]G = I;

in particular, J 6= C[X]. Thus, J is contained in some maximal ideal M , and I = M ∩C[X]G. This
algebraic statement translates into the surjectivity of the morphism of affine varieties associated
with the inclusion C[X]G ⊂ C[X].

(iii) The morphism p yields a homomorphism p# : C[Y ]→ C[X] with image contained in C[X]G;
this translates into our assertion.

(iv) As above, the surjective G-homomorphism C[X] → C[Y ] induces a surjective homomor-
phism C[X]G → C[Y ]G; this implies the first assertion. For the second assertion, denote by J (resp.
J ′) the ideal of Y (resp. Y ′) in C[X]. Then the ideal of Y ∩Y ′ is I+I ′, and the ideal of Y//G (resp.
Y ′//G, Y//G∩Y ′//G) in X//G is IG (resp. I ′G, IG+ I ′G). But IG+ I ′G = RX(I+ I ′) = (I+ I ′)G,
i.e., Y//G ∩ Y ′//G = (Y ∩ Y ′)//G.

(v) By (iv), π maps any two distinct closed orbits Y, Y ′ ⊂ X to distinct points of X//G.
(vi) The first assertion is obvious. For the second assertion, it suffices to show that C[X]G is

integrally closed in C(X)G, since the latter contains the fraction field of C[X]G. But this follows
readily from the assumption that C[X] is integrally closed in C(X). �

Note that the above map π is uniquely determined by the universal property (iii); it is called a
categorical quotient (for affine varieties). Also, X//G may be viewed as the space of closed orbits
by (v). We now define an open subset of X that turns out to admit a geometric quotient:

Definition 1.25. Let G be a reductive group, and X an affine G-variety. A point x ∈ X is stable
if the orbit G · x is closed in X and the isotropy group Gx is finite. The (possibly empty) set of
stable points is denoted by Xs.

Proposition 1.26. With the preceding notation and assumptions, π(Xs) is open in X//G, we
have Xs = π−1π(Xs) (in particular, Xs is an open G-stable subset of X), and the restriction
πs : Xs → π(Xs) is a geometric quotient.

Proof. Let x ∈ Xs and consider the subset Y ⊂ X consisting of those points y such that Gy is
infinite; equivalently, dim(Gy) > 0. Then Y is closed, G-stable and disjoint from G ·x. Thus, there
exists f ∈ C[X]G such that f(x) 6= 0 and f |Y is identically 0. Then the open subset

Xf := {y ∈ X | f(y) 6= 0} ⊂ X

satisfies Xf = π−1π(Xf ); in particular, Xf is G-stable. Moreover, x ∈ Xf , and Gy is finite for any
y ∈ Xf . It follows that G · y is closed in X for any such y (otherwise, let z lie in the unique closed
G-orbit in G · y. Then f(z) = f(y) by invariance, and hence z ∈ Xf . But dim(Gz) = dim(G) −
dim(G · z) > dim(G)− dim(G · y) = 0, a contradiction). Hence Xf ⊂ Xs; since π(Xf ) = (X//G)f
is open in X//G, it follows that π(Xs) is open as well, and satisfies π−1π(Xs) = Xs.

If y ∈ π−1π(x), then G · y ⊃ G · x and hence y ∈ G · x by the above argument. In other words,
the fibers of πs are exactly the G-orbits. This shows property (i) of Definition 1.18. For (ii), it
suffices to check that π(U) is open in X//G for any open subset U ⊂ Xs. Replacing U with G ·U ,
we may assume that U is G-stable. Then Y := X \ G · U is a closed G-stable subset of X, and
hence π(F ) is closed in X//G; this implies our assertion. Finally, (iii) holds for those open subsets
U ⊂ π(Xs) of the form (X//G)f ; since these form a basis of the topology of π(Xs), it follows that
(iii) holds for an arbitrary U . �
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Examples 1.27. 1) For the action of C∗ on Cn by multiplication, the quotient variety is just a
point; there are no stable points.
2) For the action of C∗ on C2 as in Example 1.12.2, the quotient morphism is the map C2 → C,
(x, y) 7→ xy. The set of stable points is the complement of the union of coordinate lines.
3) Let G = SLn act on the space Qn of quadratic forms in n variables, by linear change of variables.
Then Qn is a G-module, and one checks that the algebra C[Qn]G is generated by the discriminant
∆. In other words, the quotient morphism is just ∆ : Qn → C. The fiber at any c ∈ C∗ is a closed
G-orbit, with stabilizer isomorphic to the special orthogonal group SOn. The fiber at 0 consists
of n orbits: the quadratic forms of ranks n − 1, n − 2, . . . , 0. There are no stable points, but the
restriction of π to the open subset (∆ 6= 0), consisting of non-degenerate forms, is a geometric
quotient.
4) More generally, let G = SLn act on the space V = Vd,n of homogeneous polynomials of degree d
in n variables by linear change of variables. If d = 1 then the quotient is a point, and if d = 2 then
V = Qn, so that we may assume d ≥ 3. Then the discriminant ∆ is a homogeneous invariant, but
does not generate the algebra C[V ]G unless n = 2 (in fact, the structure of this algebra is unknown
apart from some small values of n and d). By a theorem of Jordan and Lie (see [10, Theorem 2.1]
for a modern proof), the stabilizer Gf is finite for any f ∈ V such that ∆(f) 6= 0. As in the proof
of Proposition 1.26, it follows that the open subset (∆ 6= 0) consists of stable points.
5) Let G = GLn act on the space Mn of n× n matrices by conjugation. Then one checks that the
quotient morphism is the map π : Mn → Cn that associates with any matrix A the coefficients
of its characteristic polynomial, det(tIn − A). Moreover, the closed orbits are exactly those of
diagonalizable matrices. Also, the subgroup C∗In of scalar matrices acts trivially on Mn, and
hence there are no stable points. If one replaces G with its quotient PGLn = GLn /C∗In, then
every non-trivial g ∈ G acts non-trivially, but the stabilizers are again infinite: there are still no
stable points.

1.3. Quotients of projective varieties by reductive group actions

Consider a linear algebraic group G and a finite-dimensional G-module V . Recall the positive
grading

C[V ] =
∞⊕
n=0

C[V ]n

by G-submodules, used in the proof of Theorem 1.24. Any non-zero f ∈ C[V ]n defines an affine
open subset P(V )f of P(V ) (the projectivization of V ), where f 6= 0. If f is G-invariant, then
P(V )f is G-stable for the induced action of G on P(V ). If in addition G is reductive, then we have
a categorical quotient

πf : P(V )f −→ P(V )f
by Theorem 1.24. The algebra C[P(V )f ] is the subalgebra of the graded algebra C[V ][ 1

f ] consisting
of homogeneous elements of degree 0. In other words,

C[P(V )f ] =
∞⋃
m=0

C[P(V )]mn
fm

and therefore

C[P(V )f ]G =
∞⋃
m=0

C[P(V )]Gmn
fm

.

Recall that P(V ) is obtained from its open subsets P(V )f by glueing them according to the iden-
tifications P(V )ff ′ = P(V )f ∩ P(V )f ′ . Likewise, the quotients πf may be glued together into a
morphism

π : P(V )ss −→ P(V )ss//G,

where P(V )ss is a G-stable subset of P(V ): the union of the subsets P(V )f over all f ∈ C[V ]Gn ,
n ≥ 1.

This construction motivates the following:

10
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Definition 1.28. A non-zero v ∈ V , or its image [v] ∈ P(V ), is semi-stable if f(v) 6= 0 for some
f ∈ C[V ]G, homogeneous of positive degree.

We denote by V ss the set of all semi-stable points; this is the preimage of P(V )ss in V \ {0}.
The nilcone N (V ) is the complement of V ss in V .

Observe that N (V ) is the set of common zeroes of all homogeneous invariants of positive degree,
i.e., the fiber at 0 of the quotient map πV : V → V//G. By Theorem 1.24, it follows that N (V )
consists of those v ∈ V such that the orbit closure G · v contains 0. In other words, v is semi-stable
if and only if 0 /∈ G · v.

Proposition 1.29. With the preceding notation, P(V )ss//G is a normal, projective variety. More-
over, for any open affine subset U ⊂ P(V )ss//G, the preimage π−1(U) is an open affine G-stable
subset of P(V ), and π induces an isomorphism C[U ] ∼= C[π−1(U)]G.

Proof. By construction, P(V )ss//G is the Proj of the positively graded algebra C[V ]G, and the
latter is integrally closed in is fraction field by Theorem 1.24 (vi); this yields the first assertion.

For the second assertion, note that there exists a multiplicative subset S ⊂ C[V ]G consisting
of homogeneous elements, such that C[U ] = C[V ]G[ 1

S ]0 (the subalgebra of homogeneous elements
of degree 0 in the localization C[V ]G[ 1

S ]). It follows that π−1(U) is affine with coordinate ring
C[V ][ 1

S ]0; thus, C[π−1(U)]G = C[U ]. �

The second assertion of Proposition 1.29 may be rephrased as follows: π is an affine morphism
and yields an isomorphism

OP(V )ss//G
∼=
(
π∗OP(V )ss

)G
.

Such a morphism is called a good quotient.
Next, we adapt the notion of stable points to this projective setting:

Definition 1.30. A point x ∈ P(V ) is stable if x is semi-stable, the orbit G ·x is closed in P(V )ss,
and the isotropy group Gx is finite. We denote by P(V )s the set of stable points.

Proposition 1.31. With the preceding notation, we have P(V )s = P(V s), where V s ⊂ V de-
notes the subset of stable points. Moreover, π

(
P(V )s

)
is open in P(V )ss//G, we have P(V )s =

π−1π
(
P(V )s

)
, and the restriction πs : P(V )s → π

(
P(V )s

)
is a geometric quotient.

Proof. Let v ∈ V s; then v /∈ N (V ), and hence we may choose a homogeneous f ∈ C[V ]G such
that f(v) 6= 0. The hypersurface Y := {w ∈ V | f(w) = f(v)} is G-stable, and contained in V s by
Proposition 1.26. Moreover, the natural map V \ {0} restricts to a finite surjective G-morphism
Y → P(V )f (of degree equal to the degree of f). Since P(V )f = π−1π

(
P(V )f

)
, it follows that

P(V )f ⊂ P(V s). In particular, [v] ∈ P(V s).
Conversely, given [v] ∈ P(V s), one checks that v ∈ V s by reversing the preceding arguments.

This shows the equalities P(V )s = P(V s) and P(V )s = π−1π
(
P(V )s

)
. The assertion on πs is checked

as in the proof of Proposition 1.26. �

Examples 1.32. 1) For the action of C∗ on Cn by multiplication, there are no semi-stable points.
2) For the action of C∗ on C2 as in Example 1.12.2, every semi-stable point is stable, and the
projective quotient variety is just a point.
3) Let G = SLn act on V = Qn as in Example 1.27.3. Then P(V )ss = P(V )∆ and P(V )s is empty;
the projective quotient variety is again a point.
4) For the action of G = SLn on the space V = Vd,n of homogeneous polynomials of degree d
in n variables as in Example 1.27.4, the points of P(V ) may be viewed as the hypersurfaces of
degree d in Pn−1, and the G-orbits are the isomorphism classes of such hypersurfaces. We saw
that every smooth hypersurface is stable, if d ≥ 3. It follows that the quotient variety is a normal
compactification of the moduli space of smooth hypersurfaces.
5) Consider again the action of GLn on the space Mn of n × n matrices by conjugation. Then
the semi-stable points are exactly the lines of non-nilpotent matrices, and there are no stable
points. Since the algebra C[Mn]G is generated by the coefficients of the characteristic polynomial,
and hence by homogeneous invariants of degrees 1, 2, . . . , n, the quotient variety is a weighted
projective space with weights 1, 2, . . . , n. In particular, that variety is singular if n ≥ 3.

11
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The preceding constructions and results are readily generalized to any closed G-subvariety
X ⊂ P(V ), where V is a finite-dimensional G-module. We now sketch how to adapt them to the
setting of arbitrary projective G-varieties.

By assumption, any such variety X admits a line bundle L which is ample, i.e., there exist a
closed immersion

ι : X → P(V ),
where V is a finite-dimensional vector space, and a positive integer m such that Lm ∼= ι∗OP(V )(1)
(the pull-back of the tautological line bundle on P(V )). Equivalently, the natural rational map

fm : X− → P
(
Γ(X,Lm)∗

)
,

that associates with x ∈ X the hyperplane consisting of those sections σ ∈ Γ(X,Lm) such that
σ(x) = 0, is in fact a closed immersion.

We shall assume that L is G-linearized in the sense of the following:

Definition 1.33. Let X be a G-variety, and p : L → X a line bundle. A G-linearization of L
consists of a G-action on L such that p is equivariant and the induced map g : Lx → Lg·x is linear
for any g ∈ G and x ∈ X.

Lemma 1.34. Let L be a G-linearized line bundle on a G-variety X. Then for any integer n, the
tensor power Ln inherits a G-linearization, and the space Γ(X,Ln) is a G-module.

Proof. The first assertion is obvious, and the second one is proved by adapting the argument of
Lemma 1.5. �

Some naturally defined line bundles do not admit any linearization: for example, OP(V )(1)
for the natural action of PGL(V ) on P(V ) (since that action does not lift to an action on
Γ
(
P(V ),OP(V )(1)

) ∼= V ∗). But given a connected linear algebraic group G, and a line bundle
L on a normal G-variety X, some positive power Ln admits a linearization; also, there exists a
finite covering p : G′ → G of algebraic groups such that L admits a G′-linearization (see [6]).

By Lemma 1.34, given a projective G-variety X equipped with an ample G-linearized line bundle
L, there exists a positive integer m such that the above map fm is an equivariant embedding into
the projectivization of a G-module V . We may now define the sets of semi-stable, resp. stable
points by Xss(L) := X ∩ P(V )ss, resp. Xs(L) := X ∩ P(V )s.

Proposition 1.35. With the preceding notation and assumptions, we have

Xss(L) = {x ∈ X | σ(x) 6= 0 for some n ≥ 1 and σ ∈ Γ(X,Ln)G},
Xs(L) = {x ∈ X | G · x is closed in Xss(L) and Gx is finite }.

In particular, Xss(L) and Xs(L) are open G-stable subsets of X, and they are unchanged when L
is replaced with a positive power Ln. Moreover, there exists a good quotient π : Xss(L)→ Y , where
Y is a projective variety, and π restricts to a geometric quotient Xs(L) = π−1(Y s) → Y s, where
Y s := π(Xs) is open in Y .

Proof. We may assume that X ⊂ P(V ) and Lm = OX(1). Then X corresponds to a closed subva-
riety X̃ ⊂ V , stable by the natural action of G×C∗ on V (where C∗ acts by scalar multiplication).
The positively graded algebra

C[X̃] =
∞⊕
n=0

C[X̃]n

is the homogeneous coordinate ring of X; the restriction map

C[V ]n = Γ
(
P(V ),OP(V )(n)

)
−→ Γ

(
X,OX(n)

)
= Γ(X,Lmn)

factors through a map
C[X̃]n −→ Γ(X,Lmn)

which is an isomorphism for n � 0. Thus, the same properties hold for the induced maps on
invariants,

C[V ]Gn −→ C[X̃]Gn −→ Γ(X,Lmn)G.
Also, note any σ ∈ Γ(X,Ln) satisfies σm ∈ Γ(X,Lmn) and Xσ = Xσm (here Xσ denotes the open
subset of X where σ 6= 0). These observations imply easily our statements. �
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2. Spherical varieties

2.1. Representations of connected reductive groups and U-invariants

Given an algebraic group G and two G-modules V,W , we denote by HomG(V,W ) the vector space
of morphisms of G-modules (i.e., equivariant linear maps) f : V →W . Observe that

HomG(V,C[X]) ∼=
(
C[X]⊗ V ∗

)G ∼= MorG(X,V ∗),

for any G-variety X, where MorG denote the space of G-morphisms (of varieties). Moreover, the
left-hand side has a natural structure of a module over the invariant algebra C[X]G; these modules
are called modules of covariants.

We now assume that G is reductive, and denote by Irr(G) the set of isomorphism classes of
simple G-modules.

Lemma 2.1. Any G-module M admits a canonical decomposition

M ∼=
⊕

V ∈Irr(G)

HomG(V,M)⊗ V,

where the map from the left-hand side to the right-hand side is given by

f ⊗ v ∈ HomG(V,M)⊗ V 7−→ f(v) ∈M.

In particular, for any G-variety X, we have a canonical decomposition

C[X] ∼=
⊕

V ∈Irr(G)

MorG(X,V ∗)⊗ V.

Moreover, each C[X]G- module MorG(X,V ∗) is finitely generated.

Proof. For the first assertion, since M is a direct sum of simple G-modules, it suffices to treat
the case that M is simple. Then, by Schur’s lemma, HomG(V,M) is a line if V ∼= M , and is zero
otherwise; this yields the statement.

To show the finite generation of MorG(X,V ∗), note that the algebra C[X × V ]G is finitely
generated and graded via the C∗-action on V :

C[X × V ]G =
∞⊕
n=0

(C[X]⊗ C[V ]n)G.

Thus, we may choose homogeneous generators f1, . . . , fn. Denote their degrees by d1, . . . , dn; then
the algebra C[X]G is generated by those fi such that di = 0, and MorG(X,V ∗) = C[X × V ]1 is
generated over C[X]G by those fi such that di = 1. �

Lemma 2.2. There is a canonical decomposition of G×G-modules

C[G] ∼=
⊕

V ∈Irr(G)

V ∗ ⊗ V ∼=
⊕

V ∈Irr(G)

End(V ),

where G×G acts on C[G] via its action on G by (g, h) · x := gxh−1.

Proof. Lemma 2.1 yields an isomorphism

C[G] ∼=
⊕

V ∈Irr(G)

MorG(G,V ∗)⊗ V

which is easily seen to be G×G-equivariant. Here the right copy of G acts on each MorG(G,V ∗)⊗V
via its action on V , and the left copy of G acts on MorG(G,V ∗) via left multiplication on G.
Moreover, we have an isomorphism of G-modules

MorG(G,V ∗) ∼= V ∗, ϕ 7→ ϕ(eG),

where the inverse isomorphism is given by f 7→
(
g 7→ f(g)

)
. �
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Examples 2.3. 1) If G is finite, then Lemma 2.2 gives back the classical decomposition of the
regular representation.
2) Let T ∼= (C∗)n be a torus; then

C[T ] ∼= C[t1, t−1
1 , . . . , tn, t

−1
n ] ∼=

⊕
(a1,...,an)∈Zn

Cta1
1 · · · tan

n ,

where each Laurent monomial ta1
1 · · · tan

n is an eigenvector of T × T . By Lemma 2.2, each simple
T -module is a line where T acts via a character

χ = χa1,...,an : (t1, . . . , tn) 7−→ ta1
1 · · · tan

n ,

i.e., a homomorphism of algebraic groups T → C∗. The characters form an abelian group for
pointwise multiplication: the character group Λ(T ), isomorphic to Zn. Lemma 2.1 gives back the
correspondence between T -modules and Λ-graded vector spaces, already noted in Example 1.7.

We now consider a connected reductive group G, and choose a Borel subgroup B ⊂ G, i.e.,
a maximal connected solvable subgroup (all such subgroups are conjugate in G). Also, choose a
maximal torus T ⊂ B (all such subgroups are conjugate in B). Then B = TU where U ⊂ B
denotes the largest unipotent subgroup; moreover, U is a maximal unipotent subgroup of G. Since
U is a normal subgroup of B and is isomorphic as a variety to an affine space, the character group
B is isomorphic to that of T ∼= B/U ; we denote that group by Λ. This is a free abelian group of
finite rank r := dim(T ), the rank of G.

With this notation at hand, we obtain a parametrization of the simple G-modules:

Theorem 2.4. (i) For any simple G-module V , the fixed point subspace V U is a line, where B
acts via a character λ(V ). Moreover, V is uniquely determined by λ(V ) up to G-isomorphism.
(ii) The set

Λ+ := {λ ∈ Λ | λ = λ(V ) for some V ∈ Irr(G)}
is the intersection of Λ with a rational polyhedral convex cone in the associated vector space ΛR
over the real numbers. In particular, Λ+ is a finitely generated submonoid of Λ.

Proof. (i) The main ingredient is the structure of the open Bruhat cell of G. Specifically, there
exists a unique Borel subgroup B− which is opposite to B, i.e., satisfies B− ∩ B = T . Moreover,
denoting by U− the largest unipotent subgroup of B−, the multiplication map

U− × T × U −→ G, (x, y, z) 7−→ xyz

is an open immersion. In particular, the product B−B = U−TU is open in G (for these facts, see
e.g. [13, Section 8.3]).

Next, consider non-zero points v ∈ V U and f ∈ V ∗. Then the map

af,v : G −→ C, g 7−→ f(g · v)

is non-zero, since the (simple) G-module V is spanned by G · v. Moreover, af,v ∈ C[G]U . By the
Lie-Kolchin theorem, we may choose f to be an eigenvector of B−, of some weight µ ∈ Λ; then af,v
is also an eigenvector of B− acting on C[G] via left multiplication. Thus, given another non-zero
v′ ∈ V U , the map

g 7−→ ϕ(g) :=
f(g · v′)
f(g · v)

is a non-zero rational function on G, invariant under B−×U . Thus, ϕ is constant, i.e., there exists
t ∈ C∗ such that f

(
g · (v′ − tv)

)
= 0 for all g ∈ G. But then v′ = tv: we have shown that V U is a

line. It follows that V U consists of B-eigenvectors of some weight λ, and hence that af,v is a B-
eigenvector for that weight. Restricting af,v to B∩B− = T , we see that λ = −µ. Likewise, (V ∗)U

−

is a line spanned by f . In view of Lemma 2.2, this yields the decomposition of T ×G-modules

C[G]U
− ∼=

⊕
V ∈Irr(G)

(V ∗)U
−
⊗ V ∼=

⊕
V ∈Irr(G)

V,

where the U−-invariants are relative to the action via left multiplication. This identifies V with
the T -eigenspace in C[G]U

−
with weight λ = λ(V ).
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(ii) Consider the algebra C[G]U
−×U , where the U -invariants are relative to the action via right

multiplication. Then
C[G]U

−×U ⊂ C[B−B]U
−×U ∼= C[T ]

as a T -stable subalgebra. Together with the preceding arguments, it follows that the characters
λ ∈ Λ+ form a basis of the vector space C[G]U

−×U .
Next, consider the irreducible components D1, . . . , Ds of G \ B−B. These are B− × B-stable

prime divisors of G (the closures of the Bruhat cells of codimension 1); denote by v1, . . . , vs the
corresponding discrete valuations of the function field C(G). Since G is smooth, a given function
f ∈ C[B−B] ⊂ C(G) extends to a regular function on G if and only vi(f) ≥ 0 for i = 1, . . . , s. In
particular, viewing each λ ∈ Λ as a rational U− × U -invariant function on G, we have

Λ+ = {λ ∈ Λ | vi(λ) ≥ 0 (i = 1, . . . , s)}.

But each vi : C(G)∗ → Z restricts to an additive map Λ→ Z, since vi(ff ′) = vi(f) + vi(f ′) for all
f, f ′ ∈ C(G)∗. Thus, Λ+ is defined in Λ by finitely many linear inequalities. As a consequence, Λ+

is a finitely generated monoid (by Gordan’s lemma, see e.g. [2, Proposition 1.2.1]).
�

Definition 2.5. With the preceding notation and assumptions, λ = λ(V ) is the highest weight of
the simple G-module V ; we set V := V (λ).

The character group Λ is called the weight lattice of G; the weights in Λ+ are called dominant.
For an arbitrary G-module M and λ ∈ Λ, we denote by M

(B)
λ ⊂ M the B-eigenspace with

weight λ, also called the set of highest weight vectors of weight λ.

Putting together Lemma 2.1 and Theorem 2.4, we obtain an isomorphism of G-modules

M ∼=
⊕
λ∈Λ+

M
(B)
λ ⊗ V (λ)

and isomorphisms
HomG

(
V (λ),M

) ∼= M
(B)
λ

for all λ ∈ Λ+. As a consequence, the G-module M is uniquely determined by the T -module MU .

Examples 2.6. 1) If G ∼= (C∗)n is a torus with character group Λ ∼= Zn, then every weight is
dominant.
2) Let G = GLn; then the subgroup Bn of upper triangular invertible matrices is a Borel subgroup.
We have Bn = Tn Un where Tn is the diagonal torus, and Un is the largest unipotent subgroup.
The diagonal coefficients yield a basis (ε1, . . . , εn) of the weight lattice Λn. The opposite Borel
subgroup B−n consists of all lower triangular invertible matrices. One checks that the open subset
B−n Bn ⊂ Mn is defined by the non-vanishing of the principal minors

∆k : GLn −→ C, A = (aij) 7−→ det(aij)1≤i,j≤k

for k = 1, . . . , n (in particular, ∆n is the determinant). Each ∆k is an eigenvector of B−n ×Bn with
weight (−ωk, ωk), where

ωk := ε1 + · · ·+ εk.

Clearly, ω1, . . . , ωn form a basis of Λn. Moreover, the eigenvectors of B−n ×Bn in C[GLn] are exactly
the monomials c∆a1

1 · · ·∆an
n , where c ∈ C∗ and a1, . . . , an−1 ≥ 0.

It follows that the monoid Λ+
n is generated by ω1, . . . , ωn and by −ωn. Also, the standard

representation Cn is a simple GLn-module with highest weight ω1; the first basis vector e1 is a
highest weight vector. More generally, one checks that each k-th exterior power ∧kCn is a simple
GLn-module with highest weight ωk, and highest weight vector e1 ∧ · · · ∧ ek.
3) If G = SLn, then we may take as opposite Borel subgroups B := G∩Bn and B− := G∩B−n . The
weight lattice Λ is the quotient of Λn by the subgroup Zωn; the monoid of dominant weights Λ+ is
freely generated by the images of ω1, . . . , ωn−1, called the fundamental weights. The corresponding
simple modules are again the exterior powers ΛkCn, where k = 1, . . . , n− 1.
4) In particular, if G = SL2, then we may identify the dominant weights with the non-negative
integers. The simple G-module V (n) with highest weight n is the space C[x, y]n of homogeneous
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polynomials of degree n in two variables, where G acts via linear change of variables. Indeed, one
checks that C[x, y]n contains a unique line of B-eigenvectors, spanned by yn.

Next, we obtain an important finiteness result due to Hadziev and Grosshans:

Theorem 2.7. Let G be a connected reductive group, U ⊂ G a maximal unipotent subgroup, and
X an affine G-variety. Then the algebra C[X]U is finitely generated.

Proof. First, we obtain an algebra isomorphism

C[X]U ∼= C[X ×G/U ]G,

where G acts on C[X ×G/U ] via its diagonal action on X ×G/U . Indeed, one associates with any
ϕ ∈ C[X]U the map

(
(x, g) 7→ ϕ(g · x)

)
∈ C[X ×G/U ]G, and with any f ∈ C[X ×G/U ]G the map(

x→ f(x, eG)
)
∈ C[X]U .

Next, since C[X × G/U ]G ∼=
(
C[X] ⊗ C[G]U

)G, it suffices to show that the algebra C[G]U

is finitely generated, in view of Theorem 1.24; equivalently, C[G]U
−

is finitely generated, where
U− ⊂ G is the maximal unipotent subgroup opposite to U as in the proof of Theorem 2.4. But,
as seen in that proof,

C[G]U
− ∼=

⊕
λ∈Λ+

V (λ)

as T -module, where T acts on each V (λ) via its character λ. This yields a grading of C[G]U
−

by
the monoid Λ+; moreover, the product V (λ)V (µ) ⊂ C[G]U

−
equals V (λ + µ), since C[G]U

−
is a

domain. Thus, the algebra C[G]U
−

is generated by those V (λ) associated with a generating subset
S ⊂ Λ+. Moreover, we may choose S to be finite, by Theorem 2.4 again. �

With the preceding notation and assumptions, the subalgebra C[X]U ⊂ C[X] corresponds to a
U -invariant morphism of affine varieties p : X → X//U , which is clearly a categorical quotient in
the sense of Subsection 1.2.

In contrast with the quotient by G, the map p need not be surjective. For example, take G =
X = SL2 where G acts by left multiplication. Then G/U ∼= C2 \ {0} (see Example 1.12.3) whereas
G//U ∼= C2 by assigning with a matrix its first column.

It turns out that many properties of an affine G-variety X may be read off its categorical
quotient X//U ; this is exposed in detail in [3, Chapter 3]. We shall only need a small part of these
results:

Proposition 2.8. Let G be a connected algebraic group, U a maximal unipotent subgroup, and X
an irreducible affine G-variety. Then the following hold:
(i) C(X)U is the fraction field of C[X]U . Moreover, any B-eigenvector in C(X) is the quotient of
two B-eigenvectors in C[X].
(ii) X is normal if and only if X//U is normal.

Proof. (i) Clearly, the fraction field of C[X]U is contained in C(X)U . To show the opposite inclusion,
consider f ∈ C(X)U . Then the vector space of ‘denominators’

{ϕ ∈ C[X] | fϕ ∈ C[X]}
is non-zero and U -stable. Therefore, this U -submodule of C[X] contains a non-zero U -invariant.

This proves the first assertion; the second one is checked similarly.
(ii) If X is normal, then so is X//U by Theorem 1.24 (vi).
Conversely, assume that X//U is normal and consider the normalization map

η : Y −→ X.

We claim that the G-action on X lifts uniquely to a G-action on the affine variety Y such that η
is equivariant. Indeed, the normalization of G×X is the map

G× Y −→ G×X, (g, y) 7−→
(
g, η(y)

)
and the action map α : G×X → X lifts to a unique morphism (of varieties) β : G×Y → Y by the
universal property of the normalization. Since η is an isomorphism over a G-stable open subset, it
follows that β is a group action; this implies our claim.
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Next, the coordinate ring C[Y ], the integral closure of C[X] in its fraction field C(X), is a finitely
generated algebra, and the “conductor”

I := {f ∈ C[X] | fC[Y ] ⊂ C[X]}

is a non-zero ideal of C[X]. Clearly, I is G-stable, and hence is a G-submodule of C[X]. Thus,
I contains a non-zero U -invariant f . Then f ∈ C[X]U , and fC[Y ]U is an ideal of C[X]U ; as a
consequence, the C[X]U -module C[Y ]U is finitely generated. So C[Y ]U is integral over C[X]U , and
both have the same field of fractions. Since X//U is normal, it follows that C[Y ]U = C[X]U , and
hence that C[Y ] = C[X]. We conclude that η is an isomorphism. �

Also, note the following direct consequence of Lemma 2.1 and Theorem 2.7:

Corollary 2.9. Let G be a connected reductive group, U a maximal unipotent subgroup, and X

an affine G-variety. Then the space C[X](B)
λ is a finitely generated module over C[X]G, for any

λ ∈ Λ+. If X is irreducible, then the set

{λ ∈ Λ | C[X](B)
λ 6= 0}

is a finitely generated submonoid of Λ.

We shall denote that monoid by Λ+(X); it is called the weight monoid of the affine G-variety
X.

The weight group Λ(X) is defined as the set of weights of B-eigenvectors in C(X); this is a
subgroup of Λ, generated by Λ+(X) in view of Proposition 2.8 (i). In particular, Λ(X) is a free
abelian group of finite rank: the rank of X, denoted by rk(X).

The weight cone C(X) is the convex cone in the vector space Λ(X)R generated by Λ+(X); this
is a rational polyhedral cone, which spans Λ(X)R.

Note finally the equalities

Λ+(X) = Λ+(X//U), Λ(X) = Λ(X//U), C(X) = C(X//U)

and the inclusion
Λ+(X) ⊂ C(X) ∩ Λ(X).

2.2. Affine spherical varieties

Definition 2.10. An irreducible G-variety X is spherical if X is normal and contains an open
B-orbit.

A closed subgroup H ⊂ G is spherical if so is the homogeneous space G/H.

Examples 2.11. 1) If G is a torus T , then the spherical G-varieties are exactly those normal
T -varieties that contain an open orbit; they are called the toric varieties.

Let X be an affine toric T -variety, and choose x ∈ X such that T · x is open in X. Then the
dominant morphism T → X, t 7→ t · x yields an injective T -homomorphism C[X] ↪→ C[T ] =⊕

λ∈Λ Cλ. It follows that

C[X] =
⊕

λ∈Λ+(X)

Cλ

as a subalgebra of C[T ]. In particular, X is uniquely determined by its weight monoid Λ+(X).
One checks that the normality of X is equivalent to Λ+(X) being saturated, i.e., equal to

C(X)∩Λ(X). Also, the T -stable prime ideals of C[X] correspond bijectively to the faces of C(X),
by assigning with each face F the ideal

IF :=
⊕

λ∈Λ+(X)\F

Cλ

(see [2, Sections 1.3, 2.1] for details). Thus, C[X]/IF =
⊕

λ∈Λ+(X)∩F Cλ is the coordinate ring of
an irreducible T -stable subvariety XF ⊂ X with weight monoid F ∩Λ(X) and weight cone F . The
weight group of XF is the intersection of Λ(X) with the span of F ; it is a direct factor of Λ(X).

Moreover, the assignement F 7→ XF yields a parametrization of the irreducible T -stable subva-
rieties of X, which preserves the dimensions and the inclusion relations. As a consequence, every
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affine toric variety contains only finitely many T -orbits, and their closures are toric varieties; they
are in bijective correspondence with the faces of the weight cone.
2) Clearly, a closed subgroup H ⊂ G is spherical if and only if H has an open orbit in G/B, the
flag variety of G. If G = SL2, this means that H has an open orbit in the projective line P1. It
follows that the spherical subgroups of SL2 are exactly the subgroups of positive dimension, and
each of them has only finitely many orbits in P1.

Specifically, any subgroup H of positive dimension contains a conjugate of U2
∼= C, or of the

diagonal torus T ∼= C∗ of SL2. Moreover, U2 has two orbits in P1: the affine line C and the point
∞, whereas T has three orbits: the punctured line C∗ and the points 0,∞.
3) Consider the group G as an affine G×G-variety, for the action via left and right multiplication.
Then G is the homogeneous space (G×G)/ diag(G), with base point eG. Taking as a Borel subgroup
of G × G the product B− × B of two opposite Borel subgroups of G and using Lemma 2.2 and
Theorem 2.4, we see that G is spherical with weight monoid {(−λ, λ) | λ ∈ Λ+}. In particular,
Λ+(G) ∼= Λ+. In the case that G = GLn or SLn, this also follows from Examples 2.6 2 and 3.
4) Let G = GLn act on the space Qn of quadratic forms in n variables, like in Example 1.27.3. For
any such form, viewed as a symmetric n× n matrix A = (aij), consider the principal minors

∆k : Qn −→ C, (aij) 7−→ det(aij)1≤i,j≤k

for k = 1, . . . , n as in Example 2.6.2. Then one checks that the open subset (∆1 6= 0, . . . ,∆n 6= 0)
is a unique orbit of the Borel subgroup Bn; in particular, Qn is spherical. Moreover, each ∆k is a
Bn-eigenvector with weight 2ωk, with the notation of Example 2.6.2. As in that example, it follows
that Λ+(Qn) is generated by 2ω1, . . . , 2ωn. Thus, C(Qn) is the cone of dominant weights, and
Λ(Qn) is the lattice of even weights.

If GLn is replaced with SLn, then every hypersurface (∆ = t), where ∆ = ∆n is the discriminant
and t ∈ C, is a spherical variety with weight monoid generated by 2ω1, . . . , 2ωn−1. For t ∈ C∗, these
hypersurfaces are all isomorphic to SLn /SOn; in particular they are smooth, but the hypersurface
(∆ = 0) is singular.

We now obtain a representation-theoretic characterization of spherical varieties:

Lemma 2.12. For an irreducible affine G-variety X, the following conditions are equivalent:
(i) X contains an open B-orbit.
(ii) Any B-invariant rational function on X is constant.
(iii) The G-module C[X] is a direct sum of pairwise distinct simple G-modules.

Proof. (i) ⇔ (ii) follows from Rosenlicht’s theorem stated at the beginning of Subsection 1.2.
(ii) ⇒ (iii) Assume that the G-module C[X] contains two distinct copies of a simple module

V (λ). It follows that C[X] contains two non-proportional B-eigenvectors f1, f2 of the same weight
λ. So the quotient f1

f2
is a non-constant B-invariant rational function, a contradiction.

(iii) ⇒ (ii) Let f ∈ C(X)B . By Proposition 2.8 (i), we have f = f1
f2

where f1, f2 ∈ C[X] are
B-eigenvectors with the same weight. It follows that f1, f2 are proportional, i.e., f is constant. �

Definition 2.13. A G-module V is multiplicity-free if V is a direct sum of pairwise non-isomorphic
simple G-modules. Equivalently, dimV

(B)
λ ≤ 1 for all λ ∈ Λ+.

Theorem 2.14. For an affine irreducible G-variety X, the following conditions are equivalent:
(i) X is spherical.
(ii) The G-module C[X] is multiplicity-free, and the weight monoid Λ+(X) is saturated.
(iii) The affine T -variety X//U is toric.
Then X contains only finitely many G-orbits, and their closures are spherical varieties; they cor-
respond bijectively to certain faces of the weight cone C(X), and their weight groups are direct
factors of Λ(X).

Proof. (i) ⇒ (iii) Since X is normal, then so is X//U by Proposition 2.8 (ii). Moreover, the T -
module C[X//U ] is multiplicity-free. Thus, X//U is toric by Lemma 2.12

(iii) ⇒ (ii) follows from the fact that the weight monoid of any affine toric variety is saturated.
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(ii) ⇒ (i) X contains a dense B-orbit by Lemma 2.12, and X//U is normal by Example 2.11.1.
In view of Proposition 2.8, it follows that X is normal.

To show the final assertion, note that any irreducible G-stable subvariety Y ⊂ X yields an
irreducible T -stable subvariety Y//U ⊂ X//U , which determines Y uniquely (since the G-stable
prime ideal I(Y ) ⊂ C[X] is uniquely determined by I(Y )U ⊂ C[X]U , a T -stable prime ideal). We
conclude by combining Exercise 2.11.1 with Proposition 2.8 again. �

In fact, every affine spherical variety contains only finitely many B-orbits, as a consequence of
the preceding result combined with:

Theorem 2.15. Any spherical homogeneous space contains only finitely many B-orbits.

Proof. If G = SL2, then the statement follows from Example 2.11.2. The general case may be
reduced to that one as follows.

Let X be a spherical G-homogeneous space. It suffices to show that each irreducible B-stable
subvariety Y ⊂ X contains an open B-orbit. For this, we argue by induction on the codimension
n of Y ; if n = 0, the desired statement is just the assumption that X contains an open B-orbit.

Let Y be an irreducible B-stable subvariety of codimension n in X. Since X is homogeneous,
we have G · Y = X. Now recall that G is generated by its minimal parabolic subgroups, i.e., by
the closed subgroups properly containing B, and minimal for this property. Moreover, every such
subgroup P is the semi-direct product of its radical R(P ) (the largest connected solvable normal
subgroup of P ) with a subgroup S isomorphic to SL2 or PSL2; in particular, R(P ) ⊂ B, the
quotient B/R(P ) is a Borel subgroup of P , and P/B ∼= P1 (for these results, see e.g. [13, Section
8.4]). Thus, there exists a minimal parabolic subgroup P such that P · Y 6= Y ; then Z := P · Y is
a closed P -stable subvariety of X, and dim(Z) = dim(Y ) + 1 so that codim(Z) = n − 1. By the
induction assumption, Z contains an open B-orbit Z0. The quotient (P ·Z0)/R(P ) is an irreducible
variety, homogeneous under S (since P · Z0 is homogeneous under P ) and containing Z0/R(P ) as
an open orbit of B/R(P ). Therefore,(P ·Z0)/R(P ) contains only finitely many orbits of B/R(P ),
i.e., P ·Z0 contains only finitely many B-orbits. But P ·Z0 is open in Z = P ·Y , and hence contains
a B-stable open subset of Y ; thus, Y contains an open B-orbit as desired. �

Also, recall from Examples 2.11 that any affine toric variety X is uniquely determined by its
weight monoid Λ+(X) (or, equivalently, by its weight cone and weight group); in contrast, there
exist affine spherical varieties having the same weight monoid, but non-isomorphic as varieties.
However, every smooth affine spherical variety is uniquely determined by its weight monoid, by a
recent result of Losev which solves a conjecture of Knop (see [7] for this, and for more on uniqueness
properties of spherical varieties).

2.3. Projective spherical varieties

Definition 2.16. A polarized variety is a pair (X,L), where X is an irreducible projective variety,
and L an ample line bundle on X. If X is equipped with a G-action, and L with a G-linearization,
then (X,L) is called a polarized G-variety.

To any polarized variety (X,L), one associates the section ring

R(X,L) :=
∞⊕
n=0

Γ(X,Ln).

This is a positively graded algebra, equipped with a G-action if so is (X,L). Note that R(X,L) is
the algebra of regular functions on the total space of the dual line bundle L∨.

We now gather some basic properties of polarized varieties, their easy proofs being left to the
reader:

Lemma 2.17. (i) The algebra R(X,L) is a finitely generated domain.

(ii) Let X̃ denote the affine C∗-variety such that C[X̃] = R(X,L), and let

ϕ : L∨ −→ X̃
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be the natural map. Then ϕ restricts to an isomorphism

L∨ \ s0(X) ∼= X̃ \ {0},

where s0 : X → L∨ denotes the zero section, and 0 ∈ X̃ is the point associated with the maximal
homogeneous ideal of R(X,L). As a consequence, X = ProjR(X,L).

(iii) X is normal if and only if X̃ is normal.
(iv) For any irreducible subvariety Y ⊂ X, the restriction map R(X,L)→ R(Y, L|Y ) yields a finite
morphism Ỹ → X̃, birational onto its image.

We say that X̃ is the affine cone over X associated with the ample line bundle L.
Next, consider a polarized G-variety (X,L). Then the group G̃ := G × Gm acts on L∨, where

C∗ acts by scalar multiplication on fibers. Moreover, the zero section s0 is G̃-equivariant, and G̃

also acts on X̃ so that ϕ is equivariant. Each space Γ(X,Ln) is a finite-dimensional G-module.
Note that G̃ is a connected reductive group with Borel subgroup B̃ := B ×Gm, maximal torus

T̃ := T × Gm and weight lattice Λ̃ := Λ × Z. Moreover, the set of dominant weights Λ̃+ equals
Λ+ × Z.

We may now characterize projective spherical varieties in terms of their affine cones:

Proposition 2.18. The following conditions are equivalent for a polarized G-variety (X,L):
(i) The G-variety X is spherical.

(ii) The G̃-variety X̃ is spherical.
(iii) X is normal, and the G-module Γ(X,Ln) is multiplicity-free for any integer n.

Proof. (i) ⇒ (ii) If B has an open orbit in X, then the pull-back of this orbit in L∨ \ s0(X) is an
open orbit of B̃. We conclude by Lemma 2.17 (ii) and (iii).

(ii) ⇒ (i) is checked similarly.
(ii) ⇔ (iii) follows from Theorem 2.14 combined with Lemma 2.17 (iii). �

We say that (X,L) is a polarized spherical variety if it satisfies one of these conditions.
Returning to an arbitrary polarized G-variety (X,L), let Λ̃+(X,L) (resp. C̃(X,L), Λ̃(X,L)) be

the weight monoid (resp. weight cone, weight group) of the irreducible affine G̃-variety X̃. Then
Λ̃+(X,L) ⊂ Λ+ × Z consists of those pairs (λ, n) such that Γ(X,Ln) contains a B-eigenvector of
weight λ. In particular, n > 0 for each non-zero such pair. Thus, each non-zero point of the finitely
generated cone C̃(X,L) ⊂ Λ+

R ×R has a positive coordinate on R. This implies easily the following:

Lemma 2.19. (i) The intersection

Q(X,L) := C̃(X,L) ∩ (ΛR × {1})

is a rational convex polytope in the affine hyperplane ΛR × {1} of Λ̃R.
(ii) The rational points of Q(X,L) are exactly the quotients λ

n , where n is a positive integer and λ
is the weight of a B-eigenvector in Γ(X,Ln). Moreover, C̃(X,L) is the cone over Q(X,L).

(iii) Q(X,L) is the convex hull of the points λ1
n1
, · · · , λN

nN
, where the pairs (λi, ni) ∈ Λ̃ are the

weights of B̃-eigenvectors in R(X,L) which generate the algebra R(X,L)U .

Definition 2.20. With the preceding notation, Q(X,L) is called the moment polytope of the
polarized G-variety (X,L).

As in the affine case, the weight group of X is the subgroup Λ(X) ⊂ Λ consisting of the weights
of B-eigenvectors in C(X).

The rank rk(X) is the rank of its weight group.

Lemma 2.21. Let (X,L) be a polarized G-variety. Then the following hold:

(i) The second projection p2 : Λ̃→ Z yields an exact sequence

0→ Λ(X)→ Λ̃(X,L)→ Z→ 0.

(ii) The vector space Λ(X)R is spanned by the differences of any two points of the moment polytope
Q(X,L). As a consequence, dimQ(X,L) = rk(X).
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Proof. (i) Since L is ample, there exists a positive integer N such that LN and LN+1 are very
ample; in particular, the G-modules Γ(X,LN ) and Γ(X,LN+1) are both non-zero. It follows that
Λ̃(X,L) contains elements of the form (λ,N) and (µ,N + 1). So p2 is surjective.

The elements of Λ̃(X,L) of the form (λ, 0) are exactly the weights of B-eigenvectors in the
invariant field C(X̃)Gm . But the latter field equals C(X), as follows from Lemma 2.17 (ii). So the
kernel of p2 is Λ(X).

(ii) Let x1, x2 be rational points of Q(X,L). By Lemma 2.21, we may write xi = λi

ni
where λi

is the weight of a B-eigenvector si ∈ Γ(X,Lni). Then n1n2(x1 − x2) is the weight of s
n2
1
s

n1
2

, a B-
eigenvector in C(X). Thus, n1n2(x1− x2) ∈ Λ(X). Since Q(X,L) is a rational polytope, it follows
that the differences of any two of its points lie in Λ(X)R.

To show that these differences span Λ(X)R, consider λ ∈ Λ and let f ∈ C(X) be a B-eigenvector
of weight λ. Then there exist a positive integer n and twoB-eigenvectors s1, s2 ∈ Γ(X,Ln) such that
f = s1

s2
, as follows from Proposition 2.8 (i). Thus, λn is the difference of two points of Q(X,L). �

Next, we obtain a version of Theorem 2.14 for projective spherical varieties:

Theorem 2.22. Let (X,L) be a polarized spherical variety and Y ⊂ X an irreducible G-stable
subvariety. Then the following hold:

(i) (Y,L) is a polarized spherical variety.

(ii) Λ̃(Y,L) is a direct summand of Λ̃(X,L). Thus, Λ(Y ) is a direct summand of Λ(X).

(iii) Q(Y,L) is a face of Q(X,L) which determines Y uniquely. Thus, X contains only finitely
many G-orbits, and these are spherical.

(iv) The restriction map Γ(X,Ln)→ Γ(Y, Ln) is surjective for all n ≥ 0.

Proof. By Lemma 2.17 (iv), the natural map ϕ : Ỹ → X̃ is finite and birational. Thus, ϕ(Ỹ )
is an irreducible G̃-subvariety of X̃. By Theorem 2.14, ϕ(Ỹ ) is normal, and hence ϕ is a closed
immersion. This implies (iv), and also (i) in view of Lemma 2.17 (iii). The remaining assertions
follow from Theorem 2.14 again and Theorem 2.22. �

Corollary 2.23. Let L be an ample line bundle on a projective spherical variety X. Then L is
generated by its global sections.

Proof. Replacing the acting group G with a finite cover, we may assume that L is G-linearized.
Then its base locus Z ⊂ X (consisting of common zeroes of all global sections) is a closed G-stable
subset of X. If Z is non-empty, then it contains a closed orbit Y . By Theorem 2.22 (iv), it suffices
to show that Γ(Y,L) is non-zero; in other words, we may assume that X is homogeneous.

By Borel’s fixed point theorem, we then have X = G/P for some (parabolic) subgroup P ⊃ B;
this yields a morphism π : G/B → G/P with connected fibers. Thus, the natural map Γ(X,L)→
Γ(G/B, π∗L) is an isomorphism. The G-linearized line bundle π∗L on G/B yields a character
λ ∈ Λ (the weight of its fibre at the base point), and we have an isomorphism of G-modules
Γ(G/B, π∗Lm) ∼= C[G](B)

mλ for any integer m. Since L is ample, the left-hand side is non-zero for
m� 0. By Theorem 2.4, it follows that λ is dominant; we conclude that Γ(G/B, π∗L) 6= 0. �

Examples 2.24. 1) Let G = T as in Example 2.11.1 and consider a polarized toric variety (X,L).
Then the T -orbits in X correspond bijectively to the faces of Q(X,L), and this correspondence
preserves the dimensions and inclusions of closures, in view of that example combined with Lemma
2.21. In particular, the closed orbits correspond to the vertices. As a consequence, Q(X,L) is an
integral polytope, i.e., its vertices are all in Λ. Moreover, the polarized toric varieties (under an
unspecified torus) are in bijective correspondence with the pairs (Λ, Q) where Λ is a lattice and Q
is an integral polytope in ΛR.

2) Let Let G = GLn act on Qn as in Example 2.11.4. Then X := P(Qn) is spherical and its moment
polytope Q has vertices the points 2ωk

k for k = 1, . . . , n. In particular, Q is a simplex, and has
non-integral vertices if n ≥ 3. One checks that the G-orbit closures correspond to the simplices
over the first ` vertices, for ` = 1, 2, . . . , n. Thus, most faces of Q do not arise from orbit closures.
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3) Let G := SL2 act diagonally on X := P1 × P1. Then L := O(1, 1) is very ample and G-
linearized; its global sections embed X as a smooth quadric hypersurface in P(C2 ⊗ C2) ∼= P3.
With the notation of Example 2.64., we have isomorphisms of G-modules

C2 ⊗ C2 = V (1)⊗ V (1) ∼= V (0)⊕ V (2)

and one checks that the moment polytope Q(X,L) is the interval [0, 2], while Λ(X) = 2Λ ∼= 2Z.
The variety

X ′ := (∆ = 0) ⊂ P(C2 ⊗ C2),
where ∆ denotes the discriminant of V (2) (the space of quadratic forms in two variables), is a
G-stable quadratic cone in P3. One checks that X ′ is spherical, and the pair

(
X ′, L′ := O(1)

)
has

the same moment polytope and weight lattice as (X,L).
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