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Summary. Let L be an ample line bundle on a non singular projective n-fold X . It
is first shown that 2KX +mL is very ample for m ≥ 2+

(
3n+1

n

)
. The proof developes

an original idea of Y.T. Siu and is based on a combination of the Riemann-Roch
theorem together with an improved Noetherian induction technique for the Nadel
multiplier ideal sheaves. In the second part, an effective version of the big Matsusaka
theorem is obtained, refining an earlier version of Y.T. Siu: there is an explicit
polynomial bound m0 = m0(L

n, Ln−1 ·KX) of degree ≤ n3n in the arguments, such
that mL is very ample for m ≥ m0. The refinement is obtained through a new sharp
upper bound for the dualizing sheaves of algebraic varieties embedded in projective
space.

0. Introduction

In the last six or seven years, considerable progress has been achieved in the under-
standing of adjoint linear systems |KX +mL| associated with an ample line bundle
L on a smooth projective manifold X . When X is a surface, I. Reider [Rei88] ob-
tained a quasi-optimal criterion for the global generation and very ampleness of
KX +L, showing in particular that KX + 3L is always generated by global sections
and KX + 4L very ample. Around the same period, T. Fujita [Fuj87] raised the
following interesting conjecture.

(0.1) Conjecture (Fujita). Let X be a smooth projective n-fold over C and let L
be an ample line bundle on X. Then KX + (n+ 1)L is generated by global sections
and KX + (n+ 2)L is very ample.

One of the first results proved in dimension n ≥ 3 is the very ampleness of
2KX + 12nnL, using an analytic method based on the solution of a Monge-Ampère
equation (see [Dem93]). Slightly later, J. Kollár [Kol93] obtained an effective version
of the base point free theorem, while a major step was made in small dimension by
L. Ein and R. Lazarsfeld [EL93], with the solution of the global generation part
of Fujita’s conjecture for n = 3. Other related works are [EL92], [Fuj94], [EKL94],
[Ein94] (see also [Laz93] and [Dem94] for survey expositions). Recently, Y.T. Siu
[Siu94a] introduced a simple algebraic method for proving the very ampleness of
2KX + mL. His method is based on a combination of the Riemann-Roch formula
with the Kawamata-Viehweg vanishing theorem, in the generalized form given by
A. Nadel [Nad89]. Our first goal is to develope a more efficient Noetherian induction
process for the Nadel multiplier sheaves associated with singular hermitian metrics,
along the lines of Siu’s method. The new induction process is simpler and allows us
to refine further Siu’s original bounds. In the sequel the intersection numbers of L
over d-dimensional subvarieties Y ⊂ X are denoted
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Ld · Y =

∫

Y

c1(L)d.

We say that L is numerically effective (nef for short) if L ·C ≥ 0 for every algebraic
curve C ⊂ X . By [Dem90], L is nef if and only if for each ε > 0 there is a hermitian
metric hε on L of curvature Θhε

(L) ≥ −εω, where ω is a given Kähler form on X .

(0.2) Theorem. Let X be a smooth projective n-fold and let L be an ample line
bundle over X. Then

a) 2KX +mL is very ample for m ≥ 2 +
(
3n+1

n

)
;

b) 2KX + L generates simultaneous jets of order s1, . . . , sp at arbitrary points
x1, . . . , xp ∈ X provided that the intersection numbers Ld · Y of L over all
d-dimensional algebraic subsets Y of X satisfy

Ld · Y >
2d−1

⌊n/d⌋d

∑

1≤j≤p

(
(n+ 1)(4n+ 2sj + 1) − 2

n

)
, 1 ≤ d ≤ n.

c) m(KX + (n+ 2)L) is very ample for m ≥
(
3n+1

n

)
− 2n.

All results still hold true by adding any nef line bundle G to the line bundles under
consideration.

Our method of proof is sharp enough to yield as a by-product the well-known
result that KX + (n+ 1)L is numerically effective if L is ample (a result originally
proved as a consequence of Mori theory). A basic problem would be to find an ana-
logue of Th. (0.2 a, b) with KX in place of 2KX . For the global generation question,
the answer has been settled in the affirmative recently by U. Angehrn and Y.T. Siu
[AS94], who showed that KX + 1

2(n2+n+2)L is always generated by global sections;
their method is again based on Nadel’s vanishing theorem, using a different idea for
the construction of the required singular hermitian metrics. The result of Angehrn-
Siu implies that KX + 2n(KX + 1

2 (n2 + n + 2)L) is very ample for n ≥ 2 (by the
elementary observation that KX +2nF is always very ample if F is ample and gener-
ated by sections); the bound obtained in (0.2 c) can then be improved into m ≥ n3.
In a related paper [Siu94b], Y.T. Siu obtains a variant of (0.2 b) in which the numer-
ical condition for Ld · Y is replaced by (Ld · Y )1/d > 2n

∑
1≤j≤p

(
3n+2sj−3

n

)
+ 2pn ;

this bound, which has a rather involved proof, is sharper than ours for d ≤ O(ln(n))
but weaker for larger values of d. At the time these lines are written, it seems to
be unknown whether there is a bound m0(n) depending only on the dimension such
that KX +mL is very ample for m larger than m0(n). Also it seems to be unknown
whether polynomial bounds m0(n) exist for 2KX +mL (the bound given by (0.2 a)
is of the order of magnitude of (27/4)n and seems to be the best presently known).

Another important question is to find effective bounds m0 such that mL be-
comes very ample for m ≥ m0. From a theoretical point of view, this problem is
solved by Matsusaka [Mat72] and Kollár-Matsusaka [KoM83]. Their result states
that there is a bound m0 = m0(n, L

n, Ln−1 ·KX) depending only on the dimension
and on the first two coefficients Ln and Ln−1 ·KX in the Hilbert polynomial of L.
Unfortunately, the original proof does not tell much on the actual dependence of
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m0 in terms of these coefficients. In a ground-breaking paper [Siu93], Y.T. Siu in-
troduced new techniques leading to effective bounds for m0. The published version
of [Siu93] incorporates an induction argument which we developed in collaboration
with the author after the preprint version circulated, enabling us to obtain much
better final estimates. Our goal in the last sections § 3, 4 is to present a further
substantial refinement of this method. The main point is that a crucial technical
lemma used in [Siu93] to deal with dualizing sheaves can be made optimal by using
a different idea based on the Ohsawa-Takegoshi L2 extension theorem [OT87].

(0.3) Theorem. Let H be a very ample line bundle on a projective algebraic man-
ifold X, and let Y ⊂ X be a p-dimensional irreducible algebraic subvariety. Denote
by ωY the L2 dualizing sheaf of Y . If δ = Hp · Y is the degree of Y with respect to
H, the sheaf Hom

(
ωY ,OY ((δ − p− 2)H)

)
has a nontrivial section.

Using this sharp “upper estimate” on dualizing sheaves and some other refine-
ments of the inductive method explained in [Siu93], we obtain the following improved
bounds.

(0.4) Theorem. If L is an ample line bundle on a projective n-fold X, then mL is
very ample for

m ≥ m0 = Cn (Ln)3
n−2

(
n+ 2 +

Ln−1 ·KX

Ln

)3n−2(n/2+3/4)+1/4

where Cn depends only on n, e.g.,

Cn = (2n)(3
n−1−1)/2

((
3n+ 1

n

)
− 2n

)3n−2(n/2+3/4)+1/4

.

The bound (0.4) turns out to be essentially optimal for n = 2 (apart from
a small multiplicative constant), as was shown recently by Fernández del Busto
[FdB94] by means of Reider’s theorem and an example of Gang Xiao. Our bound is
probably not optimal for n ≥ 3, and we strongly believe that there should exist an
optimal bound of the form Cn(Ln)an(n+2+Ln−1 ·KX/L

n)bn , involving exponents
an, bn of the order of magnitude of n or n2 instead of n3n.

1. Nadel’s Vanishing Theorem

We recall here briefly a few basic ideas developed in [Dem90, 93], which will be
equally useful in this paper. Let X be a projective algebraic manifold equipped with
a Kähler metric ω, and let F be a holomorphic line bundle over X . We assume
that F is equipped with a (possibly singular) hermitian metric h. In each open set
U where F↾U ≃ U × C is trivial, the metric h is given by a weight ϕ such that
‖ξ‖h = |τ(ξ)|e−ϕ(x) for all ξ ∈ Fx, where τ : F↾U → C is the trivialization map. If ϕ
is supposed to be locally integrable on U , the curvature form of F can be defined to
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be the closed (1, 1)-current Θh(F ) = i
π∂∂ϕ. Here, we will only consider the case of

nonnegative curvature currents Θh(F ) ≥ 0, i.e., we suppose that the weights ϕ are
plurisubharmonic. Following Nadel [Nad89], we associate to ϕ the ideal sheaf

(1.1) I(ϕ) =
{
f ∈ OX,x ; ∃W ∋ x,

∫

W

|f |2e−2ϕdVω < +∞
}

where dVω = ωn/n! is the Kähler volume form and W is an arbitrary open neigh-
borhood of x. Of course, I(ϕ) does not depend on the choice of the trivialization,
and thus we get a global ideal sheaf I(h) on X depending only on h. By [Nad89]
and [Dem93], I(h) is a coherent ideal sheaf in OX , and we have the following fun-
damental vanishing theorem.

(1.2) Nadel vanishing theorem. Assume that Θh(F ) ≥ εω for some ε > 0. Then

Hq
(
X,O(KX + F ) ⊗ I(h)

)
= 0 for all q ≥ 1.

The proof is a straightforward consequence of the Bochner-Kodaira-Nakano
identity ([AN54], [Nak55]) and of Hörmander’s L2 estimates for the ∂ operator (see
[Hör65], [AV65], [Nad89], [Dem93]). In the present paper, we only need “algebraic”
metrics h of the form

(1.3) ‖ξ‖2
h =

|τ(ξ)|2
( ∑

1≤j≤N |τµ(σj(x))|2
)1/µ

where σ1, . . . , σN ∈ H0(X, µF ) are non zero algebraic sections of µF = F⊗µ, and
τµ is the local trivialization of F⊗µ induced by a local trivialization τ of F . The
corresponding weight is

(1.4) ϕ =
1

2µ
log

( ∑

1≤j≤N

|τµ(σj(x))|
2
)
.

In this case, (1.2) is equivalent to the Kawamata-Viehweg vanishing ([Kaw82],
[Vie82]), and the proof can be reduced to the usual Kodaira vanishing theorem
by purely algebraic means. Now, recall that the Lelong number of a plurisubhar-
monic function ϕ at a point x is ν(ϕ, x) = limr→0 supB(x,r) ϕ/ log r. In the special
case (1.4) under consideration, we simply have

ν(ϕ, x) =
1

m
min

1≤j≤N
ordx(σj)

where ordx(σj) is the vanishing order of σj at x.

(1.5) Corollary. Let (X,ω), F , h and ϕ be as in (1.2) and let x1, . . . , xN be isolated
points in the zero variety V (I(ϕ)). Then there is a surjective map

H0(X,KX + F ) −→−→
⊕

1≤j≤N

O(KX + F )xj
⊗

(
OX/I(h)

)
xj
.
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In particular, if ν(ϕ, xj) ≥ n + sj, then H0(X,KX + F ) generates simultaneously
all jets of order sj at xj.

Proof. Consider the long exact sequence of cohomology associated to the short exact
sequence 0 → I(ϕ) → OX → OX/I(ϕ) → 0 twisted by O(KX + F ), and apply
Th. (1.2) to obtain the vanishing of the first H1 group. The asserted surjectivity
property follows. The last statement follows from the fact that ν(ϕ) ≥ n+ s implies
I(h)x ⊂ m

s+1
x . Indeed, we then have

ϕ(z) ≤ (n+ s) log |z − x| +O(1), e−ϕ(z) ≥ c|z − x|−(n+s), c > 0,

as is obvious in the “algebraic case” (in general, the inequality follows from the
standard logarithmic convexity property of plurisubharmonic functions). �

(1.6) Remark. As is well known, Corollary (1.6) can be proved by a direct applica-
tion of Hörmander’s L2 estimates, namely by solving a ∂-equation ∂u =

∑
∂(ψjPj)

for forms of type (n, 1), where Pj is a finite holomorphic Taylor expansion achieving
the desired jet at xj , and where ψj is a cut-off function with support in a neighbor-
hood of xj . In this way, we see that Cor. (1.6) still holds if we only have Θh(F ) ≥ 0
and Θh(F ) ≥ εω in a neighborhood of each xj .

2. Some Results Around the Fujita Conjecture

This section is devoted to a proof of various results related to the Fujita conjec-
ture. The main ideas occuring here are inspired by a very recent work of Y.T. Siu
[Siu94a]. His method, which is algebraic in nature and quite elementary, consists in
a combination of the Riemann-Roch formula together with Nadel’s vanishing theo-
rem (in fact, only the algebraic case is needed, thus the original Kawamata-Viehweg
vanishing theorem would be sufficient). In the sequel, X denotes a projective al-
gebraic n-dimensional manifold. The first observation is the following well-known
consequence of the Riemann-Roch formula.

(2.1) Special case of Riemann-Roch. Let J ⊂ OX be a coherent ideal sheaf
on X such that the subscheme Y = V (J ) has dimension d (with possibly some
lower dimensional components). Let [Y ] =

∑
λj [Yj] be the effective algebraic cycle

of dimension d associated to the d dimensional components of Y (taking into ac-
count multiplicities λj given by the ideal J ). Then for any line bundle F , the Euler
characteristic

χ(Y,O(F +mL)↾Y ) = χ(X,O(F +mL) ⊗OX/J )

is a polynomial P (m) of degree d and leading coefficient Ld · [Y ]/d!

The second fact is an elementary lemma about numerical polynomials (polyno-
mials with rational coefficients, mapping Z into Z).
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(2.2) Lemma. Let P (m) be a numerical polynomial of degree d > 0 and leading
coefficient ad/d!, ad ∈ Z, ad > 0. Suppose that P (m) ≥ 0 for m ≥ m0. Then

a) For every integer N ≥ 0, there exists m ∈ [m0, m0 +Nd] such that P (m) ≥ N .

b) For every k ∈ N, there exists m ∈ [m0, m0 + kd] such that P (m) ≥ adk
d/2d−1.

c) For every integer N ≥ 2d2, there exists m ∈ [m0, m0 +N ] such that P (m) ≥ N .

Proof. a) Each of the N equations P (m) = 0, P (m) = 1, . . ., P (m) = N − 1 has at
most d roots, so there must be an integer m ∈ [m0, m0 + dN ] which is not a root of
these.

b) By Newton’s formula for iterated differences ∆P (m) = P (m+1)−P (m), we get

∆dP (m) =
∑

1≤j≤d

(−1)j

(
d

j

)
P (m+ d− j) = ad, ∀m ∈ Z.

Hence if j ∈
{
0, 2, 4, . . . , 2⌊d/2⌋

}
⊂ [0, d] is the even integer achieving the maximum

of P (m0 + d− j) over this finite set, we find

2d−1P (m0 + d− j) =

((
d

0

)
+

(
d

2

)
+ . . .

)
P (m0 + d− j) ≥ ad,

whence the existence of an integer m ∈ [m0, m0 + d] with P (m) ≥ ad/2
d−1. The

case k = 1 is thus proved. In general, we apply the above case to the polynomial
Q(m) = P (km− (k − 1)m0), which has leading coefficient adk

d/d!

c) If d = 1, part a) already yields the result. If d = 2, a look at the parabola shows
that

max
m∈[m0,m0+N ]

P (m) ≥

{
a2N

2/8 if N is even,
a2(N

2 − 1)/8 if N is odd;

thus maxm∈[m0,m0+N ] P (m) ≥ N whenever N ≥ 8. If d ≥ 3, we apply b) with k

equal to the smallest integer such that kd/2d−1 ≥ N , i.e. k = ⌈2(N/2)1/d⌉, where
⌈x⌉ ∈ Z denotes the round-up of x ∈ R. Then kd ≤ (2(N/2)1/d + 1)d ≤ N whenever
N ≥ 2d2, as a short computation shows. �

We now apply Nadel’s vanishing theorem pretty much in the same way as Siu
[Siu94a], but with substantial simplifications in the technique and improvements in
the bounds. Our method yields simultaneously a simple proof of the following basic
result.

(2.3) Theorem. If L is an ample line bundle over a projective n-fold X, then
KX + (n+ 1)L is nef.

By using Mori theory and the base point free theorem ([Mor82], [Kaw84]), one
can even show that KX + (n+ 1)L is semiample, i.e., there exists a positive integer
m such that m(KX + (n+ 1)L) is generated by sections (see [Kaw85] and [Fuj87]).
The proof rests on the observation that n + 1 is the maximal length of extremal
rays of smooth projective n-folds. Our proof of (2.3) is different and will be given
simultaneously with the proof of Th. (2.4) below.
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(2.4) Theorem. Let L be an ample line bundle and let G be a nef line bundle on
a projective n-fold X. Then the following properties hold.

a) 2KX +mL+G generates simultaneous jets of order s1, . . . , sp ∈ N at arbitrary
points x1, . . . , xp ∈ X, i.e., there is a surjective map

H0(X, 2KX +mL+G) −→−→
⊕

1≤j≤p

O(2KX +mL+G) ⊗OX,xj
/m

sj+1
X,xj

,

provided that m ≥ 2 +
∑

1≤j≤p

(
3n+ 2sj − 1

n

)
.

In particular 2KX +mL+G is very ample for m ≥ 2 +

(
3n+ 1

n

)
.

b) 2KX +(n+1)L+G generates simultaneous jets of order s1, . . . , sp at arbitrary
points x1, . . . , xp ∈ X provided that the intersection numbers Ld · Y of L over
all d-dimensional algebraic subsets Y of X satisfy

Ld · Y >
2d−1

⌊n/d⌋d

∑

1≤j≤p

(
3n+ 2sj − 1

n

)
.

Proof. The proofs of (2.3) and (2.4 a, b) go along the same lines, so we deal with
them simultaneously (in the case of (2.3), we simply agree that {x1, . . . , xp} = ∅).
The idea is to find an integer (or rational number) m0 and a singular hermitian
metric h0 on KX + m0L with strictly positive curvature current Θh0

≥ εω, such
that V (I(h0)) is 0-dimensional and the weight ϕ0 of h0 satisfies ν(ϕ0, xj) ≥ n+ sj

for all j. As L and G are nef, (m−m0)L+G has for all m ≥ m0 a metric h′ whose
curvature Θh′ has arbitrary small negative part (see [Dem90]), e.g., Θh′ ≥ − ε

2
ω.

Then Θh0
+ Θh′ ≥ ε

2ω is again positive definite. An application of Cor (1.5) to
F = KX +mL + G = (KX +m0L) + ((m −m0)L+ G) equipped with the metric
h0 ⊗ h′ implies the existence of the desired sections in KX + F = 2KX +mL + G
for m ≥ m0.

Let us fix an embedding Φ|µL| : X → PN , µ≫ 0, given by sections λ0, . . . , λN ∈
H0(X, µL), and let hL be the associated metric on L of positive definite curvature
form ω = Θ(L). In order to obtain the desired metric h0 on KX + m0L, we fix
a ∈ N⋆ and use a double induction process to construct singular metrics (hk,ν)ν≥1

on aKX + bkL for a non increasing sequence of positive integers b1 ≥ b2 ≥ . . . ≥
bk ≥ . . . . Such a sequence much be stationary and m0 will just be the stationary
limit m0 = lim bk/a. The metrics hk,ν are taken to satisfy the following properties:

α) hk,ν is an algebraic metric of the form

‖ξ‖2
hk,ν

=
|τk(ξ)|2

( ∑
1≤i≤ν, 0≤j≤N

∣∣τ (a+1)µ
k (σaµ

i · λ
(a+1)bk−ami

j )
∣∣2)1/(a+1)µ

,

defined by sections σi ∈ H0(X, (a + 1)KX + miL), mi <
a+1

a bk, 1 ≤ i ≤ ν,
where ξ 7→ τk(ξ) is an arbitrary local trivialization of aKX + bkL ; note that

σaµ
i · λ

(a+1)bk−ami

j is a section of
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aµ((a+ 1)KX +miL) + ((a+ 1)bk − ami)µL = (a+ 1)µ(aKX + bkL).

β) ordxj
(σi) ≥ (a+ 1)(n+ sj) for all i, j ;

γ) I(hk,ν+1) ⊃ I(hk,ν) and I(hk,ν+1) 6= I(hk,ν) whenever the zero variety
V (I(hk,ν)) has positive dimension.

The weight ϕk,ν = 1
2(a+1)µ

log
∑ ∣∣τ (a+1)µ

k (σaµ
i ·λ

(a+1)bk−ami

j )
∣∣2 of hk,ν is plurisubhar-

monic and the condition mi <
a+1

a
bk implies (a+1)bk−ami ≥ 1, thus the difference

ϕk,ν − 1
2(a+1)µ log

∑
|τ(λj)|

2 is also plurisubharmonic. Hence Θhk,ν
(aKX + bkL) =

i
π∂∂ϕk,ν ≥ 1

(a+1)ω. Moreover, condition β) clearly implies ν(ϕk,ν , xj) ≥ a(n + sj).

Finally, condition γ) combined with the strong Noetherian property of coherent
sheaves ensures that the sequence (hk,ν)ν≥1 will finally produce a zero dimensional
subscheme V (I(hk,ν)). We agree that the sequence (hk,ν)ν≥1 stops at this point,
and we denote by hk = hk,ν the final metric, such that dimV (I(hk)) = 0.

For k = 1, it is clear that the desired metrics (h1,ν)ν≥1 exist if b1 is taken
large enough (so large, say, that (a + 1)KX + (b1 − 1)L generates jets of order
(a+ 1)(n+ max sj) at every point; then the sections σ1, . . . , σν can be chosen with
m1 = . . . = mν = b1 − 1). Suppose that the metrics (hk,ν)ν≥1 and hk have been
constructed and let us proceed with the construction of (hk+1,ν)ν≥1. We do this
again by induction on ν, assuming that hk+1,ν is already constructed and that
dimV (I(hk+1,ν)) > 0. We start in fact the induction with ν = 0, and agree in
this case that I(hk+1,0) = 0 (this would correspond to an infinite metric of weight
identically equal to −∞). By Nadel’s vanishing theorem applied to Fm = aKX +
mL = (aKX + bkL) + (m− bk)L with the metric hk ⊗ (hL)⊗m−bk , we get

Hq(X,O((a+ 1)KX +mL) ⊗ I(hk)) = 0 for q ≥ 1, m ≥ bk.

As V (I(hk)) is 0-dimensional, the sheaf OX/I(hk) is a skyscraper sheaf, and the
exact sequence 0 → I(hk) → OX → OX/I(hk) → 0 twisted with the invertible
sheaf O((a+ 1)KX +mL) shows that

Hq(X,O((a+ 1)KX +mL)) = 0 for q ≥ 1, m ≥ bk.

Similarly, we find

Hq(X,O((a+ 1)KX +mL) ⊗ I(hk+1,ν)) = 0 for q ≥ 1, m ≥ bk+1

(also true for ν = 0, since I(hk+1,0) = 0), and when m ≥ max(bk, bk+1) = bk, the
exact sequence 0 → I(hk+1,ν) → OX → OX/I(hk+1, ν) → 0 implies

Hq(X,O((a+ 1)KX +mL) ⊗OX/I(hk+1,ν)) = 0 for q ≥ 1, m ≥ bk.

In particular, since the H1 group vanishes, every section u′ of (a+ 1)KX +mL on
the subscheme V (I(hk+1,ν)) has an extension u to X . Fix a basis u′1, . . . , u

′
N of the

sections on V (I(hk+1,ν)) and take arbitrary extensions u1, . . . , uN to X . Look at
the linear map assigning the collection of jets of order (a+1)(n+sj)−1 at all points
xj

u =
∑

1≤j≤N

ajuj 7−→
⊕

J (a+1)(n+sj)−1
xj

(u).
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Since the rank of the bundle of s-jets is
(
n+s

n

)
, the target space has dimension

δ =
∑

1≤j≤p

(
n+ (a+ 1)(n+ sj) − 1

n

)
.

In order to get a section σν+1 = u satisfying condition β) with non trivial restriction
σ′

ν+1 to V (I(hk+1,ν)), we need at least N = δ + 1 independent sections u′1, . . . , u
′
N .

This condition is achieved by applying Lemma (2.2) to the numerical polynomial

P (m) = χ(X,O((a+ 1)KX +mL) ⊗OX/I(hk+1,ν))

= h0(X,O((a+ 1)KX +mL) ⊗OX/I(hk+1,ν)) ≥ 0, m ≥ bk.

The polynomial P has degree d = dimV (I(hk+1,ν)) > 0. We get the existence of
an integer m ∈ [bk, bk + η] such that N = P (m) ≥ δ + 1 with some explicit integer
η ∈ N (for instance η = n(δ + 1) always works by (2.2 a), but we will also use the
other possibilities to find an optimal choice in each case). Then we find a section
σν+1 ∈ H0(X, (a+ 1)KX +mL) with non trivial restriction σ′

ν+1 to V (I(hk+1,ν)),
vanishing at order ≥ (a + 1)(n+ sj) at each point xj . We just set mν+1 = m, and
the condition mν+1 <

a+1
a bk+1 is satisfied if bk + η < a+1

a bk+1. This shows that we
can take inductively

bk+1 =

⌊
a

a+ 1
(bk + η)

⌋
+ 1.

By definition, hk+1,ν+1 ≤ hk+1,ν , hence I(hk+1,ν+1) ⊃ I(hk+1,ν). We necessar-
ily have I(hk+1,ν+1) 6= I(hk+1,ν), for I(hk+1,ν+1) contains the ideal sheaf as-
sociated with the zero divisor of σν+1, whilst σν+1 does not vanish identically
on V (I(hk+1,ν)). Now, an easy computation shows that the iteration of bk+1 =
⌊ a

a+1
(bk + η)⌋ + 1 stops at bk = a(η + 1) + 1 for any large initial value b1. In this

way, we obtain a metric h∞ of positive definite curvature on aKX +(a(η+1)+1)L,
with dimV (I(h∞)) = 0 and ν(ϕ∞, xj) ≥ a(n+ sj) at each point xj .

Proof of (2.3). In this case, the set {xj} is taken to be empty, thus δ = 0. By (2.2 a),
the condition P (m) ≥ 1 is achieved for some m ∈ [bk, bk +n] and we can take η = n.
As µL is very ample, there exists on µL a metric with an isolated logarithmic pole
of Lelong number 1 at any given point x0 (e.g., the algebraic metric defined with
all sections of µL vanishing at x0). Hence

F ′
a = aKX + (a(n+ 1) + 1)L+ nµL

has a metric h′a such that V (I(h′a)) is zero dimensional and contains {x0}. By
Cor (1.5), we conclude that

KX + F ′
a = (a+ 1)KX + (a(n+ 1) + 1 + nµ)L

is generated by sections, in particular KX + a(n+1)+1+nµ
a+1 L is nef. As a tends to +∞,

we infer that KX + (n+ 1)L is nef. �

Proof of (2.4 a). Here, the choice a = 1 is sufficient for our purposes. Then
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δ =
∑

1≤j≤p

(
3n+ 2sj − 1

n

)
.

If {xj} 6= ∅, we have δ + 1 ≥
(
3n−1

n

)
+ 1 ≥ 2n2 for n ≥ 2. Lemma (2.2 c) shows that

P (m) ≥ δ + 1 for some m ∈ [bk, bk + η] with η = δ + 1. We can start in fact the
induction procedure k 7→ k + 1 with b1 = η + 1 = δ + 2, because the only property
needed for the induction step is the vanishing property

H0(X, 2KX +mL) = 0 for q ≥ 1, m ≥ b1,

which is true by the Kodaira vanishing theorem and the ampleness of KX + b1L
(here we use Fujita’s result (2.3), observing that b1 > n + 1). Then the recursion
formula bk+1 = ⌊1

2
(bk + η)⌋ + 1 yields bk = η + 1 = δ + 2 for all k, and (2.4 a)

follows. �

Proof of (2.4 b). Quite similar to (2.4 a), except that we take η = n, a = 1 and
bk = n+1 for all k. By Lemma (2.2 b), we have P (m) ≥ adk

d/2d−1 for some integer
m ∈ [m0, m0 +kd], where ad > 0 is the coefficient of highest degree in P . By Lemma
(2.1) we have ad ≥ infdim Y =d L

d ·Y . We take k = ⌊n/d⌋. The condition P (m) ≥ δ+1
can thus be realized for some m ∈ [m0, m0 + kd] ⊂ [m0, m0 + n] as soon as

inf
dim Y =d

Ld · Y ⌊n/d⌋d/2d−1 > δ,

which is equivalent to the condition given in (2.4 b). �

Theorem (0.2 a) is a special case of Th. (2.4 a). Theorem (0.2 b) can be derived
from (2.4 b) by using the following simple lemma.

(2.5) Lemma. Assume that for some integer µ ∈ N⋆ the line bundle µF gene-
rates simultaneously all jets of order µ(n + sj) + 1 at any point xj in a subset
{x1, . . . , xp} ⊂ X. Then KX +F generates simultaneously all jets of order sj at xj.

Proof. Take the algebraic metric on F defined by a basis of sections σ1, . . . , σN of µF
which vanish at order µ(n+ sj) + 1 at all points xj . Since we are still free to choose
the homogeneous term of degree µ(n + sj) + 1 in the Taylor expansion at xj , we
find that x1, . . . , xp are isolated zeroes of

⋂
σ−1

j (0). If ϕ is the weight of the metric

of F near xj , we thus have ϕ(z) ∼ (n+ sj + 1
µ) log |z − xj | in suitable coordinates.

We replace ϕ in a neighborhood of xj by

ϕ′(z) = max
(
ϕ(z) , |z|2 − C + (n+ sj) log |z − xj|

)

and leave ϕ elsewhere unchanged (this is possible by taking C > 0 very large).
Then ϕ′(z) = |z|2 − C + (n + sj) log |z − xj | near xj , in particular ϕ′ is strictly
plurisubharmonic near xj . In this way, we get a metric h′ on F with semipositive
curvature everywhere on X , and with positive definite curvature on a neighborhood
of {x1, . . . , xp}. The conclusion then follows from Cor. (1.5) and Rem. (1.6). �

Proof of Theorem (0.2 b). By Lemma (2.5) applied with F = KX +L and µ = n+1,
the desired jet generation of 2KX + L occurs if (n + 1)(KX + L) generates jets of
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order (n+1)(n+sj)+1 at xj . By Lemma (2.5) again with F = aKX +(n+1)L and
µ = 1, we see by backward induction on a that we need the simultaneous generation
of jets of order (n + 1)(n + sj) + 1 + (n + 1 − a)(n + 1) at xj . In particular, for
2KX + (n + 1)L we need the generation of jets of order (n + 1)(2n + sj − 1) + 1.
Theorem (2.4 b) yields the desired condition. �

Proof of Theorem (0.2 c). Apply Th. (2.4 a) with G′ = a(KX + (n + 1)L) + G, so
that

2KX +mL+G′ = (a+ 2)(KX + (n+ 2)L) + (m− 2n− 4 − a)L+G,

and take m = a+ 2n+ 4 ≥ 2 +
(
3n+1

n

)
. �

3. An Estimate for L
2 Dualizing Sheaves

If Y is a complex p-dimensional analytic space with arbitrary singularities, we define
the L2 dualizing sheaf of Y to be the sheaf of holomorphic p-forms u on the regular
part Yreg which are locally L2 near Ysing, that is, for any open set W ⊂ Y ,

Γ (W,ωY ) =
{
u ∈ Γ (W ∩ Yreg, Ω

p
Yreg

) ; ∀x ∈W, ∃V ∋ x,

∫

V ∩Yreg

ip
2

u ∧ u < +∞
}
,

where V is an arbitrary neighborhood of x. It is easily seen that ωY is the direct
image of the dualizing sheaf K

Ỹ
of a desingularization of Y , thus ωY is a coherent

sheaf on Y (ωY is just the usual dualizing sheaf of algebraic geometers). Then we
have the following optimal “upper estimate” for ωY .

(3.1) Theorem. Let H be a very ample line bundle on a projective algebraic man-
ifold X, and let Y ⊂ X be a p-dimensional irreducible algebraic subvariety. If δ =
Hp · Y is the degree of Y with respect to H, the sheaf Hom

(
ωY ,OY ((δ − p− 2)H)

)

has a nontrivial section.

Observe that if Y is a smooth hypersurface of degree δ in (X,H) = (Pp+1,O(1)),
then ωY = OY (δ − p− 2) and the estimate is optimal. On the other hand, if Y is a
smooth complete intersection of multidegree (δ1, . . . , δr) in Pp+r, then δ = δ1 . . . δr
whilst ωY = OY (δ1 + . . . + δr − p − r − 1) ; in this case, Th. (3.1) is thus very far
from being sharp.

Proof. Let X ⊂ PN be the embedding given by H, so that H = OX(1). There
is a linear projection Pn

≻ Pp+1 whose restriction π : Y → Pp+1 to Y is a
finite and regular birational map of Y onto an algebraic hypersurface Y ′ of degree
δ in Pp+1. Let s ∈ H0(Pp+1,O(δ)) be the polynomial of degree δ defining Y ′. We
claim that for any small Stein open set W ⊂ Pp+1 and any L2 holomorphic p-
form u on Y ′ ∩ W , there is a L2 holomorphic (p + 1)-form ũ on W with values
in O(δ) such that ũ↾Y ′∩W = u ∧ ds. In fact, this is precisely the conclusion of the
Ohsawa-Takegoshi extension theorem [OT87], [Ohs88] (see also [Man93] for a more
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general version); one can also invoke more standard local algebra arguments (see
Hartshorne [Har77], Th. III-7.11). As KPp+1 = O(−p − 2), the form ũ can be seen
as a section of O(δ− p− 2) on W , thus the sheaf morphism u 7→ u∧ ds extends into
a global section of Hom

(
ωY ′ ,OY ′(δ − p− 2)

)
. The pull-back by π⋆ yields a section

of Hom
(
π⋆ωY ′ ,OY ((δ − p− 2)H)

)
. Since π is finite and generically 1 : 1, it is easy

to see that π⋆ωY ′ = ωY . The Theorem follows. �

4. An Effective Version of Matsusaka’s Big Theorem

Let L be an ample line bundle on a projective algebraic manifold X . We look for
an explicit value of m0 such that mL is very ample for m ≥ m0. As in [Siu93], our
starting point is the following lemma.

(4.1) Lemma. Let F and G be nef line bundles over X. If Fn > nFn−1 · G, all
large positive multiples k(F −G), k ≥ k0, have non trivial sections.

Proof. This is a special case of the holomorphic Morse inequalities (see [Dem85],
[Tra95], [Siu93]). Here is a simple proof, following a suggestion of F. Catanese. We
can suppose that F and G are very ample (otherwise, we replace F and G by
pF + A and pG + A with A very ample and large enough, and p > 0 very large).
Then O(k(F −G)) ≃ O(kF −G1 − . . .−Gk) for arbitrary members G1, . . . , Gk in
the linear system |G|, and the Lemma follows from Riemann-Roch by looking at the
restriction morphism H0(X,O(kF )) →

⊕
H0(Gj ,O(kF↾Gj

). �

(4.2) Corollary. Let F and G be nef line bundles over X. If F is big and m >
nFn−1 ·G/Fn, then O(mF−G) can be equipped with a (possibly singular) hermitian
metric h with positive definite curvature form Θh(mF −G) ≥ εω, ε > 0, for some
Kähler metric ω.

Proof. In fact, if A is ample and ε ∈ Q+ small enough, Lemma (4.1) implies that
some multiple k(mF−G−εA) has a section. Let E be the divisor of this section and
let ω = Θ(A) ∈ c1(A) be a Kähler form. Then mF −G ≡ εA+ 1

kE can be equipped
with a singular metric h of curvature form Θh(mF −G) = εΘ(A) + 1

k [E] ≥ εω. �

We now consider the question of obtaining a nontrivial section in mL. The idea,
more generally, is to obtain a criterion for the ampleness of mL−B when B is nef.
In this way, one is able to subtract from mL any undesirable multiple of KX which
otherwise gets added to L by the application of Nadel’s vanishing theorem (for this,
we simply replace B by B plus a multiple of KX + (n+ 1)L).

(4.3) Proposition. Let L be an ample line bundle over a projective n-fold X and
let B be a nef line bundle over X. Then KX + mL − B has a nonzero section for
some integer m such that
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m ≤ n
Ln−1 ·B

Ln
+ n+ 1.

Proof. Let m0 be the smallest integer > n Ln−1·B
Ln . Then m0L − B can be equip-

ped with a singular hermitian metric h of positive definite curvature. By Nadel’s
vanishing theorem, we have

Hq(X,O(KX +mL−B) ⊗ I(h)) = 0 for q ≥ 1,

thus P (m) = h0(X,O(KX +mL − B) ⊗ I(h)) is a polynomial for m ≥ m0. Since
P is a polynomial of degree n and is not identically zero, there must be an integer
m ∈ [m0, m0 + n] which is not a root. Hence there is a nontrivial section in

H0(X,O(KX +mL−B)) ⊃ H0(X,O(KX +mL−B) ⊗ I(h))

for some m ∈ [m0, m0 + n], as desired. �

(4.4) Corollary. If L is ample and B is nef, mL − B has a nonzero section for
some integer

m ≤ n
(Ln−1 ·B + Ln−1 ·KX

Ln
+ n+ 1

)
.

Proof. By Fujita’s result (2.3 a), KX + (n + 1)L is nef. We can thus replace B by
B +KX + (n+ 1)L in the result of Prop. (4.3). Corollary (4.4) follows. �

(4.5) Remark. We do not know if the above Corollary is sharp, but it is certainly
not far from being so. Indeed, for B = 0, the initial constant n cannot be replaced
by anything smaller than n/2 : take X to be a product of curves Cj of large genus
gj and B = 0; our bound for L = O(a1[p1]) ⊗ . . . ⊗ O(an[pn]) to have |mL| 6= ∅
becomes m ≤

∑
(2gj − 2)/aj + n(n+ 1), which fails to be sharp only by a factor 2

when a1 = . . . = an = 1 and g1 ≫ g2 ≫ . . . ≫ gn → +∞. On the other hand, the
additive constant n+ 1 is already best possible when B = 0 and X = Pn. �

So far, the method is not really sensitive to singularities (Lemma (4.1) is still
true in the singular case as is easily seen by using a desingularization of X). The
same is true with Nadel’s vanishing Theorem (1.2), provided that KX ⊗ I(h) is
replaced by the sheaf ωX(h) of n-forms which are locally L2 near Xsing with respect
to the weight e−ϕ of h (according to that notation, the L2 dualizing sheaf ωX is
associated with ϕ = 0 or with any nonsingular weight ϕ). Then Prop. (4.3) can be
generalized as

(4.6) Proposition. Let L be an ample line bundle over a projective n-fold X and
let B be a nef line bundle over X. For every p-dimensional (reduced) algebraic
subvariety Y of X, there is an integer

m ≤ p
Lp−1 ·B · Y

Lp · Y
+ p+ 1

such that the sheaf ωY ⊗OY (mL−B) has a nonzero section. �



14 Effective Bounds for Very Ample Line Bundles

By an appropriate induction process based on the above results, we can now
improve Siu’s effective version of the Big Matsusaka Theorem [Siu93]. Our version
depends on a constant λn such that m(KX + (n + 2)L) + G is very ample for
m ≥ λn and every nef line bundle G. Theorem (0.2 c) shows that λn ≤

(
3n+1

n

)
− 2n,

and a similar argument involving the recent results of Angehrn-Siu [AS94] implies
λn ≤ n3 − n2 − n− 1 for n ≥ 2. Of course, it is expected that λn = 1 in view of the
Fujita conjecture.

(4.7) Effective version of the Big Matsusaka Theorem. Let L and B be
nef line bundles on a projective n-fold X. Assume that L is ample and set H =
λn(KX + (n+ 2)L). Then mL−B is very ample for

m ≥ (2n)(3
n−1−1)/2 (Ln−1 · (B +H))(3

n−1+1)/2(Ln−1 ·H)3
n−2(n/2−3/4)−1/4

(Ln)3n−2(n/2−1/4)+1/4
.

In particular mL is very ample for

m ≥ Cn (Ln)3
n−2

(
n+ 2 +

Ln−1 ·KX

Ln

)3n−2(n/2+3/4)+1/4

with Cn = (2n)(3
n−1−1)/2(λn)3

n−2(n/2+3/4)+1/4.

Proof. We use Th. (3.1) and Prop. (4.6) to construct inductively a sequence of (non
necessarily irreducible) algebraic subvarieties X = Yn ⊃ Yn−1 ⊃ . . . ⊃ Y2 ⊃ Y1 such
that Yp =

⋃
j Yp,j is p-dimensional, and Yp−1 is obtained for each p ≥ 2 as the union

of zero sets of sections

σp,j ∈ H0(Yp,j,OYp,j
(mp,jL−B))

with suitable integers mp,j ≥ 1. We proceed by induction on decreasing values of
the dimension p, and find inductively upper bounds mp for the integers mp,j .

By Cor. (4.4), an integer mn for mnL − B to have a section σn can be found
with

mn ≤ n
Ln−1 · (B +KX + (n+ 1)L)

Ln
≤ n

Ln−1 · (B +H)

Ln
.

Now suppose that the sections σn, . . ., σp+1,j have been constructed. Then we get

inductively a p-cycle Ỹp =
∑
µp,jYp,j defined by Ỹp = sum of zero divisors of

sections σp+1,j in Ỹp+1,j, where the mutiplicity µp,j on Yp,j ⊂ Yp+1,k is obtained by
multiplying the corresponding multiplicity µp+1,k with the vanishing order of σp+1,k

along Yp,j. As cohomology classes, we find

Ỹp ≡
∑

(mp+1,kL−B) · (µp+1,kYp+1,k) ≤ mp+1L · Ỹp+1.

Inductively, we thus have the numerical inequality

Ỹp ≤ mp+1 . . .mnL
n−p.

Now, for each component Yp,j, Prop. (4.6) shows that there exists a section of
ωYp,j

⊗OYp,j
(mp,jL−B) for some integer
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mp,j ≤ p
Lp−1 ·B · Yp,j

Lp · Yp,j
+ p+ 1 ≤ pmp+1 . . .mn L

n−1 ·B + p+ 1.

Here, we have used the obvious lower bound Lp−1 · Yp,j ≥ 1 (this is of course a
rather weak point in the argument). The degree of Yp,j with respect to H admits
the upper bound

δp,j := Hp · Yp,j ≤ mp+1 . . .mnH
p · Ln−p.

We use the Hovanski-Teissier concavity inequality

(Ln−p ·Hp)
1
p (Ln)1−

1
p ≤ Ln−1 ·H

([Hov79], [Tei79, 82], see also [Dem93]) to express our bounds in terms of the inter-
section numbers Ln and Ln−1 ·H only. We then get

δp,j ≤ mp+1 . . .mn
(Ln−1 ·H)p

(Ln)p−1
.

By Th. (3.1), there is a nontrivial section in

Hom
(
ωYp,j

,OYp,j
((δp,j − p− 2)H)

)
.

Combining this section with the section in ωYp,j
⊗OYp,j

(mp,jL − B) already cons-
tructed, we get a section of OYp,j

(mp,jL − B + (δp,j − p − 2)H) on Yp,j. Since we
do not want H to appear at this point, we replace B with B + (δp,j − p− 2)H and
thus get a section σp,j of OYp,j

(mp,jL−B) with some integer mp,j such that

mp,j ≤ pmp+1 . . .mn L
n−1 · (B + (δp,j − p− 2)H) + p+ 1

≤ pmp+1 . . .mn δp,j L
n−1 · (B +H)

≤ p (mp+1 . . .mn)2
(Ln−1 ·H)p

(Ln)p−1
Ln−1 · (B +H).

Therefore, by putting M = nLn−1 · (B +H), we get the recursion relation

mp ≤M
(Ln−1 ·H)p

(Ln)p−1
(mp+1 . . .mn)2 for 2 ≤ p ≤ n− 1,

with initial value mn ≤ M/Ln. If we let (mp) be the sequence obtained by the
same recursion formula with equalities instead of inequalities, we get mp ≤ mp with
mn−1 = M3(Ln−1 ·H)n−1/(Ln)n and

mp =
Ln

Ln−1 ·H
m2

p+1mp+1

for 2 ≤ p ≤ n− 2. We then find inductively

mp ≤ mp = M3n−p (Ln−1 ·H)3
n−p−1(n−3/2)+1/2

(Ln)3n−p−1(n−1/2)+1/2
.

We next show that m0L−B is nef for

m0 = max
(
m2 , m3, . . . , mn , m2 . . .mn L

n−1 ·B
)
.
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In fact, let C ⊂ X be an arbitrary irreducible curve. Either C = Y1,j for some j or
there exists an integer p = 2, . . . , n such that C is contained in Yp but not in Yp−1.
If C ⊂ Yp,j rYp−1, then σp,j does not vanish identically on C. Hence (mp,jL−B)↾C

has nonnegative degree and

(m0L−B) · C ≥ (mp,jL−B) · C ≥ 0.

On the other hand, if C = Y1,j , then

(m0L−B) · C ≥ m0 −B · Ỹ1 ≥ m0 −m2 . . .mn L
n−1 ·B ≥ 0.

By the definition of λn (and the proof of (0.2 c) that such a constant exists), H +G
is very ample for every nef line bundle G, in particular H +m0L−B is very ample.
We thus replace again B with B + H. This has the effect of replacing M with
M = n

(
Ln−1 · (B + 2H)

)
and m0 with

m0 = max
(
mn , mn−1, . . . , m2 , m2 . . .mn L

n−1 · (B +H)
)
.

The last term is the largest one, and from the estimate on mp , we get

m0 ≤M (3n−1−1)/2 (Ln−1 ·H)(3
n−2−1)(n−3/2)/2+(n−2)/2(Ln−1 · (B +H))

(Ln)(3n−2−1)(n−1/2)/2+(n−2)/2+1

≤ (2n)(3
n−1−1)/2 (Ln−1 · (B +H))(3

n−1+1)/2(Ln−1 ·H)3
n−2(n/2−3/4)−1/4

(Ln)3n−2(n/2−1/4)+1/4

�

(4.8) Remark. In the surface case n = 2, one can take λn = 1 and our bound
yields mL very ample for

m ≥ 4
(L · (KX + 4L))2

L2
.

If one looks more carefully at the proof, the initial constant 4 can be replaced by 2.
In fact, it has been shown recently by Fernández del Busto that mL is very ample
for

m >
1

2

[
(L · (KX + 4L) + 1)2

L2
+ 3

]
,

and an example of G. Xiao shows that this bound is essentially optimal (see [FdB94]).
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