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Laboratoire associé au C.N.R.S. n̊ 188,
F-38402 Saint-Martin d’Hères

Abstract. — Let E be a holomorphic vector bundle of rank r over a
compact complex manifold X of dimension n . It is shown that the Dolbeault
cohomology groups Hp,q(X, E⊗k ⊗ (det E)l) vanish if E is positive in the sense
of Griffiths and p + q ≥ n + 1 , l ≥ r + C(n, p, q) . The proof rests on the well-
known fact that every tensor power E⊗k splits into irreducible representations of
Gl(E) , each component being canonically isomorphic to the direct image on X
of a positive homogeneous line bundle over a flag manifold of E . The vanishing
property is then obtained by a suitable generalization of Le Potier’s isomorphism
theorem, combined with a new curvature estimate for the bundle of X–relative
differential forms on the flag manifold of E .

0. Statement of results.

The aim of this work is to prove a rather general vanishing theorem for
cohomology groups of tensor powers of a positive vector bundle.

Let X be a complex compact n–dimensional manifold and E a hermitian
vector bundle of rank r over X . We denote by C∞

p,q(X, E) the space of smooth
E–valued differential forms of type (p, q) on X and by

DE = D′
E + D′′

E : C∞
p,q(X, E) −→ C∞

p+1,q(X, E)⊕ C∞
p,q+1(X, E)

(or simply D = D′ + D′′ ) the Chern connection of E . Let (x1, . . . , xn) be holo-
morphic coordinates on X and (e1, . . . , en) a local C∞ orthonormal frame of E .
The Chern curvature tensor c(E) is defined by D2 = c(E)∧ • and may be written

c(E) =
∑

i,j,λ,µ

cijλµ dxi ∧ dxj ⊗ e⋆
λ ⊗ eµ , 1 ≤ i, j ≤ n , 1 ≤ λ, µ ≤ r .

The curvature tensor ic(E) is in fact a (1,1)–form with values in the bundle
Herm(E, E) of hermitian endomorphisms of E , i.e. cijλµ = cjiµλ ; thus ic(E) can
be identified with a hermitian form on TX ⊗ E .

Let us recall that the bundle E is said to be positive, resp. semi-positive
(in the sense of Griffiths [8]) if E can be endowed with a hermitian metric such
that at every point x ∈ X one has

ic(E)x(ζ ⊗ v, ζ ⊗ v) =
∑

i,j,λ,µ

cijλµ(x) ζiζjvλvµ > 0 , resp. ≥ 0
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for all non zero vectors ζ =
∑

ζi ∂/∂zi ∈ TxX , v =
∑

vλeλ ∈ Ex . Every vector
bundle E generated by sections is ≥ 0 .

Another important concept is that of ampleness, for which we refer to
Hartshorne [9] ; a vector bundle E is ample if and only if the line bundle OE(1) over
P (E⋆) is ample (or equivalently > 0) . It is also well-known that E > 0 implies
E ample, but the converse is unknown.

In the case of a positive or ample vector bundle E of rank r > 1 , only
very few general and optimal vanishing results are available for the Dolbeault
cohomology groups Hp,q of tensor powers of E . For example, the famous
Le Potier vanishing theorem [13] :

E ample =⇒ Hp,q(X, E) = 0 for p + q ≥ n + r

does not extend to symmetric powers SkE , even when p = n and q = n − 2
(cf. [11]) . Nevertheless, the following result shows that the vanishing property is
true for tensor powers involving a sufficiently large power of det E .

Theorem. — Let L be a holomorphic line bundle over X . Assume that
E > 0 and L ≥ 0 , or E ≥ 0 and L > 0 . For all integers p, q such that p + q ≥ n ,
set

A(n, p, q) =
n(n + 1)(p + 1)(q + 1)

4(p + q − n + 1)
if p < n

and A(n, p, q) = 0 if p = n . Let h ∈ {1, . . . , r − 1} and let ΓaE be the
irreducible tensor power representation of Gl(E) of highest weight a ∈ Zr , with

a1 ≥ a2 ≥ . . . ≥ ah > ah+1 = . . . = ar = 0 .

If p + q ≥ n + 1 then

Hp,q(X, ΓaE ⊗ (det E)l ⊗ L) = 0 for l ≥ h + A(n, p, q) .

The proof of this theorem is based on analysis and differential geometry,
but an analogous result can be obtained in a purely algebraic way (cf. [5]); in that
case the positivity hypothesis can be replaced by ampleness, the semi-positivity
hypothesis by the fact that the bundle is generated by its global sections; then,
the condition required on l is l ≥ n−p+ r−1 . Both results overlap in most cases,
but the above analytic result can be better if r − h is very large.

Observing that SkE is the irreducible representation of highest weight
(k, 0 , . . . , 0) and that E⊗k splits into irreducible representations of the type
ΓaE ⊗ (detE)l with h ≤ min{k, r − 1} (cf. formula (2.17)), we obtain :

Corollary. — Under the positivity hypotheses of the theorem, then for
all p, q such that p + q ≥ n + 1 one has

(0.1) Hp,q(X, SkE ⊗ (det E)l ⊗ L) = 0 if l ≥ 1 + A(n, p, q) ;

(0.2) Hp,q(X, E⊗k ⊗ (det E)l ⊗ L) = 0 if l ≥ min{k, r − 1} + A(n, p, q) .

The special case p = n of (0.1) is due to P. Griffiths [8] . For p = n and
arbitrary r , k0 ≥ 2 , Peternell-Le Potier and Schneider [11] have constructed an
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example of a vector bundle E > 0 of rank r over a manifold X of dimension n = 2r
such that

(0.3) Hn,n−2(X, SkE) 6= 0 , 2 ≤ k ≤ k0 .

This result shows that the lower bound l ≥ 1 in (0.1) cannot be improved. More
generally, the following example (for which we refer to [5]) shows that our condition
l ≥ h in the theorem is optimal. This example gives a negative answer to a question
of Sommese [15].

Example. — Let X = Gr(V ) be the Grassmannian of subspaces of
codimension r of a vector space V of dimension d , and E the tautological quotient
vector bundle of rank r over X (then E ≥ 0 and L = det E is ample) . Let
h ∈ {1, . . . , r − 1} and a ∈ Zr , β ∈ Zd be such that

a1 ≥ . . . ≥ ah ≥ d − r , ah+1 = . . . = ar = 0 ,

β = (a1 − d + r, . . . , ah − d + r, 0, . . . , 0) .

Set n = dim X = r(d − r) , q = (r − h)(d − r) . Then

(0.4) Hn,q
(
X, ΓaE ⊗ (det E)h

)
= ΓβV ⊗ (det V )h 6= 0 .

Our approach is based on three well-known facts. First, every tensor power
of E splits into irreducible representations of the linear group Gl(E) . It is thus
sufficient to consider “irreducible” tensor powers of E . Secondly, every irreducible
tensor power of E appears in a natural way as the direct image on X of a positive
line bundle over a suitable flag manifold of E . This follows from Bott’s theory
of homogeneous vector bundles [3]. The third fact is the isomorphism theorem of
Le Potier [13], which relates the cohomology groups of E over X to those of the
line bundle OE(1) over P (E⋆) . We generalize here this isomorphism to the case
of arbitrary flag bundles associated to E .

When p = n the above-mentioned algebraic facts suffice to prove the
theorem. However, when p < n , the generalized Borel-Le Potier spectral sequence
does not degenerate at the E1 level (cf. [12]). A possible way in order to overcome
this difficulty is to establish a curvature estimate for the bundle of X–relative
differential forms on the flag manifold of E , using the standard Kodaira-Akizuki-
Nakano inequality [1] . Our estimate (cf. §4) measures in some sense how far is
the spectral sequence from being E1–degenerate. The following related problem is
interesting, but its complete solution certainly requires a better understanding of
the Borel-Le Potier spectral sequence for flag bundles.

Problem. — Given a dominant weight a ∈ Zr with ar = 0 , determine
the smallest admissible constant A(n, p, q) in the theorem.

It is shown in [5] that if the Borel-Le Potier spectral sequence degenerates
in E2 , then it is always sufficient to take l ≥ r − 1 + min{n − p, n − q} . In view
of the above main theorem, one may suspect that the correct answer could be
l ≥ h + min{n − p, n − q} .

The above results have been annouced in the note [4]. The author wishes to
thank warmly Prof. Michel Brion, Friedrich Knopp, Thomas Peternell and Michael
Schneider for valuable remarks which led to substantial improvements of this work.
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1. Kodaira-Akizuki-Nakano vanishing theorem.

We recall here the basic Akizuki-Nakano inequality [1] which will be used
several times in the sequel. Assume that X carries a Kähler metric ω , and let L
be a hermitian line bundle over X . At each point x ∈ X , one can write

ic(L) = i
∑

1≤j≤n

γj dzj ∧ dzj

where (dz1, . . . , dzn) is an ω–orthonormal basis of T ⋆X and where γ1 ≤ . . . ≤ γn

are the curvature eigenvalues of L . For every v ∈ C∞
p,q(X, L) we have

(1.1) ||D′′
Lv||2 + ||D′′

L
⋆v||2 ≥ 〈ΘLv , v〉 ,

where ΘL is the hermitian endomorphism defined by

(1.2) 〈ΘLv , v〉 =
∑

|I|=p,|J|=q

(
γI + γJ −

∑

1≤j≤n

γj

)
|vI,J |2 ,

with γI =
∑

m∈I γm . When L is > 0 , one can choose ω = ic(L) as the Kähler
metric on X ; in that case γ1 = . . . = γn = 1 and therefore

(1.3) ||D′′
Lv||2 + ||D′′

L
⋆v||2 ≥ (p + q − n)||v||2 .

Corollary (Kodaira-Akizuki-Nakano). — One has

(1.4) L > 0 =⇒ Hp,q(X, L) = 0 for p + q ≥ n + 1 ,

(1.5) L < 0 =⇒ Hp,q(X, L) = 0 for p + q ≤ n − 1 .

2. Homogeneous line bundles over flag manifolds and

irreducible representations of the linear group.

The aim of this section is to settle notations and to recall a few basic results
on homogeneous line bundles over flag manifolds. The classical foundation works
on this subject are Borel-Weil [2] and R. Bott [3] , which contain all the required
material (cf. also Demazure [6] for a very simple proof of Bott’s formula). We will
give however an independent self-contained exposition in order to prepare the tools
needed in the differential geometric approach of §4 .

Let Br (resp. Br ) be the Borel subgroup of Glr = Gl(Cr) of lower (resp.
upper) triangular matrices, Ur ⊂ Br , Ur ⊂ Br the subgroups of unipotent
matrices, and T r = Br ∩ Br the complex torus (C⋆)r of diagonal matrices. Let V
be a complex vector space of dimension r . We denote by M(V ) the manifold of
complete flags

V = V0 ⊃ V1 ⊃ . . . ⊃ Vr = {0} , codimC Vλ = λ .

To every linear isomorphism ζ ∈ Isom(Cr, V ) : (u1, . . . , ur) 7−→
∑

1≤λ≤r uλζλ ,
one can associate the flag [ζ] ∈ M(V ) defined by Vλ = Vect(ζλ+1, . . . , ζr) ,
1 ≤ λ ≤ r . This leads to the identification

M(V ) = Isom(Cr, V )/Br
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where Br acts on the right side. We denote simply by Vλ the tautological vector
bundle of rank r−λ on M(V ) , and we consider the canonical quotient line bundles

(2.1)

{
Qλ = Vλ−1/Vλ , 1 ≤ λ ≤ r ,

Qa = Qa1

1 ⊗ . . .⊗ Qar
r , a = (a1, . . . , ar) ∈ Z

r .

The linear group Gl(V ) acts on M(V ) on the left, and there exist natural
equivariant left actions of Gl(V ) on all bundles Vλ , Qλ , Qa .

We compute now the tangent and cotangent vector bundles of M(V ) . The
action of Gl(V ) on M(V ) yields

(2.2) TM(V ) = Hom(V, V )/W

where W is the subbundle of endomorphisms g ∈ Hom(V, V ) such that g(Vλ) ⊂ Vλ ,
1 ≤ λ ≤ r . Using the self-duality of Hom(V, V ) given by the Killing form
(g1, g2) 7→ tr(g1g2) , we find

(2.3)

{
T ⋆M(V ) =

(
Hom(V, V )/W

)⋆
= W⊥

W⊥ = {g ∈ Hom(V, V ) ; g(Vλ−1) ⊂ Vλ , 1 ≤ λ ≤ r} .

There exists a filtration of T ⋆M(V ) by subbundles of the type

{g ∈ Hom(V, V ) ; g(Vλ) ⊂ Vµ(λ) , λ < µ(λ) , 1 ≤ λ ≤ r}
in such a way that the corresponding graded bundle is the direct sum of the line
bundles Hom(Qλ, Qµ) = Q−1

λ ⊗Qµ , λ < µ ; their tensor product is thus isomorphic
to the canonical line bundle KM(V ) = det(T ⋆M(V )) :

(2.4) KM(V ) = Q1−r
1 ⊗ . . .⊗ Q2λ−r−1

λ ⊗ . . .⊗ Qr−1
r = Qc

where c = (1 − r, . . . , r − 1); c will be called the canonical weight of M(V ) .

• Case of incomplete flag manifolds.

More generally, given any sequence of integers s = (s0, . . . , sm) such that
0 = s0 < s1 < . . . < sm = r , we may consider the manifold Ms(V ) of incomplete
flags

V = Vs0
⊃ Vs1

⊃ . . . ⊃ Vsm
= {0} , codimC Vsj

= sj .

On Ms(V ) we still have tautological vector bundles Vs,j of rank r − sj and line
bundles

(2.5) Qs,j = det(Vs,j−1/Vs,j) , 1 ≤ j ≤ m .

For any r–tuple a ∈ Zr such that asj−1+1 = . . . = asj
, 1 ≤ j ≤ m , we set

Qa
s = Q

as1

s,1 ⊗ . . .⊗ Q
asm
s,m .

If η : M(V ) → Ms(V ) is the natural projection, then

(2.6) η⋆ Vs,j = Vsj
, η⋆Qs,j = Qsj−1+1 ⊗ . . . ⊗ Qsj

, η⋆Qa
s = Qa .

On the other hand, one has the identification

Ms(V ) = Isom(Cr, V )/Bs

where Bs is the parabolic subgroup of matrices (zλµ) with zλµ = 0 for all λ, µ such
that there exists an integer j = 1, . . . , m − 1 with λ ≤ sj and µ > sj . We define
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Us as the unipotent subgroup of lower triangular matrices (zλµ) with zλµ = 0 for
all λ, µ such that sj−1 < λ 6= µ ≤ sj for some j , and we set Bs = tBs , Us = tUs .
In the same way as above, we get

TMs(V ) = Hom(V, V )/Ws , Ws = {g ; g(Vsj−1
) ⊂ Vsj

} ,(2.7)

T ⋆Ms(V ) = W⊥
s ,(2.8)

KMs(V ) = Qs1−r
s,1 ⊗ . . .⊗ Q

sj−1+sj−r
s,j ⊗ . . . ⊗ Qsm−1

s,m = Qc(s)
s(2.9)

where c(s) = (s1 − r, . . . , s1 − r, . . . , sj−1 + sj − r, . . . , sj−1 + sj − r, . . .) is the
canonical weight of Ms(V ) .

• Curvature form of the line bundle Qa .

Assume now that V is a hermitian vector space. Then all our bundles carry
a natural hermitian metric. We are going to compute the curvature of Qa at
any point [e] ∈ M(V ) . Choose an orthonormal basis (e1, . . . , er) of V which
corresponds to the given point [e] . It is clear that eBre

−1 ⊂ Gl(V ) is the isotropy
subgroup of [e] , whereas eUre−1.[e] = [eUr] is an affine open subset of M(V ) ,
corresponding to bases (ζ1, . . . , ζr) of V such that

ζµ = eµ +
∑

λ<µ

zλµeλ , 1 ≤ µ ≤ r , zλµ ∈ C .

Then (zλµ)1≤λ<µ≤r is a coordinate system on [eUr] and the map

M(V ) ∋ [ζ] 7−→ ζ̃µ := ζµ mod Vµ

is a local section of Qµ = Vµ−1/Vµ . Hence

c(Qµ) = −d′d′′ log |ζ̃µ|2 .

Let us identify ζ̃µ with the orthogonal projection of ζµ on Vµ−1 ∩ V ⊥
µ . Then

Gram-Schmidt’s orthogonalization process yields

ζ̃µ = ζµ −
∑

ν>µ

〈ζµ, ζ̃ν〉
|ζ̃ν|2

ζ̃ν , |ζ̃µ|2 = |ζµ|2 −
∑

ν>µ

|〈ζµ, ζ̃ν〉|2
|ζ̃ν |2

.

Since 〈ζµ, ζν〉 = zµν +
∑

λ<µ zλµzλν , it follows by backward induction on ν that

〈ζµ, ζ̃ν〉 = zµν + O(|z|2) for ν > µ , hence

|ζ̃µ|2 = 1 +
∑

λ<µ

|zλµ|2 −
∑

ν>µ

|zµν |2 + O(|z|3) .

We obtain therefore

c(Qµ)[e] = −
∑

λ<µ

dzλµ ∧ dzλµ +
∑

ν>µ

dzµν ∧ dzµν ,(2.10)

c(Qa)[e] =
∑

µ

aµc(Qµ) =
∑

λ<µ

(aλ − aµ)dzλµ ∧ dzλµ .(2.11)

Corollary 2.12. — Qa is ≥ 0 if and only if a1 ≥ a2 ≥ . . . ≥ ar .
If there exists an index j such that aj < aj+1 , then H0(M(V ), Qa) = 0 .

Proof. — Only the second statement and the “only if” part of the first
remain to be proved. Let us observe that the projection η : M(V ) −→ Ms(V ) ,
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s = (0, . . . , j − 1, j + 1, . . . , r) , is a bundle with fibers P (Vj−1/Vj+1) ≃ P
1 .

The restriction of Qλ to each fiber is trivial if λ 6= j, j + 1 whereas Qj↾P1 ≃ O(1)
and Qj+1↾P1 ≃ O(−1) . Therefore Qa

↾P1 ≃ O(aj − aj+1) cannot have any non-zero
section or any semi-positive metric if aj < aj+1 .

When a1 ≥ . . . ≥ ar , the bundle Qa is not necessarily > 0 on M(V ) ; in
fact one can write Qa as the induced bundle η⋆Qa

s where s1 < . . . < sm−1 is the
sequence of integers λ = 1, . . . , r−1 such that aλ+1 > aλ . The affine open subset
[eUs] ⊂ Ms(V ) is a neighborhood of [e] , and Ms(V ) has local coordinates (zλµ)
where λ, µ are such that λ ≤ sj−1 < sj ≤ µ for some j , i.e. aλ > aµ . The
curvature of Qa

s is given formally by the same expression as (2.11) :

(2.13) c(Qa
s)[e] =

∑

aλ>aµ

(aλ − aµ)dzλµ ∧ dzλµ .

We see therefore that Qa
s > 0 on Ms(V ) .

• Cohomology groups of Qa .

It remains now to compute H0(Ms(V ), Qa
s) ≃ H0(M(V ), Qa) when

a1 ≥ . . . ≥ ar . Without loss of generality we may assume that ar ≥ 0 , because
Q1 ⊗ . . . ⊗ Qr = det V is a trivial bundle.

Proposition 2.14. — For all integers a1 ≥ a2 ≥ . . . ≥ ar ≥ 0 , there is a
canonical isomorphism

H0(M(V ), Qa) = ΓaV

where ΓaV ⊂ Sa1V ⊗ . . .⊗ SarV is the set of polynomials f(ζ⋆
1 , . . . , ζ⋆

r ) on (V ⋆)r

which are homogeneous of degree aλ with respect to ζ⋆
λ and invariant under the

left action of Ur on (V ⋆)r = Hom(V, Cr) :

f(ζ⋆
1 , . . . , ζ⋆

λ−1, ζ
⋆
λ + ζ⋆

ν , . . . , ζ⋆
r ) = f(ζ⋆

1 , . . . , ζ⋆
r ) , ∀ν < λ .

Proof. — To any section σ ∈ H0(M(V ), Qa) we associate the holomorphic
function f on Isom(V, Cr) ⊂ (V ⋆)r defined by

f(ζ⋆
1 , . . . , ζ⋆

r ) = (ζ⋆
1 )a1 ⊗ . . .⊗ (ζ⋆

r )ar . σ([ζ1, . . . , ζr])

where (ζ1, . . . , ζr) is the dual basis of (ζ⋆
1 , . . . , ζ⋆

r ) , and where the linear form
induced by ζ⋆

λ on Qλ = Vλ−1/Vλ ≃ Cζλ is still denoted ζ⋆
λ . Let us observe that f

is homogeneous of degree aλ in ζ⋆
λ and locally bounded in a neighborhood of every

r–tuple of (V ⋆)r \ Isom(V, Cr) (because M(V ) is compact and aλ ≥ 0) . Therefore
f can be extended to a polynomial on all (V ⋆)r . The invariance of f under Ur

is clear. Conversely, such a polynomial f obviously defines a unique section σ on
M(V ) .

From the definition of ΓaV , we see that

SkV = Γ(k,0, ... ,0)V ,(2.15)

ΛkV = Γ(1, ... ,1,0, ... ,0)V .(2.16)

For arbitrary a ∈ Zr , proposition 2.14 remains true if we set

ΓaV = Γ(a1−ar , ... ,ar−1−ar,0)V ⊗ (detV )ar when a is non-increasing ,

ΓaV = 0 otherwise .
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The elements a ∈ Z
r will be ordered according to the partial ordering :

a < b iff
∑

1≤λ≤µ

aλ ≥
∑

1≤λ≤µ

bλ , 1 ≤ µ ≤ r .

Bott’s theorem [3] shows that ΓaV is an irreducible representation of Gl(V ) of
highest weight a ; all irreducible representations of Gl(V ) are in fact of this type
(cf. Kraft [10]). In particular, since the weights of the action of a maximal torus
T r ⊂ Gl(V ) on V ⊗k verify a1 + . . . + ar = k and aλ ≥ 0 , we have a canonical
Gl(V )–isomorphism

(2.17) V ⊗k =
⊕

a1+...+ar=k
a1≥...≥ar≥0

µ(a, k) ΓaV

where µ(a, k) > 0 is the multiplicity of the isotypical factor ΓaV in V ⊗k .

Bott’s formula (cf. also Demazure [6] for a very simple proof) gives in fact
the expression of all cohomology groups Hq(M(V ), Qa) , but we will need them
here only in the case of dominant weights a1 ≥ . . . ≥ ar .

Proposition 2.18. — Set N = dimM(V ) , N(s) = dim Ms(V ) .
If asj

− asj+1
≥ 1 , then

(a) HN(s),q(Ms(V ), Qa
s) = 0 for all q ≥ 1

(b) HN(s),0(Ms(V ), Qa
s) = Γa+c(s)V .

Proof. — Under the assumption of (a), Qa
s is > 0 by (2.13). The result

follows therefore from the Kodaira-Akizuki-Nakano theorem. Now (b) is a conse-
quence of proposition 2.14 since

HN(s),q(Ms(V ), Qa
s) = Hq(Ms(V ), KMs(V ) ⊗ Qa

s) = Hq(Ms(V ), Qa+c(s)
s ) .

3. An isomorphism theorem

Our aim here is to generalize Griffiths and Le Potier’s isomorphism theorems
([8], [13]) in the case of arbitrary flag bundles, following the simple method of
Schneider [14] .

Let X be a n–dimensional compact complex manifold and E −→ X a holo-
morphic vector bundle of rank r . For every sequence 0 = s0 < s1 < . . . < sm = r ,
we associate to E its flag bundle Y = Ms(E) −→ X . If a ∈ Zr is such that
asj−1+1 = . . . = asj

, 1 ≤ j ≤ m , we may define a line bundle Qa
s −→ Y just as

we did in §2 . Let us set

Ωp
X = ΛpT ⋆X , Ωp

Y = ΛpT ⋆Y .

One has an exact sequence

(3.1) 0 −→ π⋆Ω1
X −→ Ω1

Y −→ Ω1
Y/X −→ 0

where Ω1
Y/X is by definition the bundle of relative differential 1–forms along the

fibers of the projection π : Y = Ms(E) −→ X . One may then define a decreasing
filtration of Ωt

Y as follows :

(3.2) F p,t = F p(Ωt
Y ) = π⋆(Ωp

X) ∧ Ωt−p
Y .
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The corresponding graded bundle is given by

(3.3) Gp,t = F p,t/F p+1,t = π⋆(Ωp
X) ⊗ Ωt−p

Y/X .

Over any open subset of X where E is a trivial bundle X × V with dim C V = r ,
the exact sequence (3.1) splits as well as the filtration (3.2). Using proposition
2.18, we obtain the following lemma.

Lemma. — For every weight a such that asj
− asj+1

≥ 1 , 1 ≤ j ≤ m− 1 ,

the sheaf of sections of Ω
N(s)
Y/X ⊗ Qa

s has direct images

(3.4)





Rqπ⋆

(
Ω

N(s)
Y/X ⊗ Qa

s

)
= 0 for q ≥ 1

π⋆

(
Ω

N(s)
Y/X ⊗ Qa

s

)
= Γa+c(s)E .

Let L be an arbitrary line bundle on X . Under the hypothesis asj
−asj+1

≥ 1,
formulas (3.3) and (3.4) yield

Rqπ⋆(G
p,p+N(s) ⊗ Qa

s ⊗ π⋆L) = 0 for q ≥ 1 ,

π⋆(G
p,p+N(s) ⊗ Qa

s ⊗ π⋆L) = Ωp
X ⊗ Γa+c(s)E ⊗ L .

The Leray spectral sequence implies therefore :

Theorem 3.5. — If asj
− asj+1

≥ 1 , then for all q ≥ 0

Hq(Y, Gp,p+N(s) ⊗ Qa
s ⊗ π⋆L) ≃ Hp,q(X, Γa+c(s)E ⊗ L) .

When p = n , Gn,n+N(s) is the only non-vanishing quotient in the filtration

of the canonical line bundle Ω
n+N(s)
Y . We thus obtain the following generalization

of Griffiths’ isomorphism theorem [8] :

(3.6) Hn+N(s),q(Ms(E), Qa
s ⊗ π⋆L) ≃ Hn,q(X, Γa+c(s)E ⊗ L) .

In order to carry results for line bundles over to vector bundles, one needs
the following lemma.

Lemma 3.7. — Assume that as1
> as2

> . . . > asm
≥ 0 . Then

(a) E ≥ 0 (resp. > 0) =⇒ Qa
s ≥ 0 (resp. > 0) ;

(b) E ≥ 0 and L > 0 =⇒ Qa
s ⊗ π⋆L > 0 ;

(c) E ample =⇒ Qa
s ample .

Proof. — Part (a) will be proved in §4 (cf. formula (4.9)) and (b) follows
from the fact that c(Qa

s) > 0 along the fibers of π .

(c) By definition of an ample vector bundle (Hartshorne [9]) , SkE is very
ample for k ≥ k0 large enough. Hence ΓkaE , which is a direct summand
in Ska1E ⊗ . . . ⊗ SkarE , is also very ample for k ≥ k0 . Now, formula (2.14)
shows that Qa

s > 0 along the fibers of π , hence Qka
s is very ample along each

fiber for k ≥ k1 . Since π⋆(Q
ka
s ) = ΓkaE , we conclude that Qka

s is very ample for
k ≥ max(k0, k1) .

We are now ready to attack the proof of the main theorem. We study first
the special case p = n .
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Theorem 3.8. — Let a ∈ Z
r be such that

a1 ≥ a2 ≥ . . . ≥ ah > ah+1 = . . . = ar = 0 , 1 ≤ h ≤ r − 1 .

Assume that E is ample and L ≥ 0 , or E ≥ 0 and L ample. Then

Hn,q(X, ΓaE ⊗ (detE)l ⊗ L) = 0 for q ≥ 1 , l ≥ h .

Proof of theorem 3.8 and of the main theorem. —

Let s1 > . . . > sm−1 be the sequence of integers λ = 1, . . . , r − 1 such that
aλ+1 > aλ . Then theorem 3.5 implies

(3.9) Hp,q(X, ΓaE ⊗ (detE)l ⊗ L) ≃ Hq(Y, Gp,p+N(s) ⊗ Qb
s ⊗ π⋆L)

where b = a − c(s) + (l, . . . , l) . The canonical weight c(s) is non-decreasing and
c(s)r = sm−1 = h , hence

bs1
> . . . > bsm

= l − h .

Lemma 3.7 shows that Qb
s ⊗ π⋆L > 0 if l ≥ h . Now, it is clear that F p,p+N(s) =

Ω
p+N(s)
Y . One gets thus an exact sequence

(3.10) 0 −→ F p+1,p+N(s) −→ Ω
p+N(s)
Y −→ Gp,p+N(s) −→ 0 .

The Kodaira-Akizuki-Nakano vanishing theorem (1.4) applied to Qb
s ⊗ π⋆L with

dim Y = n + N(s) yields

Hq(Y, Ω
p+N(s)
Y ⊗ Qb

s ⊗ π⋆L) = 0 for p + q ≥ n + 1 .

The cohomology groups in (3.9) will therefore vanish if and only if

(3.11) Hq+1(Y, F p+1,p+N(s) ⊗ Qb
s ⊗ π⋆L) = 0 .

This is obvious if p = n , for Fn+1,n+N(s) = 0 . In the general case p < n , we will
establish in §4 that (3.11) holds for p + q ≥ n and br = l − h ≥ A(n, p, q) . This
will be done by means of a curvature estimate for the bundle F p+1,p+N(s) .

Remark 3.12. — If p + q = n , we still obtain some result, namely that the
canonical map

Hp+N(s),q(Y, Qb
s ⊗ π⋆L) −→ Hp,q(X, ΓaE ⊗ (detE)l ⊗ L)

is onto when l ≥ h + A(n, p, q) .

Remark 3.13. — If the exact sequence (3.10) splits, then (3.11) is an imme-
diate consequence of the Kodaira-Nakano-Akizuki theorem. However, Peternell-Le
Potier and Schneider [11] , [12] have shown that in general the filtration F •(Ωt

Y )
does not split, and this is the reason why we have to introduce additional consi-
derations in order to prove (3.11).

4. A curvature estimate for the subbundle F p+1,p+N(s) .

We assume here that E, L −→ X are hermitian vector bundles of respective
ranks r, 1 and that E ≥ 0 and L > 0 , or E > 0 and L ≥ 0 . Let a ∈ Zr be
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such that a1 ≥ . . . ≥ ar ≥ 0 and let s1 < . . . < sm−1 be the sequence of integers
λ = 1, . . . , r − 1 such that aλ+1 > aλ . We set for simplicity

Y = Ms(E) , Ω = Ω
p+N(s)
Y , F = F p+1,p+N(s) , G = Gp,p+N(s) = Ω/F .

Our aim is to prove that the analogue of (3.11) :

(4.1) Hq+1(Y, F ⊗ Qa
s ⊗ π⋆L) = 0

holds when p + q ≥ n and ar ≥ A(n, p, q) . Let us consider the exact sequences of
vector bundles over Y :

(4.2)

{
0 −→ F

0 −→ F (a)

−→ Ω

−→ Ω(a)

−→ G

−→ G(a)

−→ 0 ,

−→ 0 ,

where the second sequence arises from the first one after taking tensor products
with the line bundle Qa

s ⊗ π⋆L . Then Y can be equipped with the Kähler metric
ω = ic(Qa

s ⊗ π⋆L) ; the positivity of ω is a consequence of (4.9) below. To every
smooth form v of type (p +N(s), q +1) with values in Qa

s ⊗ π⋆L , let us apply the
Akizuki-Nakano inequality (1.3) , where dim Y = n + N(s) :

(4.3) ||D′′
Ω(a)v||2 + ||D′′⋆

Ω(a)v||2 ≥ (p + q − n + 1)) ||v||2 .

With respect to the orthogonal C∞–splitting Ω ≃ F ⊕ G , the Chern connections
of Ω , F , G are related by the well-known formula (cf. [8]) :

DΩ =

(
DF −β⋆ ∧ •

β ∧ • DG

)
, β ∈ C∞(Λ1,0T ⋆Y ⊗ Hom(F, G)) ;

β⋆ is a D′′–closed (0,1)–form with values in Hom(G, F ) , and its cohomology class
is the obstuction to the existence of a global splitting of (4.2). We obtain therefore

D′′
Ω(a) =

(
D′′

F (a) −β⋆ ∧ •

0 D′′
G(a)

)
, D′′⋆

Ω(a) =

(
D′′⋆

F (a) 0

−β • D′′⋆
G(a)

)
,

where denotes the interior product of differential forms combined with the
evaluation map Hom(F, G) × F → G (note that β • = (β⋆ ∧ •)⋆). For every
(0, q + 1)–form f with values in F (a) we get

(4.4) D′′
F (a)f = D′′

Ω(a)f , ||D′′⋆
F (a)f ||2 = ||D′′⋆

Ω(a)f ||2 − ||β f ||2 .

From (4.3) and (4.4), we see that the vanishing property (4.1) will hold if

(4.5) |β f |2 < (p + q − n + 1) |f |2

at every point of Y . We are going to compute β explicitly in suitable coordinate
systems on Y . Let y0 ∈ Y be an arbitrary point and (x1, . . . , xn) local coordinates
on X centered at the point x0 = π(y0) .

Lemma. — There exists a local holomorphic frame (e1, . . . , er) of E such
that y0 coincides with the flag [e1(x

0), . . . , er(x
0)] and

(4.6) 〈eλ(x) , eµ(x)〉 = δλµ −
∑

i,j

cijλµ xixj + O(|x|3) ,

where (cijλµ) is the curvature tensor of E .
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Proof. — Choose a holomorphic frame (ε1, . . . , εr) of E such that
(ε1(x

0), . . . , εr(x
0)) is orthonormal and [ε1(x

0), . . . , εr(x
0)] = y0 . Then the inner

product 〈ελ(x), εµ(x)〉 has a Taylor expansion of the type

〈ελ(x), εµ(x)〉 = δλµ +
∑

i

(γiλµxi + γiµλxi)

+
∑

i,j

(γijλµxixj + γ′
ijλµxixj + γ′

ijµλxixj) + O(|x|3) .

This expansion can be reduced to (4.6) (with suitable coefficients cijλµ) if one sets

eλ(x) = ελ(x) −
∑

i,µ

γiλµxi eµ −
∑

i,j,µ

γ′
ijλµxixj eµ .

Now (4.6) implies

Deλ = −
∑

i,j,µ

cijλµxjdxi ⊗ eµ + O(|x|2) ,

D2eλ =
∑

i,j,µ

cijλµdxi ∧ dxj ⊗ eµ + O(|x|) ,

showing that the cijλµ ’s are precisely the curvature coefficients at x0 .

Let us denote by z = (zλµ) the affine coordinates on the fiber Ms(Ex) ⊂ Y
associated to the basis (e1(x), . . . , er(x)) . Then (x1, . . . , xn, zλµ) define local
coordinates on Y in a neighborhood of y0 . Assume first that Y = Ms(E) = M(E)
is the manifold of complete flags of E . Then we have tautological subbundles
Vλ = Vect(eλ+1, . . . , er) ⊂ π⋆E and the map

(4.7) Y ∋ (x, z) 7−→ ζµ = eµ(x) +
∑

λ<µ

zλµeλ(x)

is a local section of Vµ−1 . Let us denote by ζ̃µ the image of ζµ in Qµ = Vµ−1/Vµ ,
represented by the orthogonal projection of ζµ on Vµ−1 ∩ (Vµ)⊥ . As in §2, one
finds

(4.8)





ζ̃λ = ζλ −
∑

µ>λ

〈ζλ, ζ̃µ〉
|ζ̃µ|2

ζ̃µ , |ζ̃λ|2 = |ζλ|2 −
∑

µ>λ

|〈ζλ, ζ̃µ〉|2

|ζ̃µ|2
,

〈ζλ, ζ̃µ〉 = zλµ −
∑

i,j

cijλµxixj mod(z2, x3, x2z) for λ < µ .

We need a Taylor expansion of c(Qµ) = −d′d′′ log |ζ̃µ|2 up to order 1, hence of

|ζ̃µ|2 up to order 3. Moreover, pure terms x3 , z3 will not play any role because
the Kähler property of c(Qµ) enables one to get rid of the terms O(|x|dx ∧ dx) ,
O(|z|dz ∧ dz) . Therefore, we are interested only in terms of degree ≤ 2 and in
mixed terms xz2 , x2z . Thanks to formulas (4.7) and (4.8), we get the following
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equalities modulo the ideal (x3, z3, x2z2) :

|ζ̃λ|2 ∼ |ζλ|2 −
∑

µ>λ

|〈ζλ, ζ̃µ〉|2 ,

|ζλ|2 ∼ 1 −
∑

i,j

cijλλxixj +
∑

µ<λ

|zµλ|2

−
∑

i,j,µ<λ

cijλµxixjzµλ −
∑

i,j,µ<λ

cijλµxixjzµλ ,

|〈ζλ, ζ̃µ〉|2 ∼ |zλµ|2 −
∑

i,j

cijλµxixjzλµ −
∑

i,j

cijλµxixjzλµ .

We have now

c(Qa) =
∑

λ

aλc(Qλ) = d′d′′
(
−

∑

λ

aλ log |ζ̃λ|2
)

,

−
∑

λ

aλ log |ζ̃λ|2 ∼
∑

i,j,λ

aλcijλλxixj +
∑

λ<µ

(aλ − aµ)|zλµ|2

−
∑

i,j,λ<µ

(aλ − aµ)cijλµxixjzλµ

−
∑

i,j,λ<µ

(aλ − aµ)cijλµxixjzλµ .

We find therefore

c(Qa) =
∑

i,j

(∑

λ

aλcijλλ + O(|x|)
)
dxi ∧ dxj

+
∑

λ<µ

(aλ − aµ)dzλµ ∧ dzλµ + O(|z|dz ∧ dz)

−
∑

i,j,λ<µ

(aλ − aµ)cijλµ

(
zλµdxi ∧ dxj + xidzλµ ∧ dxj

)

−
∑

i,j,λ<µ

(aλ − aµ)cijλµ

(
zλµdxj ∧ dxi + xidxj ∧ dzλµ

)
+ O(|x|2 + |z|2) .

Since Qa = π⋆
sQa

s , the same identity holds for Qa
s . At the point y0 we get

(4.9) c(Qa
s)y0 =

∑

i,j,λ

aλcijλλdxi ∧ dxj +
∑

aλ>aµ

(aλ − aµ)dzλµ ∧ dzλµ .

Now, ω = i
(
π⋆c(L) + c(Qa

s)
)

is Kähler on Y = Ms(E) , thus in particular along
the fiber x = 0 and along the local section z = 0 . It follows that one can find
coordinate changes x 7→ x′ , z′λµ =

√
aλ − aµ zλµ mod z2 such that the terms

O(|x|dx ∧ dx) and O(|z|dz ∧ dz) disappear in the expansion of ω , and such that

(4.10) ωij(y
0) = c(L)ij(x

0) +
∑

λ

aλcijλλ = δij .

We obtain therefore
1

i
ω =

∑

j

dx′
j ∧ dx′

j +
∑

λ<µ

dz′λµ ∧ dz′λµ

−
∑

i,j,λ<µ

√
aλ − aµ cijλµ

(
z′λµdx′

i ∧ dx′
j + x′

idz′λµ ∧ dx′
j

)

−
∑

i,j,λ<µ

√
aλ − aµ cijλµ

(
z′λµdx′

j ∧ dx′
i + x′

idx′
j ∧ dz′λµ

)
+ O(|x′|2 + |z′|2) .
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Omitting the primes in the coordinates x′ , z′ for simplicity, we see that the norms
of the basis elements of TY with respect to ω are given modulo O(|x|2 + |z|2) by

〈 ∂

∂xi
,

∂

∂xj
〉 ∼ δij −

∑

λ<µ

√
aλ − aµ

(
cijλµzλµ + cijµλzλµ

)
,

〈 ∂

∂zλµ
,

∂

∂zλ′µ′

〉 ∼ δλλ′δµµ′ ,

〈 ∂

∂zλµ
,

∂

∂xj
〉 ∼ −

∑

i

√
aλ − aµcijλµxi .

By duality, we get

〈dxi, dxj〉 ∼ δij +
∑

λ<µ

√
aλ − aµ

(
cijλµzλµ + cijµλzλµ

)
,

〈dzλµ, dzλ′µ′〉 ∼ δλλ′δµµ′ ,

〈dzλµ, dxj〉 ∼
∑

i

√
aλ − aµ cijλµxi .

Taking the exterior derivative in the above estimates, we find that the Chern
connection D on Ω1

Y = T ⋆Y is given in terms of the basis vectors dxi , dzλµ by

D(dxj) =
∑

i,λ<µ

√
aλ − aµ cijλµ(dzλµ ⊗ dxi + dxi ⊗ dzλµ) + O(|x| + |z|) ,

D(dzλµ) = 0 + O(|x| + |z|) .

The subbundle F = F p+1,N(s) (resp. the quotient bundle G = Gp,p+N(s)) admits
at y0 the orthonormal basis

dxI ∧ dzJ with |I| + |J | = p + N(s) , |I| ≥ p + 1
(
resp. |I| ≤ p , |J | = N(s)

)
.

Let v =
∑

vI,J dxI ∧ dzJ be a C∞ section of F . The (1, 0)–form β ∧ v is nothing
else than the projection of Dv on G = Ω/F . From this observation, one obtains
the expression of β at y0 :

(4.11) β ∧ v =
∑

i,j,λ<µ

√
aλ − aµ cijλµ dxi ⊗

(
dzλµ ∧

( ∂

∂xj
v
))

modF ,

where ξ v means contraction of the differential form v by the tangent vector ξ .
In fact any differentiation of a factor dxj in a term D(vI,J dxI ∧ dzJ ) decreases of
one unity the partial degree |I| when dxj is differentiated into cijλµ dxi ⊗ dzλµ .
The corresponding part of the differential is thus in G if |I| = p + 1 . For every
(0, q + 1)–form f =

∑
fI,J,K,L dxI ∧ dzJ ∧ dxK ∧ dzL with values in F (a) ,

|I| + |J | = p + N(s) , |I| ≥ p + 1 , |K| + |L| = q + 1 , we obtain consequently

(4.12) β f =
∑

i,j,λ<µ

√
aλ − aµ cijλµ

∂

∂xi

(
dzλµ ∧

( ∂

∂xj
f
))

mod F (a) .

The only terms of f that contribute to the expression of β f are those for which
|I| = p + 1 and |J | = N(s) − 1 . Let us write g = β f under the form

g =
∑

gI′,J ′,K′,L′ dxI′ ∧ dzJ ′ ∧ dxK′ ∧ dzL′ ,
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where |I ′| = p , |J ′| = N(s) , |K ′| + |L′| = q . Formula (4.12) implies

gI′,J ′,K′,L′ =
∑

i,j,λ<µ

±
√

aλ − aµ cijλµ fjI′,J ′\{λµ},iK′,L′ ,

|gI′,J ′,K′,L′ |2 ≤
( ∑

i,j,λ<µ

(aλ − aµ)|cijλµ|2
) ∑

i,j,λ<µ

|fjI′,J ′\{λµ},iK′,L′ |2 ,

and
∑

I′,J ′,K′,L′

∑

i,j,λ<µ

|fjI′,J ′\{λµ},iK′,L′ |2 ≤ (p + 1)(q + 1)
∑

I,J,K,L

|fI,J,K,L|2 . We

obtain therefore the inequality

(4.13) |β f |2 ≤ (p + 1)(q + 1)
( ∑

i,j,λ<µ

(aλ − aµ)|cijλµ|2
)
|f |2 .

The main point now is to find an estimate of the sum
∑

i,j,λ<µ(aλ − aµ)|cijλµ|2
under condition (4.10).

Lemma 4.14. — Let (hλµ)1≤λ,µ≤r be a semi-positive hermitian matrix
and let α1 ≤ . . . ≤ αr be real numbers. Then

∑

λ<µ

(αµ − αλ)|hλµ|2 ≤ 1

4
(αr − α1)

(∑

λ

hλλ

)2

.

Proof. — Use Cauchy-Schwarz inequality |hλµ|2 ≤ hλλhµµ and take
tλ = hλλ in the identity

1

4
(αr − α1)

(∑

λ

tλ

)2

−
∑

λ<µ

(αµ − αλ) tλtµ

=
1

4

∑

1≤λ<r

(αλ+1 − αλ)(t1 + . . . + tλ − tλ+1 − . . .− tr)
2 ≥ 0 .

Lemma 4.15. — Under condition (4.10) one has

∑

i,j,λ<µ

(aλ − aµ)|cijλµ|2 ≤ 1

4
n(n + 1)

( 1

ar
− 1

a1

)
.

Proof. — Let us apply lemma 4.14 to

hλµ =
√

aλaµ

∑

i,j

cijλµtitj , αλ =
1

aλ
,

where t = (t1, . . . , tn) are arbitrary complex numbers. The Griffiths semi-
positivity assumption on c(E) means that (hλµ) is semi-positive for all t . We get

∑

λ

hλλ =
∑

i,j,λ

aλcijλλtitj ≤ |t|2

by condition (4.10), thus

(4.16)
∑

λ<µ

(aλ − aµ)
∣∣∣
∑

i,j

cijλµtitj

∣∣∣
2

≤ 1

4

( 1

ar
− 1

a1

)
|t|4 .
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Apply now inequality (4.16) to t = (eiθ1 , . . . , eiθn) ∈ T
n and integrate the result

over Tn . Parseval’s identity for Fourier series yields

∑

λ<µ

(aλ − aµ)
(∑

i6=j

|cijλµ|2 +
∣∣∑

i

ciiλµ

∣∣2
)
≤ 1

4

( 1

ar
− 1

a1

)
n2 .

Inequality (4.16) applied to each vector of the standard basis of Cn yields in the
same way ∑

λ<µ

(aλ − aµ)|ciiλµ|2 ≤ 1

4

( 1

ar
− 1

a1

)

for all i , and lemma 4.15 follows.

Combining inequality (4.13) with lemma 4.15 we get

|β f |2 <
1

4ar
n(n + 1)(p + 1)(q + 1)|f |2 ,

and using criterion (4.5) we see that Hq+1(Y, F ⊗ Qa
s ⊗ π⋆L) = 0 for

ar ≥ n(n + 1)(p + 1)(q + 1)

4(p + q − n + 1)
, p + q ≥ n .

The proof of the main theorem is therefore achieved.

5. On the Borel-Le Potier spectral sequence.

Denote as before π : Y = Ms(E) −→ X the projection. To every integer t
and every coherent analytic sheaf S⌣⌣ on Y , one may associate the complex

D′′ : Kq = Γ
(
Y, C∞

Y (Ωt
Y ⊗ Ω

q

Y ) ⊗OY
S⌣⌣

)
−→ Kq+1

of C∞–differential forms of type (t, q) with values in S⌣⌣ . This Dolbeault complex
is filtered by the decreasing sequence of subcomplexes

D′′ : Kq
p = Γ

(
Y, C∞

Y (F p(Ωt
Y ) ⊗ Ω

q

Y ) ⊗OY
S⌣⌣

)
−→ Kq+1

p .

This gives rise to a spectral sequence which we shall name after Borel and Le
Potier, whose E0 , E1 terms are

(5.1)

{
Ep,q−p

0 = Γ
(
Y, C∞

Y (Gp,t ⊗ Ω
q

Y ) ⊗OY
S⌣⌣

)

Ep,q−p
1 = Hq(Y, Gp,t ⊗ S⌣⌣ ) .

The limit term Ep,q−p
∞ is the p–graded module corresponding to the filtration of

Hq(K•) = Hq(Y, Ωt
Y ⊗S⌣⌣ ) by the canonical images of the groups Hq(K•

p) . Assume

that the spectral sequence degenerates in E2 , i.e. dr : Ep,q−p
r → E

p+r,q+1−(p+r)
r

is zero for all r ≥ 2 (by Peternell, Le Potier and Schneider [12], the spectral
sequence does not degenerate in general in E1). Then Ep,q−p

2 = Ep,q−p
∞ . This

equality means that the q–th cohomology group of the E1–complex

d1 : Hq(Y, Gp,t ⊗ S⌣⌣ ) −→ Hq+1(Y, Gp+1,t ⊗ S⌣⌣ )

is the p-graded module corresponding to a filtration of Hq(Y, Ωt
Y ⊗S⌣⌣ ) . By Kodaira-

Akizuki-Nakano, we get therefore :
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Proposition 5.1. — Assume that E is ample and L ≥ 0 , or E ≥ 0
and L ample, and that the E2–degeneracy occurs for the ample invertible sheaf
S⌣⌣ = Qa

s ⊗ π⋆L on Y . Then the complex

d1 : Hq(Y, Gp,t ⊗ Qa
s ⊗ π⋆L) −→ Hq+1(Y, Gp+1,t ⊗ Qa

s ⊗ π⋆L)

is exact in degree q ≥ n + N(s) + 1 − t .

This result would be a considerable help for the proof of vanishing theorems.
For example, it is shown in [5] that the main vanishing theorem would be true with
l ≥ r − 1 + min{n − p, n − q} .

Since d1 is the coboundary operator associated to the exact sequence
0 −→ Gp+1,t −→ F p,t/F p+2,t −→ Gp,t −→ 0 , it is easy to see that d1 = −β⋆ ∧ •

where β⋆ is the D′′–closed (0,1)–form of §4, reinterpreted as a (0,1)–section of
Hom(Gp,t, Gp+1,t) . Our hope is that the E2–degeneracy can be proved in all cases
by a suitable deepening of the analytic method of §4.
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