VANISHING THEOREMS FOR TENSOR POWERS OF A POSITIVE VECTOR BUNDLE

Jean-Pierre DEMAILLY
Université de Grenoble I, Institut Fourier, BP 74,
Laboratoire associé au C.N.R.S. n ${ }^{\circ} 188$, F-38402 Saint-Martin d'Hères

Abstract

Let E be a holomorphic vector bundle of rank r over a compact complex manifold X of dimension n. It is shown that the Dolbeault cohomology groups $H^{p, q}\left(X, E^{\otimes k} \otimes(\operatorname{det} E)^{l}\right)$ vanish if E is positive in the sense of Griffiths and $p+q \geq n+1, l \geq r+C(n, p, q)$. The proof rests on the wellknown fact that every tensor power $E^{\otimes k}$ splits into irreducible representations of $\mathrm{Gl}(E)$, each component being canonically isomorphic to the direct image on X of a positive homogeneous line bundle over a flag manifold of E. The vanishing property is then obtained by a suitable generalization of Le Potier's isomorphism theorem, combined with a new curvature estimate for the bundle of X-relative differential forms on the flag manifold of E.

0. Statement of results.

The aim of this work is to prove a rather general vanishing theorem for cohomology groups of tensor powers of a positive vector bundle.

Let X be a complex compact n-dimensional manifold and E a hermitian vector bundle of rank r over X. We denote by $C_{p, q}^{\infty}(X, E)$ the space of smooth E-valued differential forms of type (p, q) on X and by

$$
D_{E}=D_{E}^{\prime}+D_{E}^{\prime \prime}: C_{p, q}^{\infty}(X, E) \longrightarrow C_{p+1, q}^{\infty}(X, E) \oplus C_{p, q+1}^{\infty}(X, E)
$$

(or simply $D=D^{\prime}+D^{\prime \prime}$) the Chern connection of E. Let (x_{1}, \ldots, x_{n}) be holomorphic coordinates on X and $\left(e_{1}, \ldots, e_{n}\right)$ a local C^{∞} orthonormal frame of E. The Chern curvature tensor $c(E)$ is defined by $D^{2}=c(E) \wedge \bullet$ and may be written

$$
c(E)=\sum_{i, j, \lambda, \mu} c_{i j \lambda \mu} d x_{i} \wedge d \bar{x}_{j} \otimes e_{\lambda}^{\star} \otimes e_{\mu} \quad, \quad 1 \leq i, j \leq n, 1 \leq \lambda, \mu \leq r .
$$

The curvature tensor $i c(E)$ is in fact a (1,1)-form with values in the bundle $\operatorname{Herm}(E, E)$ of hermitian endomorphisms of E, i.e. $c_{i j \lambda \mu}=\bar{c}_{j i \mu \lambda}$; thus $i c(E)$ can be identified with a hermitian form on $T X \otimes E$.

Let us recall that the bundle E is said to be positive, resp. semi-positive (in the sense of Griffiths [8]) if E can be endowed with a hermitian metric such that at every point $x \in X$ one has

$$
i c(E)_{x}(\zeta \otimes v, \zeta \otimes v)=\sum_{i, j, \lambda, \mu} c_{i j \lambda \mu}(x) \zeta_{i} \bar{\zeta}_{j} v_{\lambda} \bar{v}_{\mu}>0 \quad, \quad \text { resp. } \quad \geq 0
$$

for all non zero vectors $\zeta=\sum \zeta_{i} \partial / \partial z_{i} \in T_{x} X, v=\sum v_{\lambda} e_{\lambda} \in E_{x}$. Every vector bundle E generated by sections is ≥ 0.

Another important concept is that of ampleness, for which we refer to Hartshorne [9]; a vector bundle E is ample if and only if the line bundle $O_{E}(1)$ over $P\left(E^{\star}\right)$ is ample (or equivalently >0). It is also well-known that $E>0$ implies E ample, but the converse is unknown.

In the case of a positive or ample vector bundle E of rank $r>1$, only very few general and optimal vanishing results are available for the Dolbeault cohomology groups $H^{p, q}$ of tensor powers of E. For example, the famous Le Potier vanishing theorem [13] :

$$
E \text { ample } \Longrightarrow H^{p, q}(X, E)=0 \text { for } p+q \geq n+r
$$

does not extend to symmetric powers $S^{k} E$, even when $p=n$ and $q=n-2$ (cf. [11]) . Nevertheless, the following result shows that the vanishing property is true for tensor powers involving a sufficiently large power of $\operatorname{det} E$.

Theorem. - Let L be a holomorphic line bundle over X. Assume that $E>0$ and $L \geq 0$, or $E \geq 0$ and $L>0$. For all integers p, q such that $p+q \geq n$, set

$$
A(n, p, q)=\frac{n(n+1)(p+1)(q+1)}{4(p+q-n+1)} \quad \text { if } p<n
$$

and $A(n, p, q)=0$ if $p=n$. Let $h \in\{1, \ldots, r-1\}$ and let $\Gamma^{a} E$ be the irreducible tensor power representation of $\mathrm{Gl}(E)$ of highest weight $a \in \mathbb{Z}^{r}$, with

$$
a_{1} \geq a_{2} \geq \ldots \geq a_{h}>a_{h+1}=\ldots=a_{r}=0
$$

If $p+q \geq n+1$ then

$$
H^{p, q}\left(X, \Gamma^{a} E \otimes(\operatorname{det} E)^{l} \otimes L\right)=0 \quad \text { for } \quad l \geq h+A(n, p, q) .
$$

The proof of this theorem is based on analysis and differential geometry, but an analogous result can be obtained in a purely algebraic way (cf. [5]); in that case the positivity hypothesis can be replaced by ampleness, the semi-positivity hypothesis by the fact that the bundle is generated by its global sections; then, the condition required on l is $l \geq n-p+r-1$. Both results overlap in most cases, but the above analytic result can be better if $r-h$ is very large.

Observing that $S^{k} E$ is the irreducible representation of highest weight $(k, 0, \ldots, 0)$ and that $E^{\otimes k}$ splits into irreducible representations of the type $\Gamma^{a} E \otimes(\operatorname{det} E)^{l}$ with $h \leq \min \{k, r-1\}$ (cf. formula (2.17)), we obtain :

Corollary. - Under the positivity hypotheses of the theorem, then for all p, q such that $p+q \geq n+1$ one has

$$
\begin{array}{ll}
H^{p, q}\left(X, S^{k} E \otimes(\operatorname{det} E)^{l} \otimes L\right)=0 & \text { if } \quad l \geq 1+A(n, p, q) \tag{0.1}\\
H^{p, q}\left(X, E^{\otimes k} \otimes(\operatorname{det} E)^{l} \otimes L\right)=0 & \text { if } \quad l \geq \min \{k, r-1\}+A(n, p, q)
\end{array}
$$

The special case $p=n$ of (0.1) is due to P. Griffiths [8]. For $p=n$ and arbitrary $r, k_{0} \geq 2$, Peternell-Le Potier and Schneider [11] have constructed an
example of a vector bundle $E>0$ of rank r over a manifold X of dimension $n=2 r$ such that

$$
\begin{equation*}
H^{n, n-2}\left(X, S^{k} E\right) \neq 0 \quad, \quad 2 \leq k \leq k_{0} \tag{0.3}
\end{equation*}
$$

This result shows that the lower bound $l \geq 1$ in (0.1) cannot be improved. More generally, the following example (for which we refer to [5]) shows that our condition $l \geq h$ in the theorem is optimal. This example gives a negative answer to a question of Sommese [15].

Example. - Let $X=G_{r}(V)$ be the Grassmannian of subspaces of codimension r of a vector space V of dimension d, and E the tautological quotient vector bundle of rank r over X (then $E \geq 0$ and $L=\operatorname{det} E$ is ample). Let $h \in\{1, \ldots, r-1\}$ and $a \in \mathbb{Z}^{r}, \beta \in \mathbb{Z}^{d}$ be such that

$$
\begin{aligned}
& a_{1} \geq \ldots \geq a_{h} \geq d-r, \quad a_{h+1}=\ldots=a_{r}=0 \\
& \beta=\left(a_{1}-d+r, \ldots, a_{h}-d+r, 0, \ldots, 0\right) .
\end{aligned}
$$

Set $n=\operatorname{dim} X=r(d-r), q=(r-h)(d-r)$. Then

$$
\begin{equation*}
H^{n, q}\left(X, \Gamma^{a} E \otimes(\operatorname{det} E)^{h}\right)=\Gamma^{\beta} V \otimes(\operatorname{det} V)^{h} \neq 0 \tag{0.4}
\end{equation*}
$$

Our approach is based on three well-known facts. First, every tensor power of E splits into irreducible representations of the linear $\operatorname{group} \mathrm{Gl}(E)$. It is thus sufficient to consider "irreducible" tensor powers of E. Secondly, every irreducible tensor power of E appears in a natural way as the direct image on X of a positive line bundle over a suitable flag manifold of E. This follows from Bott's theory of homogeneous vector bundles [3]. The third fact is the isomorphism theorem of Le Potier [13], which relates the cohomology groups of E over X to those of the line bundle $\mathrm{O}_{E}(1)$ over $P\left(E^{\star}\right)$. We generalize here this isomorphism to the case of arbitrary flag bundles associated to E.

When $p=n$ the above-mentioned algebraic facts suffice to prove the theorem. However, when $p<n$, the generalized Borel-Le Potier spectral sequence does not degenerate at the E_{1} level (cf. [12]). A possible way in order to overcome this difficulty is to establish a curvature estimate for the bundle of X-relative differential forms on the flag manifold of E, using the standard Kodaira-AkizukiNakano inequality [1]. Our estimate (cf. §4) measures in some sense how far is the spectral sequence from being E_{1}-degenerate. The following related problem is interesting, but its complete solution certainly requires a better understanding of the Borel-Le Potier spectral sequence for flag bundles.

Problem. - Given a dominant weight $a \in \mathbb{Z}^{r}$ with $a_{r}=0$, determine the smallest admissible constant $A(n, p, q)$ in the theorem.

It is shown in [5] that if the Borel-Le Potier spectral sequence degenerates in E_{2}, then it is always sufficient to take $l \geq r-1+\min \{n-p, n-q\}$. In view of the above main theorem, one may suspect that the correct answer could be $l \geq h+\min \{n-p, n-q\}$.

The above results have been annouced in the note [4]. The author wishes to thank warmly Prof. Michel Brion, Friedrich Knopp, Thomas Peternell and Michael Schneider for valuable remarks which led to substantial improvements of this work.

1. Kodaira-Akizuki-Nakano vanishing theorem.

We recall here the basic Akizuki-Nakano inequality [1] which will be used several times in the sequel. Assume that X carries a Kähler metric ω, and let L be a hermitian line bundle over X. At each point $x \in X$, one can write

$$
i c(L)=i \sum_{1 \leq j \leq n} \gamma_{j} d z_{j} \wedge d \bar{z}_{j}
$$

where $\left(d z_{1}, \ldots, d z_{n}\right)$ is an ω-orthonormal basis of $T^{\star} X$ and where $\gamma_{1} \leq \ldots \leq \gamma_{n}$ are the curvature eigenvalues of L. For every $v \in C_{p, q}^{\infty}(X, L)$ we have

$$
\begin{equation*}
\left\|D_{L}^{\prime \prime} v\right\|^{2}+\left\|D_{L}^{\prime \prime \star} v\right\|^{2} \geq\left\langle\Theta_{L} v, v\right\rangle \tag{1.1}
\end{equation*}
$$

where Θ_{L} is the hermitian endomorphism defined by

$$
\begin{equation*}
\left\langle\Theta_{L} v, v\right\rangle=\sum_{|I|=p,|J|=q}\left(\gamma_{I}+\gamma_{J}-\sum_{1 \leq j \leq n} \gamma_{j}\right)\left|v_{I, J}\right|^{2} \tag{1.2}
\end{equation*}
$$

with $\gamma_{I}=\sum_{m \in I} \gamma_{m}$. When L is >0, one can choose $\omega=i c(L)$ as the Kähler metric on X; in that case $\gamma_{1}=\ldots=\gamma_{n}=1$ and therefore

$$
\begin{equation*}
\left\|D_{L}^{\prime \prime} v\right\|^{2}+\left\|D_{L}^{\prime \prime \star} v\right\|^{2} \geq(p+q-n)\|v\|^{2} . \tag{1.3}
\end{equation*}
$$

Corollary (Kodaira-Akizuki-Nakano). - One has

$$
\begin{align*}
& L>0 \quad \Longrightarrow \quad H^{p, q}(X, L)=0 \quad \text { for } \quad p+q \geq n+1 \tag{1.4}\\
& L<0 \quad \Longrightarrow \quad H^{p, q}(X, L)=0 \quad \text { for } \quad p+q \leq n-1 \tag{1.5}
\end{align*}
$$

2. Homogeneous line bundles over flag manifolds and irreducible representations of the linear group.

The aim of this section is to settle notations and to recall a few basic results on homogeneous line bundles over flag manifolds. The classical foundation works on this subject are Borel-Weil [2] and R. Bott [3] , which contain all the required material (cf. also Demazure [6] for a very simple proof of Bott's formula). We will give however an independent self-contained exposition in order to prepare the tools needed in the differential geometric approach of $\S 4$.

Let B_{r} (resp. B^{r}) be the Borel subgroup of $\mathrm{Gl}_{r}=\mathrm{Gl}\left(\mathbb{C}^{r}\right)$ of lower (resp. upper) triangular matrices, $U_{r} \subset B_{r}, U^{r} \subset B^{r}$ the subgroups of unipotent matrices, and $T^{r}=B_{r} \cap B^{r}$ the complex torus $\left(\mathbb{C}^{\star}\right)^{r}$ of diagonal matrices. Let V be a complex vector space of dimension r. We denote by $M(V)$ the manifold of complete flags

$$
V=V_{0} \supset V_{1} \supset \ldots \supset V_{r}=\{0\} \quad, \quad \operatorname{codim}_{\mathbb{C}} V_{\lambda}=\lambda .
$$

To every linear isomorphism $\zeta \in \operatorname{Isom}\left(\mathbb{C}^{r}, V\right):\left(u_{1}, \ldots, u_{r}\right) \longmapsto \sum_{1 \leq \lambda \leq r} u_{\lambda} \zeta_{\lambda}$, one can associate the flag $[\zeta] \in M(V)$ defined by $V_{\lambda}=\operatorname{Vect}\left(\zeta_{\lambda+1}, \ldots, \zeta_{r}\right)$, $1 \leq \lambda \leq r$. This leads to the identification

$$
M(V)=\operatorname{Isom}\left(\mathbb{C}^{r}, V\right) / B_{r}
$$

where B_{r} acts on the right side. We denote simply by V_{λ} the tautological vector bundle of rank $r-\lambda$ on $M(V)$, and we consider the canonical quotient line bundles

$$
\left\{\begin{align*}
Q_{\lambda} & =V_{\lambda-1} / V_{\lambda}, & & 1 \leq \lambda \leq r, \tag{2.1}\\
Q^{a} & =Q_{1}^{a_{1}} \otimes \ldots \otimes Q_{r}^{a_{r}} & , & a=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{Z}^{r} .
\end{align*}\right.
$$

The linear group $\mathrm{Gl}(V)$ acts on $M(V)$ on the left, and there exist natural equivariant left actions of $\mathrm{Gl}(V)$ on all bundles $V_{\lambda}, Q_{\lambda}, Q^{a}$.

We compute now the tangent and cotangent vector bundles of $M(V)$. The action of $\mathrm{Gl}(V)$ on $M(V)$ yields

$$
\begin{equation*}
T M(V)=\operatorname{Hom}(V, V) / W \tag{2.2}
\end{equation*}
$$

where W is the subbundle of endomorphisms $g \in \operatorname{Hom}(V, V)$ such that $g\left(V_{\lambda}\right) \subset V_{\lambda}$, $1 \leq \lambda \leq r$. Using the self-duality of $\operatorname{Hom}(V, V)$ given by the Killing form $\left(g_{1}, g_{2}\right) \mapsto \operatorname{tr}\left(g_{1} g_{2}\right)$, we find

$$
\left\{\begin{array}{l}
T^{\star} M(V)=(\operatorname{Hom}(V, V) / W)^{\star}=W^{\perp} \tag{2.3}\\
W^{\perp}=\left\{g \in \operatorname{Hom}(V, V) ; g\left(V_{\lambda-1}\right) \subset V_{\lambda}, 1 \leq \lambda \leq r\right\}
\end{array}\right.
$$

There exists a filtration of $T^{\star} M(V)$ by subbundles of the type

$$
\left\{g \in \operatorname{Hom}(V, V) ; g\left(V_{\lambda}\right) \subset V_{\mu(\lambda)}, \lambda<\mu(\lambda), 1 \leq \lambda \leq r\right\}
$$

in such a way that the corresponding graded bundle is the direct sum of the line bundles $\operatorname{Hom}\left(Q_{\lambda}, Q_{\mu}\right)=Q_{\lambda}^{-1} \otimes Q_{\mu}, \lambda<\mu$; their tensor product is thus isomorphic to the canonical line bundle $K_{M(V)}=\operatorname{det}\left(T^{\star} M(V)\right)$:

$$
\begin{equation*}
K_{M(V)}=Q_{1}^{1-r} \otimes \ldots \otimes Q_{\lambda}^{2 \lambda-r-1} \otimes \ldots \otimes Q_{r}^{r-1}=Q^{c} \tag{2.4}
\end{equation*}
$$

where $c=(1-r, \ldots, r-1) ; c$ will be called the canonical weight of $M(V)$.

- Case of incomplete flag manifolds.

More generally, given any sequence of integers $s=\left(s_{0}, \ldots, s_{m}\right)$ such that $0=s_{0}<s_{1}<\ldots<s_{m}=r$, we may consider the manifold $M_{s}(V)$ of incomplete flags

$$
V=V_{s_{0}} \supset V_{s_{1}} \supset \ldots \supset V_{s_{m}}=\{0\}, \quad \operatorname{codim}_{\mathbb{C}} V_{s_{j}}=s_{j} .
$$

On $M_{s}(V)$ we still have tautological vector bundles $V_{s, j}$ of rank $r-s_{j}$ and line bundles

$$
\begin{equation*}
Q_{s, j}=\operatorname{det}\left(V_{s, j-1} / V_{s, j}\right) \quad, \quad 1 \leq j \leq m \tag{2.5}
\end{equation*}
$$

For any r-tuple $a \in \mathbb{Z}^{r}$ such that $a_{s_{j-1}+1}=\ldots=a_{s_{j}}, 1 \leq j \leq m$, we set

$$
Q_{s}^{a}=Q_{s, 1}^{a_{s_{1}}} \otimes \ldots \otimes Q_{s, m}^{a_{s_{m}}}
$$

If $\eta: M(V) \rightarrow M_{s}(V)$ is the natural projection, then

$$
\begin{equation*}
\eta^{\star} V_{s, j}=V_{s_{j}}, \quad \eta^{\star} Q_{s, j}=Q_{s_{j-1}+1} \otimes \ldots \otimes Q_{s_{j}}, \quad \eta^{\star} Q_{s}^{a}=Q^{a} \tag{2.6}
\end{equation*}
$$

On the other hand, one has the identification

$$
M_{s}(V)=\operatorname{Isom}\left(\mathbb{C}^{r}, V\right) / B_{s}
$$

where B_{s} is the parabolic subgroup of matrices $\left(z_{\lambda \mu}\right)$ with $z_{\lambda \mu}=0$ for all λ, μ such that there exists an integer $j=1, \ldots, m-1$ with $\lambda \leq s_{j}$ and $\mu>s_{j}$. We define
U_{s} as the unipotent subgroup of lower triangular matrices $\left(z_{\lambda \mu}\right)$ with $z_{\lambda \mu}=0$ for all λ, μ such that $s_{j-1}<\lambda \neq \mu \leq s_{j}$ for some j, and we set $B^{s}={ }^{t} B_{s}, U^{s}={ }^{t} U_{s}$. In the same way as above, we get

$$
\begin{align*}
T M_{s}(V) & =\operatorname{Hom}(V, V) / W_{s} \quad, \quad W_{s}=\left\{g ; g\left(V_{s_{j-1}}\right) \subset V_{s_{j}}\right\}, \tag{2.7}\\
T^{\star} M_{s}(V) & =W_{s}^{\perp}, \tag{2.8}\\
K_{M_{s}(V)} & =Q_{s, 1}^{s_{1}-r} \otimes \ldots \otimes Q_{s, j}^{s_{j-1}+s_{j}-r} \otimes \ldots \otimes Q_{s, m}^{s_{m-1}}=Q_{s}^{c(s)} \tag{2.9}
\end{align*}
$$

where $c(s)=\left(s_{1}-r, \ldots, s_{1}-r, \ldots, s_{j-1}+s_{j}-r, \ldots, s_{j-1}+s_{j}-r, \ldots\right)$ is the canonical weight of $M_{s}(V)$.

- Curvature form of the line bundle Q^{a}.

Assume now that V is a hermitian vector space. Then all our bundles carry a natural hermitian metric. We are going to compute the curvature of Q^{a} at any point $[e] \in M(V)$. Choose an orthonormal basis $\left(e_{1}, \ldots, e_{r}\right)$ of V which corresponds to the given point $[e]$. It is clear that $e B_{r} e^{-1} \subset \mathrm{Gl}(V)$ is the isotropy subgroup of $[e]$, whereas $e U^{r} e^{-1} .[e]=\left[e U^{r}\right]$ is an affine open subset of $M(V)$, corresponding to bases $\left(\zeta_{1}, \ldots, \zeta_{r}\right)$ of V such that

$$
\zeta_{\mu}=e_{\mu}+\sum_{\lambda<\mu} z_{\lambda \mu} e_{\lambda} \quad, \quad 1 \leq \mu \leq r, \quad z_{\lambda \mu} \in \mathbb{C}
$$

Then $\left(z_{\lambda \mu}\right)_{1 \leq \lambda<\mu \leq r}$ is a coordinate system on $\left[e U^{r}\right]$ and the map

$$
M(V) \ni[\zeta] \longmapsto \tilde{\zeta}_{\mu}:=\zeta_{\mu} \bmod V_{\mu}
$$

is a local section of $Q_{\mu}=V_{\mu-1} / V_{\mu}$. Hence

$$
c\left(Q_{\mu}\right)=-d^{\prime} d^{\prime \prime} \log \left|\tilde{\zeta}_{\mu}\right|^{2}
$$

Let us identify $\tilde{\zeta}_{\mu}$ with the orthogonal projection of ζ_{μ} on $V_{\mu-1} \cap V_{\mu}^{\perp}$. Then Gram-Schmidt's orthogonalization process yields

$$
\tilde{\zeta}_{\mu}=\zeta_{\mu}-\sum_{\nu>\mu} \frac{\left\langle\zeta_{\mu}, \tilde{\zeta}_{\nu}\right\rangle}{\left|\tilde{\zeta}_{\nu}\right|^{2}} \tilde{\zeta}_{\nu} \quad, \quad\left|\tilde{\zeta}_{\mu}\right|^{2}=\left|\zeta_{\mu}\right|^{2}-\sum_{\nu>\mu} \frac{\left|\left\langle\zeta_{\mu}, \tilde{\zeta}_{\nu}\right\rangle\right|^{2}}{\left|\tilde{\zeta}_{\nu}\right|^{2}}
$$

Since $\left\langle\zeta_{\mu}, \zeta_{\nu}\right\rangle=\bar{z}_{\mu \nu}+\sum_{\lambda<\mu} z_{\lambda \mu} \bar{z}_{\lambda \nu}$, it follows by backward induction on ν that $\left\langle\zeta_{\mu}, \tilde{\zeta}_{\nu}\right\rangle=\bar{z}_{\mu \nu}+\mathrm{O}\left(|z|^{2}\right)$ for $\nu>\mu$, hence

$$
\left|\tilde{\zeta}_{\mu}\right|^{2}=1+\sum_{\lambda<\mu}\left|z_{\lambda \mu}\right|^{2}-\sum_{\nu>\mu}\left|z_{\mu \nu}\right|^{2}+\mathrm{O}\left(|z|^{3}\right)
$$

We obtain therefore

$$
\begin{align*}
& c\left(Q_{\mu}\right)_{[e]}=-\sum_{\lambda<\mu} d z_{\lambda \mu} \wedge d \bar{z}_{\lambda \mu}+\sum_{\nu>\mu} d z_{\mu \nu} \wedge d \bar{z}_{\mu \nu} \tag{2.10}\\
& c\left(Q^{a}\right)_{[e]}=\sum_{\mu} a_{\mu} c\left(Q_{\mu}\right)=\sum_{\lambda<\mu}\left(a_{\lambda}-a_{\mu}\right) d z_{\lambda \mu} \wedge d \bar{z}_{\lambda \mu} \tag{2.11}
\end{align*}
$$

Corollary 2.12. - Q^{a} is ≥ 0 if and only if $a_{1} \geq a_{2} \geq \ldots \geq a_{r}$. If there exists an index j such that $a_{j}<a_{j+1}$, then $H^{0}\left(M(V), Q^{a}\right)=0$.

Proof. - Only the second statement and the "only if" part of the first remain to be proved. Let us observe that the projection $\eta: M(V) \longrightarrow M_{s}(V)$,
$s=(0, \ldots, j-1, j+1, \ldots, r)$, is a bundle with fibers $P\left(V_{j-1} / V_{j+1}\right) \simeq \mathbb{P}^{1}$. The restriction of Q_{λ} to each fiber is trivial if $\lambda \neq j, j+1$ whereas $Q_{j \mid \mathbb{P}^{1}} \simeq \mathrm{O}(1)$ and $Q_{j+1 \mid \mathbb{P}^{1}} \simeq \mathrm{O}(-1)$. Therefore $Q_{\mathbb{P}^{1}}^{a} \simeq \mathrm{O}\left(a_{j}-a_{j+1}\right)$ cannot have any non-zero section or any semi-positive metric if $a_{j}<a_{j+1}$.

When $a_{1} \geq \ldots \geq a_{r}$, the bundle Q^{a} is not necessarily >0 on $M(V)$; in fact one can write Q^{a} as the induced bundle $\eta^{\star} Q_{s}^{a}$ where $s_{1}<\ldots<s_{m-1}$ is the sequence of integers $\lambda=1, \ldots, r-1$ such that $a_{\lambda+1}>a_{\lambda}$. The affine open subset $\left[e U^{s}\right] \subset M_{s}(V)$ is a neighborhood of $[e]$, and $M_{s}(V)$ has local coordinates $\left(z_{\lambda \mu}\right)$ where λ, μ are such that $\lambda \leq s_{j-1}<s_{j} \leq \mu$ for some j, i.e. $a_{\lambda}>a_{\mu}$. The curvature of Q_{s}^{a} is given formally by the same expression as (2.11) :

$$
\begin{equation*}
c\left(Q_{s}^{a}\right)_{[e]}=\sum_{a_{\lambda}>a_{\mu}}\left(a_{\lambda}-a_{\mu}\right) d z_{\lambda \mu} \wedge d \bar{z}_{\lambda \mu} \tag{2.13}
\end{equation*}
$$

We see therefore that $Q_{s}^{a}>0$ on $M_{s}(V)$.

- Cohomology groups of Q^{a}.

It remains now to compute $H^{0}\left(M_{s}(V), Q_{s}^{a}\right) \simeq H^{0}\left(M(V), Q^{a}\right)$ when $a_{1} \geq \ldots \geq a_{r}$. Without loss of generality we may assume that $a_{r} \geq 0$, because $Q_{1} \otimes \ldots \otimes Q_{r}=\operatorname{det} V$ is a trivial bundle.

Proposition 2.14. - For all integers $a_{1} \geq a_{2} \geq \ldots \geq a_{r} \geq 0$, there is a canonical isomorphism

$$
H^{0}\left(M(V), Q^{a}\right)=\Gamma^{a} V
$$

where $\Gamma^{a} V \subset S^{a_{1}} V \otimes \ldots \otimes S^{a_{r}} V$ is the set of polynomials $f\left(\zeta_{1}^{\star}, \ldots, \zeta_{r}^{\star}\right)$ on $\left(V^{\star}\right)^{r}$ which are homogeneous of degree a_{λ} with respect to ζ_{λ}^{\star} and invariant under the left action of U_{r} on $\left(V^{\star}\right)^{r}=\operatorname{Hom}\left(V, \mathbb{C}^{r}\right)$:

$$
f\left(\zeta_{1}^{\star}, \ldots, \zeta_{\lambda-1}^{\star}, \zeta_{\lambda}^{\star}+\zeta_{\nu}^{\star}, \ldots, \zeta_{r}^{\star}\right)=f\left(\zeta_{1}^{\star}, \ldots, \zeta_{r}^{\star}\right), \quad \forall \nu<\lambda .
$$

Proof. - To any section $\sigma \in H^{0}\left(M(V), Q^{a}\right)$ we associate the holomorphic function f on $\operatorname{Isom}\left(V, \mathbb{C}^{r}\right) \subset\left(V^{\star}\right)^{r}$ defined by

$$
f\left(\zeta_{1}^{\star}, \ldots, \zeta_{r}^{\star}\right)=\left(\zeta_{1}^{\star}\right)^{a_{1}} \otimes \ldots \otimes\left(\zeta_{r}^{\star}\right)^{a_{r}} \cdot \sigma\left(\left[\zeta_{1}, \ldots, \zeta_{r}\right]\right)
$$

where $\left(\zeta_{1}, \ldots, \zeta_{r}\right)$ is the dual basis of $\left(\zeta_{1}^{\star}, \ldots, \zeta_{r}^{\star}\right)$, and where the linear form induced by ζ_{λ}^{\star} on $Q_{\lambda}=V_{\lambda-1} / V_{\lambda} \simeq \mathbb{C} \zeta_{\lambda}$ is still denoted ζ_{λ}^{\star}. Let us observe that f is homogeneous of degree a_{λ} in ζ_{λ}^{\star} and locally bounded in a neighborhood of every r-tuple of $\left(V^{\star}\right)^{r} \backslash \operatorname{Isom}\left(V, \mathbb{C}^{r}\right)$ (because $M(V)$ is compact and $\left.a_{\lambda} \geq 0\right)$. Therefore f can be extended to a polynomial on all $\left(V^{\star}\right)^{r}$. The invariance of f under U_{r} is clear. Conversely, such a polynomial f obviously defines a unique section σ on $M(V)$.

From the definition of $\Gamma^{a} V$, we see that

$$
\begin{align*}
& S^{k} V=\Gamma^{(k, 0, \ldots, 0)} V \tag{2.15}\\
& \Lambda^{k} V=\Gamma^{(1, \ldots, 1,0, \ldots, 0)} V \tag{2.16}
\end{align*}
$$

For arbitrary $a \in \mathbb{Z}^{r}$, proposition 2.14 remains true if we set
$\Gamma^{a} V=\Gamma^{\left(a_{1}-a_{r}, \ldots, a_{r-1}-a_{r}, 0\right)} V \otimes(\operatorname{det} V)^{a_{r}}$ when a is non-increasing,
$\Gamma^{a} V=0 \quad$ otherwise .

The elements $a \in \mathbb{Z}^{r}$ will be ordered according to the partial ordering :

$$
a \succcurlyeq b \quad \text { iff } \quad \sum_{1 \leq \lambda \leq \mu} a_{\lambda} \geq \sum_{1 \leq \lambda \leq \mu} b_{\lambda}, \quad 1 \leq \mu \leq r .
$$

Bott's theorem [3] shows that $\Gamma^{a} V$ is an irreducible representation of $\mathrm{Gl}(V)$ of highest weight a; all irreducible representations of $\mathrm{Gl}(V)$ are in fact of this type (cf. Kraft [10]). In particular, since the weights of the action of a maximal torus $T^{r} \subset \mathrm{Gl}(V)$ on $V^{\otimes k}$ verify $a_{1}+\ldots+a_{r}=k$ and $a_{\lambda} \geq 0$, we have a canonical $\mathrm{Gl}(V)$-isomorphism

$$
\begin{equation*}
V^{\otimes k}=\bigoplus_{\substack{a_{1}+\ldots+a_{r}=k \\ a_{1} \geq \ldots \geq a_{r} \geq 0}} \mu(a, k) \Gamma^{a} V \tag{2.17}
\end{equation*}
$$

where $\mu(a, k)>0$ is the multiplicity of the isotypical factor $\Gamma^{a} V$ in $V^{\otimes k}$.
Bott's formula (cf. also Demazure [6] for a very simple proof) gives in fact the expression of all cohomology groups $H^{q}\left(M(V), Q^{a}\right)$, but we will need them here only in the case of dominant weights $a_{1} \geq \ldots \geq a_{r}$.

Proposition 2.18. - Set $N=\operatorname{dim} M(V), N(s)=\operatorname{dim} M_{s}(V)$. If $a_{s_{j}}-a_{s_{j+1}} \geq 1$, then
(a) $H^{N(s), q}\left(M_{s}(V), Q_{s}^{a}\right)=0$ for all $q \geq 1$
(b) $H^{N(s), 0}\left(M_{s}(V), Q_{s}^{a}\right)=\Gamma^{a+c(s)} V$.

Proof. - Under the assumption of (a), Q_{s}^{a} is >0 by (2.13). The result follows therefore from the Kodaira-Akizuki-Nakano theorem. Now (b) is a consequence of proposition 2.14 since

$$
H^{N(s), q}\left(M_{s}(V), Q_{s}^{a}\right)=H^{q}\left(M_{s}(V), K_{M_{s}(V)} \otimes Q_{s}^{a}\right)=H^{q}\left(M_{s}(V), Q_{s}^{a+c(s)}\right)
$$

3. An isomorphism theorem

Our aim here is to generalize Griffiths and Le Potier's isomorphism theorems ($[8],[13]$) in the case of arbitrary flag bundles, following the simple method of Schneider [14].

Let X be a n-dimensional compact complex manifold and $E \longrightarrow X$ a holomorphic vector bundle of rank r. For every sequence $0=s_{0}<s_{1}<\ldots<s_{m}=r$, we associate to E its flag bundle $Y=M_{s}(E) \longrightarrow X$. If $a \in \mathbb{Z}^{r}$ is such that $a_{s_{j-1}+1}=\ldots=a_{s_{j}}, 1 \leq j \leq m$, we may define a line bundle $Q_{s}^{a} \longrightarrow Y$ just as we did in $\S 2$. Let us set

$$
\Omega_{X}^{p}=\Lambda^{p} T^{\star} X \quad, \quad \Omega_{Y}^{p}=\Lambda^{p} T^{\star} Y
$$

One has an exact sequence

$$
\begin{equation*}
0 \longrightarrow \pi^{\star} \Omega_{X}^{1} \longrightarrow \Omega_{Y}^{1} \longrightarrow \Omega_{Y / X}^{1} \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

where $\Omega_{Y / X}^{1}$ is by definition the bundle of relative differential 1-forms along the fibers of the projection $\pi: Y=M_{s}(E) \longrightarrow X$. One may then define a decreasing filtration of Ω_{Y}^{t} as follows :

$$
\begin{equation*}
F^{p, t}=F^{p}\left(\Omega_{Y}^{t}\right)=\pi^{\star}\left(\Omega_{X}^{p}\right) \wedge \Omega_{Y}^{t-p} \tag{3.2}
\end{equation*}
$$

The corresponding graded bundle is given by

$$
\begin{equation*}
G^{p, t}=F^{p, t} / F^{p+1, t}=\pi^{\star}\left(\Omega_{X}^{p}\right) \otimes \Omega_{Y / X}^{t-p} . \tag{3.3}
\end{equation*}
$$

Over any open subset of X where E is a trivial bundle $X \times V$ with $\operatorname{dim}_{\mathbb{C}} V=r$, the exact sequence (3.1) splits as well as the filtration (3.2). Using proposition 2.18, we obtain the following lemma.

Lemma. - For every weight a such that $a_{s_{j}}-a_{s_{j+1}} \geq 1,1 \leq j \leq m-1$, the sheaf of sections of $\Omega_{Y / X}^{N(s)} \otimes Q_{s}^{a}$ has direct images

$$
\left\{\begin{align*}
R^{q} \pi_{\star}\left(\Omega_{Y / X}^{N(s)} \otimes Q_{s}^{a}\right) & =0 \quad \text { for } \quad q \geq 1 \tag{3.4}\\
\pi_{\star}\left(\Omega_{Y / X}^{N(s)} \otimes Q_{s}^{a}\right) & =\Gamma^{a+c(s)} E .
\end{align*}\right.
$$

Let L be an arbitrary line bundle on X. Under the hypothesis $a_{s_{j}}-a_{s_{j+1}} \geq 1$, formulas (3.3) and (3.4) yield

$$
\begin{aligned}
R^{q} \pi_{\star}\left(G^{p, p+N(s)} \otimes Q_{s}^{a} \otimes \pi^{\star} L\right) & =0 \quad \text { for } \quad q \geq 1, \\
\pi_{\star}\left(G^{p, p+N(s)} \otimes Q_{s}^{a} \otimes \pi^{\star} L\right) & =\Omega_{X}^{p} \otimes \Gamma^{a+c(s)} E \otimes L .
\end{aligned}
$$

The Leray spectral sequence implies therefore :
Theorem 3.5. - If $a_{s_{j}}-a_{s_{j+1}} \geq 1$, then for all $q \geq 0$

$$
H^{q}\left(Y, G^{p, p+N(s)} \otimes Q_{s}^{a} \otimes \pi^{\star} L\right) \simeq H^{p, q}\left(X, \Gamma^{a+c(s)} E \otimes L\right)
$$

When $p=n, G^{n, n+N(s)}$ is the only non-vanishing quotient in the filtration of the canonical line bundle $\Omega_{Y}^{n+N(s)}$. We thus obtain the following generalization of Griffiths' isomorphism theorem [8] :

$$
\begin{equation*}
H^{n+N(s), q}\left(M_{s}(E), Q_{s}^{a} \otimes \pi^{\star} L\right) \simeq H^{n, q}\left(X, \Gamma^{a+c(s)} E \otimes L\right) \tag{3.6}
\end{equation*}
$$

In order to carry results for line bundles over to vector bundles, one needs the following lemma.

Lemma 3.7. - Assume that $a_{s_{1}}>a_{s_{2}}>\ldots>a_{s_{m}} \geq 0$. Then
(a) $E \geq 0 \quad($ resp. $>0) \Longrightarrow \quad Q_{s}^{a} \geq 0 \quad($ resp. $>0)$;
(b) $E \geq 0$ and $L>0 \Longrightarrow Q_{s}^{a} \otimes \pi^{\star} L>0$;
(c) E ample $\Longrightarrow \quad Q_{s}^{a}$ ample .

Proof. - Part (a) will be proved in $\S 4$ (cf. formula (4.9)) and (b) follows from the fact that $c\left(Q_{s}^{a}\right)>0$ along the fibers of π.
(c) By definition of an ample vector bundle (Hartshorne [9]) , $S^{k} E$ is very ample for $k \geq k_{0}$ large enough. Hence $\Gamma^{k a} E$, which is a direct summand in $S^{k a_{1}} E \otimes \ldots \otimes S^{k a_{r}} E$, is also very ample for $k \geq k_{0}$. Now, formula (2.14) shows that $Q_{s}^{a}>0$ along the fibers of π, hence $Q_{s}^{k a}$ is very ample along each fiber for $k \geq k_{1}$. Since $\pi_{\star}\left(Q_{s}^{k a}\right)=\Gamma^{k a} E$, we conclude that $Q_{s}^{k a}$ is very ample for $k \geq \max \left(k_{0}, k_{1}\right)$.

We are now ready to attack the proof of the main theorem. We study first the special case $p=n$.

Theorem 3.8. - Let $a \in \mathbb{Z}^{r}$ be such that

$$
a_{1} \geq a_{2} \geq \ldots \geq a_{h}>a_{h+1}=\ldots=a_{r}=0 \quad, \quad 1 \leq h \leq r-1 .
$$

Assume that E is ample and $L \geq 0$, or $E \geq 0$ and L ample. Then

$$
H^{n, q}\left(X, \Gamma^{a} E \otimes(\operatorname{det} E)^{l} \otimes L\right)=0 \quad \text { for } \quad q \geq 1, \quad l \geq h .
$$

Proof of theorem 3.8 and of the main theorem. -
Let $s_{1}>\ldots>s_{m-1}$ be the sequence of integers $\lambda=1, \ldots, r-1$ such that $a_{\lambda+1}>a_{\lambda}$. Then theorem 3.5 implies

$$
\begin{equation*}
H^{p, q}\left(X, \Gamma^{a} E \otimes(\operatorname{det} E)^{l} \otimes L\right) \simeq H^{q}\left(Y, G^{p, p+N(s)} \otimes Q_{s}^{b} \otimes \pi^{\star} L\right) \tag{3.9}
\end{equation*}
$$

where $b=a-c(s)+(l, \ldots, l)$. The canonical weight $c(s)$ is non-decreasing and $c(s)_{r}=s_{m-1}=h$, hence

$$
b_{s_{1}}>\ldots>b_{s_{m}}=l-h .
$$

Lemma 3.7 shows that $Q_{s}^{b} \otimes \pi^{\star} L>0$ if $l \geq h$. Now, it is clear that $F^{p, p+N(s)}=$ $\Omega_{Y}^{p+N(s)}$. One gets thus an exact sequence

$$
\begin{equation*}
0 \longrightarrow F^{p+1, p+N(s)} \longrightarrow \Omega_{Y}^{p+N(s)} \longrightarrow G^{p, p+N(s)} \longrightarrow 0 \tag{3.10}
\end{equation*}
$$

The Kodaira-Akizuki-Nakano vanishing theorem (1.4) applied to $Q_{s}^{b} \otimes \pi^{\star} L$ with $\operatorname{dim} Y=n+N(s)$ yields

$$
H^{q}\left(Y, \Omega_{Y}^{p+N(s)} \otimes Q_{s}^{b} \otimes \pi^{\star} L\right)=0 \quad \text { for } \quad p+q \geq n+1 .
$$

The cohomology groups in (3.9) will therefore vanish if and only if

$$
\begin{equation*}
H^{q+1}\left(Y, F^{p+1, p+N(s)} \otimes Q_{s}^{b} \otimes \pi^{\star} L\right)=0 \tag{3.11}
\end{equation*}
$$

This is obvious if $p=n$, for $F^{n+1, n+N(s)}=0$. In the general case $p<n$, we will establish in $\S 4$ that (3.11) holds for $p+q \geq n$ and $b_{r}=l-h \geq A(n, p, q)$. This will be done by means of a curvature estimate for the bundle $F^{p+1, p+N(s)}$.

Remark 3.12. - If $p+q=n$, we still obtain some result, namely that the canonical map

$$
H^{p+N(s), q}\left(Y, Q_{s}^{b} \otimes \pi^{\star} L\right) \longrightarrow H^{p, q}\left(X, \Gamma^{a} E \otimes(\operatorname{det} E)^{l} \otimes L\right)
$$

is onto when $l \geq h+A(n, p, q)$.
Remark 3.13. - If the exact sequence (3.10) splits, then (3.11) is an immediate consequence of the Kodaira-Nakano-Akizuki theorem. However, Peternell-Le Potier and Schneider [11], [12] have shown that in general the filtration $F^{\bullet}\left(\Omega_{Y}^{t}\right)$ does not split, and this is the reason why we have to introduce additional considerations in order to prove (3.11).

4. A curvature estimate for the subbundle $F^{p+1, p+N(s)}$.

We assume here that $E, L \longrightarrow X$ are hermitian vector bundles of respective ranks $r, 1$ and that $E \geq 0$ and $L>0$, or $E>0$ and $L \geq 0$. Let $a \in \mathbb{Z}^{r}$ be
such that $a_{1} \geq \ldots \geq a_{r} \geq 0$ and let $s_{1}<\ldots<s_{m-1}$ be the sequence of integers $\lambda=1, \ldots, r-1$ such that $a_{\lambda+1}>a_{\lambda}$. We set for simplicity

$$
Y=M_{s}(E), \quad \Omega=\Omega_{Y}^{p+N(s)}, \quad F=F^{p+1, p+N(s)} \quad, \quad G=G^{p, p+N(s)}=\Omega / F .
$$

Our aim is to prove that the analogue of (3.11) :

$$
\begin{equation*}
H^{q+1}\left(Y, F \otimes Q_{s}^{a} \otimes \pi^{\star} L\right)=0 \tag{4.1}
\end{equation*}
$$

holds when $p+q \geq n$ and $a_{r} \geq A(n, p, q)$. Let us consider the exact sequences of vector bundles over Y :

$$
\left\{\begin{array}{l}
0 \longrightarrow F \tag{4.2}\\
0 \longrightarrow F(a) \\
0 \longrightarrow \Omega(a) \longrightarrow G(a) \longrightarrow 0
\end{array}\right.
$$

where the second sequence arises from the first one after taking tensor products with the line bundle $Q_{s}^{a} \otimes \pi^{\star} L$. Then Y can be equipped with the Kähler metric $\omega=i c\left(Q_{s}^{a} \otimes \pi^{\star} L\right)$; the positivity of ω is a consequence of (4.9) below. To every smooth form v of type $(p+N(s), q+1)$ with values in $Q_{s}^{a} \otimes \pi^{\star} L$, let us apply the Akizuki-Nakano inequality (1.3), where $\operatorname{dim} Y=n+N(s)$:

$$
\begin{equation*}
\left.\left\|D_{\Omega(a)}^{\prime \prime} v\right\|^{2}+\left\|D_{\Omega(a)}^{\prime \prime *} v\right\|^{2} \geq(p+q-n+1)\right)\|v\|^{2} . \tag{4.3}
\end{equation*}
$$

With respect to the orthogonal C^{∞}-splitting $\Omega \simeq F \oplus G$, the Chern connections of Ω, F, G are related by the well-known formula (cf. [8]) :

$$
D_{\Omega}=\left(\begin{array}{cc}
D_{F} & -\beta^{\star} \wedge \bullet \\
\beta \wedge \bullet & D_{G}
\end{array}\right) \quad, \quad \beta \in C^{\infty}\left(\Lambda^{1,0} T^{\star} Y \otimes \operatorname{Hom}(F, G)\right) ;
$$

β^{\star} is a $D^{\prime \prime}$-closed $(0,1)$-form with values in $\operatorname{Hom}(G, F)$, and its cohomology class is the obstuction to the existence of a global splitting of (4.2). We obtain therefore

$$
D_{\Omega(a)}^{\prime \prime}=\left(\begin{array}{cc}
D_{F(a)}^{\prime \prime} & -\beta^{\star} \wedge \bullet \\
0 & D_{G(a)}^{\prime \prime}
\end{array}\right) \quad, \quad D_{\Omega(a)}^{\prime \prime \star}=\left(\begin{array}{cc}
D_{F(a)}^{\prime \prime \star} & 0 \\
-\beta\lrcorner \bullet & D_{G(a)}^{\prime \prime \star}
\end{array}\right)
$$

where \rfloor denotes the interior product of differential forms combined with the evaluation map $\operatorname{Hom}(F, G) \times F \rightarrow G$ (note that $\left.\beta\lrcorner \bullet=\left(\beta^{\star} \wedge \bullet\right)^{\star}\right)$. For every $(0, q+1)$-form f with values in $F(a)$ we get

$$
\begin{equation*}
\left.D_{F(a)}^{\prime \prime} f=D_{\Omega(a)}^{\prime \prime} f \quad, \quad\left\|D_{F(a)}^{\prime \prime \star} f\right\|^{2}=\left\|D_{\Omega(a)}^{\prime \prime \star} f\right\|^{2}-\| \beta\right\lrcorner f \|^{2} . \tag{4.4}
\end{equation*}
$$

From (4.3) and (4.4), we see that the vanishing property (4.1) will hold if

$$
\begin{equation*}
\mid \beta\lrcorner\left. f\right|^{2}<(p+q-n+1)|f|^{2} \tag{4.5}
\end{equation*}
$$

at every point of Y. We are going to compute β explicitly in suitable coordinate systems on Y. Let $y^{0} \in Y$ be an arbitrary point and $\left(x_{1}, \ldots, x_{n}\right)$ local coordinates on X centered at the point $x^{0}=\pi\left(y^{0}\right)$.

Lemma. - There exists a local holomorphic frame $\left(e_{1}, \ldots, e_{r}\right)$ of E such that y^{0} coincides with the flag $\left[e_{1}\left(x^{0}\right), \ldots, e_{r}\left(x^{0}\right)\right]$ and

$$
\begin{equation*}
\left\langle e_{\lambda}(x), e_{\mu}(x)\right\rangle=\delta_{\lambda \mu}-\sum_{i, j} c_{i j \lambda \mu} x_{i} \bar{x}_{j}+\mathrm{O}\left(|x|^{3}\right) \tag{4.6}
\end{equation*}
$$

where $\left(c_{i j \lambda \mu}\right)$ is the curvature tensor of E.

Proof. - Choose a holomorphic frame $\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)$ of E such that $\left(\varepsilon_{1}\left(x^{0}\right), \ldots, \varepsilon_{r}\left(x^{0}\right)\right)$ is orthonormal and $\left[\varepsilon_{1}\left(x^{0}\right), \ldots, \varepsilon_{r}\left(x^{0}\right)\right]=y^{0}$. Then the inner product $\left\langle\varepsilon_{\lambda}(x), \varepsilon_{\mu}(x)\right\rangle$ has a Taylor expansion of the type

$$
\begin{aligned}
\left\langle\varepsilon_{\lambda}(x), \varepsilon_{\mu}(x)\right\rangle=\delta_{\lambda \mu} & +\sum_{i}\left(\gamma_{i \lambda \mu} x_{i}+\bar{\gamma}_{i \mu \lambda} \bar{x}_{i}\right) \\
& +\sum_{i, j}\left(\gamma_{i j \lambda \mu} x_{i} \bar{x}_{j}+\gamma_{i j \lambda \mu}^{\prime} x_{i} x_{j}+\bar{\gamma}_{i j \mu \lambda}^{\prime} \bar{x}_{i} \bar{x}_{j}\right)+\mathrm{O}\left(|x|^{3}\right) .
\end{aligned}
$$

This expansion can be reduced to (4.6) (with suitable coefficients $c_{i j \lambda \mu}$) if one sets

$$
e_{\lambda}(x)=\varepsilon_{\lambda}(x)-\sum_{i, \mu} \gamma_{i \lambda \mu} x_{i} e_{\mu}-\sum_{i, j, \mu} \gamma_{i j \lambda \mu}^{\prime} x_{i} x_{j} e_{\mu}
$$

Now (4.6) implies

$$
\begin{aligned}
D e_{\lambda} & =-\sum_{i, j, \mu} c_{i j \lambda \mu} \bar{x}_{j} d x_{i} \otimes e_{\mu}+\mathrm{O}\left(|x|^{2}\right) \\
D^{2} e_{\lambda} & =\sum_{i, j, \mu} c_{i j \lambda \mu} d x_{i} \wedge d \bar{x}_{j} \otimes e_{\mu}+\mathrm{O}(|x|)
\end{aligned}
$$

showing that the $c_{i j \lambda \mu}$'s are precisely the curvature coefficients at x^{0}.
Let us denote by $z=\left(z_{\lambda \mu}\right)$ the affine coordinates on the fiber $M_{s}\left(E_{x}\right) \subset Y$ associated to the basis $\left(e_{1}(x), \ldots, e_{r}(x)\right)$. Then $\left(x_{1}, \ldots, x_{n}, z_{\lambda \mu}\right)$ define local coordinates on Y in a neighborhood of y^{0}. Assume first that $Y=M_{s}(E)=M(E)$ is the manifold of complete flags of E. Then we have tautological subbundles $V_{\lambda}=\operatorname{Vect}\left(e_{\lambda+1}, \ldots, e_{r}\right) \subset \pi^{\star} E$ and the map

$$
\begin{equation*}
Y \ni(x, z) \longmapsto \zeta_{\mu}=e_{\mu}(x)+\sum_{\lambda<\mu} z_{\lambda \mu} e_{\lambda}(x) \tag{4.7}
\end{equation*}
$$

is a local section of $V_{\mu-1}$. Let us denote by $\widetilde{\zeta}_{\mu}$ the image of ζ_{μ} in $Q_{\mu}=V_{\mu-1} / V_{\mu}$, represented by the orthogonal projection of ζ_{μ} on $V_{\mu-1} \cap\left(V_{\mu}\right)^{\perp}$. As in §2, one finds

$$
\left\{\begin{array}{l}
\widetilde{\zeta}_{\lambda}=\zeta_{\lambda}-\sum_{\mu>\lambda} \frac{\left\langle\zeta_{\lambda}, \widetilde{\zeta}_{\mu}\right\rangle}{\left|\widetilde{\zeta}_{\mu}\right|^{2}} \widetilde{\zeta}_{\mu},\left|\widetilde{\zeta}_{\lambda}\right|^{2}=\left|\zeta_{\lambda}\right|^{2}-\sum_{\mu>\lambda} \frac{\left|\left\langle\zeta_{\lambda}, \widetilde{\zeta}_{\mu}\right\rangle\right|^{2}}{\left|\widetilde{\zeta}_{\mu}\right|^{2}} \tag{4.8}\\
\left\langle\zeta_{\lambda}, \widetilde{\zeta}_{\mu}\right\rangle=\bar{z}_{\lambda \mu}-\sum_{i, j} c_{i j \lambda \mu} x_{i} \bar{x}_{j} \quad \bmod \left(z^{2}, x^{3}, x^{2} z\right) \text { for } \lambda<\mu
\end{array}\right.
$$

We need a Taylor expansion of $c\left(Q_{\mu}\right)=-d^{\prime} d^{\prime \prime} \log \left|\widetilde{\zeta}_{\mu}\right|^{2}$ up to order 1 , hence of $\left|\widetilde{\zeta}_{\mu}\right|^{2}$ up to order 3 . Moreover, pure terms x^{3}, z^{3} will not play any role because the Kähler property of $c\left(Q_{\mu}\right)$ enables one to get rid of the terms $\mathrm{O}(|x| d x \wedge d \bar{x})$, $\mathrm{O}(|z| d z \wedge d \bar{z})$. Therefore, we are interested only in terms of degree ≤ 2 and in mixed terms $x z^{2}, x^{2} z$. Thanks to formulas (4.7) and (4.8), we get the following
equalities modulo the ideal $\left(x^{3}, z^{3}, x^{2} z^{2}\right)$:

$$
\begin{aligned}
&\left|\widetilde{\zeta}_{\lambda}\right|^{2} \sim\left|\zeta_{\lambda}\right|^{2}-\sum_{\mu>\lambda}\left|\left\langle\zeta_{\lambda}, \widetilde{\zeta}_{\mu}\right\rangle\right|^{2} \\
&\left|\zeta_{\lambda}\right|^{2} \sim \sim 1-\sum_{i, j} c_{i j \lambda \lambda} x_{i} \bar{x}_{j}+\sum_{\mu<\lambda}\left|z_{\mu \lambda}\right|^{2} \\
&-\sum_{i, j, \mu<\lambda} c_{i j \lambda \mu} x_{i} \bar{x}_{j} \bar{z}_{\mu \lambda}-\sum_{i, j, \mu<\lambda} \bar{c}_{i j \lambda \mu} \bar{x}_{i} x_{j} z_{\mu \lambda} \\
&\left|\left\langle\zeta_{\lambda}, \widetilde{\zeta}_{\mu}\right\rangle\right|^{2} \sim\left|z_{\lambda \mu}\right|^{2}-\sum_{i, j} c_{i j \lambda \mu} x_{i} \bar{x}_{j} z_{\lambda \mu}-\sum_{i, j} \bar{c}_{i j \lambda \mu} \bar{x}_{i} x_{j} \bar{z}_{\lambda \mu}
\end{aligned}
$$

We have now

$$
\begin{gathered}
c\left(Q^{a}\right)=\sum_{\bar{x}^{*}} a_{\lambda} c\left(Q_{\lambda}\right)=d^{\prime} d^{\prime \prime}\left(-\sum_{\lambda} a_{\lambda} \log \left|\widetilde{\zeta}_{\lambda}\right|^{2}\right), \\
-\sum_{\lambda} a_{\lambda} \log \left|\zeta_{\lambda}\right|^{2} \\
\sim \sum_{i, j, \lambda} a_{\lambda} c_{i j \lambda \lambda} x_{i} \bar{x}_{j}+\sum_{\lambda<\mu}\left(a_{\lambda}-a_{\mu}\right)\left|z_{\lambda \mu}\right|^{2} \\
- \\
-\sum_{i, j, \lambda<\mu}\left(a_{\lambda}-a_{\mu}\right) c_{i j \lambda \mu} x_{i} \bar{x}_{j} z_{\lambda \mu} \\
\\
-\sum_{i, j, \lambda<\mu}\left(a_{\lambda}-a_{\mu}\right) \bar{c}_{i j \lambda \mu} \bar{x}_{i} x_{j} \bar{z}_{\lambda \mu} .
\end{gathered}
$$

We find therefore

$$
\begin{aligned}
c\left(Q^{a}\right) & =\sum_{i, j}\left(\sum_{\lambda} a_{\lambda} c_{i j \lambda \lambda}+\mathrm{O}(|x|)\right) d x_{i} \wedge d \bar{x}_{j} \\
& +\sum_{\lambda<\mu}\left(a_{\lambda}-a_{\mu}\right) d z_{\lambda \mu} \wedge d \bar{z}_{\lambda \mu}+\mathrm{O}(|z| d z \wedge d \bar{z}) \\
& -\sum_{i, j, \lambda<\mu}\left(a_{\lambda}-a_{\mu}\right) c_{i j \lambda \mu}\left(z_{\lambda \mu} d x_{i} \wedge d \bar{x}_{j}+x_{i} d z_{\lambda \mu} \wedge d \bar{x}_{j}\right) \\
& -\sum_{i, j, \lambda<\mu}\left(a_{\lambda}-a_{\mu}\right) \bar{c}_{i j \lambda \mu}\left(\bar{z}_{\lambda \mu} d x_{j} \wedge d \bar{x}_{i}+\bar{x}_{i} d x_{j} \wedge d \bar{z}_{\lambda \mu}\right)+\mathrm{O}\left(|x|^{2}+|z|^{2}\right)
\end{aligned}
$$

Since $Q^{a}=\pi_{s}^{\star} Q_{s}^{a}$, the same identity holds for Q_{s}^{a}. At the point y^{0} we get

$$
\begin{equation*}
c\left(Q_{s}^{a}\right)_{y^{0}}=\sum_{i, j, \lambda} a_{\lambda} c_{i j \lambda \lambda} d x_{i} \wedge d \bar{x}_{j}+\sum_{a_{\lambda}>a_{\mu}}\left(a_{\lambda}-a_{\mu}\right) d z_{\lambda \mu} \wedge d \bar{z}_{\lambda \mu} \tag{4.9}
\end{equation*}
$$

Now, $\omega=i\left(\pi^{\star} c(L)+c\left(Q_{s}^{a}\right)\right)$ is Kähler on $Y=M_{s}(E)$, thus in particular along the fiber $x=0$ and along the local section $z=0$. It follows that one can find coordinate changes $x \mapsto x^{\prime}, z_{\lambda \mu}^{\prime}=\sqrt{a_{\lambda}-a_{\mu}} z_{\lambda \mu} \bmod z^{2}$ such that the terms $\mathrm{O}(|x| d x \wedge d \bar{x})$ and $\mathrm{O}(|z| d z \wedge d \bar{z})$ disappear in the expansion of ω, and such that

$$
\begin{equation*}
\omega_{i j}\left(y^{0}\right)=c(L)_{i j}\left(x^{0}\right)+\sum_{\lambda} a_{\lambda} c_{i j \lambda \lambda}=\delta_{i j} . \tag{4.10}
\end{equation*}
$$

We obtain therefore

$$
\begin{aligned}
\frac{1}{i} \omega & =\sum_{j} d x_{j}^{\prime} \wedge d \bar{x}_{j}^{\prime}+\sum_{\lambda<\mu} d z_{\lambda \mu}^{\prime} \wedge d \bar{z}_{\lambda \mu}^{\prime} \\
& -\sum_{i, j, \lambda<\mu} \sqrt{a_{\lambda}-a_{\mu}} c_{i j \lambda \mu}\left(z_{\lambda \mu}^{\prime} d x_{i}^{\prime} \wedge d \bar{x}_{j}^{\prime}+x_{i}^{\prime} d z_{\lambda \mu}^{\prime} \wedge d \bar{x}_{j}^{\prime}\right) \\
& -\sum_{i, j, \lambda<\mu} \sqrt{a_{\lambda}-a_{\mu}} \bar{c}_{i j \lambda \mu}\left(\bar{z}_{\lambda \mu}^{\prime} d x_{j}^{\prime} \wedge d \bar{x}_{i}^{\prime}+\bar{x}_{i}^{\prime} d x_{j}^{\prime} \wedge d \bar{z}_{\lambda \mu}^{\prime}\right)+\mathrm{O}\left(\left|x^{\prime}\right|^{2}+\left|z^{\prime}\right|^{2}\right)
\end{aligned}
$$

Omitting the primes in the coordinates x^{\prime}, z^{\prime} for simplicity, we see that the norms of the basis elements of $T Y$ with respect to ω are given modulo $\mathrm{O}\left(|x|^{2}+|z|^{2}\right)$ by

$$
\begin{aligned}
\left\langle\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right\rangle & \sim \delta_{i j}-\sum_{\lambda<\mu} \sqrt{a_{\lambda}-a_{\mu}}\left(c_{i j \lambda \mu} z_{\lambda \mu}+c_{i j \mu \lambda} \bar{z}_{\lambda \mu}\right), \\
\left\langle\frac{\partial}{\partial z_{\lambda \mu}}, \frac{\partial}{\partial z_{\lambda^{\prime} \mu^{\prime}}}\right\rangle & \sim \delta_{\lambda \lambda^{\prime}} \delta_{\mu \mu^{\prime}}, \\
\left\langle\frac{\partial}{\partial z_{\lambda \mu}}, \frac{\partial}{\partial x_{j}}\right\rangle & \sim-\sum_{i} \sqrt{a_{\lambda}-a_{\mu}} c_{i j \lambda \mu} x_{i} .
\end{aligned}
$$

By duality, we get

$$
\begin{aligned}
\left\langle d x_{i}, d x_{j}\right\rangle & \sim \delta_{i j}+\sum_{\lambda<\mu} \sqrt{a_{\lambda}-a_{\mu}}\left(\bar{c}_{i j \lambda \mu} \bar{z}_{\lambda \mu}+\bar{c}_{i j \mu \lambda} z_{\lambda \mu}\right) \\
\left\langle d z_{\lambda \mu}, d z_{\lambda^{\prime} \mu^{\prime}}\right\rangle & \sim \delta_{\lambda \lambda^{\prime}} \delta_{\mu \mu^{\prime}} \\
\left\langle d z_{\lambda \mu}, d x_{j}\right\rangle & \sim \sum_{i} \sqrt{a_{\lambda}-a_{\mu}} \bar{c}_{i j \lambda \mu} \bar{x}_{i} .
\end{aligned}
$$

Taking the exterior derivative in the above estimates, we find that the Chern connection D on $\Omega_{Y}^{1}=T^{\star} Y$ is given in terms of the basis vectors $d x_{i}, d z_{\lambda \mu}$ by

$$
\begin{aligned}
D\left(d x_{j}\right) & =\sum_{i, \lambda<\mu} \sqrt{a_{\lambda}-a_{\mu}} c_{i j \lambda \mu}\left(d z_{\lambda \mu} \otimes d x_{i}+d x_{i} \otimes d z_{\lambda \mu}\right)+\mathrm{O}(|x|+|z|) \\
D\left(d z_{\lambda \mu}\right) & =0+\mathrm{O}(|x|+|z|)
\end{aligned}
$$

The subbundle $F=F^{p+1, N(s)}$ (resp. the quotient bundle $G=G^{p, p+N(s)}$) admits at y^{0} the orthonormal basis
$d x_{I} \wedge d z_{J} \quad$ with $|I|+|J|=p+N(s),|I| \geq p+1 \quad($ resp. $|I| \leq p,|J|=N(s))$.
Let $v=\sum v_{I, J} d x_{I} \wedge d z_{J}$ be a C^{∞} section of F. The (1,0)-form $\beta \wedge v$ is nothing else than the projection of $D v$ on $G=\Omega / F$. From this observation, one obtains the expression of β at y^{0} :

$$
\begin{equation*}
\left.\beta \wedge v=\sum_{i, j, \lambda<\mu} \sqrt{a_{\lambda}-a_{\mu}} c_{i j \lambda \mu} d x_{i} \otimes\left(d z_{\lambda \mu} \wedge\left(\frac{\partial}{\partial x_{j}}\right\lrcorner v\right)\right) \bmod F \tag{4.11}
\end{equation*}
$$

where $\xi\lrcorner v$ means contraction of the differential form v by the tangent vector ξ. In fact any differentiation of a factor $d x_{j}$ in a term $D\left(v_{I, J} d x_{I} \wedge d z_{J}\right)$ decreases of one unity the partial degree $|I|$ when $d x_{j}$ is differentiated into $c_{i j \lambda \mu} d x_{i} \otimes d z_{\lambda \mu}$. The corresponding part of the differential is thus in G if $|I|=p+1$. For every $(0, q+1)$-form $\quad f=\sum f_{I, J, K, L} d x_{I} \wedge d z_{J} \wedge d \bar{x}_{K} \wedge d \bar{z}_{L} \quad$ with values in $F(a)$, $|I|+|J|=p+N(s),|I| \geq p+1,|K|+|L|=q+1$, we obtain consequently

$$
\begin{equation*}
\left.\left.\beta\lrcorner f=\sum_{i, j, \lambda<\mu} \sqrt{a_{\lambda}-a_{\mu}} c_{i j \lambda \mu} \frac{\partial}{\partial \bar{x}_{i}}\right\lrcorner\left(d z_{\lambda \mu} \wedge\left(\frac{\partial}{\partial x_{j}}\right\lrcorner f\right)\right) \bmod F(a) . \tag{4.12}
\end{equation*}
$$

The only terms of f that contribute to the expression of $\beta\lrcorner f$ are those for which $|I|=p+1$ and $|J|=N(s)-1$. Let us write $g=\beta\lrcorner f$ under the form

$$
g=\sum g_{I^{\prime}, J^{\prime}, K^{\prime}, L^{\prime}} d x_{I^{\prime}} \wedge d z_{J^{\prime}} \wedge d \bar{x}_{K^{\prime}} \wedge d \bar{z}_{L^{\prime}}
$$

where $\left|I^{\prime}\right|=p,\left|J^{\prime}\right|=N(s),\left|K^{\prime}\right|+\left|L^{\prime}\right|=q$. Formula (4.12) implies

$$
\begin{aligned}
g_{I^{\prime}, J^{\prime}, K^{\prime}, L^{\prime}} & =\sum_{i, j, \lambda<\mu} \pm \sqrt{a_{\lambda}-a_{\mu}} c_{i j \lambda \mu} f_{j I^{\prime}, J^{\prime} \backslash\{\lambda \mu\}, i K^{\prime}, L^{\prime}}, \\
\left|g_{I^{\prime}, J^{\prime}, K^{\prime}, L^{\prime}}\right|^{2} & \leq\left(\sum_{i, j, \lambda<\mu}\left(a_{\lambda}-a_{\mu}\right)\left|c_{i j \lambda \mu}\right|^{2}\right) \sum_{i, j, \lambda<\mu}\left|f_{j I^{\prime}, J^{\prime} \backslash\{\lambda \mu\}, i K^{\prime}, L^{\prime}}\right|^{2},
\end{aligned}
$$

and $\sum_{I^{\prime}, J^{\prime}, K^{\prime}, L^{\prime}} \sum_{i, j, \lambda<\mu}\left|f_{j I^{\prime}, J^{\prime} \backslash\{\lambda \mu\}, i K^{\prime}, L^{\prime}}\right|^{2} \leq(p+1)(q+1) \sum_{I, J, K, L}\left|f_{I, J, K, L}\right|^{2}$. We obtain therefore the inequality

$$
\begin{equation*}
\mid \beta\lrcorner\left. f\right|^{2} \leq(p+1)(q+1)\left(\sum_{i, j, \lambda<\mu}\left(a_{\lambda}-a_{\mu}\right)\left|c_{i j \lambda \mu}\right|^{2}\right)|f|^{2} . \tag{4.13}
\end{equation*}
$$

The main point now is to find an estimate of the sum $\sum_{i, j, \lambda<\mu}\left(a_{\lambda}-a_{\mu}\right)\left|c_{i j \lambda \mu}\right|^{2}$ under condition (4.10).

Lemma 4.14. - Let $\left(h_{\lambda \mu}\right)_{1 \leq \lambda, \mu \leq r}$ be a semi-positive hermitian matrix and let $\alpha_{1} \leq \ldots \leq \alpha_{r}$ be real numbers. Then

$$
\sum_{\lambda<\mu}\left(\alpha_{\mu}-\alpha_{\lambda}\right)\left|h_{\lambda \mu}\right|^{2} \leq \frac{1}{4}\left(\alpha_{r}-\alpha_{1}\right)\left(\sum_{\lambda} h_{\lambda \lambda}\right)^{2}
$$

Proof. - Use Cauchy-Schwarz inequality $\left|h_{\lambda \mu}\right|^{2} \leq h_{\lambda \lambda} h_{\mu \mu}$ and take $t_{\lambda}=h_{\lambda \lambda}$ in the identity

$$
\begin{aligned}
\frac{1}{4}\left(\alpha_{r}\right. & \left.-\alpha_{1}\right)\left(\sum_{\lambda} t_{\lambda}\right)^{2}-\sum_{\lambda<\mu}\left(\alpha_{\mu}-\alpha_{\lambda}\right) t_{\lambda} t_{\mu} \\
& =\frac{1}{4} \sum_{1 \leq \lambda<r}\left(\alpha_{\lambda+1}-\alpha_{\lambda}\right)\left(t_{1}+\ldots+t_{\lambda}-t_{\lambda+1}-\ldots-t_{r}\right)^{2} \geq 0
\end{aligned}
$$

Lemma 4.15. - Under condition (4.10) one has

$$
\sum_{i, j, \lambda<\mu}\left(a_{\lambda}-a_{\mu}\right)\left|c_{i j \lambda \mu}\right|^{2} \leq \frac{1}{4} n(n+1)\left(\frac{1}{a_{r}}-\frac{1}{a_{1}}\right) .
$$

Proof. - Let us apply lemma 4.14 to

$$
h_{\lambda \mu}=\sqrt{a_{\lambda} a_{\mu}} \sum_{i, j} c_{i j \lambda \mu} t_{i} \bar{t}_{j}, \quad \alpha_{\lambda}=\frac{1}{a_{\lambda}},
$$

where $t=\left(t_{1}, \ldots, t_{n}\right)$ are arbitrary complex numbers. The Griffiths semipositivity assumption on $c(E)$ means that $\left(h_{\lambda \mu}\right)$ is semi-positive for all t. We get

$$
\sum_{\lambda} h_{\lambda \lambda}=\sum_{i, j, \lambda} a_{\lambda} c_{i j \lambda \lambda} t_{i} \bar{t}_{j} \leq|t|^{2}
$$

by condition (4.10), thus

$$
\begin{equation*}
\sum_{\lambda<\mu}\left(a_{\lambda}-a_{\mu}\right)\left|\sum_{i, j} c_{i j \lambda \mu} t_{i} \bar{t}_{j}\right|^{2} \leq \frac{1}{4}\left(\frac{1}{a_{r}}-\frac{1}{a_{1}}\right)|t|^{4} . \tag{4.16}
\end{equation*}
$$

Apply now inequality (4.16) to $t=\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right) \in \mathbb{T}^{n}$ and integrate the result over \mathbb{T}^{n}. Parseval's identity for Fourier series yields

$$
\sum_{\lambda<\mu}\left(a_{\lambda}-a_{\mu}\right)\left(\sum_{i \neq j}\left|c_{i j \lambda \mu}\right|^{2}+\left|\sum_{i} c_{i i \lambda \mu}\right|^{2}\right) \leq \frac{1}{4}\left(\frac{1}{a_{r}}-\frac{1}{a_{1}}\right) n^{2} .
$$

Inequality (4.16) applied to each vector of the standard basis of \mathbb{C}^{n} yields in the same way

$$
\sum_{\lambda<\mu}\left(a_{\lambda}-a_{\mu}\right)\left|c_{i i \lambda \mu}\right|^{2} \leq \frac{1}{4}\left(\frac{1}{a_{r}}-\frac{1}{a_{1}}\right)
$$

for all i, and lemma 4.15 follows.
Combining inequality (4.13) with lemma 4.15 we get

$$
\mid \beta\lrcorner\left. f\right|^{2}<\frac{1}{4 a_{r}} n(n+1)(p+1)(q+1)|f|^{2}
$$

and using criterion (4.5) we see that $H^{q+1}\left(Y, F \otimes Q_{s}^{a} \otimes \pi^{\star} L\right)=0$ for

$$
a_{r} \geq \frac{n(n+1)(p+1)(q+1)}{4(p+q-n+1)} \quad, \quad p+q \geq n
$$

The proof of the main theorem is therefore achieved.

5. On the Borel-Le Potier spectral sequence.

Denote as before $\pi: Y=M_{s}(E) \longrightarrow X$ the projection. To every integer t and every coherent analytic sheaf \mathcal{S} on Y, one may associate the complex

$$
D^{\prime \prime}: \mathcal{K}^{q}=\Gamma\left(Y, \mathcal{C}_{Y}^{\infty}\left(\Omega_{Y}^{t} \otimes \bar{\Omega}_{Y}^{q}\right) \otimes_{\mathcal{O}_{Y}} \mathcal{S}\right) \longrightarrow \mathcal{K}^{q+1}
$$

of C^{∞}-differential forms of type (t, q) with values in \mathcal{S}. This Dolbeault complex is filtered by the decreasing sequence of subcomplexes

$$
D^{\prime \prime}: \mathcal{K}_{p}^{q}=\Gamma\left(Y, \mathcal{C}_{Y}^{\infty}\left(F^{p}\left(\Omega_{Y}^{t}\right) \otimes \bar{\Omega}_{Y}^{q}\right) \otimes_{\mathcal{O}_{Y}} \mathcal{S}\right) \longrightarrow \mathcal{K}_{p}^{q+1}
$$

This gives rise to a spectral sequence which we shall name after Borel and Le Potier, whose E_{0}, E_{1} terms are

$$
\left\{\begin{array}{l}
E_{0}^{p, q-p}=\Gamma\left(Y, \mathcal{C}_{Y}^{\infty}\left(G^{p, t} \otimes \bar{\Omega}_{Y}^{q}\right) \otimes_{\mathcal{O}_{Y}} \mathcal{S}\right) \tag{5.1}\\
E_{1}^{p, q-p}=H^{q}\left(Y, G^{p, t} \otimes \mathcal{S}\right)
\end{array}\right.
$$

The limit term $E_{\infty}^{p, q-p}$ is the p-graded module corresponding to the filtration of $H^{q}\left(\mathcal{K}^{\bullet}\right)=H^{q}\left(Y, \Omega_{Y}^{t} \otimes \mathcal{S}\right)$ by the canonical images of the groups $H^{q}\left(\mathcal{K}_{p}^{\bullet}\right)$. Assume that the spectral sequence degenerates in E_{2}, i.e. $d_{r}: E_{r}^{p, q-p} \rightarrow E_{r}^{p+r, q+1-(p+r)}$ is zero for all $r \geq 2$ (by Peternell, Le Potier and Schneider [12], the spectral sequence does not degenerate in general in E_{1}). Then $E_{2}^{p, q-p}=E_{\infty}^{p, q-p}$. This equality means that the q-th cohomology group of the E_{1}-complex

$$
d_{1}: H^{q}\left(Y, G^{p, t} \otimes \mathcal{S}\right) \longrightarrow H^{q+1}\left(Y, G^{p+1, t} \otimes \mathcal{S}\right)
$$

is the p-graded module corresponding to a filtration of $H^{q}\left(Y, \Omega_{Y}^{t} \otimes \mathcal{S}\right)$. By Kodaira-Akizuki-Nakano, we get therefore :

Proposition 5.1. - Assume that E is ample and $L \geq 0$, or $E \geq 0$ and L ample, and that the E_{2}-degeneracy occurs for the ample invertible sheaf $\mathcal{S}=Q_{s}^{a} \otimes \pi^{\star} L$ on Y. Then the complex

$$
d_{1}: H^{q}\left(Y, G^{p, t} \otimes Q_{s}^{a} \otimes \pi^{\star} L\right) \longrightarrow H^{q+1}\left(Y, G^{p+1, t} \otimes Q_{s}^{a} \otimes \pi^{\star} L\right)
$$

is exact in degree $q \geq n+N(s)+1-t$.
This result would be a considerable help for the proof of vanishing theorems. For example, it is shown in [5] that the main vanishing theorem would be true with $l \geq r-1+\min \{n-p, n-q\}$.

Since d_{1} is the coboundary operator associated to the exact sequence $0 \longrightarrow G^{p+1, t} \longrightarrow F^{p, t} / F^{p+2, t} \longrightarrow G^{p, t} \longrightarrow 0$, it is easy to see that $d_{1}=-\beta^{\star} \wedge \bullet$ where β^{\star} is the $D^{\prime \prime}$-closed $(0,1)$-form of $\S 4$, reinterpreted as a $(0,1)$-section of $\operatorname{Hom}\left(G^{p, t}, G^{p+1, t}\right)$. Our hope is that the E_{2}-degeneracy can be proved in all cases by a suitable deepening of the analytic method of $\S 4$.

References

[1] Y. AKIZUKI and S. NAKANO. - Note on Kodaira-Spencer's proof of Lefschetz theorems, Proc. Jap. Acad., 30 (1954), 266-272.
[2] A. BOREL and A. WEIL. - Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts, Séminaire Bourbaki (exposé n ${ }^{\circ} 100$ par J.-P. Serre), (mai 1954), 8 pages.
[3] R. Bott. - Homogeneous vector bundles, Ann. of Math., 66 (1957), 203-248.
[4] J.-P. DEmailly. - Théorèmes d'annulation pour la cohomologie des puissances tensorielles d'un fibré positif, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), à paraître.
[5] J.-P. DEmailly. - Vanishing theorems for tensor powers of an ample vector bundle, Prépublication Institut Fourier, Univ. de Grenoble I (August 1987), submitted to Invent. Math.
[6] B. Demazure. - A very simple proof of Bott's theorem, Invent. Math., 33 (1976), 271-272.
[7] R. GODEMENT. - Théorie des faisceaux, Hermann, Paris, 1958.
[8] P.A. GRIffiths. - Hermitian differential geometry, Chern classes and positive vector bundles, Global Analysis, Papers in honor of K. Kodaira, Princeton Univ. Press, Princeton (1969), 185-251.
[9] R. Hartshorne. - Ample vector bundles, Publ. Math. I.H.E.S., 29 (1966), 63-94.
[10] H. KRAFT. - Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, Band D1, Braunschweig, Vieweg \& Sohn, 1985.
[11] Th. Peternell, J. le Potier and M. Schneider. - Vanishing theorems, linear and quadratic normality, Invent. Math., 87 (1987), 573-586.
[12] Th. Peternell, J. Le Potier and M. Schneider. - Direct images of sheaves of differentials and the Atiyah class, preprint (1986).
[13] J. LE PotiER. - Annulation de la cohomologie à valeurs dans un fibré vectoriel holomorphe de rang quelconque, Math. Ann., 218 (1975), 35-53.
[14] M. SCHNEIDER. - Ein einfacher Beweis des Verschwindungssatzes für positive holomorphe Vektorraumbündel, Manuscripta Math., 11 (1974), 95-101.
[15] A.J. Sommese. - Submanifolds of abelian varieties, Math. Ann., 233 (1978), 229-256.

