VANISHING THEOREMS FOR TENSOR POWERS OF A POSITIVE VECTOR BUNDLE

Jean-Pierre DEMAILLY Université de Grenoble I, Institut Fourier, BP 74, Laboratoire associé au C.N.R.S. n° 188, F-38402 Saint-Martin d'Hères

Abstract. — Let E be a holomorphic vector bundle of rank r over a compact complex manifold X of dimension n. It is shown that the Dolbeault cohomology groups $H^{p,q}(X, E^{\otimes k} \otimes (\det E)^l)$ vanish if E is positive in the sense of Griffiths and $p + q \ge n + 1$, $l \ge r + C(n, p, q)$. The proof rests on the well-known fact that every tensor power $E^{\otimes k}$ splits into irreducible representations of $\operatorname{Gl}(E)$, each component being canonically isomorphic to the direct image on X of a positive homogeneous line bundle over a flag manifold of E. The vanishing property is then obtained by a suitable generalization of Le Potier's isomorphism theorem, combined with a new curvature estimate for the bundle of X-relative differential forms on the flag manifold of E.

0. Statement of results.

The aim of this work is to prove a rather general vanishing theorem for cohomology groups of tensor powers of a positive vector bundle.

Let X be a complex compact n-dimensional manifold and E a hermitian vector bundle of rank r over X. We denote by $C_{p,q}^{\infty}(X, E)$ the space of smooth E-valued differential forms of type (p, q) on X and by

$$D_E = D'_E + D''_E : C^{\infty}_{p,q}(X, E) \longrightarrow C^{\infty}_{p+1,q}(X, E) \oplus C^{\infty}_{p,q+1}(X, E)$$

(or simply D = D' + D'') the Chern connection of E. Let (x_1, \ldots, x_n) be holomorphic coordinates on X and (e_1, \ldots, e_n) a local C^{∞} orthonormal frame of E. The Chern curvature tensor c(E) is defined by $D^2 = c(E) \wedge \bullet$ and may be written

$$c(E) = \sum_{i,j,\lambda,\mu} c_{ij\lambda\mu} \, dx_i \wedge d\overline{x}_j \otimes e_{\lambda}^{\star} \otimes e_{\mu} \quad , \quad 1 \le i,j \le n \ , \ 1 \le \lambda, \mu \le r \ .$$

The curvature tensor ic(E) is in fact a (1,1)-form with values in the bundle $\operatorname{Herm}(E, E)$ of hermitian endomorphisms of E, *i.e.* $c_{ij\lambda\mu} = \overline{c}_{ji\mu\lambda}$; thus ic(E) can be identified with a hermitian form on $TX \otimes E$.

Let us recall that the bundle E is said to be positive, resp. semi-positive (in the sense of Griffiths [8]) if E can be endowed with a hermitian metric such that at every point $x \in X$ one has

$$ic(E)_x(\zeta \otimes v, \zeta \otimes v) = \sum_{i,j,\lambda,\mu} c_{ij\lambda\mu}(x) \zeta_i \overline{\zeta}_j v_\lambda \overline{v}_\mu > 0 , \text{ resp.} \geq 0$$

for all non zero vectors $\zeta = \sum \zeta_i \partial/\partial z_i \in T_x X$, $v = \sum v_\lambda e_\lambda \in E_x$. Every vector bundle E generated by sections is ≥ 0 .

Another important concept is that of ampleness, for which we refer to Hartshorne [9]; a vector bundle E is ample if and only if the line bundle $O_E(1)$ over $P(E^*)$ is ample (or equivalently > 0). It is also well-known that E > 0 implies E ample, but the converse is unknown.

In the case of a positive or ample vector bundle E of rank r > 1, only very few general and optimal vanishing results are available for the Dolbeault cohomology groups $H^{p,q}$ of tensor powers of E. For example, the famous Le Potier vanishing theorem [13]:

$$E \text{ ample } \implies H^{p,q}(X,E) = 0 \text{ for } p+q \ge n+r$$

does not extend to symmetric powers $S^k E$, even when p = n and q = n - 2 (cf. [11]). Nevertheless, the following result shows that the vanishing property is true for tensor powers involving a sufficiently large power of det E.

THEOREM. — Let L be a holomorphic line bundle over X. Assume that E > 0 and $L \ge 0$, or $E \ge 0$ and L > 0. For all integers p, q such that $p + q \ge n$, set

$$A(n, p, q) = \frac{n(n+1)(p+1)(q+1)}{4(p+q-n+1)} \quad \text{ if } p < n$$

and A(n, p, q) = 0 if p = n. Let $h \in \{1, ..., r - 1\}$ and let $\Gamma^a E$ be the irreducible tensor power representation of $\operatorname{Gl}(E)$ of highest weight $a \in \mathbb{Z}^r$, with

$$a_1 \ge a_2 \ge \ldots \ge a_h > a_{h+1} = \ldots = a_r = 0$$

If $p + q \ge n + 1$ then

$$H^{p,q}(X, \Gamma^a E \otimes (\det E)^l \otimes L) = 0 \quad \text{for} \quad l \ge h + A(n, p, q)$$

The proof of this theorem is based on analysis and differential geometry, but an analogous result can be obtained in a purely algebraic way (cf. [5]); in that case the positivity hypothesis can be replaced by ampleness, the semi-positivity hypothesis by the fact that the bundle is generated by its global sections; then, the condition required on l is $l \ge n - p + r - 1$. Both results overlap in most cases, but the above analytic result can be better if r - h is very large.

Observing that $S^k E$ is the irreducible representation of highest weight $(k, 0, \ldots, 0)$ and that $E^{\otimes k}$ splits into irreducible representations of the type $\Gamma^a E \otimes (\det E)^l$ with $h \leq \min\{k, r-1\}$ (cf. formula (2.17)), we obtain :

COROLLARY. — Under the positivity hypotheses of the theorem, then for all p, q such that $p + q \ge n + 1$ one has

$$(0.1) \quad H^{p,q}(X, S^k E \otimes (\det E)^l \otimes L) = 0 \quad \text{if} \quad l \ge 1 + A(n, p, q) ;$$

(0.2)
$$H^{p,q}(X, E^{\otimes k} \otimes (\det E)^l \otimes L) = 0$$
 if $l \ge \min\{k, r-1\} + A(n, p, q)$.

The special case p = n of (0.1) is due to P. Griffiths [8]. For p = n and arbitrary $r, k_0 \ge 2$, Peternell-Le Potier and Schneider [11] have constructed an

example of a vector bundle E > 0 of rank r over a manifold X of dimension n = 2r such that

(0.3)
$$H^{n,n-2}(X, S^k E) \neq 0$$
, $2 \le k \le k_0$

This result shows that the lower bound $l \ge 1$ in (0.1) cannot be improved. More generally, the following example (for which we refer to [5]) shows that our condition $l \ge h$ in the theorem is optimal. This example gives a negative answer to a question of Sommese [15].

EXAMPLE. — Let $X = G_r(V)$ be the Grassmannian of subspaces of codimension r of a vector space V of dimension d, and E the tautological quotient vector bundle of rank r over X (then $E \ge 0$ and $L = \det E$ is ample). Let $h \in \{1, \ldots, r-1\}$ and $a \in \mathbb{Z}^r$, $\beta \in \mathbb{Z}^d$ be such that

$$a_1 \ge \ldots \ge a_h \ge d - r$$
, $a_{h+1} = \ldots = a_r = 0$,
 $\beta = (a_1 - d + r, \ldots, a_h - d + r, 0, \ldots, 0)$.

Set $n = \dim X = r(d-r)$, q = (r-h)(d-r). Then

(0.4) $H^{n,q}(X,\Gamma^a E \otimes (\det E)^h) = \Gamma^\beta V \otimes (\det V)^h \neq 0 \quad .$

Our approach is based on three well-known facts. First, every tensor power of E splits into irreducible representations of the linear group $\operatorname{Gl}(E)$. It is thus sufficient to consider "irreducible" tensor powers of E. Secondly, every irreducible tensor power of E appears in a natural way as the direct image on X of a positive line bundle over a suitable flag manifold of E. This follows from Bott's theory of homogeneous vector bundles [3]. The third fact is the isomorphism theorem of Le Potier [13], which relates the cohomology groups of E over X to those of the line bundle $O_E(1)$ over $P(E^*)$. We generalize here this isomorphism to the case of arbitrary flag bundles associated to E.

When p = n the above-mentioned algebraic facts suffice to prove the theorem. However, when p < n, the generalized Borel-Le Potier spectral sequence does not degenerate at the E_1 level (cf. [12]). A possible way in order to overcome this difficulty is to establish a curvature estimate for the bundle of X-relative differential forms on the flag manifold of E, using the standard Kodaira-Akizuki-Nakano inequality [1]. Our estimate (cf. §4) measures in some sense how far is the spectral sequence from being E_1 -degenerate. The following related problem is interesting, but its complete solution certainly requires a better understanding of the Borel-Le Potier spectral sequence for flag bundles.

PROBLEM. — Given a dominant weight $a \in \mathbb{Z}^r$ with $a_r = 0$, determine the smallest admissible constant A(n, p, q) in the theorem.

It is shown in [5] that if the Borel-Le Potier spectral sequence degenerates in E_2 , then it is always sufficient to take $l \ge r - 1 + \min\{n - p, n - q\}$. In view of the above main theorem, one may suspect that the correct answer could be $l \ge h + \min\{n - p, n - q\}$.

The above results have been annouced in the note [4]. The author wishes to thank warmly Prof. Michel Brion, Friedrich Knopp, Thomas Peternell and Michael Schneider for valuable remarks which led to substantial improvements of this work.

1. Kodaira-Akizuki-Nakano vanishing theorem.

We recall here the basic Akizuki-Nakano inequality [1] which will be used several times in the sequel. Assume that X carries a Kähler metric ω , and let L be a hermitian line bundle over X. At each point $x \in X$, one can write

$$ic(L) = i \sum_{1 \le j \le n} \gamma_j \, dz_j \wedge d\overline{z}_j$$

where (dz_1, \ldots, dz_n) is an ω -orthonormal basis of T^*X and where $\gamma_1 \leq \ldots \leq \gamma_n$ are the curvature eigenvalues of L. For every $v \in C_{p,q}^{\infty}(X, L)$ we have

(1.1)
$$||D''_L v||^2 + ||D''_L v||^2 \ge \langle \Theta_L v, v \rangle$$

where Θ_L is the hermitian endomorphism defined by

(1.2)
$$\langle \Theta_L v, v \rangle = \sum_{|I|=p, |J|=q} \left(\gamma_I + \gamma_J - \sum_{1 \le j \le n} \gamma_j \right) |v_{I,J}|^2 ,$$

with $\gamma_I = \sum_{m \in I} \gamma_m$. When L is > 0, one can choose $\omega = ic(L)$ as the Kähler metric on X; in that case $\gamma_1 = \ldots = \gamma_n = 1$ and therefore

(1.3)
$$||D_L''v||^2 + ||D_L''^*v||^2 \ge (p+q-n)||v||^2$$

COROLLARY (Kodaira-Akizuki-Nakano). — One has

$$(1.4) L > 0 \implies H^{p,q}(X,L) = 0 \quad \text{for} \quad p+q \ge n+1 \quad ,$$

(1.5) $L < 0 \implies H^{p,q}(X,L) = 0 \text{ for } p+q \le n-1$.

2. Homogeneous line bundles over flag manifolds and irreducible representations of the linear group.

The aim of this section is to settle notations and to recall a few basic results on homogeneous line bundles over flag manifolds. The classical foundation works on this subject are Borel-Weil [2] and R. Bott [3], which contain all the required material (*cf.* also Demazure [6] for a very simple proof of Bott's formula). We will give however an independent self-contained exposition in order to prepare the tools needed in the differential geometric approach of §4.

Let B_r (resp. B^r) be the Borel subgroup of $\operatorname{Gl}_r = \operatorname{Gl}(\mathbb{C}^r)$ of lower (resp. upper) triangular matrices, $U_r \subset B_r$, $U^r \subset B^r$ the subgroups of unipotent matrices, and $T^r = B_r \cap B^r$ the complex torus $(\mathbb{C}^*)^r$ of diagonal matrices. Let V be a complex vector space of dimension r. We denote by M(V) the manifold of complete flags

$$V = V_0 \supset V_1 \supset \ldots \supset V_r = \{0\}$$
, $\operatorname{codim}_{\mathbb{C}} V_\lambda = \lambda$.

To every linear isomorphism $\zeta \in \text{Isom}(\mathbb{C}^r, V) : (u_1, \ldots, u_r) \longmapsto \sum_{1 \leq \lambda \leq r} u_\lambda \zeta_\lambda$, one can associate the flag $[\zeta] \in M(V)$ defined by $V_\lambda = \text{Vect}(\zeta_{\lambda+1}, \ldots, \zeta_r)$, $1 \leq \lambda \leq r$. This leads to the identification

$$M(V) = \operatorname{Isom}(\mathbb{C}^r, V)/B_r$$

where B_r acts on the right side. We denote simply by V_{λ} the tautological vector bundle of rank $r - \lambda$ on M(V), and we consider the canonical quotient line bundles

(2.1)
$$\begin{cases} Q_{\lambda} = V_{\lambda-1}/V_{\lambda} , & 1 \le \lambda \le r , \\ Q^a = Q_1^{a_1} \otimes \ldots \otimes Q_r^{a_r} , & a = (a_1, \ldots, a_r) \in \mathbb{Z}^r \end{cases}$$

The linear group $\operatorname{Gl}(V)$ acts on M(V) on the left, and there exist natural equivariant left actions of $\operatorname{Gl}(V)$ on all bundles V_{λ} , Q_{λ} , Q^{a} .

We compute now the tangent and cotangent vector bundles of M(V). The action of $\mathrm{Gl}(V)$ on M(V) yields

(2.2)
$$TM(V) = \operatorname{Hom}(V, V)/W$$

where W is the subbundle of endomorphisms $g \in \operatorname{Hom}(V, V)$ such that $g(V_{\lambda}) \subset V_{\lambda}$, $1 \leq \lambda \leq r$. Using the self-duality of $\operatorname{Hom}(V, V)$ given by the Killing form $(g_1, g_2) \mapsto \operatorname{tr}(g_1g_2)$, we find

(2.3)
$$\begin{cases} T^* M(V) = \left(\operatorname{Hom}(V, V) / W \right)^* = W^{\perp} \\ W^{\perp} = \{ g \in \operatorname{Hom}(V, V) \; ; \; g(V_{\lambda - 1}) \subset V_{\lambda} \; , \; 1 \le \lambda \le r \} \end{cases}$$

There exists a filtration of $T^*M(V)$ by subbundles of the type

$$\{g \in \operatorname{Hom}(V, V) \; ; \; g(V_{\lambda}) \subset V_{\mu(\lambda)} \; , \; \lambda < \mu(\lambda) \; , \; 1 \le \lambda \le r\}$$

in such a way that the corresponding graded bundle is the direct sum of the line bundles $\operatorname{Hom}(Q_{\lambda}, Q_{\mu}) = Q_{\lambda}^{-1} \otimes Q_{\mu}$, $\lambda < \mu$; their tensor product is thus isomorphic to the canonical line bundle $K_{M(V)} = \det(T^{\star}M(V))$:

(2.4)
$$K_{M(V)} = Q_1^{1-r} \otimes \ldots \otimes Q_\lambda^{2\lambda-r-1} \otimes \ldots \otimes Q_r^{r-1} = Q^c$$

where c = (1 - r, ..., r - 1); c will be called the canonical weight of M(V).

• Case of incomplete flag manifolds.

More generally, given any sequence of integers $s = (s_0, \ldots, s_m)$ such that $0 = s_0 < s_1 < \ldots < s_m = r$, we may consider the manifold $M_s(V)$ of incomplete flags

$$V = V_{s_0} \supset V_{s_1} \supset \ldots \supset V_{s_m} = \{0\} \quad , \quad \operatorname{codim}_{\mathbb{C}} V_{s_j} = s_j \quad .$$

On $M_s(V)$ we still have tautological vector bundles $V_{s,j}$ of rank $r - s_j$ and line bundles

(2.5)
$$Q_{s,j} = \det(V_{s,j-1}/V_{s,j}) , \ 1 \le j \le m$$

For any *r*-tuple $a \in \mathbb{Z}^r$ such that $a_{s_{j-1}+1} = \ldots = a_{s_j}$, $1 \leq j \leq m$, we set

$$Q_s^a = Q_{s,1}^{a_{s_1}} \otimes \ldots \otimes Q_{s,m}^{a_{s_m}}$$

If $\eta: M(V) \to M_s(V)$ is the natural projection, then

(2.6)
$$\eta^* V_{s,j} = V_{s_j}$$
, $\eta^* Q_{s,j} = Q_{s_{j-1}+1} \otimes \ldots \otimes Q_{s_j}$, $\eta^* Q_s^a = Q^a$.

On the other hand, one has the identification

$$M_s(V) = \operatorname{Isom}(\mathbb{C}^r, V)/B_s$$

where B_s is the parabolic subgroup of matrices $(z_{\lambda\mu})$ with $z_{\lambda\mu} = 0$ for all λ, μ such that there exists an integer $j = 1, \ldots, m-1$ with $\lambda \leq s_j$ and $\mu > s_j$. We define

 U_s as the unipotent subgroup of lower triangular matrices $(z_{\lambda\mu})$ with $z_{\lambda\mu} = 0$ for all λ, μ such that $s_{j-1} < \lambda \neq \mu \leq s_j$ for some j, and we set $B^s = {}^tB_s$, $U^s = {}^tU_s$. In the same way as above, we get

(2.7)
$$TM_s(V) = \operatorname{Hom}(V, V)/W_s$$
, $W_s = \{g ; g(V_{s_{j-1}}) \subset V_{s_j}\}$,

(2.8)
$$T^{\star}M_s(V) = W_s^{\perp}$$

(2.9)
$$K_{M_s(V)} = Q_{s,1}^{s_1-r} \otimes \ldots \otimes Q_{s,j}^{s_{j-1}+s_j-r} \otimes \ldots \otimes Q_{s,m}^{s_{m-1}} = Q_s^{c(s)}$$

,

where $c(s) = (s_1 - r, ..., s_1 - r, ..., s_{j-1} + s_j - r, ..., s_{j-1} + s_j - r, ...)$ is the canonical weight of $M_s(V)$.

• Curvature form of the line bundle Q^a .

Assume now that V is a hermitian vector space. Then all our bundles carry a natural hermitian metric. We are going to compute the curvature of Q^a at any point $[e] \in M(V)$. Choose an orthonormal basis (e_1, \ldots, e_r) of V which corresponds to the given point [e]. It is clear that $eB_re^{-1} \subset \operatorname{Gl}(V)$ is the isotropy subgroup of [e], whereas $eU^re^{-1}.[e] = [eU^r]$ is an affine open subset of M(V), corresponding to bases $(\zeta_1, \ldots, \zeta_r)$ of V such that

$$\zeta_{\mu} = e_{\mu} + \sum_{\lambda < \mu} z_{\lambda\mu} e_{\lambda} \quad , \quad 1 \le \mu \le r \quad , \quad z_{\lambda\mu} \in \mathbb{C} \quad .$$

Then $(z_{\lambda\mu})_{1 < \lambda < \mu < r}$ is a coordinate system on $[eU^r]$ and the map

$$M(V) \ni [\zeta] \longmapsto \tilde{\zeta}_{\mu} := \zeta_{\mu} \mod V_{\mu}$$

is a local section of $Q_{\mu} = V_{\mu-1}/V_{\mu}$. Hence

$$c(Q_{\mu}) = -d'd'' \log |\tilde{\zeta}_{\mu}|^2$$

Let us identify $\tilde{\zeta}_{\mu}$ with the orthogonal projection of ζ_{μ} on $V_{\mu-1} \cap V_{\mu}^{\perp}$. Then Gram-Schmidt's orthogonalization process yields

$$\tilde{\zeta}_{\mu} = \zeta_{\mu} - \sum_{\nu > \mu} \frac{\langle \zeta_{\mu}, \tilde{\zeta}_{\nu} \rangle}{|\tilde{\zeta}_{\nu}|^2} \tilde{\zeta}_{\nu} \quad , \quad |\tilde{\zeta}_{\mu}|^2 = |\zeta_{\mu}|^2 - \sum_{\nu > \mu} \frac{|\langle \zeta_{\mu}, \tilde{\zeta}_{\nu} \rangle|^2}{|\tilde{\zeta}_{\nu}|^2}$$

Since $\langle \zeta_{\mu}, \zeta_{\nu} \rangle = \overline{z}_{\mu\nu} + \sum_{\lambda < \mu} z_{\lambda\mu} \overline{z}_{\lambda\nu}$, it follows by backward induction on ν that $\langle \zeta_{\mu}, \tilde{\zeta}_{\nu} \rangle = \overline{z}_{\mu\nu} + O(|z|^2)$ for $\nu > \mu$, hence

$$|\tilde{\zeta}_{\mu}|^2 = 1 + \sum_{\lambda < \mu} |z_{\lambda\mu}|^2 - \sum_{\nu > \mu} |z_{\mu\nu}|^2 + \mathcal{O}(|z|^3)$$
.

We obtain therefore

(2.10)
$$c(Q_{\mu})_{[e]} = -\sum_{\lambda < \mu} dz_{\lambda\mu} \wedge d\overline{z}_{\lambda\mu} + \sum_{\nu > \mu} dz_{\mu\nu} \wedge d\overline{z}_{\mu\nu} ,$$

(2.11)
$$c(Q^a)_{[e]} = \sum_{\mu} a_{\mu} c(Q_{\mu}) = \sum_{\lambda < \mu} (a_{\lambda} - a_{\mu}) dz_{\lambda\mu} \wedge d\overline{z}_{\lambda\mu}$$

COROLLARY 2.12. — Q^a is ≥ 0 if and only if $a_1 \geq a_2 \geq \ldots \geq a_r$. If there exists an index j such that $a_j < a_{j+1}$, then $H^0(M(V), Q^a) = 0$.

Proof. — Only the second statement and the "only if" part of the first remain to be proved. Let us observe that the projection $\eta : M(V) \longrightarrow M_s(V)$,

 $s = (0, \ldots, j - 1, j + 1, \ldots, r)$, is a bundle with fibers $P(V_{j-1}/V_{j+1}) \simeq \mathbb{P}^1$. The restriction of Q_{λ} to each fiber is trivial if $\lambda \neq j, j + 1$ whereas $Q_{j \upharpoonright \mathbb{P}^1} \simeq O(1)$ and $Q_{j+1 \upharpoonright \mathbb{P}^1} \simeq O(-1)$. Therefore $Q^a_{\upharpoonright \mathbb{P}^1} \simeq O(a_j - a_{j+1})$ cannot have any non-zero section or any semi-positive metric if $a_j < a_{j+1}$.

When $a_1 \geq \ldots \geq a_r$, the bundle Q^a is not necessarily > 0 on M(V); in fact one can write Q^a as the induced bundle $\eta^* Q_s^a$ where $s_1 < \ldots < s_{m-1}$ is the sequence of integers $\lambda = 1, \ldots, r-1$ such that $a_{\lambda+1} > a_{\lambda}$. The affine open subset $[eU^s] \subset M_s(V)$ is a neighborhood of [e], and $M_s(V)$ has local coordinates $(z_{\lambda\mu})$ where λ, μ are such that $\lambda \leq s_{j-1} < s_j \leq \mu$ for some j, *i.e.* $a_{\lambda} > a_{\mu}$. The curvature of Q_s^a is given formally by the same expression as (2.11) :

(2.13)
$$c(Q_s^a)_{[e]} = \sum_{a_\lambda > a_\mu} (a_\lambda - a_\mu) dz_{\lambda\mu} \wedge d\overline{z}_{\lambda\mu} \quad .$$

We see therefore that $Q_s^a > 0$ on $M_s(V)$.

• Cohomology groups of Q^a .

It remains now to compute $H^0(M_s(V), Q_s^a) \simeq H^0(M(V), Q^a)$ when $a_1 \geq \ldots \geq a_r$. Without loss of generality we may assume that $a_r \geq 0$, because $Q_1 \otimes \ldots \otimes Q_r = \det V$ is a trivial bundle.

PROPOSITION 2.14. — For all integers $a_1 \geq a_2 \geq \ldots \geq a_r \geq 0$, there is a canonical isomorphism

$$H^0(M(V), Q^a) = \Gamma^a V$$

where $\Gamma^a V \subset S^{a_1} V \otimes \ldots \otimes S^{a_r} V$ is the set of polynomials $f(\zeta_1^*, \ldots, \zeta_r^*)$ on $(V^*)^r$ which are homogeneous of degree a_λ with respect to ζ_λ^* and invariant under the left action of U_r on $(V^*)^r = \operatorname{Hom}(V, \mathbb{C}^r)$:

$$f(\zeta_1^\star, \ldots, \zeta_{\lambda-1}^\star, \zeta_{\lambda}^\star + \zeta_{\nu}^\star, \ldots, \zeta_r^\star) = f(\zeta_1^\star, \ldots, \zeta_r^\star) \quad , \quad \forall \nu < \lambda \quad .$$

Proof. — To any section $\sigma \in H^0(M(V), Q^a)$ we associate the holomorphic function f on $\text{Isom}(V, \mathbb{C}^r) \subset (V^*)^r$ defined by

$$f(\zeta_1^{\star},\ldots,\zeta_r^{\star})=(\zeta_1^{\star})^{a_1}\otimes\ldots\otimes(\zeta_r^{\star})^{a_r}.\sigma([\zeta_1,\ldots,\zeta_r])$$

where $(\zeta_1, \ldots, \zeta_r)$ is the dual basis of $(\zeta_1^*, \ldots, \zeta_r^*)$, and where the linear form induced by ζ_{λ}^* on $Q_{\lambda} = V_{\lambda-1}/V_{\lambda} \simeq \mathbb{C}\zeta_{\lambda}$ is still denoted ζ_{λ}^* . Let us observe that fis homogeneous of degree a_{λ} in ζ_{λ}^* and locally bounded in a neighborhood of every r-tuple of $(V^*)^r \setminus \text{Isom}(V, \mathbb{C}^r)$ (because M(V) is compact and $a_{\lambda} \ge 0$). Therefore f can be extended to a polynomial on all $(V^*)^r$. The invariance of f under U_r is clear. Conversely, such a polynomial f obviously defines a unique section σ on M(V).

From the definition of $\Gamma^a V$, we see that

(2.15)
$$S^k V = \Gamma^{(k,0,\dots,0)} V$$

(2.16) $D^{k}V = \Gamma^{k}V^{k},$ $\Lambda^{k}V = \Gamma^{(1,...,1,0,...,0)}V$.

For arbitrary $a \in \mathbb{Z}^r$, proposition 2.14 remains true if we set

$$\Gamma^a V = \Gamma^{(a_1 - a_r, \dots, a_{r-1} - a_r, 0)} V \otimes (\det V)^{a_r} \text{ when } a \text{ is non-increasing },$$

$$\Gamma^a V = 0 \quad \text{otherwise }.$$

The elements $a \in \mathbb{Z}^r$ will be ordered according to the partial ordering :

$$a \succcurlyeq b$$
 iff $\sum_{1 \le \lambda \le \mu} a_{\lambda} \ge \sum_{1 \le \lambda \le \mu} b_{\lambda}$, $1 \le \mu \le r$.

Bott's theorem [3] shows that $\Gamma^a V$ is an irreducible representation of $\operatorname{Gl}(V)$ of highest weight a; all irreducible representations of $\operatorname{Gl}(V)$ are in fact of this type (cf. Kraft [10]). In particular, since the weights of the action of a maximal torus $T^r \subset \operatorname{Gl}(V)$ on $V^{\otimes k}$ verify $a_1 + \ldots + a_r = k$ and $a_\lambda \geq 0$, we have a canonical $\operatorname{Gl}(V)$ -isomorphism

(2.17)
$$V^{\otimes k} = \bigoplus_{\substack{a_1 + \dots + a_r = k \\ a_1 \ge \dots \ge a_r \ge 0}} \mu(a, k) \, \Gamma^a V$$

where $\mu(a,k) > 0$ is the multiplicity of the isotypical factor $\Gamma^a V$ in $V^{\otimes k}$.

Bott's formula (cf. also Demazure [6] for a very simple proof) gives in fact the expression of all cohomology groups $H^q(M(V), Q^a)$, but we will need them here only in the case of *dominant* weights $a_1 \geq \ldots \geq a_r$.

PROPOSITION 2.18. — Set $N=\dim M(V)$, $N(s)=\dim M_s(V)$. If $a_{s_j}-a_{s_{j+1}}\geq 1$, then

(a)
$$H^{N(s),q}(M_s(V), Q_s^a) = 0$$
 for all $q \ge 1$

(b)
$$H^{N(s),0}(M_s(V), Q_s^a) = \Gamma^{a+c(s)}V$$

Proof. — Under the assumption of (a), Q_s^a is > 0 by (2.13). The result follows therefore from the Kodaira-Akizuki-Nakano theorem. Now (b) is a consequence of proposition 2.14 since

$$H^{N(s),q}(M_s(V),Q_s^a) = H^q(M_s(V),K_{M_s(V)} \otimes Q_s^a) = H^q(M_s(V),Q_s^{a+c(s)}) . \blacksquare$$

3. An isomorphism theorem

Our aim here is to generalize Griffiths and Le Potier's isomorphism theorems ([8], [13]) in the case of arbitrary flag bundles, following the simple method of Schneider [14].

Let X be a n-dimensional compact complex manifold and $E \longrightarrow X$ a holomorphic vector bundle of rank r. For every sequence $0 = s_0 < s_1 < \ldots < s_m = r$, we associate to E its flag bundle $Y = M_s(E) \longrightarrow X$. If $a \in \mathbb{Z}^r$ is such that $a_{s_{j-1}+1} = \ldots = a_{s_j}$, $1 \leq j \leq m$, we may define a line bundle $Q_s^a \longrightarrow Y$ just as we did in §2. Let us set

$$\Omega^p_X = \Lambda^p T^\star X \quad , \quad \Omega^p_Y = \Lambda^p T^\star Y \quad .$$

One has an exact sequence

$$(3.1) 0 \longrightarrow \pi^* \Omega^1_X \longrightarrow \Omega^1_Y \longrightarrow \Omega^1_{Y/X} \longrightarrow 0$$

where $\Omega_{Y/X}^1$ is by definition the bundle of relative differential 1–forms along the fibers of the projection $\pi: Y = M_s(E) \longrightarrow X$. One may then define a decreasing filtration of Ω_Y^t as follows :

(3.2)
$$F^{p,t} = F^p(\Omega_Y^t) = \pi^*(\Omega_X^p) \wedge \Omega_Y^{t-p}$$

The corresponding graded bundle is given by

(3.3)
$$G^{p,t} = F^{p,t}/F^{p+1,t} = \pi^{\star}(\Omega^p_X) \otimes \Omega^{t-p}_{Y/X}$$

Over any open subset of X where E is a trivial bundle $X \times V$ with dim $_{\mathbb{C}} V = r$, the exact sequence (3.1) splits as well as the filtration (3.2). Using proposition 2.18, we obtain the following lemma.

LEMMA. — For every weight a such that $a_{s_j} - a_{s_{j+1}} \ge 1$, $1 \le j \le m-1$, the sheaf of sections of $\Omega_{Y/X}^{N(s)} \otimes Q_s^a$ has direct images

(3.4)
$$\begin{cases} R^{q} \pi_{\star} \left(\Omega_{Y/X}^{N(s)} \otimes Q_{s}^{a} \right) = 0 \quad \text{for } q \geq 1 \\ \pi_{\star} \left(\Omega_{Y/X}^{N(s)} \otimes Q_{s}^{a} \right) = \Gamma^{a+c(s)} E \end{cases}$$

Let L be an arbitrary line bundle on X. Under the hypothesis $a_{s_j} - a_{s_{j+1}} \ge 1$, formulas (3.3) and (3.4) yield

$$R^{q}\pi_{\star}(G^{p,p+N(s)} \otimes Q^{a}_{s} \otimes \pi^{\star}L) = 0 \quad \text{for} \quad q \ge 1 \quad ,$$

$$\pi_{\star}(G^{p,p+N(s)} \otimes Q^{a}_{s} \otimes \pi^{\star}L) = \Omega^{p}_{X} \otimes \Gamma^{a+c(s)}E \otimes L \quad .$$

The Leray spectral sequence implies therefore :

THEOREM 3.5. — If
$$a_{s_j} - a_{s_{j+1}} \ge 1$$
, then for all $q \ge 0$
 $H^q(Y, G^{p, p+N(s)} \otimes Q^a_s \otimes \pi^* L) \simeq H^{p,q}(X, \Gamma^{a+c(s)} E \otimes L)$.

When p = n, $G^{n,n+N(s)}$ is the only non-vanishing quotient in the filtration of the canonical line bundle $\Omega_Y^{n+N(s)}$. We thus obtain the following generalization of Griffiths' isomorphism theorem [8]:

(3.6)
$$H^{n+N(s),q}(M_s(E), Q_s^a \otimes \pi^* L) \simeq H^{n,q}(X, \Gamma^{a+c(s)}E \otimes L)$$

In order to carry results for line bundles over to vector bundles, one needs the following lemma.

(c)
$$E \text{ ample } \Longrightarrow Q_s^a \text{ ample }$$

Proof. — Part (a) will be proved in §4 (*cf.* formula (4.9)) and (b) follows from the fact that $c(Q_s^a) > 0$ along the fibers of π .

(c) By definition of an ample vector bundle (Hartshorne [9]), $S^k E$ is very ample for $k \ge k_0$ large enough. Hence $\Gamma^{ka}E$, which is a direct summand in $S^{ka_1}E \otimes \ldots \otimes S^{ka_r}E$, is also very ample for $k \ge k_0$. Now, formula (2.14) shows that $Q_s^a > 0$ along the fibers of π , hence Q_s^{ka} is very ample along each fiber for $k \ge k_1$. Since $\pi_\star(Q_s^{ka}) = \Gamma^{ka}E$, we conclude that Q_s^{ka} is very ample for $k \ge \max(k_0, k_1)$.

We are now ready to attack the proof of the main theorem. We study first the special case p=n .

THEOREM 3.8. — Let $a \in \mathbb{Z}^r$ be such that

$$a_1 \ge a_2 \ge \ldots \ge a_h > a_{h+1} = \ldots = a_r = 0$$
, $1 \le h \le r - 1$.

Assume that E is ample and $L \ge 0$, or $E \ge 0$ and L ample. Then

$$H^{n,q}(X,\Gamma^a E\otimes (\det E)^l\otimes L)=0 \quad \text{for } q\geq 1 \ , \ l\geq h \ .$$

Proof of theorem 3.8 and of the main theorem. —

Let $s_1 > \ldots > s_{m-1}$ be the sequence of integers $\lambda = 1, \ldots, r-1$ such that $a_{\lambda+1} > a_{\lambda}$. Then theorem 3.5 implies

(3.9)
$$H^{p,q}(X, \Gamma^a E \otimes (\det E)^l \otimes L) \simeq H^q(Y, G^{p,p+N(s)} \otimes Q^b_s \otimes \pi^* L)$$

where b = a - c(s) + (l, ..., l). The canonical weight c(s) is non-decreasing and $c(s)_r = s_{m-1} = h$, hence

$$b_{s_1} > \ldots > b_{s_m} = l - h$$

Lemma 3.7 shows that $Q_s^b \otimes \pi^* L > 0$ if $l \ge h$. Now, it is clear that $F^{p,p+N(s)} = \Omega_Y^{p+N(s)}$. One gets thus an exact sequence

$$(3.10) 0 \longrightarrow F^{p+1,p+N(s)} \longrightarrow \Omega_Y^{p+N(s)} \longrightarrow G^{p,p+N(s)} \longrightarrow 0$$

The Kodaira-Akizuki-Nakano vanishing theorem (1.4) applied to $Q_s^b \otimes \pi^* L$ with dim Y = n + N(s) yields

$$H^q(Y, \Omega_Y^{p+N(s)} \otimes Q_s^b \otimes \pi^* L) = 0 \quad \text{for} \ p+q \ge n+1$$
.

The cohomology groups in (3.9) will therefore vanish if and only if

(3.11)
$$H^{q+1}(Y, F^{p+1, p+N(s)} \otimes Q^b_s \otimes \pi^* L) = 0 .$$

This is obvious if p = n, for $F^{n+1,n+N(s)} = 0$. In the general case p < n, we will establish in §4 that (3.11) holds for $p + q \ge n$ and $b_r = l - h \ge A(n, p, q)$. This will be done by means of a curvature estimate for the bundle $F^{p+1,p+N(s)}$.

Remark 3.12. — If p+q=n , we still obtain some result, namely that the canonical map

$$H^{p+N(s),q}(Y,Q_s^b\otimes\pi^*L)\longrightarrow H^{p,q}(X,\Gamma^aE\otimes(\det E)^l\otimes L)$$

is onto when $l \ge h + A(n, p, q)$.

Remark 3.13. — If the exact sequence (3.10) splits, then (3.11) is an immediate consequence of the Kodaira-Nakano-Akizuki theorem. However, Peternell-Le Potier and Schneider [11], [12] have shown that in general the filtration $F^{\bullet}(\Omega_Y^t)$ does not split, and this is the reason why we have to introduce additional considerations in order to prove (3.11).

4. A curvature estimate for the subbundle $F^{p+1,p+N(s)}$.

We assume here that $E, L \longrightarrow X$ are hermitian vector bundles of respective ranks r, 1 and that $E \ge 0$ and L > 0, or E > 0 and $L \ge 0$. Let $a \in \mathbb{Z}^r$ be such that $a_1 \ge \ldots \ge a_r \ge 0$ and let $s_1 < \ldots < s_{m-1}$ be the sequence of integers $\lambda = 1, \ldots, r-1$ such that $a_{\lambda+1} > a_{\lambda}$. We set for simplicity

$$Y = M_s(E)$$
, $\Omega = \Omega_Y^{p+N(s)}$, $F = F^{p+1,p+N(s)}$, $G = G^{p,p+N(s)} = \Omega/F$.

Our aim is to prove that the analogue of (3.11):

(4.1)
$$H^{q+1}(Y, F \otimes Q^a_s \otimes \pi^* L) = 0$$

holds when $p+q \geq n$ and $a_r \geq A(n,p,q)$. Let us consider the exact sequences of vector bundles over Y :

(4.2)
$$\begin{cases} 0 \longrightarrow F \longrightarrow \Omega \longrightarrow G \longrightarrow 0 \\ 0 \longrightarrow F(a) \longrightarrow \Omega(a) \longrightarrow G(a) \longrightarrow 0 \end{cases},$$

where the second sequence arises from the first one after taking tensor products with the line bundle $Q_s^a \otimes \pi^* L$. Then Y can be equipped with the Kähler metric $\omega = ic(Q_s^a \otimes \pi^* L)$; the positivity of ω is a consequence of (4.9) below. To every smooth form v of type (p + N(s), q + 1) with values in $Q_s^a \otimes \pi^* L$, let us apply the Akizuki-Nakano inequality (1.3), where dim Y = n + N(s):

(4.3)
$$||D_{\Omega(a)}''v||^2 + ||D_{\Omega(a)}''v||^2 \ge (p+q-n+1)) ||v||^2$$

With respect to the orthogonal C^{∞} -splitting $\Omega \simeq F \oplus G$, the Chern connections of Ω , F, G are related by the well-known formula (cf. [8]):

$$D_{\Omega} = \begin{pmatrix} D_F & -\beta^* \wedge \bullet \\ \beta \wedge \bullet & D_G \end{pmatrix} , \quad \beta \in C^{\infty}(\Lambda^{1,0}T^*Y \otimes \operatorname{Hom}(F,G)) ;$$

 β^{\star} is a D''-closed (0,1)-form with values in Hom(G, F), and its cohomology class is the obstuction to the existence of a global splitting of (4.2). We obtain therefore

$$D_{\Omega(a)}^{\prime\prime} = \begin{pmatrix} D_{F(a)}^{\prime\prime} & -\beta^{\star} \wedge \bullet \\ 0 & D_{G(a)}^{\prime\prime} \end{pmatrix} \quad , \quad D_{\Omega(a)}^{\prime\prime\star} = \begin{pmatrix} D_{F(a)}^{\prime\prime\star} & 0 \\ -\beta \, \lrcorner \, \bullet \, D_{G(a)}^{\prime\prime\star} \end{pmatrix} \quad ,$$

where \square denotes the interior product of differential forms combined with the evaluation map $\operatorname{Hom}(F,G) \times F \to G$ (note that $\beta \sqsupseteq \bullet = (\beta^* \land \bullet)^*$). For every (0, q+1)-form f with values in F(a) we get

(4.4)
$$D''_{F(a)}f = D''_{\Omega(a)}f$$
, $||D''_{F(a)}f||^2 = ||D''_{\Omega(a)}f||^2 - ||\beta \perp f||^2$

From (4.3) and (4.4), we see that the vanishing property (4.1) will hold if

(4.5)
$$|\beta \, \lrcorner \, f|^2 < (p+q-n+1) \, |f|^2$$

at every point of Y. We are going to compute β explicitly in suitable coordinate systems on Y. Let $y^0 \in Y$ be an arbitrary point and (x_1, \ldots, x_n) local coordinates on X centered at the point $x^0 = \pi(y^0)$.

LEMMA. — There exists a local holomorphic frame (e_1, \ldots, e_r) of E such that y^0 coincides with the flag $[e_1(x^0), \ldots, e_r(x^0)]$ and

(4.6)
$$\langle e_{\lambda}(x), e_{\mu}(x) \rangle = \delta_{\lambda\mu} - \sum_{i,j} c_{ij\lambda\mu} x_i \overline{x}_j + \mathcal{O}(|x|^3) ,$$

where $(c_{ij\lambda\mu})$ is the curvature tensor of E.

Proof. — Choose a holomorphic frame $(\varepsilon_1, \ldots, \varepsilon_r)$ of E such that $(\varepsilon_1(x^0), \ldots, \varepsilon_r(x^0))$ is orthonormal and $[\varepsilon_1(x^0), \ldots, \varepsilon_r(x^0)] = y^0$. Then the inner product $\langle \varepsilon_\lambda(x), \varepsilon_\mu(x) \rangle$ has a Taylor expansion of the type

$$\langle \varepsilon_{\lambda}(x), \varepsilon_{\mu}(x) \rangle = \delta_{\lambda\mu} + \sum_{i} (\gamma_{i\lambda\mu} x_{i} + \overline{\gamma}_{i\mu\lambda} \overline{x}_{i}) + \sum_{i,j} (\gamma_{ij\lambda\mu} x_{i} \overline{x}_{j} + \gamma'_{ij\lambda\mu} x_{i} x_{j} + \overline{\gamma}'_{ij\mu\lambda} \overline{x}_{i} \overline{x}_{j}) + O(|x|^{3})$$

This expansion can be reduced to (4.6) (with suitable coefficients $c_{ij\lambda\mu}$) if one sets

$$e_{\lambda}(x) = \varepsilon_{\lambda}(x) - \sum_{i,\mu} \gamma_{i\lambda\mu} x_i e_{\mu} - \sum_{i,j,\mu} \gamma'_{ij\lambda\mu} x_i x_j e_{\mu} \quad .$$

Now (4.6) implies

$$De_{\lambda} = -\sum_{i,j,\mu} c_{ij\lambda\mu} \overline{x}_j dx_i \otimes e_{\mu} + \mathcal{O}(|x|^2) \quad ,$$
$$D^2 e_{\lambda} = \sum_{i,j,\mu} c_{ij\lambda\mu} dx_i \wedge d\overline{x}_j \otimes e_{\mu} + \mathcal{O}(|x|) \quad ,$$

showing that the $c_{ij\lambda\mu}$'s are precisely the curvature coefficients at x^0 . \blacksquare

Let us denote by $z = (z_{\lambda\mu})$ the affine coordinates on the fiber $M_s(E_x) \subset Y$ associated to the basis $(e_1(x), \ldots, e_r(x))$. Then $(x_1, \ldots, x_n, z_{\lambda\mu})$ define local coordinates on Y in a neighborhood of y^0 . Assume first that $Y = M_s(E) = M(E)$ is the manifold of complete flags of E. Then we have tautological subbundles $V_{\lambda} = \operatorname{Vect}(e_{\lambda+1}, \ldots, e_r) \subset \pi^* E$ and the map

(4.7)
$$Y \ni (x, z) \longmapsto \zeta_{\mu} = e_{\mu}(x) + \sum_{\lambda < \mu} z_{\lambda \mu} e_{\lambda}(x)$$

is a local section of $V_{\mu-1}$. Let us denote by $\tilde{\zeta}_{\mu}$ the image of ζ_{μ} in $Q_{\mu} = V_{\mu-1}/V_{\mu}$, represented by the orthogonal projection of ζ_{μ} on $V_{\mu-1} \cap (V_{\mu})^{\perp}$. As in §2, one finds

(4.8)
$$\begin{cases} \widetilde{\zeta}_{\lambda} = \zeta_{\lambda} - \sum_{\mu > \lambda} \frac{\langle \zeta_{\lambda}, \widetilde{\zeta}_{\mu} \rangle}{|\widetilde{\zeta}_{\mu}|^{2}} \widetilde{\zeta}_{\mu} , \quad |\widetilde{\zeta}_{\lambda}|^{2} = |\zeta_{\lambda}|^{2} - \sum_{\mu > \lambda} \frac{|\langle \zeta_{\lambda}, \widetilde{\zeta}_{\mu} \rangle|^{2}}{|\widetilde{\zeta}_{\mu}|^{2}} , \\ \langle \zeta_{\lambda}, \widetilde{\zeta}_{\mu} \rangle = \overline{z}_{\lambda\mu} - \sum_{i,j} c_{ij\lambda\mu} x_{i} \overline{x}_{j} \mod(z^{2}, x^{3}, x^{2}z) \quad \text{for } \lambda < \mu . \end{cases}$$

We need a Taylor expansion of $c(Q_{\mu}) = -d'd'' \log |\tilde{\zeta}_{\mu}|^2$ up to order 1, hence of $|\tilde{\zeta}_{\mu}|^2$ up to order 3. Moreover, pure terms x^3 , z^3 will not play any role because the Kähler property of $c(Q_{\mu})$ enables one to get rid of the terms $O(|x|dx \wedge d\overline{x})$, $O(|z|dz \wedge d\overline{z})$. Therefore, we are interested only in terms of degree ≤ 2 and in mixed terms xz^2 , x^2z . Thanks to formulas (4.7) and (4.8), we get the following

equalities modulo the ideal (x^3, z^3, x^2z^2) :

$$\begin{split} |\widetilde{\zeta}_{\lambda}|^{2} &\sim |\zeta_{\lambda}|^{2} - \sum_{\mu > \lambda} |\langle \zeta_{\lambda}, \widetilde{\zeta}_{\mu} \rangle|^{2} \quad , \\ |\zeta_{\lambda}|^{2} &\sim 1 - \sum_{i,j} c_{ij\lambda\lambda} x_{i} \overline{x}_{j} + \sum_{\mu < \lambda} |z_{\mu\lambda}|^{2} \\ &- \sum_{i,j,\mu < \lambda} c_{ij\lambda\mu} x_{i} \overline{x}_{j} \overline{z}_{\mu\lambda} - \sum_{i,j,\mu < \lambda} \overline{c}_{ij\lambda\mu} \overline{x}_{i} x_{j} z_{\mu\lambda} \quad , \\ |\langle \zeta_{\lambda}, \widetilde{\zeta}_{\mu} \rangle|^{2} &\sim |z_{\lambda\mu}|^{2} - \sum_{i,j} c_{ij\lambda\mu} x_{i} \overline{x}_{j} z_{\lambda\mu} - \sum_{i,j} \overline{c}_{ij\lambda\mu} \overline{x}_{i} x_{j} \overline{z}_{\lambda\mu} \quad . \end{split}$$

We have now

$$c(Q^{a}) = \sum_{\lambda} a_{\lambda} c(Q_{\lambda}) = d' d'' \left(-\sum_{\lambda} a_{\lambda} \log |\tilde{\zeta}_{\lambda}|^{2} \right) ,$$

$$-\sum_{\lambda} a_{\lambda} \log |\tilde{\zeta}_{\lambda}|^{2} \sim \sum_{i,j,\lambda} a_{\lambda} c_{ij\lambda\lambda} x_{i} \overline{x}_{j} + \sum_{\lambda < \mu} (a_{\lambda} - a_{\mu}) |z_{\lambda\mu}|^{2}$$

$$-\sum_{i,j,\lambda < \mu} (a_{\lambda} - a_{\mu}) c_{ij\lambda\mu} x_{i} \overline{x}_{j} z_{\lambda\mu}$$

$$-\sum_{i,j,\lambda < \mu} (a_{\lambda} - a_{\mu}) \overline{c}_{ij\lambda\mu} \overline{x}_{i} x_{j} \overline{z}_{\lambda\mu} .$$

We find therefore

$$c(Q^{a}) = \sum_{i,j} \left(\sum_{\lambda} a_{\lambda} c_{ij\lambda\lambda} + O(|x|) \right) dx_{i} \wedge d\overline{x}_{j} + \sum_{\lambda < \mu} (a_{\lambda} - a_{\mu}) dz_{\lambda\mu} \wedge d\overline{z}_{\lambda\mu} + O(|z| dz \wedge d\overline{z}) - \sum_{i,j,\lambda < \mu} (a_{\lambda} - a_{\mu}) c_{ij\lambda\mu} (z_{\lambda\mu} dx_{i} \wedge d\overline{x}_{j} + x_{i} dz_{\lambda\mu} \wedge d\overline{x}_{j}) - \sum_{i,j,\lambda < \mu} (a_{\lambda} - a_{\mu}) \overline{c}_{ij\lambda\mu} (\overline{z}_{\lambda\mu} dx_{j} \wedge d\overline{x}_{i} + \overline{x}_{i} dx_{j} \wedge d\overline{z}_{\lambda\mu}) + O(|x|^{2} + |z|^{2}) .$$

Since $Q^a = \pi_s^* Q_s^a$, the same identity holds for Q_s^a . At the point y^0 we get (4.9) $c(Q_s^a)_{y^0} = \sum_{i,j,\lambda} a_\lambda c_{ij\lambda\lambda} dx_i \wedge d\overline{x}_j + \sum_{a_\lambda > a_\mu} (a_\lambda - a_\mu) dz_{\lambda\mu} \wedge d\overline{z}_{\lambda\mu}$.

Now, $\omega = i(\pi^* c(L) + c(Q_s^a))$ is Kähler on $Y = M_s(E)$, thus in particular along the fiber x = 0 and along the local section z = 0. It follows that one can find coordinate changes $x \mapsto x'$, $z'_{\lambda\mu} = \sqrt{a_{\lambda} - a_{\mu}} z_{\lambda\mu} \mod z^2$ such that the terms $O(|x|dx \wedge d\overline{x})$ and $O(|z|dz \wedge d\overline{z})$ disappear in the expansion of ω , and such that (4.10) $\omega_{ij}(y^0) = c(L)_{ij}(x^0) + \sum_{\lambda} a_{\lambda}c_{ij\lambda\lambda} = \delta_{ij}$.

We obtain therefore

$$\frac{1}{i}\omega = \sum_{j} dx'_{j} \wedge d\overline{x}'_{j} + \sum_{\lambda < \mu} dz'_{\lambda\mu} \wedge d\overline{z}'_{\lambda\mu}
- \sum_{i,j,\lambda < \mu} \sqrt{a_{\lambda} - a_{\mu}} c_{ij\lambda\mu} (z'_{\lambda\mu}dx'_{i} \wedge d\overline{x}'_{j} + x'_{i}dz'_{\lambda\mu} \wedge d\overline{x}'_{j})
- \sum_{i,j,\lambda < \mu} \sqrt{a_{\lambda} - a_{\mu}} \overline{c}_{ij\lambda\mu} (\overline{z}'_{\lambda\mu}dx'_{j} \wedge d\overline{x}'_{i} + \overline{x}'_{i}dx'_{j} \wedge d\overline{z}'_{\lambda\mu}) + O(|x'|^{2} + |z'|^{2}) .$$

Omitting the primes in the coordinates x', z' for simplicity, we see that the norms of the basis elements of TY with respect to ω are given modulo $O(|x|^2 + |z|^2)$ by

,

$$\begin{split} &\langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle \sim \delta_{ij} - \sum_{\lambda < \mu} \sqrt{a_\lambda - a_\mu} \left(c_{ij\lambda\mu} z_{\lambda\mu} + c_{ij\mu\lambda} \overline{z}_{\lambda\mu} \right) \\ &\langle \frac{\partial}{\partial z_{\lambda\mu}}, \frac{\partial}{\partial z_{\lambda'\mu'}} \rangle \sim \delta_{\lambda\lambda'} \delta_{\mu\mu'} \quad , \\ &\langle \frac{\partial}{\partial z_{\lambda\mu}}, \frac{\partial}{\partial x_j} \rangle \sim - \sum_i \sqrt{a_\lambda - a_\mu} c_{ij\lambda\mu} x_i \quad . \end{split}$$

By duality, we get

$$\langle dx_i, dx_j \rangle \sim \delta_{ij} + \sum_{\lambda < \mu} \sqrt{a_\lambda - a_\mu} \left(\overline{c}_{ij\lambda\mu} \overline{z}_{\lambda\mu} + \overline{c}_{ij\mu\lambda} z_{\lambda\mu} \right) ,$$

$$\langle dz_{\lambda\mu}, dz_{\lambda'\mu'} \rangle \sim \delta_{\lambda\lambda'} \delta_{\mu\mu'} ,$$

$$\langle dz_{\lambda\mu}, dx_j \rangle \sim \sum_i \sqrt{a_\lambda - a_\mu} \, \overline{c}_{ij\lambda\mu} \overline{x}_i .$$

Taking the exterior derivative in the above estimates, we find that the Chern connection D on $\Omega^1_Y = T^*Y$ is given in terms of the basis vectors dx_i , $dz_{\lambda\mu}$ by

$$D(dx_j) = \sum_{i,\lambda < \mu} \sqrt{a_\lambda - a_\mu} c_{ij\lambda\mu} (dz_{\lambda\mu} \otimes dx_i + dx_i \otimes dz_{\lambda\mu}) + \mathcal{O}(|x| + |z|) ,$$

$$D(dz_{\lambda\mu}) = 0 + \mathcal{O}(|x| + |z|) .$$

The subbundle $F = F^{p+1,N(s)}$ (resp. the quotient bundle $G = G^{p,p+N(s)}$) admits at y^0 the orthonormal basis

$$dx_I \wedge dz_J$$
 with $|I| + |J| = p + N(s)$, $|I| \ge p + 1$ (resp. $|I| \le p$, $|J| = N(s)$).
Let $v = \sum v_{I,J} dx_I \wedge dz_J$ be a C^{∞} section of F . The $(1,0)$ -form $\beta \wedge v$ is nothing else than the projection of Dv on $G = \Omega/F$. From this observation, one obtains the expression of β at y^0 :

(4.11)
$$\beta \wedge v = \sum_{i,j,\lambda < \mu} \sqrt{a_{\lambda} - a_{\mu}} c_{ij\lambda\mu} dx_i \otimes \left(dz_{\lambda\mu} \wedge \left(\frac{\partial}{\partial x_j} \, \lrcorner \, v \right) \right) \mod F \quad ,$$

where $\xi \sqcup v$ means contraction of the differential form v by the tangent vector ξ . In fact any differentiation of a factor dx_j in a term $D(v_{I,J} \, dx_I \wedge dz_J)$ decreases of one unity the partial degree |I| when dx_j is differentiated into $c_{ij\lambda\mu} \, dx_i \otimes dz_{\lambda\mu}$. The corresponding part of the differential is thus in G if |I| = p + 1. For every (0, q + 1)-form $f = \sum f_{I,J,K,L} \, dx_I \wedge dz_J \wedge d\overline{x}_K \wedge d\overline{z}_L$ with values in F(a), |I| + |J| = p + N(s), $|I| \ge p + 1$, |K| + |L| = q + 1, we obtain consequently

(4.12)
$$\beta \sqcup f = \sum_{i,j,\lambda < \mu} \sqrt{a_{\lambda} - a_{\mu}} c_{ij\lambda\mu} \frac{\partial}{\partial \overline{x}_i} \sqcup \left(dz_{\lambda\mu} \land \left(\frac{\partial}{\partial x_j} \sqcup f \right) \right) \mod F(a)$$
.

The only terms of f that contribute to the expression of $\beta \, \lrcorner \, f$ are those for which |I|=p+1 and |J|=N(s)-1. Let us write $g=\beta \, \lrcorner \, f$ under the form

$$g = \sum g_{I',J',K',L'} \, dx_{I'} \wedge dz_{J'} \wedge d\overline{x}_{K'} \wedge d\overline{z}_{L'} \quad ,$$

where |I'| = p, |J'| = N(s), |K'| + |L'| = q. Formula (4.12) implies

$$g_{I',J',K',L'} = \sum_{i,j,\lambda<\mu} \pm \sqrt{a_{\lambda} - a_{\mu}} c_{ij\lambda\mu} f_{jI',J'\backslash\{\lambda\mu\},iK',L'} ,$$

$$|g_{I',J',K',L'}|^2 \le \left(\sum_{i,j,\lambda<\mu} (a_{\lambda} - a_{\mu})|c_{ij\lambda\mu}|^2\right) \sum_{i,j,\lambda<\mu} |f_{jI',J'\backslash\{\lambda\mu\},iK',L'}|^2 ,$$
and
$$\sum_{I',J',K',L'} \sum_{i,j,\lambda<\mu} |f_{jI',J'\backslash\{\lambda\mu\},iK',L'}|^2 \le (p+1)(q+1) \sum_{I,J,K,L} |f_{I,J,K,L}|^2 . We$$

obtain therefore the inequality

(4.13)
$$|\beta \sqcup f|^2 \le (p+1)(q+1) \Big(\sum_{i,j,\lambda < \mu} (a_\lambda - a_\mu) |c_{ij\lambda\mu}|^2 \Big) |f|^2$$

The main point now is to find an estimate of the sum $\sum_{i,j,\lambda<\mu} (a_{\lambda} - a_{\mu}) |c_{ij\lambda\mu}|^2$ under condition (4.10).

LEMMA 4.14. — Let $(h_{\lambda\mu})_{1 \leq \lambda, \mu \leq r}$ be a semi-positive hermitian matrix and let $\alpha_1 \leq \ldots \leq \alpha_r$ be real numbers. Then

$$\sum_{\lambda < \mu} (\alpha_{\mu} - \alpha_{\lambda}) |h_{\lambda\mu}|^2 \le \frac{1}{4} (\alpha_r - \alpha_1) \left(\sum_{\lambda} h_{\lambda\lambda}\right)^2 .$$

Proof. — Use Cauchy-Schwarz inequality $|h_{\lambda\mu}|^2 \leq h_{\lambda\lambda}h_{\mu\mu}$ and take $t_{\lambda} = h_{\lambda\lambda}$ in the identity

$$\frac{1}{4}(\alpha_r - \alpha_1) \left(\sum_{\lambda} t_{\lambda}\right)^2 - \sum_{\lambda < \mu} (\alpha_\mu - \alpha_\lambda) t_{\lambda} t_{\mu}$$
$$= \frac{1}{4} \sum_{1 \le \lambda < r} (\alpha_{\lambda+1} - \alpha_\lambda) (t_1 + \ldots + t_{\lambda} - t_{\lambda+1} - \ldots - t_r)^2 \ge 0 \quad . \quad \blacksquare$$

LEMMA 4.15. — Under condition (4.10) one has

$$\sum_{j,\lambda<\mu} (a_{\lambda} - a_{\mu}) |c_{ij\lambda\mu}|^2 \le \frac{1}{4} n(n+1) \left(\frac{1}{a_r} - \frac{1}{a_1}\right) .$$

Proof. — Let us apply lemma 4.14 to

i

$$h_{\lambda\mu} = \sqrt{a_{\lambda}a_{\mu}} \sum_{i,j} c_{ij\lambda\mu} t_i \overline{t}_j \ , \ \alpha_{\lambda} = rac{1}{a_{\lambda}} \ ,$$

where $t = (t_1, \ldots, t_n)$ are arbitrary complex numbers. The Griffiths semipositivity assumption on c(E) means that $(h_{\lambda\mu})$ is semi-positive for all t. We get

$$\sum_{\lambda} h_{\lambda\lambda} = \sum_{i,j,\lambda} a_{\lambda} c_{ij\lambda\lambda} t_i \overline{t}_j \le |t|^2$$

by condition (4.10), thus

(4.16)
$$\sum_{\lambda < \mu} (a_{\lambda} - a_{\mu}) \Big| \sum_{i,j} c_{ij\lambda\mu} t_i \overline{t}_j \Big|^2 \le \frac{1}{4} \Big(\frac{1}{a_r} - \frac{1}{a_1} \Big) |t|^4 \quad .$$

Apply now inequality (4.16) to $t = (e^{i\theta_1}, \ldots, e^{i\theta_n}) \in \mathbb{T}^n$ and integrate the result over \mathbb{T}^n . Parseval's identity for Fourier series yields

$$\sum_{\lambda < \mu} (a_{\lambda} - a_{\mu}) \Big(\sum_{i \neq j} |c_{ij\lambda\mu}|^2 + \big| \sum_{i} c_{ii\lambda\mu} \big|^2 \Big) \le \frac{1}{4} \Big(\frac{1}{a_r} - \frac{1}{a_1} \Big) n^2$$

Inequality (4.16) applied to each vector of the standard basis of \mathbb{C}^n yields in the same way

$$\sum_{\lambda < \mu} (a_{\lambda} - a_{\mu}) |c_{ii\lambda\mu}|^2 \le \frac{1}{4} \left(\frac{1}{a_r} - \frac{1}{a_1} \right)$$

for all i , and lemma 4.15 follows.

Combining inequality (4.13) with lemma 4.15 we get

$$|\beta \, \lrcorner \, f|^2 < \frac{1}{4a_r} \, n(n+1)(p+1)(q+1)|f|^2$$

and using criterion (4.5) we see that $H^{q+1}(Y, F \otimes Q_s^a \otimes \pi^* L) = 0$ for

$$a_r \ge \frac{n(n+1)(p+1)(q+1)}{4(p+q-n+1)}$$
, $p+q \ge n$

The proof of the main theorem is therefore achieved.

5. On the Borel-Le Potier spectral sequence.

Denote as before $\pi : Y = M_s(E) \longrightarrow X$ the projection. To every integer t and every coherent analytic sheaf \mathcal{S} on Y, one may associate the complex

$$D'' : \mathcal{K}^q = \Gamma\left(Y, \mathcal{C}^{\infty}_Y(\Omega^t_Y \otimes \overline{\Omega}^q_Y) \otimes_{\mathcal{O}_Y} \mathcal{S}\right) \longrightarrow \mathcal{K}^{q+1}$$

of C^∞ -differential forms of type (t,q) with values in $\mathcal S$. This Dolbeault complex is filtered by the decreasing sequence of subcomplexes

$$D'' : \mathcal{K}_p^q = \Gamma\left(Y, \mathcal{C}_Y^{\infty}(F^p(\Omega_Y^t) \otimes \overline{\Omega}_Y^q) \otimes_{\mathcal{O}_Y} \mathcal{S}\right) \longrightarrow \mathcal{K}_p^{q+1}$$

This gives rise to a spectral sequence which we shall name after Borel and Le Potier, whose E_0 , E_1 terms are

(5.1)
$$\begin{cases} E_0^{p,q-p} = \Gamma(Y, \mathcal{C}_Y^{\infty}(G^{p,t} \otimes \overline{\Omega}_Y^q) \otimes_{\mathcal{O}_Y} \mathcal{S}) \\ E_1^{p,q-p} = H^q(Y, G^{p,t} \otimes \mathcal{S}) \end{cases}.$$

The limit term $E_{\infty}^{p,q-p}$ is the *p*-graded module corresponding to the filtration of $H^q(\mathcal{K}^{\bullet}) = H^q(Y, \Omega_Y^t \otimes \mathcal{S})$ by the canonical images of the groups $H^q(\mathcal{K}_p^{\bullet})$. Assume that the spectral sequence degenerates in E_2 , *i.e.* $d_r : E_r^{p,q-p} \to E_r^{p+r,q+1-(p+r)}$ is zero for all $r \geq 2$ (by Peternell, Le Potier and Schneider [12], the spectral sequence does not degenerate in general in E_1). Then $E_2^{p,q-p} = E_{\infty}^{p,q-p}$. This equality means that the *q*-th cohomology group of the E_1 -complex

$$d_1 : H^q(Y, G^{p,t} \otimes \mathcal{S}) \longrightarrow H^{q+1}(Y, G^{p+1,t} \otimes \mathcal{S})$$

is the *p*-graded module corresponding to a filtration of $H^q(Y, \Omega_Y^t \otimes S)$. By Kodaira-Akizuki-Nakano, we get therefore :

PROPOSITION 5.1. — Assume that E is ample and $L \ge 0$, or $E \ge 0$ and L ample, and that the E_2 -degeneracy occurs for the ample invertible sheaf $\mathcal{S} = Q_s^a \otimes \pi^* L$ on Y. Then the complex

$$d_1 : H^q(Y, G^{p,t} \otimes Q^a_s \otimes \pi^* L) \longrightarrow H^{q+1}(Y, G^{p+1,t} \otimes Q^a_s \otimes \pi^* L)$$

is exact in degree $q \ge n + N(s) + 1 - t$.

This result would be a considerable help for the proof of vanishing theorems. For example, it is shown in [5] that the main vanishing theorem would be true with $l \ge r - 1 + \min\{n - p, n - q\}$.

Since d_1 is the coboundary operator associated to the exact sequence $0 \longrightarrow G^{p+1,t} \longrightarrow F^{p,t}/F^{p+2,t} \longrightarrow G^{p,t} \longrightarrow 0$, it is easy to see that $d_1 = -\beta^* \wedge \bullet$ where β^* is the D''-closed (0,1)-form of §4, reinterpreted as a (0,1)-section of $\operatorname{Hom}(G^{p,t}, G^{p+1,t})$. Our hope is that the E_2 -degeneracy can be proved in all cases by a suitable deepening of the analytic method of §4.

References

- [1] Y. AKIZUKI and S. NAKANO. Note on Kodaira-Spencer's proof of Lefschetz theorems, Proc. Jap. Acad., **30** (1954), 266–272.
- [2] A. BOREL and A. WEIL. Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts, Séminaire Bourbaki (exposé n° 100 par J.-P. Serre), (mai 1954), 8 pages.
- [3] R. BOTT. Homogeneous vector bundles, Ann. of Math., 66 (1957), 203–248.
- [4] J.-P. DEMAILLY. Théorèmes d'annulation pour la cohomologie des puissances tensorielles d'un fibré positif, C. R. Acad. Sci. Paris Sér. I Math., **305** (1987), à paraître.
- [5] J.-P. DEMAILLY. Vanishing theorems for tensor powers of an ample vector bundle, Prépublication Institut Fourier, Univ. de Grenoble I (August 1987), submitted to Invent. Math.
- [6] B. DEMAZURE. A very simple proof of Bott's theorem, Invent. Math., **33** (1976), 271–272.
- [7] R. GODEMENT. Théorie des faisceaux, Hermann, Paris, 1958.
- [8] P.A. GRIFFITHS. Hermitian differential geometry, Chern classes and positive vector bundles, Global Analysis, Papers in honor of K. Kodaira, Princeton Univ. Press, Princeton (1969), 185–251.
- [9] R. HARTSHORNE. Ample vector bundles, Publ. Math. I.H.E.S., 29 (1966), 63–94.
- [10] H. KRAFT. Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, Band D1, Braunschweig, Vieweg & Sohn, 1985.
- [11] Th. PETERNELL, J. LE POTIER and M. SCHNEIDER. Vanishing theorems, linear and quadratic normality, Invent. Math., 87 (1987), 573–586.
- [12] Th. PETERNELL, J. LE POTIER and M. SCHNEIDER. Direct images of sheaves of differentials and the Atiyah class, preprint (1986).
- [13] J. LE POTIER. Annulation de la cohomologie à valeurs dans un fibré vectoriel holomorphe de rang quelconque, Math. Ann., **218** (1975), 35–53.
- [14] M. SCHNEIDER. Ein einfacher Beweis des Verschwindungssatzes für positive holomorphe Vektorraumbündel, Manuscripta Math., **11** (1974), 95–101.
- [15] A.J. SOMMESE. Submanifolds of abelian varieties, Math. Ann., 233 (1978), 229–256.