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Abstract. — Let E be a holomorphic vector bundle of rank r over a
compact complex manifold X of dimension n . It is shown that the Dolbeault
cohomology groups H?4(X, E®* ® (det E)!) vanish if E is positive in the sense
of Griffiths and p+qg>n+1,1 > r+ C(n,p,q) . The proof rests on the well-
known fact that every tensor power E®* splits into irreducible representations of
GI(FE) , each component being canonically isomorphic to the direct image on X
of a positive homogeneous line bundle over a flag manifold of £ . The vanishing
property is then obtained by a suitable generalization of Le Potier’s isomorphism
theorem, combined with a new curvature estimate for the bundle of X-relative
differential forms on the flag manifold of E .

0. Statement of results.

The aim of this work is to prove a rather general vanishing theorem for
cohomology groups of tensor powers of a positive vector bundle.

Let X be a complex compact n—dimensional manifold and F a hermitian
vector bundle of rank r over X . We denote by Cp<, (X, E) the space of smooth
E—valued differential forms of type (p,q) on X and by

Dp =Dy + Dy : C3 (X, E) — CX, (X, E)aCr (X, E)
(or simply D = D" + D" ) the Chern connection of E . Let (z1, ... ,z,) be holo-

morphic coordinates on X and (eq, ... ,e,) alocal C* orthonormal frame of E .
The Chern curvature tensor c(E) is defined by D? = ¢(E) A « and may be written

c(F) = Z Cijapdri NdT; @ ey ®e, , 1<i,j<n,1<A\p<r.
4,5, 1

The curvature tensor ic(E) is in fact a (1,1)-form with values in the bundle
Herm(E, E) of hermitian endomorphisms of E , i.e. ¢;jx, = Cjipn; thus ic(E) can
be identified with a hermitian form on TX ® E .

Let us recall that the bundle F is said to be positive, resp. semi-positive
(in the sense of Griffiths [8]) if £ can be endowed with a hermitian metric such
that at every point x € X one has

ic(B)z(C®v,{@v) = Y cijnu(®) (iCuaT, >0 , resp. >0
i’j7>\’u



for all non zero vectors ( = > (;0/0z; € T, X , v => wvxex € E, . Every vector
bundle E generated by sections is > 0 .

Another important concept is that of ampleness, for which we refer to
Hartshorne [9]; a vector bundle E is ample if and only if the line bundle Og (1) over
P(E*) is ample (or equivalently > 0) . It is also well-known that E > 0 implies
FE ample, but the converse is unknown.

In the case of a positive or ample vector bundle E of rank » > 1 ;| only
very few general and optimal vanishing results are available for the Dolbeault
cohomology groups HP? of tensor powers of E . For example, the famous
Le Potier vanishing theorem [13] :

E ample — HPIYX,E)=0 for p+q>n+r

does not extend to symmetric powers S¥E , even when p = n and ¢ = n — 2
(cf. [11]) . Nevertheless, the following result shows that the vanishing property is
true for tensor powers involving a sufficiently large power of det ' .

THEOREM. — Let L be a holomorphic line bundle over X . Assume that
E>0and L>0,o0or E>0and L > 0. For all integers p,q such that p+q >n ,

set
n(n+1)(p+1)(g+1)

4p+qg—n+1)

and A(n,p,q) = 0 if p=mn . Let h € {1,...,r — 1} and let '*E be the
irreducible tensor power representation of GI(E) of highest weight a € Z" , with

A(n,p,q) = if p<n

apL>ax>...2ap>ap41 =...=a, =0 .
If p+q>n+1 then
HPYXTE® (det E)} ® L) =0 for 1>h+ A(n,p,q) .

The proof of this theorem is based on analysis and differential geometry,
but an analogous result can be obtained in a purely algebraic way (cf. [5]); in that
case the positivity hypothesis can be replaced by ampleness, the semi-positivity
hypothesis by the fact that the bundle is generated by its global sections; then,
the condition required on [ isl > n—p+r —1 . Both results overlap in most cases,
but the above analytic result can be better if » — h is very large.

Observing that S¥E is the irreducible representation of highest weight
(k,0,...,0) and that E®* splits into irreducible representations of the type
I'E ® (det E)! with h < min{k,r — 1} (cf. formula (2.17)), we obtain :

COROLLARY. — Under the positivity hypotheses of the theorem, then for
all p,q such that p+ q > n + 1 one has

(0.1) HP(X,S*E® (det E)}! @ L) =0 if 1>1+ A(n,p,q) ;
(0.2) HPUX,E®* @ (det E))®@ L) =0 if 1> min{k,r—1}+ A(n,p,q)

The special case p = n of (0.1) is due to P. Griffiths [8] . For p = n and
arbitrary r, kg > 2 , Peternell-Le Potier and Schneider [11] have constructed an
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example of a vector bundle E > 0 of rank r over a manifold X of dimension n = 2r
such that

(0.3) H"" (X, S*EY£0 , 2<k<ko .

This result shows that the lower bound [ > 1 in (0.1) cannot be improved. More
generally, the following example (for which we refer to [5]) shows that our condition
[ > hin the theorem is optimal. This example gives a negative answer to a question
of Sommese [15].

EXAMPLE. — Let X = G,(V) be the Grassmannian of subspaces of
codimension r of a vector space V' of dimension d , and E the tautological quotient
vector bundle of rank r over X (then E > 0 and L = det E is ample) . Let
he{l,...,r—1} anda € Z" , 8 € Z¢ be such that

a1 >...2ap,>d—7r , apy1=...=a, =0,
B=(ag—d+r,...,ap —d+7,0,...,0)

Set n=dimX =r(d—r),q= (r—h)(d—r) . Then

(0.4) H"(X,T°E® (det B)") =TV @ (det V)" #0 .

Our approach is based on three well-known facts. First, every tensor power
of E splits into irreducible representations of the linear group GI(E) . It is thus
sufficient to consider “irreducible” tensor powers of E . Secondly, every irreducible
tensor power of E appears in a natural way as the direct image on X of a positive
line bundle over a suitable flag manifold of £ . This follows from Bott’s theory
of homogeneous vector bundles [3]. The third fact is the isomorphism theorem of
Le Potier [13], which relates the cohomology groups of E over X to those of the
line bundle Og(1) over P(E*) . We generalize here this isomorphism to the case
of arbitrary flag bundles associated to E .

When p = n the above-mentioned algebraic facts suffice to prove the
theorem. However, when p < n , the generalized Borel-Le Potier spectral sequence
does not degenerate at the E; level (cf. [12]). A possible way in order to overcome
this difficulty is to establish a curvature estimate for the bundle of X-relative
differential forms on the flag manifold of F , using the standard Kodaira-Akizuki-
Nakano inequality [1] . Our estimate (cf. §4) measures in some sense how far is
the spectral sequence from being E;—degenerate. The following related problem is
interesting, but its complete solution certainly requires a better understanding of
the Borel-Le Potier spectral sequence for flag bundles.

PROBLEM. — Given a dominant weight a € 7" with a, = 0 , determine
the smallest admissible constant A(n,p,q) in the theorem.

It is shown in [5] that if the Borel-Le Potier spectral sequence degenerates
in Fs , then it is always sufficient to take [ > r — 1 + min{n — p,n — ¢} . In view
of the above main theorem, one may suspect that the correct answer could be
[ > h+min{n—p,n—q} .

The above results have been annouced in the note [4]. The author wishes to
thank warmly Prof. Michel Brion, Friedrich Knopp, Thomas Peternell and Michael
Schneider for valuable remarks which led to substantial improvements of this work.



1. Kodaira-Akizuki-Nakano vanishing theorem.

We recall here the basic Akizuki-Nakano inequality [1] which will be used
several times in the sequel. Assume that X carries a Kéhler metric w , and let L
be a hermitian line bundle over X . At each point x € X , one can write

ZC(L) =1 Z Y5 de A dzj

1<j<n

where (dz1, ... ,dz,) is an w—orthonormal basis of T*X and where 71 < ... <1,
are the curvature eigenvalues of L . For every v € C;%, (X, L) we have

(1.1) I1DLl* +[|DE 0[] > (Orv, v)

where ©, is the hermitian endomorphism defined by

(1.2) (Orv,v) = Z (v + s — Z i) vral?

|I|=p,|J|=q 1<5<n

with vy = > c;VYm - When L is > 0, one can choose w = ic(L) as the Kahler

metric on X ; in that case v1 = ... =7, = 1 and therefore
(1.3) D70l + [[DL*0l* = (p+q =)ol
COROLLARY (Kodaira-Akizuki-Nakano). — One has

(1.4) L>0 = HPI(X,L)=0 for p+qg>n+1,
(1.5) L<0 = HPI(X,L)=0 for p+q<n—1.

2. Homogeneous line bundles over flag manifolds and
irreducible representations of the linear group.

The aim of this section is to settle notations and to recall a few basic results
on homogeneous line bundles over flag manifolds. The classical foundation works
on this subject are Borel-Weil [2] and R. Bott [3] , which contain all the required
material (cf. also Demazure [6] for a very simple proof of Bott’s formula). We will
give however an independent self-contained exposition in order to prepare the tools
needed in the differential geometric approach of §4 .

Let B, (resp. B" ) be the Borel subgroup of Gl = GI(C") of lower (resp.
upper) triangular matrices, U, C B, , U" C B" the subgroups of unipotent
matrices, and 7" = B, N B” the complex torus (C*)" of diagonal matrices. Let V'
be a complex vector space of dimension r . We denote by M (V') the manifold of
complete flags

V=VW>oViD>...oV,={0} , codimcVy =2\ .

To every linear isomorphism ¢ € Isom(C", V) : (u1, ... ,ur) — D> 1y, UrCxr
one can associate the flag [(] € M(V) defined by V\ = Vect(Cri1, ---,C)
1 < X <r . This leads to the identification

M(V) =Isom(C",V)/B,
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where B, acts on the right side. We denote simply by V) the tautological vector
bundle of rank 7— X on M (V') , and we consider the canonical quotient line bundles

Qx=Va1/Vi 1< x<r ,
=01 ®...00Q0% , a=(ay,...,a) €L .

The linear group GI(V) acts on M(V) on the left, and there exist natural
equivariant left actions of GI(V') on all bundles V) , @y , Q% .

We compute now the tangent and cotangent vector bundles of M (V') . The
action of GI(V') on M (V) yields

(2.2) TM(V)=Hom(V,V)/W

where W is the subbundle of endomorphisms g € Hom(V, V') such that g(Vy) C Vi,
1 < A < r . Using the self-duality of Hom(V,V) given by the Killing form
(91, 92) — tr(g1g2) , we find

T*M(V) = (Hom(V,V)/W)" = W+
{WL ={gecHom(V,V); g(Va_)) C Vi, 1 <A<} .
There exists a filtration of T*M (V') by subbundles of the type
{g € Hom(V,V); g(VA) C Vo, A<p(A), L<A<r}

(2.1)

(2.3)

in such a way that the corresponding graded bundle is the direct sum of the line
bundles Hom(Qx, Q) = Q;l ®Qu » A < p; their tensor product is thus isomorphic
to the canonical line bundle Ky = det(T*M(V)) :

(2.4) Kywvy=Q1 "®...0Q30 "' ®...0Q ' =Q°
where c= (1 —r, ... ,r —1); ¢ will be called the canonical weight of M (V) .
e Case of incomplete flag manifolds.

More generally, given any sequence of integers s = (sg, ..., S;,) such that
0=s9<81 <...<S8y,=r,wemay consider the manifold M4(V') of incomplete
flags

V=V, DVy D...0V,, ={0} , codimcVs, =s; .

On M, (V) we still have tautological vector bundles V; ; of rank r — s; and line
bundles

(2.5) Qsj=det(Vsj1/Vj) , 1<j<m .
For any r—tuple a € Z" such that as; 141 =...=as; , 1 <j<m, weset
Qs = Q1 ®...®QuH
If n: M(V)— M(V) is the natural projection, then
(2.6) N Vei=Vs, » MQs;=Qs, 1+19...0Qs, , n°Q7=Q" .
On the other hand, one has the identification
M(V) = Isom(C",V')/Bs
where B; is the parabolic subgroup of matrices (z,) with 2y, = 0 for all A, p such

that there exists an integer j =1, ... ,m — 1 with A < s; and p > s; . We define
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U, as the unipotent subgroup of lower triangular matrices (z),) with zy, = 0 for
all \, v such that sj_1 < A # p < s; for some j , and we set BS =By , U* =*Uj .
In the same way as above, we get

(2.7) TM,(V)=Hom(V,V)/W, , Wyo={g; g(Vs,_,) CVs,} ,

(2.8) T*M,(V) =W+ |

(2.9) Ky =@ ®...9 Q:Jf1+5j—r ®...0Qm 1 = QC(S

where ¢(s) = (s1— 7, ..., 81 =7, ..., 81+ 8 —7T, ... ,Sj_l-i—sj—r, ...) is the

canonical weight of M(V) .
e Curvature form of the line bundle Q* .

Assume now that V' is a hermitian vector space. Then all our bundles carry
a natural hermitian metric. We are going to compute the curvature of Q¢ at
any point [e] € M (V) . Choose an orthonormal basis (e, ... ,e,) of V which
corresponds to the given point [e] . It is clear that eB.e~ C GI(V) is the isotropy
subgroup of [e] , whereas eU"e™!.[e] = [eU"] is an affine open subset of M (V) ,
corresponding to bases ((1, ..., () of V such that

CM:eM-l-ZzMe)\ , 1<u<r , 2,cC.
A<p
Then (2xu)1<x<u<r is a coordinate system on [eU”]| and the map
M(V) 3 [¢]— Cu:= ¢, modV,
is a local section of @, = V,,_1/V,, . Hence

c(Qu) = —d'd"log |C,[* .

Let us identify Q:M with the orthogonal projection of ¢, on V,_; N VuL . Then
Gram-Schmidt’s orthogonalization process yields

éu = Cu - Z <Clﬁ, Cy) Cu ) ‘Cu|2 ‘Cu|2 Z | CM,CVH

v>p |<V|2 V> ‘CV|2

Since (Cus Cv) = Zuw + Doac, 2auZaw , it follows by backward induction on v that
(CurCo) = Zpw + O(|2]?) for v > i, hence

Cul> = 14> laaul® = D lzwn* +O(I2)

A<p V>
We obtain therefore
(2.10) c(Qu)ie Z dza, N dZx, + Z dz, NdZ,,
A< V>
(2.11) c(Q")e = Zauc(Qu) = Z(cw\ —ay)dza, NdZy, .
o A<p

COROLLARY 2.12. — Q% is > 0 if and only if a; > as > ... > a, .
If there exists an index j such that a; < aj+1 , then HY(M(V), Q%) =

Proof. — Only the second statement and the “only if” part of the first
remain to be proved. Let us observe that the projection n : M(V) — My(V) ,
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s=(0,...,5—1,7+1,...,7r) , is a bundle with fibers P(V;_1/Vj41) ~ P* .
The restriction of @y to each fiber is trivial if A # j,j + 1 whereas Q;p1 ~ O(1)
and Q;1p =~ O(—1) . Therefore Qfp: ~ O(a; — a;j41) cannot have any non-zero
section or any semi-positive metric if a; < aj4; . ®

When a; > ... > a, , the bundle Q% is not necessarily > 0 on M (V); in
fact one can write Q® as the induced bundle n*Q¢% where s; < ... < s,,—1 is the
sequence of integers A =1, ... ,r—1 such that ay;1 > ay . The affine open subset
[eU®] C Ms(V) is a neighborhood of [e] , and M (V') has local coordinates (2,)
where A, are such that A < s;_1 < s; < p for some j , i.e. ax > a, . The
curvature of Q¢ is given formally by the same expression as (2.11) :

(2.13) C(Q?){e] = Z (a>\ — CLM)dZ)\M A d?)\u .
ax>ay

We see therefore that Q¢ > 0 on M (V) .

e Cohomology groups of Q* .

It remains now to compute HO(M (V),Q%) ~ H°(M(V),Q% when
a; > ... > a, . Without loss of generality we may assume that a,, > 0 , because
Q1 ®...0Q, =detV is a trivial bundle.

ProprOSITION 2.14. — For all integers a1 > a3 > ... > a, > 0, there is a
canonical isomorphism

H(M(V),Q%) =TV

where I'*V C SV ®...® SV is the set of polynomials f((f, ... ,(}) on (V*)"
which are homogeneous of degree ay with respect to (y and invariant under the
left action of U, on (V*)" = Hom(V,C") :

G G G+ ) = FIG -G, <A

Proof. — To any section o € H°(M(V'), Q%) we associate the holomorphic
function f on Isom(V,C") C (V*)" defined by
FG -G = ()" @ () o([Cy - Gl)

where (1, ...,¢() is the dual basis of ({7, ...,(}) , and where the linear form
induced by (¥ on @Qx = Va_1/V)\ ~ C() is still denoted ¢} . Let us observe that f
is homogeneous of degree a in ¢} and locally bounded in a neighborhood of every
r—tuple of (V*)"\ Isom(V,C") (because M (V') is compact and ay > 0) . Therefore
f can be extended to a polynomial on all (V*)" . The invariance of f under U,

is clear. Conversely, such a polynomial f obviously defines a unique section o on
MV). n

From the definition of I'*V | we see that
(2.15) Sky = 0,0y
(216) AkV: P(l,...,l,O,...,O)V )
For arbitrary a € Z" , proposition 2.14 remains true if we set
ey =rla=an-a-1-a0y ¢ (det V)% when a is non-increasing
rv=0 otherwise .



The elements a € Z" will be ordered according to the partial ordering :
a=b M > ax> Y by, I<p<r.
1<A<pu 1<A<u

Bott’s theorem [3] shows that I'*V is an irreducible representation of GI(V') of
highest weight a; all irreducible representations of GI(V') are in fact of this type
(cf. Kraft [10]). In particular, since the weights of the action of a maximal torus
T" C GI(V) on V®* verify a; + ... +a, = k and ay > 0, we have a canonical
G1(V')—isomorphism

(2.17) vk = @ plak)TV

ai1+...+a,=k
a1 >...2a->0

where p(a, k) > 0 is the multiplicity of the isotypical factor ['*V in V®*

Bott’s formula (cf. also Demazure [6] for a very simple proof) gives in fact
the expression of all cohomology groups H4(M(V'), Q%) , but we will need them
here only in the case of dominant weights a1 > ... > a, .

PropOSITION 2.18. — Set N = dimM(V) , N(s) = dimM (V) .
Ifas; —as;,, > 1, then
(a) HNOAI(M(V),Q2) =0 forall ¢>1
(b) HNOOM(V),QF) =TIV .

Proof. — Under the assumption of (a), Q% is > 0 by (2.13). The result

follows therefore from the Kodaira-Akizuki-Nakano theorem. Now (b) is a conse-
quence of proposition 2.14 since

HYOU(M(V), Q) = HUM(V), Karv) © QF) = HI(M,(V), Q1)) . m

3. An isomorphism theorem

Our aim here is to generalize Griffiths and Le Potier’s isomorphism theorems
([8], [13]) in the case of arbitrary flag bundles, following the simple method of
Schneider [14] .

Let X be a n—dimensional compact complex manifold and £ — X a holo-
morphic vector bundle of rank r . For every sequence 0 = s < 81 < ... < Sy, =T,
we associate to F its flag bundle Y = M (F) — X . If a € Z" is such that
as; 1+1=...=as; ,1<j<m,wemay define a line bundle Qf — Y just as
we did in §2 . Let us set

O =APT*X | Q) = APTYY .
One has an exact sequence
(3.1) 0 — Q% — O} %Q%//X — 0

where Q%/ /X is by definition the bundle of relative differential 1-forms along the

fibers of the projection 7 : Y = Mg (E) — X . One may then define a decreasing
filtration of Q¢ as follows :

(3.2) FPt= FP(Q4) = 7 (Q%) AQU P .
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The corresponding graded bundle is given by

(3.3) GP = FPUFPHLE = o (O ) @ Q.

Over any open subset of X where F is a trivial bundle X x V with dim¢V =1,
the exact sequence (3.1) splits as well as the filtration (3.2). Using proposition
2.18, we obtain the following lemma.

LEMMA. — For every weight a such that as; —as;,, >1,1<j<m-1,

the sheaf of sections of QN(S)

y/x ® Qf has direct images

Rim (Q))Y ® Q%) =0 for q>1

m (Y ©QF) =T 0E

(3.4)

Let L be an arbitrary line bundle on X. Under the hypothesis a5, —as, ., > 1,
formulas (3.3) and (3.4) yield
Rim, (GPPTNG) @ Q¢ @ 7*L) =0 for ¢>1 ,
T (GPPNE) @ Q1 @ 1 L) = Q% 9 T EQ L .

The Leray spectral sequence implies therefore :
THEOREM 3.5. — If as; —as;,, > 1, then for all g > 0

HYY,GPPHNG) @ QY @ 7*L) ~ HPI(X, T *C)EQ L) .

When p =n , G»" TN () is the only non-vanishing quotient in the filtration

n+N(s)

of the canonical hne bundle €2y . We thus obtain the following generalization

of Griffiths’ isomorphism theorem 8] :
(3.6) H NG a(M(E), Q@ n* L) ~ HM(X, T *CE® L) .

In order to carry results for line bundles over to vector bundles, one needs
the following lemma.

LEMMA 3.7. — Assume that a5, > a5, > ... > as,, > 0. Then
(a) E>0 (resp.>0) = Q%>0 (resp. >0) ;
(b) E>0 and L>0 = Q¢®@7n*L>0 ;
(c) E ample = Q% ample .

Proof. — Part (a) will be proved in §4 (cf. formula (4.9)) and (b) follows
from the fact that ¢(Q%) > 0 along the fibers of 7 .

(c) By definition of an ample vector bundle (Hartshorne [9]) , S¥E is very
ample for k > ko large enough. Hence TI'*®E | which is a direct summand
in S*\"E®...® Sk E | is also very ample for k > ko . Now, formula (2.14)
shows that Q¢ > 0 along the fibers of 7 , hence Q% is very ample along each
fiber for k > k; . Since 7, (Q%*) = T**E | we conclude that Q*® is very ample for
k > max(ko, k1) . m

We are now ready to attack the proof of the main theorem. We study first
the special case p=n .



THEOREM 3.8. — Let a € Z" be such that
ap>ay>...2ap>ap1=...=a, =0, 1<h<r—1.
Assume that F is ample and L > 0, or E > 0 and L ample. Then
H"(X,T°E® (det E)) ® L) =0 for ¢>1 , I>h .

Proof of theorem 3.8 and of the main theorem. —

Let s1 > ... > s,,_1 be the sequence of integers A\ =1, ... ,r — 1 such that
ax4+1 > ay . Then theorem 3.5 implies

(3.9) HP9(X,T°E @ (det E)! @ L) ~ HI(Y,GPP*N () @ Q4 @ n* L)
where b =a — ¢(s) + (I, ... ,l) . The canonical weight ¢(s) is non-decreasing and
c(8)r = Sm—1 = h , hence
bs, >...>bs, =1l—h .
Lemma 3.7 shows that Q° ® 7*L > 0 if [ > h . Now, it is clear that FpptN(s) —

Q];JFN(S) . One gets thus an exact sequence

(3.10) 0 — pptLp+N(s) Qz;rN(s) L qPPNG) g

The Kodaira-Akizuki-Nakano vanishing theorem (1.4) applied to Q% @ 7*L with
dimY =n+ N(s) yields

HIY, 5V @ Qv @a*L) =0 for p+qg>n+1 .
The cohomology groups in (3.9) will therefore vanish if and only if
(3.11) HITYy, FPririNe) @ Qb @ n L) =0 .

This is obvious if p = n , for F*t1n+N() = 0 | In the general case p < n , we will
establish in §4 that (3.11) holds for p+¢ > n and b, =1 — h > A(n,p,q) . This
will be done by means of a curvature estimate for the bundle FP+1r+N(s) = g

Remark 3.12. — 1If p+ g = n , we still obtain some result, namely that the
canonical map

HPNGa(y, Qb @ 7 L) — HPY(X,T°E © (det E)! @ L)

is onto when | > h + A(n,p,q) .

Remark 3.13. — If the exact sequence (3.10) splits, then (3.11) is an imme-
diate consequence of the Kodaira-Nakano-Akizuki theorem. However, Peternell-Le
Potier and Schneider [11] , [12] have shown that in general the filtration F'*(€},)
does not split, and this is the reason why we have to introduce additional consi-
derations in order to prove (3.11).

4. A curvature estimate for the subbundle FP+1p+N(s)

We assume here that £, L — X are hermitian vector bundles of respective
ranks r,1 and that £ > O0Oand L >0, or £ >0and L > 0. Let a € Z" be
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such that a; > ... > a, > 0 and let s; < ... < s,,_1 be the sequence of integers
A=1,...,r—1such that ayy; > ay) . We set for simplicity

Y = My(E) , Q= Qz;/ﬁ-N(S) . F = FpHLetNG) g — gpptNGs) = Q/F .
Our aim is to prove that the analogue of (3.11) :
(4.1) HN Y, FRQ*®71*L) =0

holds when p + ¢ > n and a, > A(n,p,q) . Let us consider the exact sequences of
vector bundles over Y :

{O—>F — Q — G —0,

(4.2) 0 — F(a) — Qa) — G(a) — 0 ,

where the second sequence arises from the first one after taking tensor products
with the line bundle Q¢ ® 7*L . Then Y can be equipped with the Kahler metric
w = ic(Q? ® 7*L); the positivity of w is a consequence of (4.9) below. To every
smooth form v of type (p+ N(s),q+ 1) with values in Q¢ ® 7*L , let us apply the
Akizuki-Nakano inequality (1.3) , where dimY =n + N(s) :

(4.3) 1080y vl* + 1Dy ol* = (p+a = n+1)) [Jo]]* .

With respect to the orthogonal C*°—splitting 2 ~ F' & G , the Chern connections
of Q, F, G are related by the well-known formula (cf. [8]) :

_( Dp =B Ne 00/ A 1,0m% ,
DQ—(ﬁ/\. De ) , BeC®ATY @ Hom(F,Q)) ;

B* is a D" —closed (0,1)—form with values in Hom(G, F) , and its cohomology class
is the obstuction to the existence of a global splitting of (4.2). We obtain therefore

D// _ﬁ*/\' D//* O
" . F(a) "x F(a)
oh = (" Dz;(a)) o= (55, Dz;*(a>) |

where _| denotes the interior product of differential forms combined with the
evaluation map Hom(F,G) x F' — G (note that 5 1 e = (8* A e)*). For every
(0,q + 1)—~form f with values in F(a) we get

(4.4) Diayf = Doy f 5 1D fI* = IDG fIF =118 1 £
From (4.3) and (4.4), we see that the vanishing property (4.1) will hold if

(4.5) B fP<@+g—n+1)[f]
at every point of Y . We are going to compute (3 explicitly in suitable coordinate
systems on Y . Let ¢ € Y be an arbitrary point and (z1, ... ,x,) local coordinates

on X centered at the point 20 = 7(y°) .

LEMMA. — There exists a local holomorphic frame (eq, ... ,e.) of E such
that y° coincides with the flag [e1(z°), ... ,e.(z")] and
(4.6) (en(@) s eu(@)) = Ornu = D cinu 2T + O(lf*)
,J

where (c;i;x,) is the curvature tensor of E .
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Proof. — Choose a holomorphic frame (g1, ...,e,) of E such that
(e1(29), ..., e-(2?)) is orthonormal and [g1(z°), ... ,&-(z°)] = " . Then the inner
product (ex(z),e,(z)) has a Taylor expansion of the type

(ex(z),ep(z)) = 6y + Z(%‘,\ul‘i + A Ti)
+ Z(%‘j,\u«?ﬁi@ F YTy + Vi TiTi) + O(lz]?)

i’j

This expansion can be reduced to (4.6) (with suitable coefficients c;;»,,) if one sets

ex(z) =ex(x) — Z YiauTi € — Z ’Y;j,\uiﬂil’j €p -
(N7

VAL
Now (4.6) implies

Dex ==Y cijau®idri ® e, + O(|al)
60,1
D?ey = Z Cijapdrs NdT; @ e, +O(|z])

2¥HL
showing that the c;;y, ’s are precisely the curvature coefficients at z° . m

Let us denote by z = (z),) the affine coordinates on the fiber M (E,) CY
associated to the basis (e1(z), ...,er(z)) . Then (x1,...,2zy,2,) define local
coordinates on Y in a neighborhood of 4% . Assume first that Y = M,(E) = M(E)
is the manifold of complete flags of £ . Then we have tautological subbundles

VA = Vect(ext1, ... ,e,) C 7*E and the map
(4.7) Y 3 (2,2) — Cu=reu(z) + Y zauer()
A<
is a local section of V,,_; . Let us denote by Eu the image of ¢, in Q, =V,-1/V,,,

represented by the orthogonal projection of ¢, on V,_1 N (V) . As in §2, one
finds

Z)\:CA_Z<<17CM>CH , |< |2 ‘C |2 Z‘CA Cu| ,

(CA,E;J =7 — ZcijAuazﬁj mod (22, 23, 2%2) for A< p .
1,3

We need a Taylor expansion of ¢(Q,) = —d'd"log |Eu|2 up to order 1, hence of

\EHP up to order 3. Moreover, pure terms 2% , 2% will not play any role because

the Kéhler property of ¢(@,,) enables one to get rid of the terms O(|z|dx A dT) ,
O(|z|dz A dZ) . Therefore, we are interested only in terms of degree < 2 and in
mixed terms z22 , 222 . Thanks to formulas (4.7) and (4.8), we get the following

12



equalities modulo the ideal (3, 23, 222?) :

AP ~ G =D o Gl

pw>A
|<>\‘2 ~1-— ZC’L]AA{E 513] + Z |ZH>\|
<A
Z CijapTiTiZun — Z CijapTiTiZux
5,5, <A 5,5,h<A
(O Ga)l? ~ loaul® = D cinn@iTionn — ) CipwnTitiZan
5 (2%

We have now

=Y are(@y) =dd" (=Y arlogl?)
A
- ZGA log |Z\>\\2 ~ Z AXCijANT T + Z(ax — au)|z>\#\2

- Z (ax — au)CiauTiT;izx,
1,5, A<p

= D (ax = au)TynTia Za
1,0, A<p

We find therefore
c(Q") = Z (Z axcija + O(|x\))dazi A dT;

i A
+ > (ax — au)dza, A dz, + O(|2|dz A dZ)
A<p
— Z (CLA - CL“)CZ'J')\‘u (Z)\#d.’lfi AN dfj + IIJidZAH A dfj)
1,J,A<p
- Z (ax — ap)Cijau (Bapdzj A dT; + Tida; A dzy,) + O(|zf* + [2]?)
4,J,A<p
Since Q% = 7*Q? , the same identity holds for Q¢ . At the point y° we get
(49) C(Qg)yo = Z aAcij,\Ada:i A dfj + Z (CLA — au)dzw A dEAu

1,5, ax>ay
Now, w = i(m*c(L) + ¢(Q%)) is Kéhler on Y = M(E) , thus in particular along
the fiber z = 0 and along the local section z = 0 . It follows that one can find
coordinate changes = — 1z’ , zi\u = Jax —ay z), mod 22 such that the terms
O(Jz|dx A dZ) and O(|z|dz A dZ) disappear in the expansion of w , and such that

(4.10) wij (1°) = e(L)i(2°) + > axcijan = 6i;
A
Wia obtain therefore
Jw= de A dT; - Zdz,\u AdzZ),

A<p

Z Vax — ay ciga (23, d2; N dT5 + xidz) , A dT)

5,5, A<

Z Vax — ay Cijn (25,2 A T+ Tda A dZy ) + O3 + [2]7)

5,5, A<p
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Omitting the primes in the coordinates x’ , 2’ for simplicity, we see that the norms
of the basis elements of TY with respect to w are given modulo O(|z|? + |z|?) by

0 8

<6$ al‘ Z \/m Cigapn?ap + czgu)\z)\#) 5
i e
0 0
— =) ~ OO
82‘)\“ ) aZA/ , > )\)\ j23%2 3
0
<(9z,\u (933] Z Vax = aucipati

By duality, we get
(dxi, dxj) ~ 055 + Z Var — au (CijnpZan + Cijuraan)
A<

(dzap, dzx ) ~ S Ouw

(dzap, dx ;) ~ E Vax — ay CijauTi -

Taking the exterior derlvatlve in the above estimates, we find that the Chern
connection D on i, = T*Y is given in terms of the basis vectors dz; , dzy, by

D(dx;) = Z Vax —ay Cijau(dza, @ dr; + de; @ dzyy,) + O(|z] + |2])
LA
D(dzx.) = 0+ O(|z] +2])
The subbundle F' = FPT1N() (vesp. the quotient bundle G = GPPTN()) admits
at y° the orthonormal basis
dry Ndzy with |I|+[J|=p+N(s), [I[|>p+1 (vesp. [I|<p, [J|=N(s))

Let v =) vy, ydx; Adz; be a C* section of F' . The (1,0)-form 5 A v is nothing
else than the projection of Dv on G = Q/F . From this observation, one obtains
the expression of 3 at y°

(4.11) BAv= Z Vax —ay Cija, dri @ (dzm A (; _ v)) mod F'
i, G A< i
where ¢ | v means contraction of the differential form v by the tangent vector £ .
In fact any differentiation of a factor dz; in a term D(vy ; dxy A dz;) decreases of
one unity the partial degree |I| when dz; is differentiated into c¢;jx, dz; @ dzy, -
The corresponding part of the differential is thus in G if |[I| = p+ 1 . For every
(0,g + 1)form f = > fruxrder Ndzy ANdTg A dzr with values in F(a) ,
[I|4+|J|=p+ N(s), |I|>p+1,|K|+ |L| = ¢+ 1, we obtain consequently

0
(4.12) pJ f= Z Vax —ay CZMM@ (dzAu/\(%J f)) modF(a) .
j

1,7, A<

The only terms of f that contribute to the expression of § 1 f are those for which
Il =p+1and |J| = N(s) —1. Let us write g = § | f under the form

g= ZgI’,J’,K’,L’ drp Ndzy NdTrr Ndzp
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where |I'| =p, |J/| = N(s), |K'| +|L'| = q . Formula (4.12) implies

gr,Jg K'.L' = E £/ ax — Ay Cijap fj]’,J’\{Au},iK’,L’ )

1,0, A<p
91,00 50| < ( > (ax—au)|cz‘jxu\2> S fironpwyarnl?
1,0, A< 10 1,0, A<p
and Z Z \fir an o> < (p+1)(g+1) Z \frox,L” - We
I/,J/,K/,L/ ’L,j,>\<H Ia‘LKaL

obtain therefore the inequality
(413)  BI P+ D@+D( D (o - alegnl?) 112
1,5, A< 4

The main point now is to find an estimate of the sum Zij )\<M(a>\ — ay)|cijaul?
under condition (4.10).

LEMMA 4.14. — Let (hxy)i<au<r be a semi-positive hermitian matrix
and let o7 < ... < «, be real numbers. Then

Proof. — Use Cauchy-Schwarz inequality |hy,|? < hiah,, and take
= hM in the identity

— —(1/1 (Zt)\> —Z OAM—Oz)Jt)\tM

A<p
1
=7 Y (ap—a)tit. At =~ )7 >0 . m
1<A<r
LEMMA 4.15. — Under condition (4.10) one has
1 1 1
Z (a A_au)|cm>\u| =7 (n—i_l)(a_r_a_l)
1,5, A<p
Proof. — Let us apply lemma 4.14 to
- 1
h = A/ axty, ZcijA,utitj , Q) = a y
,J
where t = (t1,...,t,) are arbitrary complex numbers. The Griffiths semi-

positivity assumption on ¢(E) means that (hy,) is semi-positive for all ¢ . We get

Z h)\)\ = Z a)\CZJ)\At t < |t|2

1,95\

by condition (4.10), thus

1,1 1
(4.16) Zmﬁqu%mu\sﬂ———Wﬁ

a
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Apply now inequality (4.16) to t = (e, ... ,e¥") € T and integrate the result
over T™ . Parseval’s identity for Fourier series yields

1,1 1
(a,\—a)( lcijaul® + ) ciin ‘2>§—(———)n2 :

Inequality (4.16) applied to each vector of the standard basis of C" yields in the

same way
1/1 1
2
— . < - — - —
E (ax au)|cw>\u| _4<6Lr al)
A<

for all ¢ , and lemma 4.15 follows. m

Combining inequality (4.13) with lemma 4.15 we get

n(n+1)(p+ g+ 1),

N 2
161 fl <4ar

and using criterion (4.5) we see that HITH(Y, F ® Q¢ ® 7*L) = 0 for

St Dp+1)(g+1)
"7 Alptg-n+1)

The proof of the main theorem is therefore achieved.

, ptgz=zn .

5. On the Borel-Le Potier spectral sequence.

Denote as before 7 : Y = M (F) — X the projection. To every integer ¢
and every coherent analytic sheaf & on Y , one may associate the complex

D" : K1=T(Y,C°(Q @ QY) ®o, 8) — K41

of C>—differential forms of type (t,q) with values in § . This Dolbeault complex
is filtered by the decreasing sequence of subcomplexes

D" : K& =T(Y,C5°(FP(Q%) ® Qy) ®o, ) — K2

This gives rise to a spectral sequence which we shall name after Borel and Le
Potier, whose Ejy , E1 terms are

5.1) EPIP =T(Y,C¥ (G @ 0Y) ®oy, 8)

’ E{),q—p = HY(Y, Gpt ®38)
The limit term EP:77P is the p-graded module corresponding to the filtration of
HI(K*) = HY(Y, Q3 ®8) by the canonical images of the groups HY(K?) . Assume

that the spectral sequence degenerates in Fs , i.e. d. : EP97P — prtrati=tr)
is zero for all r > 2 (by Peternell, Le Potier and Schneider [12], the spectral
sequence does not degenerate in general in Fj). Then EYY™P = EP:9~P _ This
equality means that the ¢—th cohomology group of the Fi;—complex

dy : H(Y,GP'®8) — HIT(Y,GPT ®8)

is the p-graded module corresponding to a filtration of H%(Y, Q% ®8 ) . By Kodaira-
Akizuki-Nakano, we get therefore :
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PROPOSITION 5.1. — Assume that E is ample and L > 0 , or E > 0
and L ample, and that the Fo—degeneracy occurs for the ample invertible sheaf
E =Q?®@7n*L onY . Then the complex

dy : H(Y,G"' @ Q* @ n*L) — H(Y,GP™ © Q% @ n* L)
is exact in degree g >n+ N(s)+1—t.

This result would be a considerable help for the proof of vanishing theorems.
For example, it is shown in [5] that the main vanishing theorem would be true with
[>r—14+min{n—p,n—q}.

Since d; is the coboundary operator associated to the exact sequence
0 — GPtLt — ppt/prE2t _, GPt 5 () | it is easy to see that d; = —3* A e
where * is the D”—closed (0,1)~form of §4, reinterpreted as a (0,1)-section of
Hom(GP:t, GPTHt) . Our hope is that the Fy—degeneracy can be proved in all cases
by a suitable deepening of the analytic method of §4.
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