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log canonical threshold of psh functions

Singularities of psh (plurisubharmonic) functions can be
measured by Lelong numbers. Another useful invariant is the
log canonical threshold.

Definition
Let X be a complex manifold, p € X, and ¢ be a
plurisubharmonic function defined on X. The log canonical

threshold or complex singularity exponent of ¢ at p is defined
by

Cp(p) = sup {c >0 : e 2% is L' on a neighborhood of p} :

Here we will take p = 0 and denote ¢(¢) = cy(p).
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log canonical threshold of coherent ideals

The log canonical threshold is a subtle invariant. A special
interesting case is

1
o(z) = 5 log(lgr* + ... + lgnI?)

associated to some ideal 7 = (g4, - - ., gn) Of polynomials or
holomorphic functions on some complex manifold X.
Then by Hironaka, 4 modification i : X — X such that

pr T =(grop,....gnop)=0(->_ aE)

for some normal crossing divisor.Let O(}  b;E;) be the divisor
of Jac(u). We have
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Proof of the formula for the log canonical threshold

In fact, we have to find the supremum of ¢ > 0 such that

/ d\(2)
| = c < +00.
vs0 (19112 + ... + |gn[?)

Let us perform the change of variable z = p(w). Then

d\(2) = [Jac() (W) ~ | )

with respect to coordinates on the blow-up V of V, and
TTw" " dr(w

~ aj|2c

v |IIw|

so convergence occurs if ca; — b; < 1 for all J.

IN
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Notations and basic facts

® A domain Q c C"is called hyperconvex if 3y € PSH(L2),
Y <0,suchthat {z:4(z) < c} € Qforall c <O0.

0 &(Q)= {chPSH NL=(Q) : fim ¢(2)=0, /Q(ddcgo)n<+oo}
o F(Q) = {cp € PSH(Q) : 35(Q) 3 ¢p \\ v, and

sup [ (ddpp)" < —|—oo},
p=1JQ

~

@ E(X) ={p € PSH(X) locally in F(2) mod C>*(Q2)}

Theorem (U. Cegrell)

E(X) is the largest subclass of psh functions defined on a
complex manifold X for which the complex Monge-Ampere
operator is locally well-defined.
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Intermediate Lelong numbers

Set here d° = (0 — 0) so that dd® = £09. If ¢ € £(Q) and
0 € Q, the products (dd®y) are well defined and one can
consider the Lelong numbers

gj(y) = v((dd°¢Y,0).

In other words
ei(¢) = [ (ddY A (dalog ]}
{0}

One has ey(¢) = 1 and e{(¢) = v(v,0) (usual Lelong
number). When

1
o(2) = 5log(lg1[* + ... +anl?).

one has ej(y) € N.
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The main result

Main Theorem (Demailly & Pham)

Let o € E(Q). If e1(¢) = 0, then ¢(y) = .

Otherwise, we have
n—1

clp) > > _ale)

=0 ej+1(p)
The lower bound improves a classical result of H. Skoda
(1972), according to which
1

< c(p) <

e1(p) e1(p)

Remark: The above theorem is optimal, with equality for

o(z) =log(|z1|* + ...+ |zn]*), O<a; <a <...< ap.

1
Then gj(¢) = ay ... aj, c(go):a—1+...+a—.
n
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Geometric applications

The log canonical threshold has a lot of applications. It is
essentially a local version of Tian’s invariant, which determines
a sufficient condition for the existence of Kahler-Einstein
metrics.

Another important application is to birational rigidity.

Theorem (Pukhlikov 1998, Corti 2000, de Fernex 2011)

Let X be a smooth hypersurface of degree d in CP™'. Then if
d = n+1, Bir(X) ~ Aut(X)

It was first shown by Manin-Iskovskih in the early 70’s that a
3-dim quartic in CP* (n = 3, d = 4) is not rational.

For3 < d < n+ 1, whenis it true that Bir(X) ~ Aut(X)
(birational rigidity) ?
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Lemma 1

Let ¢ € £(Q) and 0 € Q. Then we have that

ei(¢)? < ei_1(¢)€j+1(p),

forallj=1,....,n—1.

In other words j — log €;(¢) is convex, thus we have
ej(y) > e1(p) and the ratios e;1(y)/e;(y) are increasing.

If e1(p) = v(p,0) =0, then gj(y) =0forj=1,2,...,n—1.

A hard conjecture by V. Guedj and A. Rashkovskii (~ 1998)
states that ¢ € £(Q2), e1(¢) = 0 also implies ex(¢) = 0.
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Proof of Lemma 1

Without loss generality we can assume that Q is the unit ball
and ¢ € &(Q). For h, ¢ € £ () an integration by parts and the
Cauchy-Schwarz inequality yield

2
[ ooy n (dau)
Q
2
_ [ / do A d A (dd®p) =1 A (dd®y)" =1 A dd®h
Q

< / di A dY A (ddeY 1 A (ddCy)" =1 A dd®h
Q
/ dip A d A (ddpY=" A (dd®p)™1 A dd®h
Q

_ / — h(dd®g )~ A(ddp)n it / —h(dd®p) ™" A(dd®y)"I T,
Q Q
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Proof of Lemma 1, continued

Now, as p — +oo, take

h(z) = hp(z) = max ( — 1,15Iog Hz||) Vs { _01 :; ; ifg'\{O}

By the monotone convergence theorem we get in the limit that

2
[/ (dd%e) Wdc@”] < [ (dd%)~" A (dd®y)mI*
© .

{
/ (ddp+! A (ddC)—I-",
{0}

For )(z) = In||z||, this is the desired estimate. ]
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~

Let p, v € £(Q2) be such that ¢ < ¥ (i.e ¢ is "more singular”
than v). Then we have

n—1

g(p) _— &)
2 <2 &j+1(v)

-0 8i+1(p) ~ 0

The argument if based on the monotonicity of Lelong numbers
with respect to the relation ¢ < v, and on the monotonicity of
the right hand side in the relevant range of values.
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Proof of Lemma 2

Set
D = {t=(t,...,tn)€[0, +00)" : {§<tp, F<ti_14i14,Vj = 2,...,n—1}.

Then D is a convex set in R"”, as can be checked by a
straightforward application of the Cauchy-Schwarz inequality.
Next, consider the function f : int D — [0, +o0) defined by
1 t fh—
a + n—1

f(ty,.... 1) = — .
(17 >n) t1+t2 tn

We have

of tq 1
—(t)=—1~+-—<0, VteD.
mj() i
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Proof of Lemma 2, continued
For a,b € int D suchthat a; > b;, j=1,...,n, the function

[0,1] > A — f(b+ A(a— b))
is decreasing. Hence,
f(a) < f(b) foralla,becintD, a>b;, j=1,...,n.
On the other hand, the hypothesis ¢ < v implies that

ei(y) > ei(v), j=1,...,n, by the comparison principle.
Therefore we have that

f(e1(#);-- -, en(w)) < f(e1(¥),. .., en(®)).
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Proof of the Main Theorem

It will be convenient here to introduce Kiselman’s refined Lelong
number.

Definition
Let o € PSH(Q2). Then the function defined by

max{p(z) : |z;| = e¥t. ... |z, = et
L4 l——o0 [

is called the refined Lelong number of ¢ at 0.

The refined Lelong number of ¢ at 0 is increasing in each
variable x;, and concave on R".
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Proof of the Main Theorem

The proof is divided into the following steps:

@ Proof of the theorem in the toric case, i.e.
o(z1,...,2n) = (|21, - - ., |zn]) depends only on |z;| and
therefore we can without loss of generality assume that
Q = A" is the unit polydisk.

@ Reduction to the case of plurisubharmonic functions with
analytic singularity, i.e. ¢ = log(|f;|? + ... + |fv|?), where
fi,..., fy are germs of holomorphic functions at 0.

@ Reduction to the case of monomial ideals, i.e. for
o =log(|f]?+....+ |fn]?), where fy,..., fy are germs of
monomial elements at 0.
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Proof of the theorem in the toric case

Set
n
S={x=(X,.... %) ER]: > x=1,.
=1

We choose x° = (x?,...,x0) € ¥ such that
vy(x?) = max{v,(x) : x € S}.

By Theorem 5.8 in [Kis94] we have the following formula
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Proof of the theorem in the toric case, continued

0777770
X Xy
Then ( is the smallest nonnegative concave increasing function
on X such that ¢(x°) = v,(x°), hence ¢ < v,,. This implies that

Set ((x) = v,(x°) min X ﬁ) ., VXxeX.

o(z1,...,2n) < —vo(=In|z¢|,...,—In|zp])
S _C(_ ln |Z1 |7 ceey T ln |Zn|)
I In |z,
< v,(x%) max ( n)'(?,...,%) = YP(21,...,2n).
By Lemma 2 we get that
1
f(e1(¢), ... enly)) < 1(&1(¥), ... en(v)) = c(v) = — (x0) c(p) -
[
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Reduction to the case of plurisubharmonic functions

with analytic singularity

Let Hm,(€2) be the Hilbert space of holomorphic functions f on
Q2 such that

/ fl2e 2™dV < +oo,
Q

and let ¢y, = 21—m log > |gm,k\2 where {gm,k}k21 be an
orthonormal basis for Hmn,(£2). Using 0-equation with
L?-estimates (D-Kollar), there are constants Cy, C> > 0
independent of m such that

forevery z € Q and r < d(z,09Q).
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Reduction to the case of plurisubharmonic functions
with analytic singularity, continued

and
n _ < 1 1
YNy = S G T e = o)

By Lemma 2, we have that

flei(p), ..., enlp)) < f(e1(Ym), ..., en(¥m)),  Vm=1.

The above inequalities show that in order to prove the lower
bound of ¢(y) in the Main Theorem, we only need prove it for
c(vm) and then let m — oc.
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Reduction to the case of monomial ideals

Forj=0,...,nset
T =(f,....f), c(J) = c(p), and &(T) = 6().
Now, by fixing a multiplicative order on the monomials
z8=2z{" ... zZy"

it is well known that one can construct a flat family (Js),.¢ of
ideals of O¢n o depending on a complex parameter s € C, such
that 7y is a monomial ideal, 71 = J and

dim(OCn’o/jst) = dim(OCn,o/jt) forall s,t € N.

In fact Jy is just the initial ideal associated to 7 with respect to
the monomial order.
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Reduction to the case of monomial ideals, continued

Moreover, we can arrange by a generic rotation of coordinates
CP c C" that the family of ideals Js N Ocer g is also flat, and that
the dimensions

dim (Ope,0/(Js N Oce0)') = dim (Oce0/(T N Ocrp)')

compute the intermediate multiplicities

ep(Js) = t_'lf[‘@ pp dim (Oce 0/(Js N Ocr 0)") = €p(T),
in particular, e,(Jp) = ep(J) for all p. The semicontinuity
property of the log canonical threshold implies that
c(Jo) < c(Js) = ¢(J) for all s, so the lower bound is valid for
c(J) if it is valid for ¢( 7).
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About the continuity of Monge-Ampere operators

Conjecture

Let ¢ € g(Q) and Q > 0. Then the analytic approximations
satisfy ej(v'm) — ej(y) as m — +oo, in other words, we have
“strong continuity” of Monge-Ampeére operators and higher
Lelong numbers with respect to Bergman kernel approximation.j

In the 2-dimensional case, ex(y) can be computed as follows
(at least when ¢ € £(w) has analytic singularities).

Let 1o : 2 — 2 be the blow-up of {2 at 0. Take local coordinates
(wy, w2) on 2 so that the exceptional divisor E can be written
Wi = 0.
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About the continuity of Monge-Ampere operators (ll)

With v = v(¢, 0), we get that
p(w) = @ opu(w) —log |wi|
is psh with generic Lelong numbers equal to 0 along E, and
therefore there are at most countably many points x, € E at
which v, = v(p, x,) > 0. Set © = dd,
© = dd°p = 1*© — 4[E]. Since E? = —1 in cohomology, we
have {©}2 = {1*©}2 — ~2in H?(E,R), hence
(+ | (et =2+ [ ()

{0} E
If © only has ordinary logarithmic poles at the x,’s, then
[£(dd°%)? = 3" ~2, but in general the situation is more
complicated. Let us blow-up any of the points x, and repeat the
process k times.
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About the continuity of Monge-Ampere operators (lll)

We set ¢ = /1 in what follows, as this was the first step, and at
step kK = 0 we omit any indices as 0 is the only point we have to
blow-up to start with. We then get inductively (k + 1)-iterated
blow-ups depending on multi-indices ¢ = (41,...,4k) = (', lx)
with ¢/ = (f1, R ,fk_1),

Mg:Qg%Qg/, k21, IUJ@:ILLQ@:Q%Q’ Yo =Y

and exceptional divisors E, C Q, lying over points
X, € Ep C Qp, where
Yo = V(@K’axﬁ) > 07
Ge(w) = By o pro(w) — ¢ log |w}
(er) = 0 an equation of E; in the relevant chart).

6)‘
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About the continuity of Monge-Ampere operators (1V)

Formula () implies

+o0
() e(p) > > > f

k=0 ¢eNk

with equality when ¢ has an analytic singularity at 0. We
conjecture that (xx) is always an equality whenever ¢ € £(Q).

This would imply the Guedj-Rashkovskii conjecture.

Notice that the currents ©, = dd°y, satisfy inductively

©; = p;©¢ — vi[E.], hence the cohomology class of ©,
restricted to E, is equal to v, times the fundamental generator
of Ey,. As a consequence we have

<

in particular v, = 0 for all ¢ € N¥ if v = v(yp,0) = 0.
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