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1. Introduction

Let M be a compact C∞ manifold, dimR M = m, and h a Morse function,
i.e. a function such that all critical points are non degenerate. The standard Morse
inequalities relate the Betti numbers bq = dimHq

DR(M,R) and the numbers

sq = # critical points of index q ,

where the index of a critical point is the number of negative eigenvalues of the
Hessian form (∂2h/∂xi∂xj). Specifically, the following “strong Morse inequalities”
hold :

(1.1) bq − bq−1 + · · · + (−1)qb0 6 sq − sq−1 + · · ·+ (−1)qs0

for each integer q > 0. As a consequence, one recovers the “weak Morse inequali-
ties” bq 6 sq and the expression of the Euler-Poincaré characteristic

(1.2) χ(M) = b0 − b1 + · · ·+ (−1)mbm = s0 − s1 + · · · + (−1)msm .

The purpose of these lectures is to explain what are the complex analogues
of these inequalities for ∂−cohomology groups with values in holomorphic line (or
vector) bundles, and to present a few applications.

Let X be a compact complex manifold, n = dimC X and E, F holomorphic
vector bundles over X with

rank E = 1 , rank F = r .

We denote here hq(F ) = dimHq(X,O(F )) .
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Assume that E is endowed with a C∞ hermitian metric and denote by c(E)
its curvature form. Then ic(E) is a real (1, 1)−form on X (cf. §2). Finally, consider
the q−index sets

X(q, E) =

{
x ∈ X ; ic(E)x has q negative eigenvalues

n− q positive eigenvalues

}
,

X(6 q, E) =
⋃

16j6q

X(j, E) .

Observe that X(q, E) and X(6 q, E) are open subsets of X .

Main Theorem. — The sequence of tensor powers Ek ⊗ F satisfy the

following asymptotic estimates as k → +∞ :

(1.3) Weak Morse inequalities :

hq(Ek ⊗ F ) 6 r
kn

n!

∫

X(q,E)

(−1)q
( i
2π
c(E)

)n
+ o(kn) .

(1.4) Strong Morse inequalities :

∑

06j6q

(−1)q−jhj(Ek ⊗ F ) 6 r
kn

n!

∫

X(6q,E)

(−1)q
( i
2π
c(E)

)n
+ o(kn) .

(1.5) Asymptotic Riemann-Roch formula :

χ(Ek ⊗ F ) = r
kn

n!

∫

X

( i
2π
c(E)

)n
+ o(kn) .

Observe that (1.5) is in fact a weak consequence of the Hirzebruch-Riemann-
Roch formula.

The above theorem was first proved in [De 2] in 1985. It was largely
motivated by Siu’s solution of the Grauert-Riemenschneider conjecture ([Siu 2],
1984), which we will reprove below as a special case of a stronger statement. The
basic tool is a spectral theorem which describes the eigenvalue distribution of
the complex Laplace-Beltrami operators. The original proof of [De 2] was based
partly on Siu’s techniques and partly on an extension of Witten’s analytic proof
[Wi, 1982] for the standard Morse inequalities. Somewhat later Bismut [Bi] and
quite recently Getzler [Ge 3] gave new proofs, both relying on an analysis of the
heat kernel in the spirit of Atiyah-Bott-Patodi’s proof of the Atiyah-Singer index
theorem [A-B-P]. Although the basic idea is simple, Bismut used deep results
arising from probability theory (the Malliavin calculus), while Getzler relied on
his supersymmetric symbolic calculus for spin pseudodifferential operators [Ge 1].

We will try to present here a simple heat equation proof, based essentially
on Mehler’s formula and elementary asymptotic estimates (cf. §3 and §4). The
next sections deal with various generalizations and applications :
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• in §5, we obtain as a consequence a strong characterization of Moishezon varieties
in terms of the existence of line bundles satisfying some integral positivity
hypothesis of the curvature. In particular, this gives a solution of the Grauert-
Riemenschneider conjecture. We also give a generalization to all projective
algebraic manifolds of G. Kempf’s distortion inequalities for ample line bundles
over abelian varieties [Kem].

• in §6, the case of q-convex manifolds is considered. As shown by Thierry Bouche
[Bou 1], Morse inequalities then hold in degrees > q. By an argument of Siu
[Siu 3,4], these inequalities imply a general a priori estimate for the Monge-
Ampère operator.

• in §7, we present (with a different and more elementary proof) Getzler’s
extension [Ge 1] of holomorphic Morse inequalities to the vector bundle case.

• §8 briefly discusses the degenerate case when ic(E) has rank < dimX every-
where, as well as related open problems.

2. Hermitian connections, curvature and Laplace-Beltrami operators

Let F be a complex vector bundle of rank r over a smooth differentiable
manifold M . We denote by C∞

q (M,F ) the space of smooth q−forms with values in
F , i.e. smooth sections of ΛqT ∗M ⊗ F . To fix notations, we recall here the basic
terminology used.

A connection D on F is a linear differential operator

D : C∞
q (M,F ) → C∞

q+1(M,F )

such that

(2.1) D(f ∧ u) = df ∧ u+ (−1)deg ff ∧Du
for all forms f ∈ C∞

p (X,C), u ∈ C∞
q (X,F ). On an open set Ω ⊂ M where F is

trivial, F|Ω ≃ Ω × Cr, a connection D can be written

Du = du+ Γ ∧ u
where Γ ∈ C∞

1 (Ω,Hom(Cr,Cr)) is an arbitrary matrix of 1−forms and d acts
componentwise. It is then easy to check that

D2u = (dΓ + Γ ∧ Γ) ∧ u on Ω ,

so that D2u = c(D) ∧ u for some global 2−form

c(D) ∈ C∞
2 (M,Hom(F, F ))

called the curvature of D.

Assume now that F is endowed with a C∞ hermitian metric along the fibers
and that the isomorphism F|Ω ≃ Ω × Cr is given by a C∞ frame (eλ). We then
have a canonical sesquilinear pairing

C∞
p (M,F ) −→ C∞

p+q(M,C)
(u, v) 7−→ {u, v}
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given by

{u, v} =
∑

λ,µ

uλ ∧ vµ〈eλ, eµ〉 for u =
∑

uλ ⊗ eλ , v =
∑

vµ ⊗ eµ .

The connection D is said to be hermitian if it satisfies the additional property

(2.2) d{u, v} = {Du, v} + (−1)deg u{u,Dv} .
Assuming that (eλ) is orthonormal, one easily checks that D is hermitian if and
only if Γ∗ = −Γ. In this case c(D)∗ = −c(D), thus

ic(D) ∈ C∞
2 (M,Herm(F, F )) .

(2.3) Special case. For a bundle E of rank 1, the connection form Γ of a hermitian
connection D can be written Γ = −iA where A is a real 1−form. Then we have
c(D) = dΓ = −idA and we will denote

B = ic(D) = dA .

A phase change u = veiθ in the isomorphism E|Ω ≃ Ω × C replaces A by the new
connection form A+ dθ.

(2.4) Complex analytic case. If M is a complex manifold X , every connection D
can be splitted in a unique way as a sum of a (1, 0) and of a (0, 1)−connection :

D = D′ +D′′ .

In a local trivialization given by a C∞ frame, one can write

D′u = d′u+ Γ′ ∧ u ,
D′′u = d′′u+ Γ′′ ∧ u ,

with Γ = Γ′ + Γ′′. The connection is hermitian if and only if Γ′ = −(Γ′′)∗ in any
orthonormal frame. Thus there exists a unique hermitian connection corresponding
to a prescribed (0, 1) part D′′.

Assume now that the bundle E itself has a holomorphic structure. The
unique hermitian connection for which D′′ = ∂ is called the Chern connection of
F . In a local holomorphic frame (eλ) of E|Ω , the metric is given by some hermitian
matrix H = (hλµ) where hλµ = 〈eλ, eµ〉. Easy computations yield the expression
of the Chern connection :






D′u = ∂u+H
−1
∂H ∧ u

d′′u = ∂u
c(F ) =

def
c(D) = −∂(H

−1
∂H) .

For a rank 1 bundle E, the matrix H is simply a positive weight function e−ϕ,
ϕ ∈ C∞(Ω,R), and we find

c(E) = ∂∂ϕ .
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(2.5) Hodge theory. Assume now that M is a riemannian manifold with metric
g =

∑
gijdxi ⊗ dxj . Given a q−form u on M with values in F , we consider the

global L2 norm

‖u‖2 =

∫

M

|u(x)|2dσ(x)

where |u| is the pointwise hermitian norm and dσ the riemannian volume form.
The Laplace Beltrami operator associated to the connection D is

∆ = DD∗ +D∗D

where D is the (formal) adjoint of D ; the complex Laplace operators ∆′ and ∆′′

are defined similarly. In degree 0 we simply have ∆ = D∗D .

When M is compact, the elliptic operator ∆ has a discrete spectrum

λ1 6 λ2 6 · · · 6 λj 6 · · ·
and corresponding eigenfunctions ψj ∈ C∞

q (M,F )∩L2. Our main goal is to obtain
asymptotic formulae for the eigenvalues. For that, we make use of the heat operator

e−t∆. In the above setting, the heat operator is the bounded hermitian operator
associated to the heat kernel

Kt(x, y) =
+∞∑

j=1

e−λjtψj(x) ⊗ ψ∗
j (y) ,

and Kt ∈ C∞(]0,+∞[×M × M,Hom(F, F )). The asymptotic distribution of
eigenvalues can be recovered from the well known (obvious) formula

+∞∑

j=1

e−λjt =

∫

M

trFKt(x, x)dσ(x) .

3. Asymptotic formulas for the heat kernel
and the eigenvalue distribution

Let E, F → M be complex vector bundles equipped with hermitian
connections, Dk the associated connection on Ek ⊗ F and ∆k = D∗

kDk the
Laplace-Beltrami operator acting on sections of Ek ⊗ F (degree 0). Finally, let
V ∈ C∞(M,Herm (F, F )) ; we still denote V the operator IdEk ⊗ V acting on
Ek ⊗ F .

If Ω ⊂⊂M is a smoothly bounded relatively compact open subset of M , we
consider the quadratic form

Qk,Ω(u) =

∫

Ω

1

k
|Dku|2 − 〈V u, u〉

with domain equal to the Sobolev space W 1
0 (Ω, Ek ⊗ F ) = closure of the space

of smooth sections with compact support in Ω, in the space W 1
loc(M,Ek ⊗ F ) of
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sections which have L2
loc coefficients as well as their first derivatives. That is, we

consider the self adjoint operator

�k =
1

k
D∗
kDk − V

densely defined in the Hilbert space W 1
0 (Ω, Ek ⊗ F ) (Dirichlet boundary condi-

tions).

We want to study the asymptotic eigenvalue distribution of �k as k → +∞,
as well as an asymptotic formula for the heat kernel e−t�k . The basic idea is
extremely simple and reduces the proof into two steps :

• show that the asymptotic estimates are purely local (up to error terms of lower
order) and can be obtained by freezing the coeffiicents of the operators involved
at any given point.

• compute explicitly the heat kernel in the case of connections with constant
curvature, assuming that M has a flat metric.

In order to see that the situation is local, let (ψj) be a partition of unity
relative to an arbitrarily fine covering of Ω, such that

∑
ψ2
j = 1 near Ω. As∑

ψjdψj = 0 on Ω, we then find

∑

j

Qk,Ω(ψju) −Qk,Ω(u) =
1

k

∫

Ω

(
∑

|dψj |2)|u|2 6 O(
1

k
)|u|2 .

By the minimax principle, it follows that the eigenvalues are shifted by at most
O(1/k), thus the asymptotic distribution is not modified as k → +∞.

Now, let x0 ∈M be a given point. We can choose coordinates (x1, . . . , xm)
centered at x0 such that (∂/∂x1, . . . , ∂/∂xm) is orthonormal at x0 and such that
B = ic(E) is “diagonal” at x0 :

B(x0) =

s∑

j=1

Bjdxj ∧ dxj+s ;

here 2s 6 m is the rank of the skew-symmetric 2−form B(x0), which may depend
on x0, and B1 > B2 > · · · > Bs > 0 are its non-zero eigenvalues.

Let us consider the operators obtained by “freezing” the coefficients at x0.
More specifically, we assume that

• E has constant curvature B =
∑s
j=1Bjdxj ∧ dxj+s. Then there is a local

trivialization in which
DEu = du− iA ∧ u ,

A =
s∑

j=1

Bjxjdxj+s .

• DF is flat.

• Ω ≃ Rn and the metric g is flat : g =
∑
dxj ⊗ dxj .
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• the hermitian form V is constant. We choose an orthonormal frame of F in
which V is diagonal, i.e.

〈V u, u〉 =
∑

16λ6r

Vλ|uλ|2 .

The connection Dk on Ek⊗F can then be written Dku = du− ikA∧u and
the quadratic form Qk,Ω is given by

Qk,Ω(u) =

∫

Rm

1

k



∑

16j6s

16λ6r

(∣∣∣
∂uλ
∂xj

∣∣∣
2

+
∣∣∣
∂uλ
∂xj+s

− ikBjxjuλ

∣∣∣
2
)

+
∑

j>2s
16λ6r

∣∣∣
duλ
dxj

∣∣∣
2




−
∑

16λ6r

Vλ|uλ|2 .

In this situation, Qk,Ω is a direct sum of quadratic forms acting on each component
uλ and the computation of e−t�k is reduced to the following simple cases (a), (b) :

(a) Q(f) =

∫

R

∣∣ df
dx

∣∣2 , �f = −d
2f

dx2

As is well known the heat kernel is given in this case by

Kt(x, y) =
1√
4πt

e−(x−y)2/4t .

(b) Q(f) =

∫

R2

∣∣∣
df

dx1

∣∣∣
2

+
∣∣∣
df

dx2
− iax1f

∣∣∣
2

.

A partial Fourier transform in the x2 variable gives

Q(f) =

∫

R2

∣∣∣
df̂

dx1
(x1, ξ2)

∣∣∣
2

+ a2(x1 −
ξ2
a

)2|f̂(x1, ξ2)|2

and the change of variables x′1 = x1−x2/a, x
′
2 = ξ2 leads to the so called “harmonic

oscillator” energy functional

q(g) =

∫

R

∣∣dg
dx

∣∣2 + a2x2|g|2 ,

� = − d2

dx2
+ a2x2 .

The heat kernel of this operator is given by Mehler’s formula :

kt(x, y) =

√
a

2π sinh 2at
exp

(
− a

2
(coth 2at)(x− y)2 − a(tanhat)xy

)
.

One way of obtaining this relation is to observe that the eigenfunctions of � are

(2pp!

√
π

a
)−1/2Φp(

√
ax) , p = 0, 1, 2, . . . ,
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with associated eigenvalues (2p + 1)a, where (Φp) is the sequence of functions
associated to Hermite polynomials :

Φp(x) = ex
2/2 d

p

dxp
(e−x

2

) .

Therefore we have

kt(x, y) =

√
a

π
ea(x

2+y2)/2
+∞∑

p=0

e−(2p+1)at

2pp!ap
dp

dxp
(e−ax

2

)
dp

dyp
(e−ay

2

)

and the summation Σ(x, y) can be computed from its Fourier transform

Σ̂(ξ, η) = e−at exp(− 1

2a
e−2atξη) · 1√

2a
e−(ξ2+η2)/4a .

The heat kernel operator of Q is thus given by

(e−t�f)∧(x1, ξ2) =

∫

R

kt
(
x1 −

ξ2
a
, y1 −

ξ2
a

)
f̂(y1, ξ2)dy1 .

By an inverse Fourier transform we obtain the desired heat kernel :

kt(x1, x2; y1, y2) +
a

4π sinh at
exp

(
− a

4
(cothat)

(
(x1 − y1)

2 + (x2 − y2)
2
))

× exp
( i
2
a(x1 + y1)(x2 − y2)

)
.

The heat kernel associated to a sum of (pairwise commuting) operators �1, . . . ,�m

acting on disjoint sets of variables is the product of all heat kernels e−t�j . Let Kλ
t

be the heat kernel of Qk,Ω acting on a single component uλ. The factor in the heat
kernel corresponding to the pair of variables (xj , xj+s), 1 6 j 6 s) is obtained
when substituting kBj to a and t/k to t. Therefore

Kλ
t (x, y) =

s∏

j=1

kBj
4π sinhBjt

exp
(
− kBj

4
(cothBjt)

(
(x2j−1 −y2j−1)

2 +(x2j −y2j)2
)

+
i

2
kBj(x2j−1 + y2j−1)(x2j − y2j)

)

×etVλ × 1

(4πt/k)m−2s/2
exp

(
− k

∑

j>2s

(xj − yj)
2/4t

)
.

On the diagonal of M , the global heat kernel Kt is thus given by

Kt(x, x) = km/2
etV

(4π)m/2tm/2−s

s∏

j=1

Bj
sinhBjt

.

Theorem 3.1. — In the variable coefficient case, the heat kernel of �k

admits the asymptotic estimate

Kk
t (x, x) ∼ km/2

etV (x)

(4π)m/2tm/2−s

s∏

j=1

Bj(x)

sinhBj(x)t
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as k → +∞, where ∼ is uniform with respect to x ∈M and t in a bounded interval

[t0, t1] ⊂]0,+∞[ .

Proof. — The only thing one has to get convinced of is that e−t�k − e−t�0
k

is o(km/2) at the point (x0, x0) ∈M ×M , where �0
k is the operator �k “freezed”

at x0. This can be cheecked by means of the well known formula

e−t�k − e−t�
0
k =

∫ 1

0

e−(1−u)t�k (�0
k − �k)e

−ut�0
kdu ,

once the singularity of e−t�k along the diagonal is known. We also use the estimate

�k − �0
k = O

(1

k
|x− x0|∇2 +

( 1
k

+ |x− x0|2
)
∇ + |x− x0| + 1

k

)
. �

By the localization argument already discussed, we obtain as a consequence
the following estimate for the eigenvalues :

Corollary 3.2. — The eigenvalues λk,Ωj of Qk,Ω satisfy for every t > 0
the estimate

+∞∑

j=1

e−tλ
k,Ω

j ∼ km/2
∫

Ω

tr(etV (x))

(4π)m/2tm/2−s

s∏

j=1

Bj(x)

sinhBj(x)t
dσ(x) .

This result can be also interpreted in terms of the counting function

Nk,Ω(λ) = #{j ; λk,Ωj 6 λ}
and of the spectral density measure (a sum of Dirac measures)

µk,Ω = k−m/2
d

dλ
Nk,Ω(λ) .

In these notations, corollary 3.2 can be restated :

lim
k→+∞

∫ +∞

−∞

e−tλdµk,Ω(λ) =

∫

Ω

tr(etV (x))

(4π)m/2tm/2−s

s∏

j=1

Bj(x)

sinhBj(x)t
dσ(x) .

We thus see that the sequence of measures µk,Ω converges weakly to a measure µΩ

whose Laplace transform is given by the right hand side. Inverting the formula,
one obtains :

Corollary 3.3. — For almost all λ ∈ R

lim
k→+∞

k−m/2Nk,Ω(λ) = µΩ(] −∞, λ]) =

∫

Ω

r∑

j=1

νB(x)(Vj(x) + λ)dσ(x)

where νB(x)(λ) is the function on M × R defined by

νB(λ) =
2s−mπ−m/2

Γ(m2 − s+ 1)
B1 · · ·Bs

∑

(p1,...,ps)∈Ns

[λ− Σ(2pj + 1)Bj]
m
2
−s

+ .
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4. Proof of the holomorphic Morse inequalities

Let X be a compact complex manifold, E and F holomorphic hermitian
vector bundles of rank 1 and r over X . If X is endowed with a hermitian metric
ω, Hodge theory shows that the Dolbeault cohomology group Hq(X,Ek ⊗ F ) can
be identified with the space of harmonic (0, q)−forms with respect to the Laplace-

Beltrami operator ∆′′
k = ∂k∂

∗

k+∂
∗

k∂k acting on Ek⊗F . We thus have to estimate
the zero-eigenspace of ∆′′

k .

In order to apply corollary 3.2, we first have to compute ∆′′
k in terms of the

hermitian connection ∇k on Ek⊗F⊗Λ0,qT ∗X deduced from the Chern connections
of E, F, TX . What plays now the role of F is the bundle F ⊗ Λ0,qT ∗X .

The relationship between ∆′′
k and ∇k is most easily obtained by means of the

Bochner-Kodaira-Nakano identity. In order to simplify the exposition, we assume
here that the metric ω on X is Kähler. For any hermitian holomorphic line bundle
G on X , the operators ∆′ and ∆′′ of G are related by the B-K-N identity

(4.1) ∆′′ = ∆′ + [ic(G),Λ] .

Here we have c(Ek ⊗ F ) = kc(E) ⊗ idF +c(F ), thus

∆′′
k = ∆′

k + k[ic(E),Λ] + [ic(F ),Λ] .

At a given point z0 ∈ X , we can find a coordinate system (z1, . . . , zn) such that
(∂/∂zj) is an orthonormal basis of TX and

ic(E) =
i

2

∑

16j6n

αjdzj ∧ dzj

where α1, . . . , αn are the curvature eigenvalues of c(E) at z0. A standard formula
gives the expression of the curvature term [ic(E),Λ]u for any (p, q)−form u. With
u =

∑
uI,J,λdzI ∧ dzJ ⊗ eλ, we have

〈[ic(E),Λ]u, u〉 =
∑

I,J,λ

(αJ − α∁I)|uI,J,λ|2

where αJ =
∑
j∈J αj . In the case of a (O, q)−form u =

∑
uJ,λdzJ ⊗eλ we simply

have ∆′
ku = D′∗

k D
′
ku = ∇′∗

k ∇′
ku and

(4.2′) ∆′′
k = ∇′∗

k ∇′
k − kV ′ + [ic(F ),Λ] ,

〈V ′u, u〉 =
∑

J,λ

α∁J |uJ,λ|2 (here I = ∅) .

This is not yet what was needed, since only the (1, 0) part ∇′
k appears. To get the

(0, 1) component, we consider u as a (n, q) form with values in Ek ⊗ F ⊗ ΛnTX .
We then get ∆′

ku = D′
kD

′∗
k u where

D′∗
k u = −

∑
∂uI,J,λ/∂zjdz1 ∧ · · · d̂zj · · · ∧ dzn ∧ dzJ ⊗ eλ

in normal coordinates. Thus ∆′
ku = ∇′′∗

k ∇′′
ku and

(4.2′′) ∆′′
k = ∇′′∗

k ∇′′
k + kV ′′ + [ic(F ⊗ ΛnTX),Λ] ,
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〈V ′′u, u〉 =
∑

J,λ

αJ |uJ,λ|2 (here I = {1, . . . , n}) .

If the metric ω is non Kähler, we get additional torsion terms, but these terms are
independent of k. A combination of (4.2′) and (4.2′′) yields

(4.3)
2

k
∆′′
k =

1

k
∇∗
k∇k − V +

1

k
Θ

where Θ is a hermitian form independent of k and

〈V u, u〉 =
∑

J,λ

(α∁J − αJ )|uJ,λ|2 .

Now apply theorem 3.1 and observe that Θ does not give any significant contribu-
tion to the heat kernel as k → +∞ . We write here zj = xj + iyj , so that

B = ic(E) =
∑

16j6n

αjdxj ∧ dyj .

The curvature eigenvalues are given by Bj = |αj |. We denote s = s(x) the rank of
B(x) and order the eigenvalues so that

|α1| > · · · > |αs| > 0 = αs+1 = · · · = αn .

The eigenvalues of V acting on F ⊗ΛnT ∗X are the coefficients α∁J −αJ , counted
with multiplicity r . Therefore

Theorem 4.4. — The heat kernel associated to e−
2t
k

∆′′

k in bidegree (0, q)
satisfies

Kk
t (x, x) ∼ kn

r
∑

|J|=q e
t(α∁J (x)−αJ (x))

(4π)ntn−s

s∏

j=1

|αj(x)|
sinh |αj(x)|t

as k → +∞ . In particular, if λk,q1 6 λk,q2 6 · · · are the eigenvalues of 1
k
∆′′
k in

bidegree (0, q), we have

+∞∑

j=1

e−2tλk,q

j ∼ rkn
∑

|J|=q

∫

X

et(α∁J (x)−αJ (x))

(4π)ntn−s

s∏

j=1

|αj(x)|
sinh |αj(x)|t

for every t > 0 .

At this point, the main idea is to use the eigenspaces in order to construct a
finite dimensional subcomplex of the Dolbeault complex with the same cohomology
groups. This was already the basic idea in Witten’s analytic proof of the standard
Morse inequalities. We denote by

Hk,q
λ , resp.Hk,q

6λ

the λ−eigenspace of 1
k∆′′

k acting on C∞
0,q(X,E

k ⊗ F ) , resp. the direct sum of

eigenspaces corresponding to all eigenvalues 6 λ . As ∂k and ∆′′
k commute, we see

that ∂(Hk,q
λ ) ⊂ Hk,q+1

λ , thus Hk,•
λ and Hk,•

6λ are finite dimensional subcomplexes
of the Dolbeault complex

∂ : C∞
0,•(X,E

k ⊗ F ) .

11



Since ∂k∂
∗

k+∂
∗

k∂k = ∆′′
k = kλ id on Hk,•

λ , we see that Hk,•
λ has trivial cohomology

for λ 6= 0 . Since Hk,•
0 is the space of harmonic forms, we see that Hk,•

6λ has the
same cohomology as the Dolbeault complex for λ > 0 . We will call this complex
the Witten ∂−complex. We need an elementary lemma of linear algebra.

Lemma 4.5. — Set hqk = dimHq(X,Ek ⊗ F ). Then for every t > 0

hqk − hq−1
k + · · ·+ (−1)qh0

k 6

q∑

ℓ=0

(−1)q−ℓ
+∞∑

j=1

e−tλ
k,ℓ

j .

Proof. — The left hand side is the contribution of the 0 eigenvalues in
the right hand side. All we have to check is that the contribution of the other
eigenvalues is > 0. The contribution of the eigenvalues such that λk,ℓj = λ > 0 is

e−tλ
q∑

ℓ=0

(−1)q−ℓ dimHk,ℓ
λ .

As Hk,•
λ is exact, one easily sees that the last sum is equal to the dimension of

∂Hk,q
λ ⊂ Hk,q+1

λ , hence > 0. �

Combining theorem 4.4 with lemma 4.5, we get

hqk − hq−1
k + · · · + (−1)qh0

k 6 o(kn)+

rkn
q∑

ℓ=0

(−1)q−ℓ
∑

|J|=ℓ

∫

X

∏
j6s |αj | · et(α∁J−αJ−

∑
|αj |)

22n−sπntn−s
∏
j6s(1 − e−2t|αj |)

.

This inequality is valid for any t > 0, so we can let t tend to +∞. It is clear that
α∁J−αJ−

∑ |αj | is always 6 0, thus the integrand tends to 0 at every point where
s < n. When s = n, we have α∁J(x)−αJx)−

∑ |αj(x)| = 0 if and only if αj(x) > 0
for every j ∈ ∁J and αj(x) < 0 for every j ∈ J . This implies x ∈ X(ℓ, E) ; in this
case there is only one multi-index J satisfying the above conditions and the limit
is (2π)−n|α1 · · ·αn|. By the monotone convergence theorem, our sum of integrals
converges to

q∑

ℓ=0

(−1)q−ℓ
∫

X(ℓ,E)

(2π)−n|α1 · · ·αn|dσ =
1

n!

∫

X(6q,E)

(−1)q(
i

2π
c(E))n .

5. Applications to algebraic geometry

Let E be a holomorphic line bundle over a compact connected complex
manifold X of dimension n and Vk = H0(X,Ek). If Z(Vk) denotes the set of
common zeroes of all sections in Vk, there is a natural holomorphic map

Φk : X\Z(Vk) −→ P(V ∗
k )

12



which sends a point x ∈ X\Z(Vk) to the hyperplane H ⊂ Vk of sections σ ∈ Vk
such that σ(x) = 0.

When E is > 0, one can construct many sections of high tensor powers Ek

(e.g. by Hörmander’s L2 estimates). For k > k0 large enough, the “base locus”
Z(Vk) is empty, the sections in Vk separate any two points of X and generate
all 1-jets at any point. Then Φk gives an embedding of X in some projective
space PN .This gives the famous Kodaira embedding theorem : a compact complex
manifold X is projective algebraic if and only if X has a hermitian line bundle E
with positive curvature.

The Grauert-Riemenschneider conjecture [G-R] was an attempt to charac-
terize the more general class of Moishezon varieties in terms of semi-positive line
bundles. Let us first recall a few definitions. The algebraic dimension a(X) is the
transcendence degree of the field M(X) of meromorphic functions on X . A well-
known theorem of Siegel asserts that 0 6 a(X) 6 n. A manifold (or variety) X is
said to be Moishezon if a(X) = n .

Grauert-Riemenschneider conjecture (1970). — A compact com-

plex variety Y is Moishezon if and only if there is a proper non singular modification

X → Y and a line bundle E over X such that the curvature is > 0 on a dense

open subset.

When Y is Moishezon, it is well known that there exists a projective
algebraic modification X ; therefore E can even be taken > 0 everywhere on such
an X . Siu [Siu 2] solved the conjecture by proving the converse statement in
1984; he even showed that X is Moishezon as soon as ic(E) > 0 everywhere and
ic(E) > 0 in at least one point. We will see that Morse inequalities give a still
stronger criterion, requiring only the positivity of some curvature integral.

Since M(Y ) ≃ M(X), we only have to show that X itself is Moishezon.
This will be done by producing many sections of Ek. For x = 1, the strong Morse
inequality (1.4) gives

h1(Ek) − h0(Ek) 6 −k
n

n!

∫

X(61,E)

( i

2π
c(E)

)n
+ o(kn) .

In particular, we get the lower bound

(5.1) h0(Ek) >
kn

(2π)nn!

∫

X(61,E)

(ic(E))n − o(kn) .

By definition, the Kodaira dimension κ(E) is the supremum of the dimension of
the images Yk = Φk(X\Z(Vk)) ⊂ P(V ∗

k ) for all integers k > 0. Since the field of
meromorphic functions on X obtained by restriction of rational functions of P(V ∗

k )
to Yk has transcendence degree dimYk, we infer that κ(E) = sup dimYk 6 a(X).
The following elementary lemma is needed.

Lemma 5.2. — For every line bundle E, there is a constant C > 0 such

that

dimH0(X,Ek) 6 Ckκ(E) .

13



The proof proceeds as follows : select a hermitian metric on E and a family
of balls Bj = B(zj , rj) ⊂ B′

j = B(zj, 2rj) covering X , on which E is trivial. If Ek

had too many sections, one could solve a linear system in many unknowns to get a
section s vanishing at a high order m at all centers zj . Then Schwarz’lemma gives

‖s‖∞ = sup ‖s‖Bj
6 2−mCk sup ‖s‖B′

j
6 2−mCk‖s‖

where C is the oscillation of the metric on B′
j . Thus m 6 k logC/ log 2 if s 6= 0.

Since the sections of Ek are essentially constant along the fibers of Φk, only
mdimYk#{zj} equations are needed to make s vanish at order m . Therefore we
can choose m ≃ C1h

0(Ek)1/dimYk , so that

h0(Ek) 6 C2m
dimYk 6 C3k

κ(E) . �

Combining (5.1) and lemma 5.2, we get the following result which implies
the Grauert-Riemenschneider conjecture.

Theorem 5.3. — If a hermitian line bundle E verifies the integral condi-

tion
∫
X(61,E)

(ic(E))n > 0, then κ(E) = n, in particular X is Moishezon. �

Another application of the heat kernel estimates is a generalization of G.
Kempf’s distortion inequalities ([Kem], [Ji]) to all projective algebraic manifolds.

Let E be a positive hermitian line bundle over a projective manifold X ,
equipped with a hermitian metric ω. Then Vk = H0(X,Ek) has a natural hermitian
metric given by the global L2 norm of sections. For k > k0 large enough, Φk is an
embedding and Ek can be identified to the pull-back Φ∗

kO(1). We want to compare
the original metric | | of E and the metric | |FS induced by the Fubini-Study
metric of O(1).

Let (s1, . . . , sN ) be an orthonormal basis of H0(X,Ek). It is not difficult to
check that

|ξ|2FS =
|ξ|2

|s1(x)|2 + · · · + |sN (x)|2 for ξ ∈ Ekx ,

thus all that we need is to get an estimate of
∑ |sj(x)|2 . However, this sum is the

contribution of the 0 eigenvalue in the heat kernel

Kk
t (x, x) =

+∞∑

j=1

e−2tλk
j |ψj(x)|2

associated to 2
k�′′

k in bidegree (0, 0). We observe that non zero eigenvalues λkj
are also eigenvalues in bidegree (0, 1), since ∂ is injective on the corresponding

eigenspaces. The associated eigenfunctions are ∂ψj/
√
kλkj , for

‖∂ψj‖2 = 〈∆′′
kψj , ψj〉 = kλkj .

Thus the summation
+∞∑

j=1

e−2tλk
j |∂ψj(x)|2

14



is bounded by the heat kernel in bidegree (0, 1), which is itself bounded by kne−ct

with c > 0 (note that α∁J − αJ −∑ |αj | < 0 on X for |J | = 1). Taking t = kε

with ε small, one can check that all estimates remain uniformly valid and that the
contribution of the non zero eigenfunctions in Kk

t (x, x) becomes negligible in C0

norm. Then theorem 4.4 shows that∑
|sj(x)|2 ∼ Kk

t (x, x) ∼ kn(2π)−n|α1(x) · · ·αn(x)|
as t = kε → +∞. For ξ ∈ Ekx we get therefore the C0 convergence

|ξ|2
|ξ|2FS

∼
( k
2π

)n|α1(x) · · ·αn(x)| as k → +∞ .

As a consequence, the Fubini-Study metric on E induced by Φk converges to the
original metric. G. Tian [Ti] has proved that this last convergence statement holds
in fact in norm C4.

6. The case of q-convex manifolds

Thierry Bouche [Bou 1] has obtained an extension of the holomorphic Morse
inequalities to the case of strongly q-convex manifolds. We explain here the main
ideas used.

A complex (non compact) manifoldX of dimension n is strongly q-convex in
the sense of Andreotti and Grauert [A-G] if there exists a C∞ exhaustion function
ψ on X such that i∂∂ψ has at least n − q + 1 positive eigenvalues outside a
compact subset of X . In this case, the Andreotti-Grauert theorem shows that all
cohomology groups Hm(X,F) with values in a coherent analytic sheaf are finite
dimensional for m > q.

Theorem 6.1. — Let E, F be holomorphic vector bundles over X with

rank E = 1, rand F = r. Assume that X is strongly q-convex and that E has a

metric for which ic(E) has at least n − p + 1 nonnegative eigenvalues outside a

compact subset. Then for all m > p+ q−1 the following strong Morse inequalities

hold :
n∑

ℓ=m

(−1)ℓ−m dimHℓ(X,Ek ⊗ F ) 6 r
kn

n!

∫

X(>m,E)

(−1)m
( i
2π
c(E)

)n
+ o(kn) .

Proof. — For every c ∈ R, we consider the sublevel sets

Xc = {x ∈ X ; ψ(x) < c} .
Select c0 such that i∂∂ψ has n−q+1 positive eigenvalues onX\Xc. One can choose
a hermitian metric ω0 on X in such a way that the eigenvalues γ0

1 6 · · · 6 γ0
n of

i∂∂ψ with respect to ω0 satisfy

(6.2) − 1

n
6 γ0

1 6 · · · 6 γ0
q−1 6 1 and γ0

q = · · · = γ0
n = 1 on X\Xc0 ;
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this can be achieved by taking ω0 equal to i∂∂ψ on a C∞ subbundle of TX of
rank n − q + 1 on which i∂∂ψ is positive, and ω0 very large on the orthogonal
complement. We set ω = eρω0 where ρ is a function increasing so fast at infinity
that ω will be complete.

More important, we multiply the metric of E by a weight e−χ◦ψ where χ is
a convex increasing function. The resulting hermitian line bundle is denoted Eχ.
For any (0, m) form u with values in Ek⊗F , viewed as an (n,m) form with values
in Ek ⊗ F ⊗ ΛnTX , the Bochner-Kodaira-Nakano formula implies an inequality

〈∆′′
ku, u〉 >

∫

X

k〈[ic(Eχ),Λ]u, u〉+ 〈Θu, u〉

where Θ depends only on the curvature of F ⊗ ΛnTX and the torsion of ω. By
the formulas of §4, we have

〈[ic(Eχ),Λ]u, u〉 > (α1 + · · ·+ αm)|u|2

where α1 6 · · · 6 αn are the eigenvalues of

ic(Eχ) = ic(E) + i∂∂(χ ◦ ψ) > ic(E) + (χ′ ◦ ψ)i∂∂ψ .

If β is the lowest eigenvalue of ic(E) with respect to ω, we find

αj > β + (χ′ ◦ ψ)γ0
j /e

ρ ,

α1 + · · · + αm > mβ + (χ′ ◦ ψ)(γ0
1 + · · ·+ γ0

m)/eρ ,

and by (6.2) we get for all m > q :

α1 + · · · + αm > mβ +
1

n
e−ρχ′ ◦ ψ on X\Xc0 .

It follows that one can choose χ increasing very fast in such a way that the Bochner
inequality becomes

(6.3) 〈∆′′
ku, u〉 > k

∫

X\Cc0

A(x)|u(x)|2 − C

∫

X

|u(x)|2

where A > 1 is a function tending to +∞ at infinity onX and C > 0. Now, Rellich’s
lemma easily shows that ∆′′

k has a compact resolvent. Hence the spectrum of ∆′′
k is

discrete and its eigenspaces are finite dimensional. Standard arguments also show
the following :

Lemma 6.4. — When χ increases sufficiently fast at infinity, the space

Hm(X,Ekχ ⊗ F ) of L2-harmonic forms of bidegree (0, m) for ∆′′
k is isomorphic to

the cohomology group Hm(X,Ek ⊗ F ) for all k ∈ N and m > q .

For a domain Ω ⊂⊂ X , we consider the quadratic form

Qk,mΩ (u) =
1

k

∫

Ω

|∂ku|2 + |∂∗ku|2

with Dirichlet boundary conditions on ∂Ω. We denote by Hk,m
6λ,Ω the direct sum of

all eigenspaces of Qk,mΩ corresponding to eigenvalues 6 λ (i.e. 6 kλ for ∆′′
k).
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Lemma 6.5. — For every λ > 0 and ε > 0, there exists a domain Ω ⊂⊂ X
and an integer k0 such that

dimHk,m
6λ,Ω 6 dimHk,m

6λ,X 6 dimHk,m
6λ+ε,Ω for k > k0 .

Proof. — The left hand inequality is a straightforward consequence of the
minimax principle, because the domain of the global quadratic form Qk,mΩ is

contained in the domain of Qk,mX .

For the other inequality, let u ∈ Hk,m
6λ,X . Then (6.3) gives

k

∫

X\Xc0

A|u|2 − C

∫

Xc0

|u|2 6 kλ

∫

X

|u|2 .

Choose c2 > c1 > c0 so that A(x) > a on X\Xc1 and a cut-off function ϕ with
compact support in Xc2 such that 0 6 ϕ 6 1 and ϕ = 1 on Xc1 . Then we find

∫

X\Xc1

|u|2 6
C + kλ

ka

∫

X

|u|2 .

For a large enough, we get
∫
X\Xc1

|u|2 6 ε‖u‖2. Set Ω = Xc2 . Then

Qk,mΩ (ϕu) =
1

k

∫

Ω

|∂ϕ ∧ u+ ϕ∂ku|2 + |ϕ∂∗ku− ∂ϕ u|2

6 (1 + ε)Qk,mX (u) +
C′

k

(
1 +

1

ε

)
‖u‖2

6 (1 + ε)(λ+
C′

kε
)‖u‖2 .

As ‖ϕu‖2 >
∫
Xc1

|u|2 > (1 − ε)‖u‖2 , we infer

Qk,mΩ (ϕu) 6
1 + ε

1 − ε

(
λ+

C′

kε

)
‖ϕu‖2 .

If ε is replaced by a suitable smaller number and k taken large enough, we obtain
Qk,mΩ (v) 6 (λ + ε)‖v‖2 for all v ∈ ϕHk,m

6λ,X . Then the right hand inequality in
lemma 6.5 follows by the minimax principle. �

Now, corollary 3.3 easily computes the counting function Nk,m
Ω for the

eigenvalues :

lim
λ→0+

lim
k→+∞

k−nNk,m
Ω (λ) =

r

n!

∫

X(m,Eχ)

(−1)m(
i

2π
c(Eχ))

n .

Applying this to the Witten complex Hk,•
6λ,X , we easily infer the inequality of

theorem 6.1, except that c(E) is replaced by c(Eχ). However, up to now, the
inequality is valid for allm > q. Take the convex function χ equal to 0 on ]−∞, c0].
Then

ic(Eχ) = ic(E) + i∂∂(χ ◦ ψ)
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coincides with ic(E) on Xc0 and has at most (p− 1)+ (q− 1) negative eigenvalues
on X\Xc0. Hence X(m,Eχ) = X(m,E) for m > p+ q − 1 and ic(Eχ) = ic(E) on
these sets. Theorem 6.1 is proved. �

As a corollary, one obtains a general a priori estimate for the Monge-Ampère
operator (i∂∂)n on q-convex manifolds.

Corollary 6.6. — Let X be a strongly q-convex manifold and ϕ a C∞

function on X , weakly p-convex outside a compact subset of X . For ℓ = 0, 1, . . . , n,

letGℓ be the open set of points where i∂∂ϕ is non degenerate and admits ℓ negative

eigenvalues. Then for all m > p = q − 1

n∑

ℓ=m

∫

Gℓ

(i∂∂ϕ)m has the sign of (−1)m .

This result has been first obtained by Y.T. Siu [Siu 4] for q-convex domains
in a Stein manifold. At that time, the q-convex case of the inequalities was not yet
available and Siu had to rely on a rather sophisticated approximation argument
of Stein manifolds by algebraic varieties; the proof could then be reduced to the
compact case.

The general statement given above is in fact a direct consequence of theorem
6.1 : take for E the trivial bundle E = OX equipped with the metric defined by
the weight e−ϕ and F = OX . Since Hm(X,Ek) = Hm(X,OX) is independent of
k and finite dimensional, theorem 6.1 implies

kn
n∑

ℓ=m

∫

Gℓ

(−1)m(i∂∂ϕ)n > constant − o(kn)

for all k > k0 and m > p+ q − 1, whence the result. �

7. Holomorphic Morse inequalities for vector bundles

A natural question arising in connection with our Morse inequalities is
whether one can extend the inequalities for high tensor powers of a vector bundle
E of rank > 2. Since E⊗k is decomposable for k > 2 (e.g. E⊗2 = S2E ⊕ Λ2E)
we are led to consider only irreducible tensor powers of E, i.e. the irreducible
representations of the linear group Gℓ(E). This is done by Getzler [Ge 2], in the
general framework of Lie group theory and representations. As we are only dealing
with the case of the full linear group, we will give here an elementary presentation.
We first recall some ideas from Borel-Weil’s theory and a special case of Bott’s
formula [Bot].

Let V be a complex vector space of dimension r and M(V ) the flag manifold
of V , i.e. the set of all (r + 1)-tuples z = (V0, V1, . . . , Vr) with V = V0 ⊃ V1 ⊃
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· · · ⊃ Vr = {0} and codimVj = j. On M(V ) we have canonical line bundles Qj
such that

Qj,z = Vj−1/Vj , 1 6 j 6 r.

For any r-tuple (a1, . . . , ar) ∈ Zr, we set

Qa = Qa1

1 ⊗ · · · ⊗Qar
r .

As Gℓ(V ) acts equivariantly on Qa →M(V ), the spaces of sections

(7.1) ΓaV = H0
(
M(V ), Qa

)

are equipped with a natural Gℓ(V ) action. Observe that Q(1,...,1) is isomorphic to
the trivial bundle M(V ) × detV (but of course the action of Gℓ(V ) on detV is
non trivial). To describe ΓaV , we can therefore assume that all aj are nonnegative.
Then any section σ ∈ ΓaV can be viewed as a polynomial Pσ(ξ1, . . . , ξr) on (V ∗)r

as follows : if ξ1, . . . , ξr ∈ V ∗ are linearly independent, one can associate to (ξj)
the flag z = (Vj) defined by Vj = ξ−1

1 (0) ∩ · · · ∩ ξ−1
j (0). Then ξj induces a well

defined linear form ξ̃j on Qj,z = Vj−1/Vj and we set

Pσ(ξ1, . . . , ξr) = (ξ̃a1

1 ⊗ · · · ⊗ ξ̃ar
r ) · σ(z) .

It is clear that Pσ remains locally bounded on a neighborhood of the hypersurface
det(ξ1, . . . , ξr) = 0; therefore Pσ extends to a polynomial on (V ∗)r that is
homogeneous of degree aj in the variable ξj. Also, neither the flag z nor the

linear forms ξ̃j are modified if we replace ξj by ξj +
∑
k<j λjkξk . It follows that

Pσ satisfies the relation

Pσ(ξj +
∑

k<j

λjkξk) = Pσ(ξ1, . . . , ξr) , ∀λjk ∈ C ,

and conversely any polynomial P of multidegree (a1, . . . , ar) satisfying this con-
dition yields a (unique) section σ ∈ ΓaV . Hence ΓaV is the subspace of tensors
in Sa1V ⊗ · · · ⊗ SarV enjoying the above additional antisymmetry properties. In
particular we have

SkV = Γ(k,0,...,0)V ,

ΛkV = Γ(1,...,1,0,...,0)V , (k first integers = 1) .

We will see soon that ΓaV = {0} unless a1 > a2 > · · · > ar. The spaces
ΓaV (a1 > · · · > ar) can be seen to be irreducible representations of Gℓ(V ).
As is well known in representation theory, (ΓaV ) is in fact the complete list of
irreducible representations of Gℓ(V ) up to isomorphism.

Assume now that V is equipped with a hermitian metric. Then any flag
z0 ∈ M(V ) is represented by an orthonormal basis (e1, . . . , er) such that V 0

j =

Vect(ej+1, . . . , er). Now z0 is contained in the affine chart of points z = (Vj) with

Vj = Vect(vj+1, . . . , vr) , vk = ek +
∑

j<k

zjkej
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where (zjk) ∈ C
n(n−1)/2 are the affine coordinates of z . The canonical metric on

Qa induced by V has curvature

(7.2) c(Qa)z0 =
∑

16j<j6n

(aj − ak)dzjk ∧ dzjk ;

we will omit the easy (and standard) computation. By homogeneity, we see that
Qa is positive as soon as a1 > a2 > · · · > ar. On the other hand, when aj−1 < aj ,
we see that Qa is negative along the P1 line in M(V ) obtained by fixing all Vk = V 0

k

except Vj . Therefore ΓaV = H0
(
M(V ), Qa

)
= {0} in this case.

Assume from now on that a1 > · · · > ar, and more specifically that

a1 = · · · = as1 > as1+1 = · · · = as2 > · · · > asm−1+1 = · · · = asm
,

where sm = r . As Qj+1,z ⊗ · · · ⊗ Qk,z ≃ det(Vj/Vk), we see that Qa is the pull
back of the bundle

Qas = det(V/Vs1)
as1 ⊗ · · · ⊗ det(Vsm−1

/Vsm
)asm

over the manifold Ms(V ) of partial flags

V ⊃ Vs1 ⊃ · · · ⊃ Vsm
= {0} ,

via the obvious projection πs : M(V ) → Ms(V ). On Ms(V ) we have a formula
completely analogous to (7.2), where the only indices (j, k) involved are those for
which aj > ak. Thus Qas is ample and Qa = π⋆sQ

a
s , in particular

(7.3) H0
(
Ms(V ), Qas

)
= H0

(
M(V ), Qa

)
= ΓaV .

Now let E, F be holomorphic vector bundles over a compact manifold X
and let

n = dimC X , r = rank E , r′ = rank F .

We want to get asymptotic estimates for the dimension of cohomology groups
Hq(X,ΓkaE ⊗ F ) as k → +∞. For that, we introduce the flag bundle

Ms(E) → X ,

where s = (s1, . . . , sm) is defined as above, and we consider the universal line
bundle Qas over Ms(E). As Qas is ample along the fibers of πs : Ms(E) → X , the
higher direct images

Rq(πs)⋆(Q
ka
s ⊗ π⋆sF ), q > 1

vanish for k > k0 . By (7.3) we get

(πs)⋆(Q
ka
s ⊗ π⋆sF ) = ΓkaE ⊗ F .

The Leray spectral sequence gives the isomorphism

Hq(X,ΓkaE ⊗ F ) ≃ Hq(Y,Qkas ⊗ π⋆sF ) , Y = Ms(E) ,

and we are reduced to applying Morse inequalities to tensor powers of the line
bundle Qas . We still need a formula for the curvature of Qas with the metric induced
by a given hermitian metric on E. Let z0 ∈Ms(Ex0) be a point in Ms(E) . Choose
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a holomorphic frame (e1, . . . , er) of E such that the flag z0 is given by the basis
(e1(x

0), . . . , er(x
0)) (supposed to be orthonormal). Assume also (eλ) chosen such

that Deλ(x
0) = 0 and consider the curvature tensor

c(E)x0 =
∑

16j,k6n

16λ,µ6r

cjkλµdxj ∧ dxk ⊗ e⋆λ ⊗ eµ.

It can be shown that the associated curvature of Qas is

c(Qas)z0 =
∑

16j,k6n

16λ6r

aλcjkλλdxj ∧ dxk +
∑

aλ>aµ

(aλ − aµ)dzλµ ∧ dzλµ

where (zλµ) are the affine coordinates along the fiber Ms(Ex0). Finally, let N(s)
be the dimension of the fibers Ms(Ex). Using the isomorphism (7.4), the strong
Morse inequality becomes
q∑

m=0

(−1)q−m dimHm(X,ΓkaE ⊗ F ) 6 r′
kn+N(s)

(n+N(s))!

∫

Y (6q,Qa
s)

( i

2π
c(Qas)

)n+N(s)

.

The most interesting case is the case of symmetric powers SkE. Then we simply
have Ms(E) = P(E⋆), N(s) = r − 1, Qas = OE(1).

8. Related questions and open problems

(a) As in the case of the Riemann-Roch Hirzebruch formula, it would be
extremely interesting to get some insight on the error term o(kn) of the estimates.
However, this problem encounters two major difficulties :

• First, the lower order terms in the asymptotic expansion of the heat
kernel involve derivatives of the curvature of E, as well as terms coming from the
curvature of F or of the manifold X . These terms are very difficult to compute.

• Second, the open sets X(6 q, E) involved in the estimates may be
extremely irregular, even when the metric of E is smooth. This leaves very little
hope of being able to handle the error term.

One way to avoid the difficulties of the first point is to assume that the
dominant term is identically zero, i.e. that ic(E) has rank < n everywhere and is
generically of a given rank s. Concerning the second point, a reasonable hypothesis
is the following : assume that there is a smooth foliation F of codimension s in
X such that ic(E) vanishes along the leaves. With these hypotheses, Th. Bouche
[Bou2] has shown that when rkE = rkF = 1, ℓ→ +∞, k/ℓ→ +∞, then

∑

06m6q

(−1)q−m dimHm(X,Ek ⊗ F ℓ ⊗G)

6
ks

s!

ℓn−s

(n− s)!
(rkG)

∫

X(6q,E,F )

( i

2π
c(E)

)s
∧
( i

2π
c(F )

)n−s
+ o(ksℓn−s),
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where the index set X(m,E, F ) is the set where (ic(E))s ∧ (ic(F ))n−s has sign
(−1)m. It would be very interesting to get rid of the tensor powers F ℓ, but then the
difficulty is that the estimates cannot be localized along the leaves of the foliation.

(b) A natural problem is of course to extend the Morse inequalities to
cohomology groups associated to other operators than ∂. This has been carried
out by Getzler [Ge3] for the operator ∂b on a compact strongly pseudoconvex CR
manifold.

(c) Jean Varouchas has drawn my attention on the following interesting
question of Fujiki related to the Grauert-Riemenschneider conjecture. The G-R
conjecture was an attempt to characterize Moishezon manifolds, i.e. manifolds
which have a projective algebraic modification.

Another interesting class of manifolds is the Fujiki class C, that is, the class
of compact complex manifolds which have a Kähler modification (for instance,
such manifolds possess Hodge decomposition). Assume that X is compact and has
a closed semi-positive (1, 1)-form ω such that ω is positive definite on a dense open
subset (say, on the complement of an analytic subset). Then, is X in the Fujiki
class C ?
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