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1. Statement of results and applications.

This note is a report about a recent work of Thierry Bouche (Univ. Joseph
Fourier, Grenoble). Bouche [Bo] obtained an extension of the holomorphic Morse
inequalities proved in Demailly [D3] for strongly q–convex manifolds.

Let X be a complex manifold of dimension n . We assume that X is strongly
q–convex in the sense of Andreotti-Grauert [A-G], i.e. that there exists a C∞

exhaustion function ψ on X such that the complex Hessian id′d′′ψ has at least
n−q+1 positive eigenvalues outside a compact subset ofX . In this case, Andreotti-
Grauert’s theorem [A-G] asserts that all cohomology groups Hm(X,F) with values
in a coherent analytic sheaf are finite dimensional for m > q .

Let L −→ X be a holomorphic line bundle with a hermitian metric of class
C∞ and E −→ X a holomorphic vector bundle of rank r . Let D = D′ + D′′

be the Chern connection of L and c(L) = D2 the associated curvature form. We
denote by X(m,L) the set of points of X where the real (1, 1)–form ic(L) is non
degenerate and has exactly m negative eigenvalues. We also set

X(6 m,L) =
⋃

ν6m

X(ν, L) , X(> m,L) =
⋃

ν>m

X(ν, L) .

Then the cohomology groups Hm(X,E ⊗ Lk) are finite dimensional for m > q ,
and the following theorem gives an asymptotic estimate of dimHm(X,E⊗Lk) as
k tends to +∞ .
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1.1. Theorem. — Assume that X is strongly q–convex and that the

curvature form ic(L) has at least n − p + 1 nonnegative eigenvalues outside a

compact subset of X . Then for all m > p + q − 1 the following asymptotic

inequalities hold :

(am) Weak Morse inequalities :

dimHm(X,E ⊗ Lk) 6 r
kn

n!

∫

X(m,L)

(−1)m
( i

2π
c(L)

)n
+ o(kn) .

(bm) Strong Morse inequalities :
∑

m6ν6n

(−1)ν−m dimHν(X,E ⊗ Lk) 6 r
kn

n!

∫

X(>m,L)

(−1)m
( i

2π
c(L)

)n
+ o(kn) .

Observe that (am) is obtained simply by adding (bm) and (bm+1). The
special case when X is compact (p = q = 0) has been first proved in [D3]. Then
(am) and (bm) are valid for all m > −1 . As the strong Morse inequalities (b0) ,
(b−1) are identical except for the sign of their terms, we see that the case m = 0
is an asymptotic equality; this equality is in fact a weak form of the Riemann-
Roch-Hirzebruch formula for the Euler-Poincaré characteristic χ(X,E ⊗ Lk) .
Subtracting inequality (b2) from (b0) , we get the lower bound
(1.2)

dimH0(X,E ⊗ Lk) − dimH1(X,E ⊗ Lk) > r
kn

n!

∫

X(61,L)

( i

2π
c(L)

)n
+ o(kn) .

This result is used in [D3] in order to obtain a new proof of the Grauert-
Riemenschneider conjecture [G-R], which had been solved in the affirmative by
Y.T. Siu [S2] soon before. More precisely, we get the following stronger version of
the conjecture.

1.3. Theorem. — LetX be a connected n–dimensional compact manifold.

If X carries a hermitian line bundle L such that
∫
X(61,L)

(
ic(L)

)n
> 0 , then X is

Moišezon.

Let us recall that the algebraic dimension a(X) is by definition the trans-
cendence degree of the field of meromorphic functions of X . This degree always
verifies 0 6 a(X) 6 n and X is said to be a Moišezon variety if a(X) = n .
Inequality (1.2) shows that dimH0(X,Lk) > ckn for some constant c > 0 and
k > k0 ; by a standard method of Poincaré, Serre [Se] and Siegel [Si], it follows
that the field of meromorphic functions generated by quotients of sections in
H0(X,Lk) , k ∈ N , has transcendence degree > n , hence a(X) = n . �

Another consequence of Morse inequalities is a general a priori estimate for
Monge-Ampère operator (id′d′′)n on q–convex manifolds.

1.4. Theorem. — Let X be a strongly q–convex manifold and ϕ a C∞

function onX , weakly p-convex outside a compact subset K ⊂ X . For 0 6 ν 6 n ,
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let Gν be the set of points of X where id′d′′ϕ is non degenerate and admits ν
negative eigenvalues. Then for all m > p+ q − 1 one has

∑

m6ν6n

∫

Gν

(−1)m(id′d′′ϕ)n > 0 .

This result has been first obtained by Y.T. Siu [S4] for q–convex domains
Ω in a Stein manifold X . Siu’s method is rather sophisticated and rests merely
upon the compact case of theorem 1.1 : X is “approximated” by affine algebraic
manifolds Xalg , and the proof is then reduced to an application of Morse
inequalities on a compactification of Xalg . The general statement given above
appears in fact as a straightforward consequence of the q–convex case of theorem
1.1 : take for L the trivial bundle X ×C endowed with the curvature form defined
by the weight e−ϕ . Then ic(L) = id′d′′ϕ . Since Hm(X,Lk) = Hm(X,C) is
independent of k and finite dimensional for m > q , theorem 1.1 (b) implies

kn
∑

m6ν6n

∫

Gν

(−1)m(id′d′′ϕ)n > constant

for all k > k0 and m > p+ q − 1 , whence the result. �

Following Th. Bouche [Bo], we give now an account of the main ideas
occurring in the proof of theorem 1.1. We refer to [Bo] and to [D3] for the details.

2. The Bochner technique.

The cohomology groups Hm(X,E ⊗ Lk) are computed by means of the
Dolbeault complex D′′ : C∞

0,•(X,E ⊗ Lk) , where C∞
s,t(X,E) denotes the space

of C∞ sections of the bundle Λs,tT ⋆X ⊗ E . This complex is isomorphic to the
complex C∞

n,•(X, Ẽ ⊗ Lk) with Ẽ = ΛnTX , thus after changing E into Ẽ , we
can work with forms of bidegree (n,m) instead of (0, m) (note that the estimates
of theorem 1.1 do not depend on E except for the rank r).

Assume that the bundle E is endowed with a C∞ hermitian metric, and let
D = D′ +D′′ , c(E) = D2 be the corresponding Chern connection and curvature
form. Let ω be a complete hermitian metric on X (to be chosen later in a suitable
way), 〈?, ?〉 the pointwise inner product of differential forms on X with values in
E and 〈〈?, ?〉〉 the global L2 inner product obtained after integration with respect
to the volume form dV = ωn/n! . The corresponding norms are denoted | ? | and
|| ? || , and Λ stands as usual for the (pointwise) adjoint of the wedge multiplication
by ω . Finally, we denote by δ = δ′ + δ′′ the formal adjoint of D .

If A and B are endomorphisms of respective degrees a, b of the graded
module C∞

• (X,E) , we set [A,B] = AB − (−1)abBA . The holomorphic and
conjugate-holomorphic Laplace-Beltrami operators are then defined by

∆′ = [D′, δ′] , ∆′′ = [D′′, δ′′] .

These operators are related by a formula of Weitzenböck type, known as the
Bochner-Kodaira-Nakano identity; we refer to [D1] for the explicit formulation
given below.

3



2.1. Proposition. — Let τ = [Λ, d′ω] , let τ⋆ be its pointwise adjoint,

∆′
τ = [D′ + τ, δ′ + τ⋆] and Tω = [Λ, [Λ, i

2
d′d′′ω]] − [d′ω, (d′ω)⋆] . Then

∆′′ = ∆′
τ + [ic(E),Λ] + Tω .

Now, assume that ψ is an exhaustion function on X that is strongly q–
convex on X \K and that ic(L) has at least (n− p + 1) nonnegative eigenvalues
on X \ K , for some compact set K in X . In order to take into account the
q–convexity of X in formula 2.1, we multiply the metric of L by a weight e−χ◦ψ

where χ is a convex increasing function. The resulting hermitian line bundle is
denoted Lχ . Formula 2.1 is now applied to the bundle E ⊗ Lkχ , whose curvature

form is c(E⊗Lkχ) = c(E)+kc(Lχ)⊗ IdE . For every compactly supported smooth

form with values in E ⊗ Lk one gets

(2.2) 〈〈∆′′u, u〉〉 = 〈〈∆′
τu, u〉〉 +

∫

X

(
k〈[ic(Lχ),Λ]u, u〉+ 〈Θu, u〉

)
dV

where Θ = [ic(E),Λ] + Tω is a C∞ endomorphism independent of χ and k . Now,
we have 〈〈∆′′u, u〉〉 = ||D′′u||2 + ||δ′′u||2 and a similar formula for ∆′

τ , in particular
〈〈∆′

τu, u〉〉 is nonnegative.

For every c ∈ R , we consider the sublevel sets

Xc = {x ∈ X ; ψ(x) < c} .

Select c0 such that K ⊂ Xc0 . One can choose a hermitian metric ω0 on X in such
a way that the eigenvalues γ0

1 6 . . . 6 γ0
n of id′d′′ψ with respect to ω0 verify

−1/n 6 γ0
1 6 . . . 6 γ0

q−1 6 1 and γ0
q = . . . = γ0

n = 1 on X \Xc0 ;

this can be achieved by taking ω0 equal to id′d′′ψ on a C∞ subbundle of TX
of rank n − q + 1 on which id′d′′ψ is positive, and ω0 large on the orthogonal
complement. We select ω = eρω0 where ρ is a function increasing fast enough at
infinity so that ω is complete. Let α be the lowest eigenvalue of ic(L) with respect
to ω . The eigenvalues β1 6 . . . 6 βn of

ic(Lχ) = ic(L) + id′d′′(χ ◦ ψ) > ic(L) + χ′ ◦ ψ id′d′′ψ

with respect to ω verify the inequality

βj > α+ χ′ ◦ ψ γ0
j /e

ρ .

Let u be a (n,m)–form. A standard computation gives

(2.3) 〈[ic(Lχ),Λ]u, u〉 > (β1 + . . .+ βm)|u|2 .

Moreover, we have

β1 + . . .+ βm > mα+ e−ρχ′ ◦ ψ(γ0
1 + . . .+ γ0

m) > α+
1

n
e−ρχ′ ◦ ψ on X \Xc0

because γ0
j > −1/n and γ0

m = 1 (m > q) . It follows that one can choose χ
increasing very fast in such a way that (2.2) and (2.3) imply

(2.4) 〈〈∆′′u, u〉〉 > k

∫

X\Xc0

A|u|2dV − C

∫

Xc0

|u|2 dV ,
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where A > 1 is a function tending to +∞ at infinity on X and where C is a large
constant. The completeness of the metric ω shows that inequality (2.4) is still valid
for any u in the domain of ∆′′ acting on the Hilbert space L2

n,m(X,E ⊗ Lkχ) .

2.5. Lemma. — When χ increases sufficiently fast at infinity, the space

Hn,m(X,E ⊗Lkχ) of ∆′′–harmonic forms in L2
n,m(X,E ⊗Lkχ) is isomorphic to the

cohomology group Hm(X,ΛnT ⋆X ⊗ E ⊗ Lk) for all k ∈ N and m > q .

As A tends to +∞ in inequality (2.4), Rellich’s lemma easily shows that ∆′′

has a compact resolvent. Hence the spectrum of ∆′′ is discrete and its eigenspaces
are finite dimensional. When X is compact, lemma 2.5 is true for all m > 0 and
for any choice of χ (a very well-known fact of Hodge theory). The q–convex case
is slightly more involved; it rests essentially on the above finiteness result and
on an approximation theorem of Runge type deduced from (2.4) (cf. for example
[D2]). �

3. Witten’s complex.

We come now to one of the main ideas introduced by E. Witten [Wi]. This
idea led Witten to an analytic new proof of the standard Morse inequalities for
Betti numbers of a compact differentiable manifold. In our case, we consider the
Dolbeault complex instead of the De Rham complex, but the method is similar by
many aspects.

Since D′′ commutes with ∆′′ , the sequence of eigenspaces Em(λ) ⊂
L2
n,m(X,E⊗Lkχ) corresponding to a given eigenvalue λ is a subcomplex of the Dol-

beault complexD′′ : C∞
n,•(X,E⊗Lk) . Moreover we haveD′′δ′′+δ′′D′′ = ∆′′ = λ Id

on E•(λ) , thus 1
λ
δ′′ is a homotopy operator for D′′ and E•(λ) is acyclic for λ 6= 0 .

For any λ > 0 , let

(3.1) Hm
X,k(λ) , m > q ,

be the sum of the eigenspaces of ∆′′ corresponding to eigenvalues 6 kλ (the
reason for this choice will become apparent later). By what we have said at the
end of §2, the sequence Hm

X,k(λ) , m > q , is a finite dimensional subcomplex
of the Dolbeault complex. Its cohomology groups are equal to the desired groups
Hm(X,ΛnT ⋆X⊗E⊗Lk) , except perhaps for m = q . In order to get the correct
group for m = q, one possibility is to add an extra term

Hq−1
X,k (λ) = δ′′

(
cycles in Hq

X,k(λ)
)
.

The following elementary lemma of homological algebra is then involved.

3.2. Lemma. — Let 0 −→ C0 d0
−→ C1 d1

−→ · · · −→ Cn
dn

−→ 0 be a

complex of finite dimensional vector spaces of dimensions cq over a field K .

Let hq = dimHq(C•) . Then for every index m the following “strong Morse
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inequalities” hold :

hm − hm+1 + · · ·+ (−1)n−mhn 6 cm − cm+1 + · · ·+ (−1)n−mcn .

In our case, Cm = Hm
X,k(λ) and Hm(C•) = Hm(X,ΛnT ⋆X ⊗ E ⊗ Lk) for

m > q . The proof of theorem 1.1 is therefore reduced to finding an asymptotic
estimation of the dimensions dimHm

X,k(λ) . The first step is to show that this can
be done after replacing X by relatively compact open sets Ω ⊂⊂ X .

For a domain Ω ⊂⊂ X , we consider the quadratic form

QmΩ,k(u) =
1

k

∫

Ω

(
|D′′u|2 + |δ′′u|2

)
dV

associated to 1
k∆′′ with Dirichlet conditions on ∂Ω; this means that the domain of

QmΩ,k(u) is the Sobolev space W 1
0 (Ω,Λn,mT ⋆X ⊗E ⊗ Lk) of sections which are in

L2(Ω) so as their first derivatives, and which can be approximated in this topology
by smooth sections with compact support in Ω . We denote by Hm

Ω,k(λ) the direct
sum of all eigenspaces of QmΩ,k corresponding to eigenvalues 6 λ (i.e. 6 kλ for ∆′′).

3.3. Lemma. — For every λ > 0 and ε > 0 , there exists a domain Ω ⊂⊂ X
and an integer k0 such that

dimHm
Ω,k(λ) 6 dimHm

X,k(λ) 6 dimHm
Ω,k(λ+ ε) for k > k0 .

Proof. — As we work on a complete manifold, the eigenvalues of 1
k∆′′ on

L2
m,n(X,E⊗Lkχ) are the same as those of the quadratic form QmX,k . The left hand

inequality is then a consequence of the minimax principle, because the domain of
QmΩ,k is contained in that of QmX,k (the sections of W 1

0 (Ω) can be extended by 0 on
X \ Ω).

For the other inequality, we proceed in several steps. Let u ∈ Hm
X,k(λ) .

Then
〈〈∆′′u, u〉〉 = ||D′′u||2 + ||δ′′u||2 6 kλ||u||2 ,

and a combination of this estimate with (2.4) yields

k

∫

X\Xc0

A|u|2 dV − C

∫

Xc0

|u|2 dV 6 kλ

∫

X

|u|2 dV .

Consider the compact set P = Xc0 ∪ {A(x) 6 a} . Then A(x) > a on X \ P and
we find ∫

X\P

|u|2 dV 6
C + kλ

ka

∫

X

|u|2 dV .

If we choose a large enough, we get
∫
X\P

|u|2 dV 6 ε||u||2 . Let ϕ ∈ D(X) be a

cut-off function equal to 1 on P and Ω ⊂⊂ X an open set containing the support
of ϕ . The section ϕu is in the domain of QmΩ,k and we have

QmΩ,k(ϕu) =
1

k

∫

Ω

(
|d′′ϕ ∧ u+D′′u|2 + |δ′′u− d′ϕ u|2

)
dV

6 (1 + ε)QmX,k(u) +
C′

k
(1 + 1/ε)||u||2

6
(
(1 + ε)λ+

C′

k
(1 + 1/ε)

)
||u||2 .
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As ||ϕu||2 >
∫
P
|u|2 dV > (1 − ε)||u||2 , we infer

QmΩ,k(ϕu) 6
(1 + ε

1 − ε
λ+

C(ε)

k

)
||ϕu||2 .

If ε is replaced by a smaller number and k taken large enough, we obtain
QmΩ,k(v) 6 (λ + ε)||v||2 when v describes the space ϕHm

X,k(λ) . The right hand
inequality in lemma 3.3 follows by the minimax principle. �

In order to handle properly the quadratic form QmΩ,k , we need another
calculation derived from the Bochner-Kodaira-Nakano identity (2.2) (cf. [D3]) :

(3.4) 2QmΩ,k(u) =

∫

Ω

(1

k
|∇u+ Su|2 − 〈V u, u〉 +

1

k
〈Θu, u〉

)
dV ,

where ∇ is the canonical hermitian connection on the bundle Λn,mT ⋆X ⊗E ⊗Lkχ
deduced from the Chern connections on ΛT ⋆X , E and Lχ . The operators S and
Θ are hermitian endomorphisms which act only on the component Λn,mT ⋆X ⊗E
and are independent of k . Finally V is a curvature endomorphism acting only
on the component Λn,mT ⋆X . Let (ξ1, . . . , ξn) , (e1, . . . , er) and l be orthonormal
frames of TX , E , Lχ respectively, and assume that ic(Lχ) is diagonalized in
(ξj) . One finds

u =
∑

|J|=m, 16h6r

uJ,h ξ
⋆
1 ∧ . . . ∧ ξ⋆n ∧ ξ

⋆

J ⊗ eh ⊗ lk ,

〈V u, u〉 =
∑

|J|=m, 16h6r

(β∁J − βJ )|uJ,h|
2 ,(3.5)

where β1, . . . , βn are the eigenvalues of ic(Lχ) and βJ =
∑
j∈J βj .

4. A spectral theorem for Schrödinger operators.

The main tool for the proof of Morse inequalities is a spectral theorem which
describes very precisely the asymptotic distribution of eigenvalues for quadratic
forms similar to QmΩ,k .

Let M be a n–dimensional Riemannian manifold of class C∞ and F −→M ,
L −→ M hermitian vector bundles of respective ranks t and 1 . We assume that
F, L are endowed with hermitian connections ∇E , ∇L , and we let ∇k be the
resulting connection on F ⊗Lk . Finally let V and S be hermitian endomorphisms
of F ; we still denote by V and S their extensions V ⊗ Id , S ⊗ Id to F ⊗ Lk . For
any domain Ω ⊂⊂M , we consider the quadratic forms

(4.1) QΩ,k(u) =

∫

Ω

(1

k
|∇ku+ Su|2 − 〈V u, u〉

)
dV , u ∈ W 1

0 (Ω, F ⊗ Lk)

with Dirichlet condition on ∂Ω . For every real number λ , we denote by NΩ,k(λ)
the number of eigenvalues of QΩ,k which are 6 λ ; these eigenvalues are of course
counted with multiplicity. We shall see soon that NΩ,k(λ) can be estimated in
terms of the curvature of L and of the potential V .
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The curvature form B = ic(L) = i∇2
L is a real 2–form on X ; at each point

x ∈M , this form can be written

(4.2) B(x) =
∑

16j6s

Bj(x) ξ
⋆
2j−1 ∧ ξ

⋆
2j , s 6 n/2

where (ξ⋆1 , . . . , ξ
⋆
n) is an orthonormal basis of T ⋆xM and B1(x) 6 . . . 6 Bs(x) > 0

the modules of the non zero eigenvalues of B(x) , viewed as an antisymmetric
endomorphism on TxM . Let

(4.3) νB(λ) =
2s−nπ−n/2

Γ
(
n
2
− s+ 1

)B1 . . .Bs
∑

(p1,...,ps)∈Ns

(
λ−

∑

16j6s

(2pj+1)Bj

)(n/2)−s

+
.

Here a+ means the maximum of a and 0 , with the special convention that a0
+ = 0

for a 6 0 and a0
+ = 1 for a > 0 . It is clear that νB(λ) is a non decreasing function

of λ that is continuous on the left side; one can also check that νB(x)(λ) is lower
semi-continuous in x . Let νB(λ) = limε→0+ νB(λ) be the associated increasing
function continuous on the right side. The asymptotic eigenvalue distribution of
QΩ,k is then given by the following fundamental theorem.

4.4. Theorem. — Let V1(x), . . . , Vt(x) be the eigenvalues of the endomor-

phism V (x) ∈ End(Fx) . Then

lim inf
k→+∞

k−n/2NΩ,k(λ) >
∑

16j6t

∫

Ω

νB(Vj + λ) dV ,

lim sup
k→+∞

k−n/2NΩ,k(λ) 6
∑

16j6t

∫

Ω

νB(Vj + λ) dV .

Assume that ∂Ω has measure zero. As the integrals are increasing functions
of λ and as the upper bound is the limit of the lower bound at λ + 0 , we easily
conclude :

4.5. Corollary. — There is a countable subset D ⊂ R such that

NΩ,k(λ) ∼ kn/2
∑

16j6t

∫

Ω

νB(Vj + λ) dV , ∀λ ∈ R \ D .

The proof of theorem 4.4 is made in several steps. The first step is a
localization procedure originated with the work of H. Weyl. Weyl [We] introduced
the localization procedure and the minimax principle to get the asymptotic
estimate of the distribution of eigenvalues of linear partial differential equations.
Assume that Ω is partitioned into a union of small cubes plus some extra set of
small measure. The intuition is that for the Dirichlet problem with zero boundary
value, the wave length of all eigenfunctions tends to 0 as k tends to infinity and the
Dirichlet problem looks more and more like the union of the Dirichlet problems for
the small cubes. If the side of the cubes is well chosen (k−1/3 is a suitable scale)
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the problem can be approximated by a simpler one in which the potential V and
the curvature B are constant. At this point, an expansion of u as a Fourier series
shows that the variables can be separated. Our Dirichlet problem is then reduced to
the 1–dimensional harmonic oscillator problem, or to the Dirichlet problem for the
operator −d2/dx2 on an interval. In these cases, the eigenvalues and eigenfunctions
can be computed explicitly. The general estimate follows. �

To get the eigenvalue distribution of QmΩ,k in (3.4), we apply corollary 4.5 to
the bundles F = Λn,mT ⋆X ×E , L = Lχ and note that dimR X = 2n . When the
eigenvalues βj are ordered in such a way that |β1| > . . . > |βs| > 0 = βs+1 = . . . =
βn , we get Bj = |βj | . By (3.5), the eigenvalues Vj are the quantities β∁J − βJ
when J describes all multi-indices of length |J | = m , counted with multiplicity
r . Hence the eigenvalue distribution Nm

Ω,k(λ) of QmΩ,k(λ) is given by

Nm
Ω,k(λ) ∼ rkn

∑

|J|=m

∫

Ω

νB(2λ+ β∁J − βJ ) dV , ∀λ ∈ R \ D .

We use this estimate when λ tends to 0+ . Each integral converges to the limit∫
Ω
νB(β∁J − βJ ) dV and we have

νB(β∁J − βJ ) =
2s−2nπ−n

Γ(n− s+ 1)
|β1 . . . βs|×

∑

(p1,...,ps∈Ns)

(
β∁J − βJ −

∑

16j6s

(2pj + 1)|βj|
)n−s

+
.

The expression between ( )+ is always 6 0 , and it can be zero only when
p1 = . . . = ps = 0 , βj 6 0 for j ∈ J and βj > 0 for j ∈ ∁J . By our conventions
limλ→0+ (λ)0+ = 1 and the result is non zero only when s = n. The above function
is therefore equal to zero in all cases except when βj < 0 for j ∈ J and βj > 0 for
j ∈ ∁J ; then

νB(β∁J − βJ ) = (2π)−n|β1 . . . βn| .

This situation can only happen at a point x ∈ X(m,Lχ) , and the corresponding
multi-index J is then unique. We find therefore

lim
λ→0+

lim
k→+∞

k−nNm
Ω,k(λ) = r

∫

X(m,Lχ)

(2π)−n |β1 . . . βn| dV

=
r

n!

∫

X(m,Lχ)

(−1)m
( i

2π
c(Lχ)

)n
dV .

This shows that theorem 1.1 is valid for all m > q when the curvature form
ic(L) is replaced by ic(Lχ) . Let K ⊂⊂ X be the exceptional compact set where
the convexity properties of ψ and L are not satisfied. Take a convex increasing
function χ such that χ = 0 on ] −∞, c0] with Xc0 ⊃ K . Then

ic(Lχ) = ic(L) + id′d′′(χ ◦ ψ)

coincides with ic(L) on K and has at least n−(p−1)−(q−1) positive eigenvalues
on X \K , because ic(L) and id′d′′ψ are both positive on subspaces of respective
codimensions p− 1, q − 1 in TX . Hence X(m,Lχ) = X(m,L) for m > p+ q − 1
and ic(Lχ) = ic(L) on these sets. Theorem 1.1 is proved.
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