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Positive and ample vector bundles
Let X be a projective n-dimensional manifold and
E → X a holomorphic vector bundle of rank r ≥ 1.

Ample vector bundles

E → X is said to be ample in the sense of Hartshorne if the associ-
ated line bundle OP(E)(1) on the hyperplane bundle P(E ) is ample.

By Kodaira (1954), this is equivalent to the existence of a
smooth hermitian metric on OP(E)(1) with positive curvature
(equivalently, a negatively curved Finsler metric on E ∗).

Chern curvature tensor of a hermitian bundle (E , h)

This is ΘE ,h = i∇2
E ,h ∈ C∞(Λ1,1T ∗

X ⊗ Hom(E ,E )), which can be
written

ΘE ,h = i
∑

1≤j ,k≤n, 1≤λ,µ≤r

cjkλµdzj ∧ dzk ⊗ e∗λ ⊗ eµ

in terms of an orthonormal frame (eλ)1≤λ≤r of E .
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Griffiths positivity concept for vector bundles

Definition

One looks at the associated quadratic form on S = TX ⊗ E

Θ̃E ,h(ξ ⊗ v) := ⟨ΘE ,h(ξ, ξ) · v , v⟩h =
∑

1≤j ,k≤n, 1≤λ,µ≤r

cjkλµξjξkvλvµ.

Then E is said to be Griffiths positive (Griffiths 1969) if at every
point z ∈ X

Θ̃E ,h(ξ ⊗ v) > 0, ∀0 ̸= ξ ∈ TX ,z , ∀0 ̸= v ∈ Ez

Well known fact

E Griffiths > 0 ⇒ E ample.

Proof. E Griffiths > 0 ⇒ OP(E)(1) > 0 ⇐⇒
Kodaira

OP(E)(1) ample.

Griffiths conjecture [unsolved, except for n = 1 (Umemura 1973)]

Is it true that E ample ⇒ E Griffiths > 0 ? (If so, both are ⇔).
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Nakano / dual Nakano positivity concepts
The curvature tensor yields a natural hermitian form on TX ⊗ E

Θ̃E ,h(τ) =
∑

1≤j ,k≤n, 1≤λ,µ≤r

cjkλµτjλτ kµ, τ ∈ TX ,z ⊗ Ez .

Definition of Nakano positivity

E is Nakano positive (Nakano 1955) if at every point z ∈ X

Θ̃E ,h(τ) =
∑

1≤j ,k≤n, 1≤λ,µ≤r

cjkλµτjλτ kµ > 0, ∀τ ∈ TX ,z ⊗ Ez , τ ̸= 0.

Curvature tensor of the dual bundle E ∗

ΘE∗,h∗ = −TΘE ,h = −
∑

1≤j ,k≤n, 1≤λ,µ≤r

cjkµλdzj ∧ dzk ⊗ (e∗λ)
∗ ⊗ e∗µ.

Definition of dual Nakano positivity

E is dual Nakano positive if E ∗ is Nakano < 0, i.e.

−Θ̃E∗,h∗(τ) =
∑

1≤j ,k≤n, 1≤λ,µ≤r

cjkµλτjλτ kµ > 0, ∀τ ∈TX ,z ⊗ E ∗
z , τ ̸= 0.
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Known results
Nakano and dual Nakano positivity imply Griffiths positivity.

Griffiths and dual Nakano Nakano positivity are preserved by
taking quotients: E > 0 ⇒ any quotient Q = E/S is also > 0.
This is wrong for Nakano positivity.
E ample ̸⇒ E Nakano > 0.

For instance, TPn is ample and even Griffiths > 0 for the
Fubini-Study metric, but it is not Nakano > 0. Otherwise the
Nakano vanishing theorem would imply

Hn−1,n−1(Pn,C) = Hn−1(Pn,Ωn−1
Pn ) = Hn−1(Pn,KPn ⊗ TPn) = 0 !!!

E ample ̸⇒ E dual Nakano > 0.

For instance, any compact quotient X = Bn/Γ has T ∗
X ample

and even Griffiths > 0 for the hyperbolic metric, but T ∗
X is

not dual Nakano > 0, otherwise TX would be Nakano < 0 and

H1,0(X ,C) = H0(X ,Ω1
X ⊗ TX ) = H0(X ,Hom(TX ,TX )) ∋ IdTX

would contradict the (dual) Nakano vanishing theorem.
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Positivity thresholds

There are subtle relations between the various positivity concepts.

Theorem (Berndtsson 2009)

E ample ⇒ SmE ⊗ detE Nakano > 0 for every m ∈ N.

Theorem (Liu-Sun-Yang 2013)

E ample ⇒ SmE ⊗ detE dual Nakano > 0 for every m ∈ N.

This leads in a natural way to the following definition.

Definition

Let P = A,G ,N ,N∗ mean the Ampleness / Griffiths / Nakano /
dual Nakano positivity concepts. Let E → X be a vector bundle
such that detE is ample. We let

τP(E ) = inf
{
t ∈ R ; E ⊗ (detE )t >P 0

}
.

Remark. ΘE⊗(detE)t = ΘE + t ΘdetE ⊗ IdE , ΘdetE = TrE ΘE .
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Simple facts about positivity thresholds

Notice that Nakano and dual Nakano positivity are stronger than
Griffiths positivity, the latter being itself stronger than ampleness,
hence we always have

τN(E ) ≥ τG (E ) ≥ τA(E ), τN∗(E ) ≥ τG (E ) ≥ τA(E ).

Moreover, since E ⊗ (detE )−1/r has trivial determinant, we also
have τA(E ) ≥ −1/r .

Proposition

One has τA(E ) = −1/r ⇔ F = E ⊗ (detE )−1/r is numerically flat
(i.e. F , F ∗ both nef), so that E = F ⊗ L where L = (detE )1/r

is ample: we say that E is projectively numerically flat. Then

τN(E ) = τN∗(E ) = τG (E ) = τA(E ) = −1
r
.

Remark

The Griffiths conjecture is equivalent to: E ample ⇒ τG (E ) < 0.
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Monge-Ampère functionals for vector bundles

Definition of the functionals, ΘE ,h 7→ volume (n, n)-form on X :

– If E >N 0, we set ΦN(ΘE ,h) := detTX⊗E (ΘE ,h)
1/r , i.e.

ΦN(ΘE ,h) := det(cjkλµ)
1/r
(j ,λ),(k,µ) idz1 ∧ dz1 ∧ . . . ∧ idzn ∧ dzn.

– If E >N∗ 0, we set ΦN∗(ΘE ,h) := detTX⊗E∗( TΘE ,h)
1/r , i.e.

ΦN∗(ΘE ,h) := det(cjkµλ)
1/r
(j ,λ),(k,µ) idz1 ∧ dz1 ∧ . . . ∧ idzn ∧ dzn.

– If E >G 0, we set

ΦG (ΘE ,h) := inf
|v |h=1

⟨ΘE ,h · v , v⟩n (not differentiable),

ΦG ,s(ΘE ,h) :=

(∫
|v |h=1

(⟨ΘE ,h · v , v⟩n)−s dσ(v)

)−1/s

−→
s→+∞

ΦG (ΘE ,h).

These (n, n)-forms are intrinsic: they do not depend on the choice
of coordinates (zj) on X , nor on the choice of the orthonormal
frame (eλ) on E .
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Main properties of the Monge-Ampère functionals
Coercivity of the ΦP functionals

For P = N ,N∗ or P = (G , s), s ∈ [r − 1,∞],

ΦP(•) prevents degeneration of positivity, i.e.

ΘE ,h ≥P 0 and ΦP(ΘE ,h) > 0 on X =⇒ ΘE ,h >P 0.

Chern class inequality for Monge-Ampère volumes

For any P , we define Monge-Ampère volumes for vector bundles by

MAVolP(E ) = sup
h,ΘE ,h>P0

1

(2π)n

∫
X

ΦP(ΘE ,h).

Then
MAVolP(E ) ≤ 1

n! rn
c1(E )

n.

The equality occurs, with the supremum being a maximum,
if and only if E is projectively flat.

Conjecture

Equality occurs for the sup iff E is numerically projectively flat.
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Proof of the Chern class inequality

Take h with ΘE ,h >P 0, set ω = ΘdetE ,h = TrE ΘE ,h > 0, and let

(λj)1≤j≤nr = eigenvalues of Θ̃E ,h with respect to ω ⊗ h on TX ⊗ E .

The proof is a consequence of the inequality (
∏

λj)
1/nr ≤ 1

nr

∑
λj

between geometric and arithmetic means. For ΦN , we get

1

(2π)n

∫
X

ΦN(ΘE ,h) =

∫
X

(∏
λj

)1/r ωn/n!

(2π)n
≤
∫
X

( 1

nr

∑
λj

)n ωn/n!

(2π)n

≤
∫
X

1

n! rn

(1
n
Trω(TrE ΘE ,h)

)n ωn

(2π)n
=

1

n! rn
c1(E )

n.

Equality occurs iff all eigenvalues λj are equal (and then equal
to 1/r), which means that E is projectively flat.

The proof for ΦN∗ is the same.

The proof for ΦG is based on the concavity of the function
A 7→ (detA)1/n on (n × n)-hermitian matrices.
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Further remarks
In the split case E =

⊕
1≤j≤r Lj and h =

⊕
1≤j≤r hj , the

inequality reads ( ∏
1≤j≤r

c1(Lj)
n

)1/r

≤ r−nc1(E )
n,

with equality iff c1(L1) = · · · = c1(Lr ).
In the split case, it seems natural to conjecture that

MAVolP(E ) =

( ∏
1≤j≤r

c1(Lj)
n

)1/r

,

i.e. that the supremum is reached for split metrics h =
⊕

hj .

We also conjecture that inf
h,ΘE ,h>P0

1

(2π)n

∫
X

ΦP(ΘE ,h) = 0.

(true in the split case).
The Euler-Lagrange equation for the maximizer is complicated
(4th order!). It somehow generalizess the 4th order differential
equation characterizing cscK metrics.
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Approach by Hermitian Yang-Mills equations

Let E → X be a holomorphic vector bundle such that detE is ample.

Use of coercivity + continuity method, with “time” parameter t

Assigning for the unknown h a generalized Monge-Ampère equation

(∗) ΦP(ΘE ,h + t ΘdetE ,det h ⊗ IdE ) = ft > 0

where ft is a positive (n, n)-form, may enforce the P-positivity of
ΘE⊗(detE)t ,h, if that assignment is combined with a continuity
technique from an initial time value t = t0 for which the existence
of a P-positively curved metric h is known.

We then try to decrease t to 0, until we reach ΘE ,h >P 0.

Case r = rankE = 1: reduction to Yau’s theorem

When E is a line bundle and h = h0e
−φ, (∗) is equivalent to the

standard Monge-Ampère equation (ω0 + i∂∂φ)n = f̃t = (1 + t)−nft
where ω0=ΘE ,h0 , which is solvable provided (2π)−n

∫
X
f̃t = c1(E )

n.

J.-P. Demailly, Kang-Tae Kim’s 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles 13/24



Approach by Hermitian Yang-Mills equations

Let E → X be a holomorphic vector bundle such that detE is ample.

Use of coercivity + continuity method, with “time” parameter t

Assigning for the unknown h a generalized Monge-Ampère equation

(∗) ΦP(ΘE ,h + t ΘdetE ,det h ⊗ IdE ) = ft > 0

where ft is a positive (n, n)-form,

may enforce the P-positivity of
ΘE⊗(detE)t ,h, if that assignment is combined with a continuity
technique from an initial time value t = t0 for which the existence
of a P-positively curved metric h is known.

We then try to decrease t to 0, until we reach ΘE ,h >P 0.

Case r = rankE = 1: reduction to Yau’s theorem

When E is a line bundle and h = h0e
−φ, (∗) is equivalent to the

standard Monge-Ampère equation (ω0 + i∂∂φ)n = f̃t = (1 + t)−nft
where ω0=ΘE ,h0 , which is solvable provided (2π)−n

∫
X
f̃t = c1(E )

n.

J.-P. Demailly, Kang-Tae Kim’s 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles 13/24



Approach by Hermitian Yang-Mills equations

Let E → X be a holomorphic vector bundle such that detE is ample.

Use of coercivity + continuity method, with “time” parameter t

Assigning for the unknown h a generalized Monge-Ampère equation

(∗) ΦP(ΘE ,h + t ΘdetE ,det h ⊗ IdE ) = ft > 0

where ft is a positive (n, n)-form, may enforce the P-positivity of
ΘE⊗(detE)t ,h, if that assignment is combined with a continuity
technique from an initial time value t = t0 for which the existence
of a P-positively curved metric h is known.

We then try to decrease t to 0, until we reach ΘE ,h >P 0.

Case r = rankE = 1: reduction to Yau’s theorem

When E is a line bundle and h = h0e
−φ, (∗) is equivalent to the

standard Monge-Ampère equation (ω0 + i∂∂φ)n = f̃t = (1 + t)−nft
where ω0=ΘE ,h0 , which is solvable provided (2π)−n

∫
X
f̃t = c1(E )

n.

J.-P. Demailly, Kang-Tae Kim’s 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles 13/24



Approach by Hermitian Yang-Mills equations

Let E → X be a holomorphic vector bundle such that detE is ample.

Use of coercivity + continuity method, with “time” parameter t

Assigning for the unknown h a generalized Monge-Ampère equation

(∗) ΦP(ΘE ,h + t ΘdetE ,det h ⊗ IdE ) = ft > 0

where ft is a positive (n, n)-form, may enforce the P-positivity of
ΘE⊗(detE)t ,h, if that assignment is combined with a continuity
technique from an initial time value t = t0 for which the existence
of a P-positively curved metric h is known.

We then try to decrease t to 0, until we reach ΘE ,h >P 0.

Case r = rankE = 1: reduction to Yau’s theorem

When E is a line bundle and h = h0e
−φ, (∗) is equivalent to the

standard Monge-Ampère equation (ω0 + i∂∂φ)n = f̃t = (1 + t)−nft
where ω0=ΘE ,h0 , which is solvable provided (2π)−n

∫
X
f̃t = c1(E )

n.

J.-P. Demailly, Kang-Tae Kim’s 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles 13/24



Approach by Hermitian Yang-Mills equations

Let E → X be a holomorphic vector bundle such that detE is ample.

Use of coercivity + continuity method, with “time” parameter t

Assigning for the unknown h a generalized Monge-Ampère equation

(∗) ΦP(ΘE ,h + t ΘdetE ,det h ⊗ IdE ) = ft > 0

where ft is a positive (n, n)-form, may enforce the P-positivity of
ΘE⊗(detE)t ,h, if that assignment is combined with a continuity
technique from an initial time value t = t0 for which the existence
of a P-positively curved metric h is known.

We then try to decrease t to 0, until we reach ΘE ,h >P 0.

Case r = rankE = 1: reduction to Yau’s theorem

When E is a line bundle and h = h0e
−φ, (∗) is equivalent to the

standard Monge-Ampère equation (ω0 + i∂∂φ)n = f̃t = (1 + t)−nft
where ω0=ΘE ,h0 , which is solvable provided (2π)−n

∫
X
f̃t = c1(E )

n.

J.-P. Demailly, Kang-Tae Kim’s 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles 13/24



Recovering an exactly determined differential system

Problem: underdeterminacy of the equation (∗)
For r = rankE > 1, the equation (∗) amounts for only 1 scalar
equation, while there are r 2 functions (hλµ)1≤λ,µ≤r to determine.

Solutions might still exist, but lack uniqueness and a priori bounds.

Mitigation of the problem

In order to recover a well determined system of equations, one
needs an additional “matrix equation” of rank r 2 − 1.

Use of a Hermite-Einstein equation (Donaldson / Uhlenbeck-Yau)

Let ω be a Kähler metric on X and log h the logarithm of the
endomorphism h with respect to a fixed metric h0 on E . Let u◦ the
trace free part of a hermitian endomorphism u. Then ∃!h such
that deth0(h) = 1 and ωn−1 ∧Θ◦

E ,h = −ε log h ωn ∈ Herm◦
h(E ,E ).

This is an equation of rankR r 2 − 1, always solvable for ε > 0 . . .
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Setup of the Yang-Mills differential system
In view of the above, we are led to considering a Yang-Mills
differential system denoted (YMt), t ∈ ]tinf , t0], consisting of a
scalar Monge-Ampère type equation

(YMΦ
t ) ΦP

(
ΘE ,h + t ΘdetE ,det h ⊗ IdE

)
= ft

(
Ω

ωn
h

)β

Ω,

where Ω is a fixed volume form on X , ωh =ΘdetE ,h, ft ∈C∞(X ,R),
ft > 0, β ∈ R; we add a matrix trace free Hermite-Einstein equation

(YM◦
t ) ωn−1

h ∧Θ◦
E ,h = gt ω

n
h , gt ∈ C∞(X ,Herm◦

h(E ,E )).

The reason for introducing a factor ( Ω
ωn
h
)β comes from the following

Theorem 1 (D, 2021 – essentially linear algebra!)

There exist explicit distortion functions βP,h,t in C 0(X ,R+) s.t.
for any metric h on E satisfying ΘE ,h + t ΘdetE ,det h ⊗ IdE >P 0
and any β > β0 = supX βP,h,t , the system of differential equations
(YMt) possesses an elliptic linearization in a C 2 neighborhood of h.
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Expression of the distortion functions
Letting θt(h) = ΘE ,h + t ΘdetE ,det h ⊗ IdE and

θt(h))
cof = cofactor matrix of θ̃t(h) ∈ Herm(TX ⊗ E ),

the distortion functions are given explicitly at each point of X by

βN,h,t =

√
n − 1 + 1

r

|Θ◦
E ,h| |θt(h)cof |
det θt(h)

βN∗,h,t =

√
n − 1 + 1

r

|Θ◦
E ,h| |(Tθt(h))cof |
det(Tθt(h))

,

βG ,s,h,t = (
√
n − 1 + 1) |Θ◦

E ,h|

×

(∫
v∈E
|v |h=1

dσ(v)(
(⟨θt(h) · v , v⟩h)n

)s
)−1

×
∫

v∈E
|v |h=1

n (⟨θt(h) · v , v⟩h)n−1 ∧ ωh dσ(v)(
(⟨θt(h) · v , v⟩h)n

)s+1

where ωh = ΘdetE ,det h.
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but we need ellipticity and local invertibility . . .

Local invertibility of the linearized elliptic operator is needed to
apply the implicit function theorem and get openness for solutions.

Theorem 2 (D, 2021 – local openness of existence for solutions)

Consider the more specific Yang-Mills system (YMt), t ∈ ]tmin, t0]

(YMΦ
t ) ΦP

(
ΘE ,h + t ΘdetE ,det h ⊗ IdE

)
=

(
det ht0
det h

)λ(
Ω

ωn
h

)β

Ω,

(YM◦
t ) ω−n

h (ωn−1
h ∧Θ◦

E ,h) = −εA(det h) (log h)◦,

where A > 0 is any C∞ functional, and log h is computed with
respect to the initial metric ht0 .

Then there exist bounds β0 := supX βP,t,h, ε0(A, β) and λ0(β)
such that for any choice of constants

β > β0, ε > ε0(A, β) and λ > λ0(β),

the system (YMt) possesses an invertible elliptic linearization.
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Very rough sketch of proof of ellipticity/invertibility
The (long, computational) proof consists of analyzing the linearized
system of equations, starting from the curvature tensor formula

ΘE ,h = i∂(h−1∂h) = i∂(h̃−1∂H0 h̃),

where ∂H0s = H−1
0 ∂(H0s) is the (1, 0)-component of the Chern

connection on Hom(E ,E ) associated with H0 = ht0 on E .

Let us recall that the ellipticity of an operator

P : C∞(V ) → C∞(W ), f 7→ P(f ) =
∑

|α|≤m aα(x)D
αf (x)

means the invertibility of the principal symbol

σP(x , ξ) =
∑

|α|=m aα(x) ξ
α ∈ Hom(V ,W )

whenever 0 ̸= ξ ∈ T ∗
X ,x .

For instance, on the torus Rn/Zn, f 7→ Pλ(f ) = −∆f + λf has
an invertible symbol σPλ

(x , ξ) = −|ξ|2, but Pλ is invertible only
when λ avoids the eigenvalues of ∆, e.g. when λ > 0.
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Important remaining points . . .
We have been able to set-up a Yang-Mills differential system
(YMt) that is elliptic invertible, and ensures the existence of
an open time interval ]t1, t0] for which we have uniqueness of
the solution.

We somehow know that the solution persists unless some
distortion occurs (in the sense that supX βP,h,t → +∞, or the
trace free part ratio |Θ◦

E ,h|/(1 + | log h|) explodes at t1).
The latter point might possibly be used (as in the work of
Uhlenbeck-Yau) to get suitable destabilizing subsheaves,
that would e.g. contradict the ampleness assumption if P = G
and t1 ≥ 0.

A natural question is whether one can arrange that the infimum
tinf of times t for which (YMt) has a solution coincides with
the positivity threshold τP(E ), in the case of P-positivity.
For this, we would probably need uniform a priori estimates . . .
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On the Fulton Lazarsfeld inequalities
A fundamental result due to Fulton-Lazarsfeld asserts that if
E → X is an ample vector bundle, then all Schure polynomials
P(c•(E )) in the Chern classes are numerically positive, i.e.∫

Y

P(c•(E )) > 0

for all irreducible cycles Y of the appropriate dimension in X .

Recently, Siarhei Finski has shown

Theorem (Finski 2020)

If (E , h) is a (dual) Nakano positive vector bundle, then all Schur
polynomials P(c•(E , h)) in the Chern forms are pointwise positive
(k , k)-forms (in the sense of the weak positivity of forms).

This is a compelling motivation to investigate the various types of
positivity for vector bundles.
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Further recent results by Siarhei Finski
When E → X is an ample vector bundle, the symmetric powers
SmE have enough sections to generate 1-jets for m ≥ m0 ≫ 1,
and one can immediately derive from there that

E ample ⇒ SmE dual-Nakano positive for m ≥ m0 ≫ 1.

Then it makes sense to wonder whether there is an asymptotic
formula for the monge-Ampère volume MAVolP(S

mE ).
S. Finski obtained more generally an asymptotic formula for the
Monge-Ampère volume of direct images Em = π∗(L

m ⊗ G ) by any
proper morphism π : Y → X of any line bundle (L, hL) > 0 on Y .

Theorem (S. Finski 2020)

Given any volume form dν on X , the direct images satisfy

MAVolN∗(Em, hEm) ∼ mdimX

∫
X

exp

(∫
Y
log
(
ωdimX
H /π∗ν

)
ωdimY∫

Y
c1(L)dimY

)
dν,

where ω = ΘL,hL > 0 on Y , and ωH is its horizontal part.
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The end

Best wishes Kang-Tae !
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László Lempert.

[Fin20a] Finski, S. On characteristic forms of positive vector
bundles, mixed discriminants and pushforward
identities, arXiv:2009.13107.

J.-P. Demailly, Kang-Tae Kim’s 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles 23/24



References (continued)

[Fin20b] Finski, S. On Monge-Ampère volumes of direct images
arXiv:2010.01839.

[LSY13] Liu K., Sun X., Yang, X.: Positivity and vanishing
theorems for ample vector bundles, J. Alg. Geom. 22
(2013) 303—331.

[Pin20] Pingali, V.P.: A vector bundle version of the
Monge-Ampère equation, Adv. in Math. 360 (2020),
40 pages, https://doi.org/10.1016/j.aim.2019.106921.

[UhY86] Uhlenbeck, K., Yau, S.T.: On the existence of
Hermitian-Yang-Mills connections in stable vector
bundles, Comm. Pure and Appl. Math. 39 (1986)
258–293.

[Ume73] Umemura, H.: Some results in the theory of vector
bundles, Nagoya Math. J. 52 (1973), 97–128.

J.-P. Demailly, Kang-Tae Kim’s 65th birthday Conf., 14/01/2022 Monge-Ampère functionals for vector bundles 24/24


