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The goal of this appendix is to relate log canonical thresholds with the α invariant
introduced by G. Tian [Tia87] for the study of the existence of Kähler-Einstein metrics. The
approximation technique of closed positive (1, 1)-currents introduced in [Dem92] is used to
show that the α invariant actually coincides with the log canonical threshold.

Algebraic geometers have been aware of this fact after [DK01] appeared, and several
papers have used it consistently in the latter years (see e.g. [JK01], [BGK05]). However,
it turns out that the required result is stated only in a local analytic form in [DK01], in a
language which may not be easily recognizable by algebraically minded people. Therefore,
we will repair here the lack of a proper reference by stating and proving the statements
required for the applications to projective varieties, e.g. existence of Kähler-Einstein metrics
on Fano varieties and Fano orbifolds.

Usually, in these applications, only the case of the anticanonical line bundle L = −KX

is considered. Here we will consider more generally the case of an arbitrary line bundle L
(or Q-line bundle L) on a complex manifold X , with some additional restrictions which will
be stated later.

Assume that L is equipped with a singular hermitian metric h (see e.g. [Dem90]).
Locally, L admits trivializations θ : L|U ≃ U × C, and on U the metric h is given by a
weight function ϕ such that

‖ξ‖2
h = |ξ|2e−2ϕ(z), z ∈ U, ξ ∈ Lz

when ξ ∈ Lz is identified with a complex number. We are interested in the case where ϕ
is (at the very least) a locally integrable function for the Lebesgue measure, since it is then
possible to compute the curvature form

ΘL,h =
i

π
∂∂ϕ

in the sense of distributions. We have ΘL,h > 0 as a (1, 1)-current if and only if the weights
ϕ are plurisubharmonic functions. In the sequel we will be interested only in that case. Let
us first introduce the concept of complex singularity exponent, following e.g. [Var82, 83],
[ArGV85] and [DK01].

(A.1) Definition. If K is a compact subset of X, we define the complex singularity exponent
cK(h) of the metric h, written locally as h = e−2ϕ, to be the supremum of all positive numbers
c such that hc = e−2cϕ is integrable in a neighborhood of every point z0 ∈ K, with respect to
the Lebesgue measure in holomorphic coordinates centered at z0.
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Now, we introduce a generalized version of Tian’s invariant α, as defined in [Tia87] (see
also [Siu88]).

(A.2) Definition. Assume that X is a compact manifold and that L is a pseudo-effective
line bundle, i.e. L admits a singular hermitian metric h0 with ΘL,h0

> 0. If K is a compact
subset of X, we put

αK(L) = inf
{h,ΘL,h>0}

cK(h)

where h runs over all singular hermitian metrics on L such that ΘL,h > 0.

In algebraic geometry, it is more usual to look instead at linear systems defined by a
family of linearly independent sections σ0, σ1, . . . σN ∈ H0(X,L⊗m). We denote by Σ the
vector subspace generated by these sections and by

|Σ| := P (Σ) ⊂ |mL| := P (H0(X,L⊗m))

the corresponding linear system. Such an (N + 1)-tuple of sections σ = (σj)06j6N defines
a singular hermitian metric h on L by putting in any trivialization

‖ξ‖2
h =

|ξ|2

( ∑
j |σj(z)|

2
)1/m

=
|ξ|2

|σ(z)|2/m
, ξ ∈ Lz,

hence h(z) = |σ(z)|−2/m with ϕ(z) = 1
m log |σ(z)| = 1

2m log
∑
j |σj(z)|

2 as the associated

weight function. Therefore, we are interested in the number cK(|σ|−2/m). In the case of a
single section σ0 (corresponding to a one-point linear system), this is the same as the log
canonical threshold lctK(X, 1

mD) of the associated divisor D, in the notation of Section 1
of [CS08]. We will also use the formal notation lctK(X, 1

m
|Σ|) in the case of a higher

dimensional linear system |Σ| ⊂ |mL|.

Now, recall that the line bundle L is said to be big if the Kodaira-Iitaka dimension κ(L)
equals n = dimC X . The main result of this appendix is

(A.3) Theorem. Let L be a big line bundle on a compact complex manifold X. Then for
every compact set K in X we have

αK(L) = inf
{h,ΘL,h>0}

cK(h) = inf
m∈Z>0

inf
D∈|mL|

lctK

(
X,

1

m
D

)
.

Observe that the inequality

inf
m∈Z>0

inf
D∈|mL|

lctK

(
X,

1

m
D

)
≥ inf

{h,ΘL,h>0}
cK(h)

is trivial, since any divisorD ∈ |mL| gives rise to a singular hermitian metric h. The converse
inequality will follow from the approximation technique of [Dem92] and some elementary
analysis. The proof is parallel to the proof of Theorem 4.2 of [DK01], although the language
used there was somewhat different. In any case, we use again the crucial concept of multiplier
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ideal sheaves : if h is a singular hermitian metric with local plurisubharmonic weights ϕ,
the multiplier ideal sheaf I(h) ⊂ OX (also denoted by I(ϕ)) is the ideal sheaf defined by

I(h)z =
{
f ∈ OX,z ; ∃ a neighborhood V ∋ z such that

∫

V

|f(x)|2e−2ϕ(x)dλ(x) < +∞
}

where λ is the Lebesgue measure. By Nadel [Nad89], this is a coherent analytic sheaf on X .
Theorem (A.3) has a more precise version which can be stated as follows.

(A.4) Theorem. Let L be a line bundle on a compact complex manifold X possessing a
singular hermitian metric h with ΘL,h > εω for some ε > 0 and some smooth positive
definite hermitian (1, 1)-form ω on X. For every real number m > 0, consider the space
Hm = H0(X,L⊗m ⊗ I(hm)) of holomorphic sections σ of L⊗m on X such that

∫

X

|σ|2hmdVω =

∫

X

|σ|2e−2mϕdVω < +∞,

where dVω = 1
m!ω

m is the hermitian volume form. Then for m≫ 1, Hm is a non zero finite
dimensional Hilbert space and we consider the closed positive (1, 1)-current

Tm =
i

2π
∂∂

( 1

2m
log

∑

k

|gm,k|
2
)

=
i

2π
∂∂

( 1

2m
log

∑

k

|gm,k|
2
h

)
+ ΘL,h

where (gm,k)16k6N(m) is an orthonormal basis of Hm. Then :

(i) For every trivialization L|U ≃ U ×C on a cordinate open set U of X and every compact
set K ⊂ U , there are constants C1, C2 > 0 independent of m and ϕ such that

ϕ(z) −
C1

m
6 ψm(z) :=

1

2m
log

∑

k

|gm,k(z)|
2

6 sup
|x−z|<r

ϕ(x) +
1

m
log

C2

rn

for every z ∈ K and r 6
1
2d(K, ∂U). In particular, ψm converges to ϕ pointwise and in

L1
loc topology on Ω when m→ +∞, hence Tm converges weakly to T = ΘL,h.

(ii) The Lelong numbers ν(T, z) = ν(ϕ, z) and ν(Tm, z) = ν(ψm, z) are related by

ν(T, z) −
n

m
6 ν(Tm, z) 6 ν(T, z) for every z ∈ X.

(iii)For every compact set K ⊂ X, the complex singularity exponents of the metrics given
locally by h = e−2ϕ and hm = e−2ψm satisfy

cK(h)−1 −
1

m
6 cK(hm)−1

6 cK(h)−1.

Proof. The major part of the proof is a minor variation of the arguments already explained
in [Dem92] (see also [DK01] Theorem 4.2). We give them here in some detail for the
convenience of the reader.
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(i) We note that
∑

|gm,k(z)|
2 is the square of the norm of the evaluation linear form σ 7→ σ(z)

on Hm, hence

ψm(z) = sup
σ∈B(1)

1

m
log |σ(z)|

where B(1) is the unit ball of Hm. For r 6
1
2d(K, ∂Ω), the mean value inequality applied

to the plurisubharmonic function |σ|2 implies

|σ(z)|2 6
1

πnr2n/n!

∫

|x−z|<r

|σ(x)|2dλ(x)

6
1

πnr2n/n!
exp

(
2m sup

|x−z|<r

ϕ(x)
)∫

Ω

|σ|2e−2mϕdλ.

If we take the supremum over all σ ∈ B(1) we get

ψm(z) 6 sup
|x−z|<r

ϕ(x) +
1

2m
log

1

πnr2n/n!

and the right hand inequality in (i) is proved. Conversely, the Ohsawa-Takegoshi extension
theorem [OhT87], [Ohs88] applied to the 0-dimensional subvariety {z} ⊂ U shows that for
any a ∈ C there is a holomorphic function f on U such that f(z) = a and

∫

U

|f |2e−2mϕdλ 6 C3|a|
2e−2mϕ(z),

where C3 only depends on n and diamU . Now, provided a remains in a compact set
K ⊂ U , we can use a cut-off function θ with support in U and equal to 1 in a neighborhood
of a, and solve the ∂-equation ∂g = ∂(θf) in the L2 space associated with the weight
2mϕ + 2(n + 1)| log |z − a|, that is, the singular hermitian metric h(z)m|z − a|−2(n+1)

on L⊗m. For this, we apply the standard Andreotti-Vesentini-Hörmander L2 estimates
(see e.g. [Dem82] for the required version). This is possible for m > m0 thanks to the
hypothesis that ΘL,h > εω > 0, even if X is non Kähler (X is in any event a Moishezon
variety from our assumptions). The bound m0 depends only on ε and the geometry of a
finite covering of X by compact sets Kj ⊂ Uj , where Uj are coordinate balls (say); it is
independent of the point a and even of the metric h. It follows that g(a) = 0 and therefore
σ = θf − g is a holomorphic section of L⊗m such that

∫

X

|σ|2hmdVω =

∫

X

|σ|2e−2mϕdVω 6 C4

∫

U

|f |2e−2mϕdVω 6 C5|a|
2e−2mϕ(z),

in particular σ ∈ Hm = H0(X,L⊗m ⊗ I(hm)). We fix a such that the right hand side is 1.
This gives the inequality

ψm(z) >
1

m
log |a| = ϕ(z) −

logC5

2m

which is the left hand part of statement (i).
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(ii) The first inequality in (i) implies ν(ψm, z) 6 ν(ϕ, z). In the opposite direction, we find

sup
|x−z|<r

ψm(x) 6 sup
|x−z|<2r

ϕ(x) +
1

m
log

C2

rn
.

Divide by log r < 0 and take the limit as r tends to 0. The quotient by log r of the supremum
of a psh function over B(x, r) tends to the Lelong number at x. Thus we obtain

ν(ψm, x) > ν(ϕ, x) −
n

m
.

(iii) Again, the first inequality (in (i) immediately yields hm 6 C6h, hence cK(hm) > cK(h).
For the converse inequality, since we have c∪Kj

(h) = minj cKj
(h), we can assume without

loss of generality that K is contained in a trivializing open patch U of L. Let us take
c < cK(ψm). Then, by definition, if V ⊂ X is a sufficiently small open neighborhood of K,
the Hölder inequality for the conjugate exponents p = 1 +mc−1 and q = 1 +m−1c implies,
thanks to equality 1

p
= c

mq
,

∫

V

e−2(m/p)ϕdVω =

∫

V

( ∑

16k6N(m)

|gm,k|
2e−2mϕ

)1/p( ∑

16k6N(m)

|gm,k|
2
)−c/mq

dVω

6




∫

X

∑

16k6N(m)

|gm,k|
2e−2mϕdVω




1/p


∫

V

( ∑

16k6N(m)

|gm,k|
2
)−c/m

dVω




1/q

= N(m)1/p




∫

V

( ∑

16k6N(m)

|gm,k|
2
)−c/m

dVω




1/q

< +∞.

From this we infer cK(h) > m/p, i.e., cK(h)−1 6 p/m = 1/m + c−1. As c < cK(ψm) was
arbitrary, we get cK(h)−1 6 1/m+ cK(hm)−1 and the inequalities of (iii) are proved.

Proof of Theorem (A.3). Given a big line bundle L on X , there exists a modification

µ : X̃ → X of X such that X̃ is projective and µ∗L = O(A+E) where A is an ample divisor
and E an effective divisor with rational coefficients. By pushing forward by µ a smooth
metric hA with positive curvature on A, we get a singular hermitian metric h1 on L such
that ΘL,h1

> µ∗ΘA,hA
> εω on X . Then For any δ > 0 and any singular hermitian metric h

on L with ΘL,h > 0, the interpolated metric hδ = hδ1h
1−δ satisfies ΘL,hδ

> δεω. Since h1 is
bounded away from 0, it follows that cK(h) > (1 − δ)cK(hδ) by monotonicity. By theorem
(A.4, iii) applied to hδ, we infer

cK(hδ) = lim
m→+∞

cK(hδ,m),

and we also have

cK(hδ,m) > lctK

( 1

m
Dδ,m

)

for any divisor Dδ,m associated with a section σ ∈ H0(X,L⊗m ⊗ I(hmδ )), since the metric
hδ,m is given by hδ,m = (

∑
k |gm,k|

2)−1/m for an orthornormal basis of such sections. This
clearly implies

cK(h) > lim inf
δ→0

lim inf
m→+∞

lctK

( 1

m
Dδ,m

)
> inf
m∈Z>0

inf
D∈|mL|

lctK

( 1

m
D

)
.
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In the applications, it is frequent to have a finite or compact group G of automorphisms
of X and to look at G-invariant objects, namely G-equivariant metrics on G-equivariant line
bundles L ; in the case of a reductive algebraic group G we simply consider a compact real
form GR instead of G itself.

One then gets an α invariant αG,K(L) by looking only at G-equivariant metrics in
Definition A.2. All contructions made are then G-equivariant, especially Hm ⊂ |mL| is a
G-invariant linear system. For every G-invariant compact set K in X , we thus infer

(A.5) αG,K(L) := inf
{h G-equiv.,ΘL,h>0}

cK(h) = inf
m∈Z>0

inf
|Σ|⊂|mL|, ΣG=Σ

lctK

( 1

m
|Σ|

)
.

When G is a finite group, one can pick for m large enough a G-invariant divisor Dδ,m
associated with a G-invariant section σ, possibly after multiplying m by the order of G.
One then gets the slightly simpler equality

(A.6) αG,K(L) := inf
{h G-equiv.,ΘL,h>0}

cK(h) = inf
m∈Z>0

inf
D∈|mL|G

lctK

( 1

m
D

)
.

In a similar manner, one can work on an orbifold X rather than on a non singular variety.
The L2 techniques work in this setting with almost no change (L2 estimates are essentially
insensitive to singularities, since one can just use an orbifold metric on the open set of
regular points).
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