# Appendix to I. Cheltsov and C. Shramov's article "Log canonical thresholds of smooth Fano threefolds" : On Tian's invariant and log canonical thresholds <br> Jean-Pierre Demailly 

Université de Grenoble I, Institut Fourier

The goal of this appendix is to relate $\log$ canonical thresholds with the $\alpha$ invariant introduced by G. Tian [Tia87] for the study of the existence of Kähler-Einstein metrics. The approximation technique of closed positive ( 1,1 )-currents introduced in [Dem92] is used to show that the $\alpha$ invariant actually coincides with the log canonical threshold.

Algebraic geometers have been aware of this fact after [DK01] appeared, and several papers have used it consistently in the latter years (see e.g. [JK01], [BGK05]). However, it turns out that the required result is stated only in a local analytic form in [DK01], in a language which may not be easily recognizable by algebraically minded people. Therefore, we will repair here the lack of a proper reference by stating and proving the statements required for the applications to projective varieties, e.g. existence of Kähler-Einstein metrics on Fano varieties and Fano orbifolds.

Usually, in these applications, only the case of the anticanonical line bundle $L=-K_{X}$ is considered. Here we will consider more generally the case of an arbitrary line bundle $L$ (or $\mathbb{Q}$-line bundle $L$ ) on a complex manifold $X$, with some additional restrictions which will be stated later.

Assume that $L$ is equipped with a singular hermitian metric $h$ (see e.g. [Dem90]). Locally, $L$ admits trivializations $\theta: L_{\mid U} \simeq U \times \mathbb{C}$, and on $U$ the metric $h$ is given by a weight function $\varphi$ such that

$$
\|\xi\|_{h}^{2}=|\xi|^{2} e^{-2 \varphi(z)}, \quad z \in U, \quad \xi \in L_{z}
$$

when $\xi \in L_{z}$ is identified with a complex number. We are interested in the case where $\varphi$ is (at the very least) a locally integrable function for the Lebesgue measure, since it is then possible to compute the curvature form

$$
\Theta_{L, h}=\frac{i}{\pi} \partial \bar{\partial} \varphi
$$

in the sense of distributions. We have $\Theta_{L, h} \geqslant 0$ as a $(1,1)$-current if and only if the weights $\varphi$ are plurisubharmonic functions. In the sequel we will be interested only in that case. Let us first introduce the concept of complex singularity exponent, following e.g. [Var82, 83], [ArGV85] and [DK01].
(A.1) Definition. If $K$ is a compact subset of $X$, we define the complex singularity exponent $c_{K}(h)$ of the metric $h$, written locally as $h=e^{-2 \varphi}$, to be the supremum of all positive numbers $c$ such that $h^{c}=e^{-2 c \varphi}$ is integrable in a neighborhood of every point $z_{0} \in K$, with respect to the Lebesgue measure in holomorphic coordinates centered at $z_{0}$.

Now, we introduce a generalized version of Tian's invariant $\alpha$, as defined in [Tia87] (see also [Siu88]).
(A.2) Definition. Assume that $X$ is a compact manifold and that $L$ is a pseudo-effective line bundle, i.e. $L$ admits a singular hermitian metric $h_{0}$ with $\Theta_{L, h_{0}} \geqslant 0$. If $K$ is a compact subset of $X$, we put

$$
\alpha_{K}(L)=\inf _{\left\{h, \Theta_{L, h} \geqslant 0\right\}} c_{K}(h)
$$

where $h$ runs over all singular hermitian metrics on $L$ such that $\Theta_{L, h} \geqslant 0$.
In algebraic geometry, it is more usual to look instead at linear systems defined by a family of linearly independent sections $\sigma_{0}, \sigma_{1}, \ldots \sigma_{N} \in H^{0}\left(X, L^{\otimes m}\right)$. We denote by $\Sigma$ the vector subspace generated by these sections and by

$$
|\Sigma|:=P(\Sigma) \subset|m L|:=P\left(H^{0}\left(X, L^{\otimes m}\right)\right)
$$

the corresponding linear system. Such an $(N+1)$-tuple of sections $\sigma=\left(\sigma_{j}\right)_{0 \leqslant j \leqslant N}$ defines a singular hermitian metric $h$ on $L$ by putting in any trivialization

$$
\|\xi\|_{h}^{2}=\frac{|\xi|^{2}}{\left(\sum_{j}\left|\sigma_{j}(z)\right|^{2}\right)^{1 / m}}=\frac{|\xi|^{2}}{|\sigma(z)|^{2 / m}}, \quad \xi \in L_{z}
$$

hence $h(z)=|\sigma(z)|^{-2 / m}$ with $\varphi(z)=\frac{1}{m} \log |\sigma(z)|=\frac{1}{2 m} \log \sum_{j}\left|\sigma_{j}(z)\right|^{2}$ as the associated weight function. Therefore, we are interested in the number $c_{K}\left(|\sigma|^{-2 / m}\right)$. In the case of a single section $\sigma_{0}$ (corresponding to a one-point linear system), this is the same as the log canonical threshold $\operatorname{lct}_{K}\left(X, \frac{1}{m} D\right)$ of the associated divisor $D$, in the notation of Section 1 of [CS08]. We will also use the formal notation $\operatorname{lct}_{K}\left(X, \frac{1}{m}|\Sigma|\right)$ in the case of a higher dimensional linear system $|\Sigma| \subset|m L|$.

Now, recall that the line bundle $L$ is said to be big if the Kodaira-Iitaka dimension $\kappa(L)$ equals $n=\operatorname{dim}_{\mathbb{C}} X$. The main result of this appendix is
(A.3) Theorem. Let $L$ be a big line bundle on a compact complex manifold $X$. Then for every compact set $K$ in $X$ we have

$$
\alpha_{K}(L)=\inf _{\left\{h, \Theta_{L, h} \geqslant 0\right\}} c_{K}(h)=\inf _{m \in \mathbb{Z}>0} \inf _{D \in|m L|} \operatorname{lct}_{K}\left(X, \frac{1}{m} D\right) .
$$

Observe that the inequality

$$
\inf _{m \in \mathbb{Z}>0} \inf _{D \in|m L|} \operatorname{lct}_{K}\left(X, \frac{1}{m} D\right) \geq \inf _{\left\{h, \Theta_{L, h} \geqslant 0\right\}} c_{K}(h)
$$

is trivial, since any divisor $D \in|m L|$ gives rise to a singular hermitian metric $h$. The converse inequality will follow from the approximation technique of [Dem92] and some elementary analysis. The proof is parallel to the proof of Theorem 4.2 of [DK01], although the language used there was somewhat different. In any case, we use again the crucial concept of multiplier
ideal sheaves: if $h$ is a singular hermitian metric with local plurisubharmonic weights $\varphi$, the multiplier ideal sheaf $\mathcal{J}(h) \subset \mathcal{O}_{X}$ (also denoted by $\mathcal{J}(\varphi)$ ) is the ideal sheaf defined by

$$
\mathcal{J}(h)_{z}=\left\{f \in \mathcal{O}_{X, z} ; \exists \text { a neighborhood } V \ni z \text { such that } \int_{V}|f(x)|^{2} e^{-2 \varphi(x)} d \lambda(x)<+\infty\right\}
$$

where $\lambda$ is the Lebesgue measure. By Nadel [Nad89], this is a coherent analytic sheaf on $X$. Theorem (A.3) has a more precise version which can be stated as follows.
(A.4) Theorem. Let $L$ be a line bundle on a compact complex manifold $X$ possessing a singular hermitian metric $h$ with $\Theta_{L, h} \geqslant \varepsilon \omega$ for some $\varepsilon>0$ and some smooth positive definite hermitian $(1,1)$-form $\omega$ on $X$. For every real number $m>0$, consider the space $\mathcal{H}_{m}=H^{0}\left(X, L^{\otimes m} \otimes \mathcal{J}\left(h^{m}\right)\right)$ of holomorphic sections $\sigma$ of $L^{\otimes m}$ on $X$ such that

$$
\int_{X}|\sigma|_{h^{m}}^{2} d V_{\omega}=\int_{X}|\sigma|^{2} e^{-2 m \varphi} d V_{\omega}<+\infty
$$

where $d V_{\omega}=\frac{1}{m!} \omega^{m}$ is the hermitian volume form. Then for $m \gg 1, \mathcal{H}_{m}$ is a non zero finite dimensional Hilbert space and we consider the closed positive (1,1)-current

$$
T_{m}=\frac{i}{2 \pi} \partial \bar{\partial}\left(\frac{1}{2 m} \log \sum_{k}\left|g_{m, k}\right|^{2}\right)=\frac{i}{2 \pi} \partial \bar{\partial}\left(\frac{1}{2 m} \log \sum_{k}\left|g_{m, k}\right|_{h}^{2}\right)+\Theta_{L, h}
$$

where $\left(g_{m, k}\right)_{1 \leqslant k \leqslant N(m)}$ is an orthonormal basis of $\mathcal{H}_{m}$. Then:
(i) For every trivialization $L_{\mid U} \simeq U \times \mathbb{C}$ on a cordinate open set $U$ of $X$ and every compact set $K \subset U$, there are constants $C_{1}, C_{2}>0$ independent of $m$ and $\varphi$ such that

$$
\varphi(z)-\frac{C_{1}}{m} \leqslant \psi_{m}(z):=\frac{1}{2 m} \log \sum_{k}\left|g_{m, k}(z)\right|^{2} \leqslant \sup _{|x-z|<r} \varphi(x)+\frac{1}{m} \log \frac{C_{2}}{r^{n}}
$$

for every $z \in K$ and $r \leqslant \frac{1}{2} d(K, \partial U)$. In particular, $\psi_{m}$ converges to $\varphi$ pointwise and in $L_{\text {loc }}^{1}$ topology on $\Omega$ when $m \rightarrow+\infty$, hence $T_{m}$ converges weakly to $T=\Theta_{L, h}$.
(ii) The Lelong numbers $\nu(T, z)=\nu(\varphi, z)$ and $\nu\left(T_{m}, z\right)=\nu\left(\psi_{m}, z\right)$ are related by

$$
\nu(T, z)-\frac{n}{m} \leqslant \nu\left(T_{m}, z\right) \leqslant \nu(T, z) \quad \text { for every } z \in X
$$

(iii) For every compact set $K \subset X$, the complex singularity exponents of the metrics given locally by $h=e^{-2 \varphi}$ and $h_{m}=e^{-2 \psi_{m}}$ satisfy

$$
c_{K}(h)^{-1}-\frac{1}{m} \leqslant c_{K}\left(h_{m}\right)^{-1} \leqslant c_{K}(h)^{-1} .
$$

Proof. The major part of the proof is a minor variation of the arguments already explained in [Dem92] (see also [DK01] Theorem 4.2). We give them here in some detail for the convenience of the reader.
(i) We note that $\sum\left|g_{m, k}(z)\right|^{2}$ is the square of the norm of the evaluation linear form $\sigma \mapsto \sigma(z)$ on $\mathcal{H}_{m}$, hence

$$
\psi_{m}(z)=\sup _{\sigma \in B(1)} \frac{1}{m} \log |\sigma(z)|
$$

where $B(1)$ is the unit ball of $\mathcal{H}_{m}$. For $r \leqslant \frac{1}{2} d(K, \partial \Omega)$, the mean value inequality applied to the plurisubharmonic function $|\sigma|^{2}$ implies

$$
\begin{aligned}
|\sigma(z)|^{2} & \leqslant \frac{1}{\pi^{n} r^{2 n} / n!} \int_{|x-z|<r}|\sigma(x)|^{2} d \lambda(x) \\
& \leqslant \frac{1}{\pi^{n} r^{2 n} / n!} \exp \left(2 m \sup _{|x-z|<r} \varphi(x)\right) \int_{\Omega}|\sigma|^{2} e^{-2 m \varphi} d \lambda
\end{aligned}
$$

If we take the supremum over all $\sigma \in B(1)$ we get

$$
\psi_{m}(z) \leqslant \sup _{|x-z|<r} \varphi(x)+\frac{1}{2 m} \log \frac{1}{\pi^{n} r^{2 n} / n!}
$$

and the right hand inequality in (i) is proved. Conversely, the Ohsawa-Takegoshi extension theorem [OhT87], [Ohs88] applied to the 0-dimensional subvariety $\{z\} \subset U$ shows that for any $a \in \mathbb{C}$ there is a holomorphic function $f$ on $U$ such that $f(z)=a$ and

$$
\int_{U}|f|^{2} e^{-2 m \varphi} d \lambda \leqslant C_{3}|a|^{2} e^{-2 m \varphi(z)}
$$

where $C_{3}$ only depends on $n$ and diam $U$. Now, provided $a$ remains in a compact set $K \subset U$, we can use a cut-off function $\theta$ with support in $U$ and equal to 1 in a neighborhood of $a$, and solve the $\bar{\partial}$-equation $\bar{\partial} g=\bar{\partial}(\theta f)$ in the $L^{2}$ space associated with the weight $2 m \varphi+2(n+1)|\log | z-a \mid$, that is, the singular hermitian metric $h(z)^{m}|z-a|^{-2(n+1)}$ on $L^{\otimes m}$. For this, we apply the standard Andreotti-Vesentini-Hörmander $L^{2}$ estimates (see e.g. [Dem82] for the required version). This is possible for $m \geqslant m_{0}$ thanks to the hypothesis that $\Theta_{L, h} \geqslant \varepsilon \omega>0$, even if $X$ is non Kähler ( $X$ is in any event a Moishezon variety from our assumptions). The bound $m_{0}$ depends only on $\varepsilon$ and the geometry of a finite covering of $X$ by compact sets $K_{j} \subset U_{j}$, where $U_{j}$ are coordinate balls (say); it is independent of the point $a$ and even of the metric $h$. It follows that $g(a)=0$ and therefore $\sigma=\theta f-g$ is a holomorphic section of $L^{\otimes m}$ such that

$$
\int_{X}|\sigma|_{h^{m}}^{2} d V_{\omega}=\int_{X}|\sigma|^{2} e^{-2 m \varphi} d V_{\omega} \leqslant C_{4} \int_{U}|f|^{2} e^{-2 m \varphi} d V_{\omega} \leqslant C_{5}|a|^{2} e^{-2 m \varphi(z)}
$$

in particular $\sigma \in \mathcal{H}_{m}=H^{0}\left(X, L^{\otimes m} \otimes \mathcal{J}\left(h^{m}\right)\right)$. We fix $a$ such that the right hand side is 1 . This gives the inequality

$$
\psi_{m}(z) \geqslant \frac{1}{m} \log |a|=\varphi(z)-\frac{\log C_{5}}{2 m}
$$

which is the left hand part of statement (i).
(ii) The first inequality in (i) implies $\nu\left(\psi_{m}, z\right) \leqslant \nu(\varphi, z)$. In the opposite direction, we find

$$
\sup _{|x-z|<r} \psi_{m}(x) \leqslant \sup _{|x-z|<2 r} \varphi(x)+\frac{1}{m} \log \frac{C_{2}}{r^{n}} .
$$

Divide by $\log r<0$ and take the limit as $r$ tends to 0 . The quotient by $\log r$ of the supremum of a psh function over $B(x, r)$ tends to the Lelong number at $x$. Thus we obtain

$$
\nu\left(\psi_{m}, x\right) \geqslant \nu(\varphi, x)-\frac{n}{m} .
$$

(iii) Again, the first inequality (in (i) immediately yields $h_{m} \leqslant C_{6} h$, hence $c_{K}\left(h_{m}\right) \geqslant c_{K}(h)$. For the converse inequality, since we have $c_{\cup K_{j}}(h)=\min _{j} c_{K_{j}}(h)$, we can assume without loss of generality that $K$ is contained in a trivializing open patch $U$ of $L$. Let us take $c<c_{K}\left(\psi_{m}\right)$. Then, by definition, if $V \subset X$ is a sufficiently small open neighborhood of $K$, the Hölder inequality for the conjugate exponents $p=1+m c^{-1}$ and $q=1+m^{-1} c$ implies, thanks to equality $\frac{1}{p}=\frac{c}{m q}$,

$$
\begin{aligned}
& \int_{V} e^{-2(m / p) \varphi} d V_{\omega}=\int_{V}\left(\sum_{1 \leqslant k \leqslant N(m)}\left|g_{m, k}\right|^{2} e^{-2 m \varphi}\right)^{1 / p}\left(\sum_{1 \leqslant k \leqslant N(m)}\left|g_{m, k}\right|^{2}\right)^{-c / m q} d V_{\omega} \\
& \quad \leqslant\left(\int_{X} \sum_{1 \leqslant k \leqslant N(m)}\left|g_{m, k}\right|^{2} e^{-2 m \varphi} d V_{\omega}\right)^{1 / p}\left(\int_{V}\left(\sum_{1 \leqslant k \leqslant N(m)}\left|g_{m, k}\right|^{2}\right)^{-c / m} d V_{\omega}\right)^{1 / q} \\
& \quad=N(m)^{1 / p}\left(\int_{V}\left(\sum_{1 \leqslant k \leqslant N(m)}\left|g_{m, k}\right|^{2}\right)^{-c / m} d V_{\omega}\right)^{1 / q}<+\infty .
\end{aligned}
$$

From this we infer $c_{K}(h) \geqslant m / p$, i.e., $c_{K}(h)^{-1} \leqslant p / m=1 / m+c^{-1}$. As $c<c_{K}\left(\psi_{m}\right)$ was arbitrary, we get $c_{K}(h)^{-1} \leqslant 1 / m+c_{K}\left(h_{m}\right)^{-1}$ and the inequalities of (iii) are proved.

Proof of Theorem (A.3). Given a big line bundle $L$ on $X$, there exists a modification $\mu: \widetilde{X} \rightarrow X$ of $X$ such that $\widetilde{X}$ is projective and $\mu^{*} L=\mathcal{O}(A+E)$ where $A$ is an ample divisor and $E$ an effective divisor with rational coefficients. By pushing forward by $\mu$ a smooth metric $h_{A}$ with positive curvature on $A$, we get a singular hermitian metric $h_{1}$ on $L$ such that $\Theta_{L, h_{1}} \geqslant \mu_{*} \Theta_{A, h_{A}} \geqslant \varepsilon \omega$ on $X$. Then For any $\delta>0$ and any singular hermitian metric $h$ on $L$ with $\Theta_{L, h} \geqslant 0$, the interpolated metric $h_{\delta}=h_{1}^{\delta} h^{1-\delta}$ satisfies $\Theta_{L, h_{\delta}} \geqslant \delta \varepsilon \omega$. Since $h_{1}$ is bounded away from 0 , it follows that $c_{K}(h) \geqslant(1-\delta) c_{K}\left(h_{\delta}\right)$ by monotonicity. By theorem (A.4, iii) applied to $h_{\delta}$, we infer

$$
c_{K}\left(h_{\delta}\right)=\lim _{m \rightarrow+\infty} c_{K}\left(h_{\delta, m}\right)
$$

and we also have

$$
c_{K}\left(h_{\delta, m}\right) \geqslant \operatorname{lct}_{K}\left(\frac{1}{m} D_{\delta, m}\right)
$$

for any divisor $D_{\delta, m}$ associated with a section $\sigma \in H^{0}\left(X, L^{\otimes m} \otimes \mathcal{J}\left(h_{\delta}^{m}\right)\right)$, since the metric $h_{\delta, m}$ is given by $h_{\delta, m}=\left(\sum_{k}\left|g_{m, k}\right|^{2}\right)^{-1 / m}$ for an orthornormal basis of such sections. This clearly implies

$$
c_{K}(h) \geqslant \liminf _{\delta \rightarrow 0} \liminf _{m \rightarrow+\infty} \operatorname{lct}_{K}\left(\frac{1}{m} D_{\delta, m}\right) \geqslant \inf _{m \in \mathbb{Z}>0} \inf _{D \in|m L|} \operatorname{lct}_{K}\left(\frac{1}{m} D\right) .
$$

In the applications, it is frequent to have a finite or compact group $G$ of automorphisms of $X$ and to look at $G$-invariant objects, namely $G$-equivariant metrics on $G$-equivariant line bundles $L$; in the case of a reductive algebraic group $G$ we simply consider a compact real form $G^{\mathbb{R}}$ instead of $G$ itself.

One then gets an $\alpha$ invariant $\alpha_{G, K}(L)$ by looking only at $G$-equivariant metrics in Definition A.2. All contructions made are then $G$-equivariant, especially $\mathcal{H}_{m} \subset|m L|$ is a $G$-invariant linear system. For every $G$-invariant compact set $K$ in $X$, we thus infer

$$
\begin{equation*}
\alpha_{G, K}(L):=\inf _{\left\{h G \text {-equiv., } \Theta_{L, h} \geqslant 0\right\}} c_{K}(h)=\inf _{m \in \mathbb{Z}>0} \inf _{|\Sigma| \subset|m L|, \Sigma^{G}=\Sigma} \operatorname{lct}_{K}\left(\frac{1}{m}|\Sigma|\right) . \tag{A.5}
\end{equation*}
$$

When $G$ is a finite group, one can pick for $m$ large enough a $G$-invariant divisor $D_{\delta, m}$ associated with a $G$-invariant section $\sigma$, possibly after multiplying $m$ by the order of $G$. One then gets the slightly simpler equality

$$
\begin{equation*}
\alpha_{G, K}(L):=\inf _{\left\{h G \text {-equiv., } \Theta_{L, h} \geqslant 0\right\}} c_{K}(h)=\inf _{m \in \mathbb{Z}_{>0}} \inf _{D \in|m L|^{G}} \operatorname{lct}_{K}\left(\frac{1}{m} D\right) . \tag{A.6}
\end{equation*}
$$

In a similar manner, one can work on an orbifold $X$ rather than on a non singular variety. The $L^{2}$ techniques work in this setting with almost no change ( $L^{2}$ estimates are essentially insensitive to singularities, since one can just use an orbifold metric on the open set of regular points).

## References

[ArGV85] V.I. Arnold, S.M. Gusein-Zade and A.N. Varchenko; Singularities of Differentiable Maps; Progress in Math., Birkhäuser (1985).
[Aub78] T. Aubin: Equations du type Monge-Ampère sur les variétés kählériennes compactes; C.R. Acad. Sci. Paris Ser. A 283 (1976), 119-121; Bull. Sci. Math. 102 (1978), 63-95.
[BGK05] Ch. P. Boyer, K. Galicki, J. Kollár: Einstein Metrics on Spheres; Annals of Math. 162 (2005), 557-580.
[Dem82] J.-P. Demailly: Estimations $L^{2}$ pour l'opérateur $\bar{\partial}$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète; Ann. Sc. École Norm. Sup. 4e Sér. 15 (1982) 457-511.
[Dem90] J.-P. Demailly: Singular hermitian metrics on positive line bundles; Proc. Conf. Complex algebraic varieties (Bayreuth, April 2-6, 1990), edited by K. Hulek, T. Peternell, M. Schneider, F. Schreyer, Lecture Notes in Math., Vol. 1507, Springer-Verlag, Berlin, (1992).
[Dem92] J.-P. Demailly: Regularization of closed positive currents and Intersection Theory; J. Alg. Geom. 1 (1992), 361-409.
[DK01] J.-P. Demailly and J. Kollár: Semicontinuity of complex singularity exponents and KählerEinstein metrics on Fano orbifoldsmath.AG/9910118; Ann. Ec. Norm. Sup. 34 (2001) 525-556.
[JK01] J.M. Johnson, J. Kollár: Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces; Ann. Inst. Fourier 51 (2001), 69-79.
[Kol97] J. Kollár: Singularities of pairs, Algebraic Geometry, Santa Cruz, 1995; Proceedings of Symposia in Pure Math. vol. 62, AMS, 1997, pages 221-287.
[Nad89] A.M. Nadel: Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature; Proc. Nat. Acad. Sci. U.S.A., 86 (1989) 7299-7300 and Annals of Math. 132 (1990), 549-596.
[OhT87] T. Ohsawa and K. Takegoshi: On the extension of $L^{2}$ holomorphic functions; Math. Zeitschrift 195 (1987) 197-204.
[Ohs88] T. Ohsawa: On the extension of $L^{2}$ holomorphic functions, II; Publ. RIMS, Kyoto Univ. 24 (1988), 265-275.
[Siu88] Y.T. Siu: The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group; Ann. of Math. 127 (1988), 585-627.
[Tia87] G. Tian: On Kähler-Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$; Invent. Math. 89 (1987), 225-246.
[Var82] A.N. Varchenko; Complex exponents of a singularity do not change along the stratum $\mu=$ constant; Functional Anal. Appl. 16 (1982), 1-9.
[Var83] A.N. Varchenko; Semi-continuity of the complex singularity index; Functional Anal. Appl. 17 (1983), 307-308.
(June 12, 2008; printed on June 12, 2008)

