Appendix to I. Cheltsov and C. Shramov's article "Log canonical thresholds of smooth Fano threefolds" : On Tian's invariant and log canonical thresholds

Jean-Pierre Demailly

Université de Grenoble I, Institut Fourier

The goal of this appendix is to relate log canonical thresholds with the α invariant introduced by G. Tian [Tia87] for the study of the existence of Kähler-Einstein metrics. The approximation technique of closed positive (1, 1)-currents introduced in [Dem92] is used to show that the α invariant actually coincides with the log canonical threshold.

Algebraic geometers have been aware of this fact after [DK01] appeared, and several papers have used it consistently in the latter years (see e.g. [JK01], [BGK05]). However, it turns out that the required result is stated only in a local analytic form in [DK01], in a language which may not be easily recognizable by algebraically minded people. Therefore, we will repair here the lack of a proper reference by stating and proving the statements required for the applications to projective varieties, e.g. existence of Kähler-Einstein metrics on Fano varieties and Fano orbifolds.

Usually, in these applications, only the case of the anticanonical line bundle $L = -K_X$ is considered. Here we will consider more generally the case of an arbitrary line bundle L (or \mathbb{Q} -line bundle L) on a complex manifold X, with some additional restrictions which will be stated later.

Assume that L is equipped with a singular hermitian metric h (see e.g. [Dem90]). Locally, L admits trivializations $\theta : L_{|U} \simeq U \times \mathbb{C}$, and on U the metric h is given by a weight function φ such that

$$\|\xi\|_{h}^{2} = |\xi|^{2} e^{-2\varphi(z)}, \qquad z \in U, \ \xi \in L_{z}$$

when $\xi \in L_z$ is identified with a complex number. We are interested in the case where φ is (at the very least) a locally integrable function for the Lebesgue measure, since it is then possible to compute the curvature form

$$\Theta_{L,h} = \frac{i}{\pi} \partial \overline{\partial} \varphi$$

in the sense of distributions. We have $\Theta_{L,h} \ge 0$ as a (1, 1)-current if and only if the weights φ are plurisubharmonic functions. In the sequel we will be interested only in that case. Let us first introduce the concept of complex singularity exponent, following e.g. [Var82, 83], [ArGV85] and [DK01].

(A.1) Definition. If K is a compact subset of X, we define the complex singularity exponent $c_K(h)$ of the metric h, written locally as $h = e^{-2\varphi}$, to be the supremum of all positive numbers c such that $h^c = e^{-2c\varphi}$ is integrable in a neighborhood of every point $z_0 \in K$, with respect to the Lebesgue measure in holomorphic coordinates centered at z_0 .

Now, we introduce a generalized version of Tian's invariant α , as defined in [Tia87] (see also [Siu88]).

(A.2) Definition. Assume that X is a compact manifold and that L is a pseudo-effective line bundle, i.e. L admits a singular hermitian metric h_0 with $\Theta_{L,h_0} \ge 0$. If K is a compact subset of X, we put

$$\alpha_K(L) = \inf_{\{h, \Theta_{L,h} \ge 0\}} c_K(h)$$

where h runs over all singular hermitian metrics on L such that $\Theta_{L,h} \ge 0$.

In algebraic geometry, it is more usual to look instead at linear systems defined by a family of linearly independent sections $\sigma_0, \sigma_1, \ldots, \sigma_N \in H^0(X, L^{\otimes m})$. We denote by Σ the vector subspace generated by these sections and by

$$|\Sigma| := P(\Sigma) \subset |mL| := P(H^0(X, L^{\otimes m}))$$

the corresponding linear system. Such an (N + 1)-tuple of sections $\sigma = (\sigma_j)_{0 \leq j \leq N}$ defines a singular hermitian metric h on L by putting in any trivialization

$$\|\xi\|_h^2 = \frac{|\xi|^2}{\left(\sum_j |\sigma_j(z)|^2\right)^{1/m}} = \frac{|\xi|^2}{|\sigma(z)|^{2/m}}, \qquad \xi \in L_z,$$

hence $h(z) = |\sigma(z)|^{-2/m}$ with $\varphi(z) = \frac{1}{m} \log |\sigma(z)| = \frac{1}{2m} \log \sum_j |\sigma_j(z)|^2$ as the associated weight function. Therefore, we are interested in the number $c_K(|\sigma|^{-2/m})$. In the case of a single section σ_0 (corresponding to a one-point linear system), this is the same as the log canonical threshold $\operatorname{lct}_K(X, \frac{1}{m}D)$ of the associated divisor D, in the notation of Section 1 of [CS08]. We will also use the formal notation $\operatorname{lct}_K(X, \frac{1}{m}|\Sigma|)$ in the case of a higher dimensional linear system $|\Sigma| \subset |mL|$.

Now, recall that the line bundle L is said to be *big* if the Kodaira-Iitaka dimension $\kappa(L)$ equals $n = \dim_{\mathbb{C}} X$. The main result of this appendix is

(A.3) Theorem. Let L be a big line bundle on a compact complex manifold X. Then for every compact set K in X we have

$$\alpha_K(L) = \inf_{\{h, \Theta_{L,h} \ge 0\}} c_K(h) = \inf_{m \in \mathbb{Z}_{>0}} \inf_{D \in |mL|} \operatorname{lct}_K\left(X, \frac{1}{m}D\right).$$

Observe that the inequality

$$\inf_{m \in \mathbb{Z}_{>0}} \inf_{D \in |mL|} \operatorname{lct}_{K} \left(X, \frac{1}{m} D \right) \ge \inf_{\{h, \Theta_{L,h} \ge 0\}} c_{K}(h)$$

is trivial, since any divisor $D \in |mL|$ gives rise to a singular hermitian metric h. The converse inequality will follow from the approximation technique of [Dem92] and some elementary analysis. The proof is parallel to the proof of Theorem 4.2 of [DK01], although the language used there was somewhat different. In any case, we use again the crucial concept of multiplier ideal sheaves : if h is a singular hermitian metric with local plurisubharmonic weights φ , the multiplier ideal sheaf $\mathfrak{I}(h) \subset \mathfrak{O}_X$ (also denoted by $\mathfrak{I}(\varphi)$) is the ideal sheaf defined by

$$\Im(h)_z = \left\{ f \in \mathcal{O}_{X,z} \, ; \, \exists \text{ a neighborhood } V \ni z \text{ such that } \int_V |f(x)|^2 e^{-2\varphi(x)} d\lambda(x) < +\infty \right\}$$

where λ is the Lebesgue measure. By Nadel [Nad89], this is a coherent analytic sheaf on X. Theorem (A.3) has a more precise version which can be stated as follows.

(A.4) Theorem. Let L be a line bundle on a compact complex manifold X possessing a singular hermitian metric h with $\Theta_{L,h} \geq \varepsilon \omega$ for some $\varepsilon > 0$ and some smooth positive definite hermitian (1,1)-form ω on X. For every real number m > 0, consider the space $\mathcal{H}_m = H^0(X, L^{\otimes m} \otimes \mathfrak{I}(h^m))$ of holomorphic sections σ of $L^{\otimes m}$ on X such that

$$\int_X |\sigma|_{h^m}^2 dV_\omega = \int_X |\sigma|^2 e^{-2m\varphi} dV_\omega < +\infty,$$

where $dV_{\omega} = \frac{1}{m!} \omega^m$ is the hermitian volume form. Then for $m \gg 1$, \mathcal{H}_m is a non zero finite dimensional Hilbert space and we consider the closed positive (1, 1)-current

$$T_m = \frac{i}{2\pi} \partial \overline{\partial} \left(\frac{1}{2m} \log \sum_k |g_{m,k}|^2 \right) = \frac{i}{2\pi} \partial \overline{\partial} \left(\frac{1}{2m} \log \sum_k |g_{m,k}|_h^2 \right) + \Theta_{L,h}$$

where $(g_{m,k})_{1 \leq k \leq N(m)}$ is an orthonormal basis of \mathcal{H}_m . Then:

(i) For every trivialization $L_{|U} \simeq U \times \mathbb{C}$ on a cordinate open set U of X and every compact set $K \subset U$, there are constants $C_1, C_2 > 0$ independent of m and φ such that

$$\varphi(z) - \frac{C_1}{m} \leqslant \psi_m(z) := \frac{1}{2m} \log \sum_k |g_{m,k}(z)|^2 \leqslant \sup_{|x-z| < r} \varphi(x) + \frac{1}{m} \log \frac{C_2}{r^n}$$

for every $z \in K$ and $r \leq \frac{1}{2}d(K, \partial U)$. In particular, ψ_m converges to φ pointwise and in L^1_{loc} topology on Ω when $m \to +\infty$, hence T_m converges weakly to $T = \Theta_{L,h}$.

(ii) The Lelong numbers $\nu(T, z) = \nu(\varphi, z)$ and $\nu(T_m, z) = \nu(\psi_m, z)$ are related by

$$u(T,z) - \frac{n}{m} \leq \nu(T_m,z) \leq \nu(T,z) \quad \text{for every } z \in X.$$

(iii) For every compact set $K \subset X$, the complex singularity exponents of the metrics given locally by $h = e^{-2\varphi}$ and $h_m = e^{-2\psi_m}$ satisfy

$$c_K(h)^{-1} - \frac{1}{m} \leq c_K(h_m)^{-1} \leq c_K(h)^{-1}.$$

Proof. The major part of the proof is a minor variation of the arguments already explained in [Dem92] (see also [DK01] Theorem 4.2). We give them here in some detail for the convenience of the reader. (i) We note that $\sum |g_{m,k}(z)|^2$ is the square of the norm of the evaluation linear form $\sigma \mapsto \sigma(z)$ on \mathcal{H}_m , hence

$$\psi_m(z) = \sup_{\sigma \in B(1)} \frac{1}{m} \log |\sigma(z)|$$

where B(1) is the unit ball of \mathcal{H}_m . For $r \leq \frac{1}{2}d(K,\partial\Omega)$, the mean value inequality applied to the plurisubharmonic function $|\sigma|^2$ implies

$$\begin{aligned} |\sigma(z)|^2 &\leqslant \frac{1}{\pi^n r^{2n}/n!} \int_{|x-z| < r} |\sigma(x)|^2 d\lambda(x) \\ &\leqslant \frac{1}{\pi^n r^{2n}/n!} \exp\left(2m \sup_{|x-z| < r} \varphi(x)\right) \int_{\Omega} |\sigma|^2 e^{-2m\varphi} d\lambda. \end{aligned}$$

If we take the supremum over all $\sigma \in B(1)$ we get

$$\psi_m(z) \leqslant \sup_{|x-z| < r} \varphi(x) + \frac{1}{2m} \log \frac{1}{\pi^n r^{2n}/n!}$$

and the right hand inequality in (i) is proved. Conversely, the Ohsawa-Takegoshi extension theorem [OhT87], [Ohs88] applied to the 0-dimensional subvariety $\{z\} \subset U$ shows that for any $a \in \mathbb{C}$ there is a holomorphic function f on U such that f(z) = a and

$$\int_{U} |f|^{2} e^{-2m\varphi} d\lambda \leqslant C_{3} |a|^{2} e^{-2m\varphi(z)},$$

where C_3 only depends on n and diam U. Now, provided a remains in a compact set $K \subset U$, we can use a cut-off function θ with support in U and equal to 1 in a neighborhood of a, and solve the $\overline{\partial}$ -equation $\overline{\partial}g = \overline{\partial}(\theta f)$ in the L^2 space associated with the weight $2m\varphi + 2(n+1)|\log|z-a|$, that is, the singular hermitian metric $h(z)^m|z-a|^{-2(n+1)}$ on $L^{\otimes m}$. For this, we apply the standard Andreotti-Vesentini-Hörmander L^2 estimates (see e.g. [Dem82] for the required version). This is possible for $m \ge m_0$ thanks to the hypothesis that $\Theta_{L,h} \ge \varepsilon \omega > 0$, even if X is non Kähler (X is in any event a Moishezon variety from our assumptions). The bound m_0 depends only on ε and the geometry of a finite covering of X by compact sets $K_j \subset U_j$, where U_j are coordinate balls (say); it is independent of the point a and even of the metric h. It follows that g(a) = 0 and therefore $\sigma = \theta f - g$ is a holomorphic section of $L^{\otimes m}$ such that

$$\int_X |\sigma|_{h^m}^2 dV_\omega = \int_X |\sigma|^2 e^{-2m\varphi} dV_\omega \leqslant C_4 \int_U |f|^2 e^{-2m\varphi} dV_\omega \leqslant C_5 |a|^2 e^{-2m\varphi(z)},$$

in particular $\sigma \in \mathcal{H}_m = H^0(X, L^{\otimes m} \otimes \mathfrak{I}(h^m))$. We fix a such that the right hand side is 1. This gives the inequality

$$\psi_m(z) \ge \frac{1}{m} \log |a| = \varphi(z) - \frac{\log C_5}{2m}$$

which is the left hand part of statement (i).

(ii) The first inequality in (i) implies $\nu(\psi_m, z) \leq \nu(\varphi, z)$. In the opposite direction, we find

$$\sup_{|x-z|< r} \psi_m(x) \leqslant \sup_{|x-z|< 2r} \varphi(x) + \frac{1}{m} \log \frac{C_2}{r^n}.$$

Divide by $\log r < 0$ and take the limit as r tends to 0. The quotient by $\log r$ of the supremum of a psh function over B(x, r) tends to the Lelong number at x. Thus we obtain

$$\nu(\psi_m, x) \ge \nu(\varphi, x) - \frac{n}{m}$$

(iii) Again, the first inequality (in (i) immediately yields $h_m \leq C_6 h$, hence $c_K(h_m) \geq c_K(h)$. For the converse inequality, since we have $c_{\cup K_j}(h) = \min_j c_{K_j}(h)$, we can assume without loss of generality that K is contained in a trivializing open patch U of L. Let us take $c < c_K(\psi_m)$. Then, by definition, if $V \subset X$ is a sufficiently small open neighborhood of K, the Hölder inequality for the conjugate exponents $p = 1 + mc^{-1}$ and $q = 1 + m^{-1}c$ implies, thanks to equality $\frac{1}{p} = \frac{c}{mq}$,

$$\begin{split} \int_{V} e^{-2(m/p)\varphi} dV_{\omega} &= \int_{V} \Big(\sum_{1 \leqslant k \leqslant N(m)} |g_{m,k}|^{2} e^{-2m\varphi} \Big)^{1/p} \Big(\sum_{1 \leqslant k \leqslant N(m)} |g_{m,k}|^{2} \Big)^{-c/mq} dV_{\omega} \\ &\leq \left(\int_{X} \sum_{1 \leqslant k \leqslant N(m)} |g_{m,k}|^{2} e^{-2m\varphi} dV_{\omega} \right)^{1/p} \left(\int_{V} \Big(\sum_{1 \leqslant k \leqslant N(m)} |g_{m,k}|^{2} \Big)^{-c/m} dV_{\omega} \right)^{1/q} \\ &= N(m)^{1/p} \left(\int_{V} \Big(\sum_{1 \leqslant k \leqslant N(m)} |g_{m,k}|^{2} \Big)^{-c/m} dV_{\omega} \right)^{1/q} < +\infty. \end{split}$$

From this we infer $c_K(h) \ge m/p$, i.e., $c_K(h)^{-1} \le p/m = 1/m + c^{-1}$. As $c < c_K(\psi_m)$ was arbitrary, we get $c_K(h)^{-1} \le 1/m + c_K(h_m)^{-1}$ and the inequalities of (iii) are proved. \Box

Proof of Theorem (A.3). Given a big line bundle L on X, there exists a modification $\mu: \tilde{X} \to X$ of X such that \tilde{X} is projective and $\mu^*L = \mathcal{O}(A+E)$ where A is an ample divisor and E an effective divisor with rational coefficients. By pushing forward by μ a smooth metric h_A with positive curvature on A, we get a singular hermitian metric h_1 on L such that $\Theta_{L,h_1} \ge \mu_* \Theta_{A,h_A} \ge \varepsilon \omega$ on X. Then For any $\delta > 0$ and any singular hermitian metric h on L with $\Theta_{L,h} \ge 0$, the interpolated metric $h_{\delta} = h_1^{\delta} h^{1-\delta}$ satisfies $\Theta_{L,h_{\delta}} \ge \delta \varepsilon \omega$. Since h_1 is bounded away from 0, it follows that $c_K(h) \ge (1-\delta)c_K(h_{\delta})$ by monotonicity. By theorem (A.4, iii) applied to h_{δ} , we infer

$$c_K(h_\delta) = \lim_{m \to +\infty} c_K(h_{\delta,m}),$$

and we also have

$$c_K(h_{\delta,m}) \ge \operatorname{lct}_K\left(\frac{1}{m}D_{\delta,m}\right)$$

for any divisor $D_{\delta,m}$ associated with a section $\sigma \in H^0(X, L^{\otimes m} \otimes \mathfrak{I}(h^m_{\delta}))$, since the metric $h_{\delta,m}$ is given by $h_{\delta,m} = (\sum_k |g_{m,k}|^2)^{-1/m}$ for an orthornormal basis of such sections. This clearly implies

$$c_{K}(h) \ge \liminf_{\delta \to 0} \liminf_{m \to +\infty} \operatorname{lct}_{K}\left(\frac{1}{m}D_{\delta,m}\right) \ge \inf_{m \in \mathbb{Z}_{>0}} \inf_{D \in |mL|} \operatorname{lct}_{K}\left(\frac{1}{m}D\right).$$

In the applications, it is frequent to have a finite or compact group G of automorphisms of X and to look at G-invariant objects, namely G-equivariant metrics on G-equivariant line bundles L; in the case of a reductive algebraic group G we simply consider a compact real form $G^{\mathbb{R}}$ instead of G itself.

One then gets an α invariant $\alpha_{G,K}(L)$ by looking only at *G*-equivariant metrics in Definition A.2. All contructions made are then *G*-equivariant, especially $\mathcal{H}_m \subset |mL|$ is a *G*-invariant linear system. For every *G*-invariant compact set *K* in *X*, we thus infer

(A.5)
$$\alpha_{G,K}(L) := \inf_{\{h \ G \text{-equiv.}, \Theta_{L,h} \ge 0\}} c_K(h) = \inf_{m \in \mathbb{Z}_{>0}} \inf_{|\Sigma| \subset |mL|, \Sigma^G = \Sigma} \operatorname{lct}_K\left(\frac{1}{m}|\Sigma|\right).$$

When G is a finite group, one can pick for m large enough a G-invariant divisor $D_{\delta,m}$ associated with a G-invariant section σ , possibly after multiplying m by the order of G. One then gets the slightly simpler equality

(A.6)
$$\alpha_{G,K}(L) := \inf_{\{h \text{ } G \text{-equiv.}, \Theta_{L,h} \ge 0\}} c_K(h) = \inf_{m \in \mathbb{Z}_{>0}} \inf_{D \in [mL]^G} \operatorname{lct}_K\left(\frac{1}{m}D\right).$$

In a similar manner, one can work on an orbifold X rather than on a non singular variety. The L^2 techniques work in this setting with almost no change (L^2 estimates are essentially insensitive to singularities, since one can just use an orbifold metric on the open set of regular points).

References

- [ArGV85] V.I. Arnold, S.M. Gusein-Zade and A.N. Varchenko; Singularities of Differentiable Maps; Progress in Math., Birkhäuser (1985).
- [Aub78] T. Aubin: Equations du type Monge-Ampère sur les variétés kählériennes compactes; C.R. Acad. Sci. Paris Ser. A 283 (1976), 119–121; Bull. Sci. Math. 102 (1978), 63–95.
- [BGK05] Ch. P. Boyer, K. Galicki, J. Kollár: Einstein Metrics on Spheres; Annals of Math. 162 (2005), 557–580.
- [Dem82] J.-P. Demailly: Estimations L² pour l'opérateur ∂ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète; Ann. Sc. École Norm. Sup. 4e Sér. 15 (1982) 457–511.
- [Dem90] J.-P. Demailly: Singular hermitian metrics on positive line bundles; Proc. Conf. Complex algebraic varieties (Bayreuth, April 2-6, 1990), edited by K. Hulek, T. Peternell, M. Schneider, F. Schreyer, Lecture Notes in Math., Vol. 1507, Springer-Verlag, Berlin, (1992).
- [Dem92] J.-P. Demailly: Regularization of closed positive currents and Intersection Theory; J. Alg. Geom. 1 (1992), 361–409.
- [DK01] J.-P. Demailly and J. Kollár: Semicontinuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifoldsmath.AG/9910118; Ann. Ec. Norm. Sup. **34** (2001) 525–556.
- [JK01] J.M. Johnson, J. Kollár: Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces; Ann. Inst. Fourier 51 (2001), 69–79.
- [Kol97] J. Kollár: Singularities of pairs, Algebraic Geometry, Santa Cruz, 1995; Proceedings of Symposia in Pure Math. vol. 62, AMS, 1997, pages 221-287.
- [Nad89] A.M. Nadel: Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature; Proc. Nat. Acad. Sci. U.S.A., 86 (1989) 7299–7300 and Annals of Math. 132 (1990), 549–596.
- [OhT87] T. Ohsawa and K. Takegoshi: On the extension of L^2 holomorphic functions; Math. Zeitschrift 195 (1987) 197–204.

- [**Ohs88**] T. Ohsawa: On the extension of L^2 holomorphic functions, II; Publ. RIMS, Kyoto Univ. **24** (1988), 265–275.
- [Siu88] Y.T. Siu: The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group; Ann. of Math. 127 (1988), 585–627.
- [Tia87] G. Tian: On Kähler-Einstein metrics on certain Kähler manifolds with $c_1(M) > 0$; Invent. Math. 89 (1987), 225–246.
- [Var82] A.N. Varchenko; Complex exponents of a singularity do not change along the stratum $\mu = constant$; Functional Anal. Appl. 16 (1982), 1–9.
- [Var83] A.N. Varchenko; Semi-continuity of the complex singularity index; Functional Anal. Appl. 17 (1983), 307–308.

(June 12, 2008; printed on June 12, 2008)