A sharp lower bound for the log canonical threshold

Jean-Pierre Demailly and Phạm Hoàng Hiệp

Institut Fourier, Université de Grenoble I, Hanoi National University of Education

Abstract. In this note, we prove a sharp lower bound for the log canonical threshold of a plurisubharmonic function φ with an isolated singularity at 0 in an open subset of \mathbb{C}^n . This threshold is defined as the supremum of constants c>0 such that $e^{-2c\varphi}$ is integrable on a neighborhood of 0. We relate $c(\varphi)$ to the intermediate multiplicity numbers $e_j(\varphi)$, defined as the Lelong numbers of $(dd^c\varphi)^j$ at 0 (so that in particular $e_0(\varphi)=1$). Our main result is that $c(\varphi) \geq \sum e_j(\varphi)/e_{j+1}(\varphi)$, $0 \leq j \leq n-1$. This inequality is shown to be sharp; it simultaneously improves the classical result $c(\varphi) \geq 1/e_1(\varphi)$ due to Skoda, as well as the lower estimate $c(\varphi) \geq n/e_n(\varphi)^{1/n}$ which has received crucial applications to birational geometry in recent years. The proof consists in a reduction to the toric case, i.e. singularities arising from monomial ideals.

2000 Mathematics Subject Classification: 14B05, 32S05, 32S10, 32U25

Keywords and Phrases: Lelong number, Monge-Ampère operator, log canonical threshold.

1. Notation and main results

Here we put $d^c = \frac{i}{2\pi}(\overline{\partial} - \partial)$, so that $dd^c = \frac{i}{\pi}\partial\overline{\partial}$. The normalization of the d^c operator is chosen so that we have precisely $(dd^c \log |z|)^n = \delta_0$ for the Monge-Ampère operator in \mathbb{C}^n . The Monge-Ampère operator is defined on locally bounded plurisubharmonic functions according to the definition of Bedford-Taylor [BT76, BT82]; it can also be extended to plurisubharmonic functions with isolated or compactly supported poles by [Dem93]. If Ω is an open subset of \mathbb{C}^n , we let $\mathrm{PSH}(\Omega)$ (resp. $\mathrm{PSH}^-(\Omega)$) be the set of plurisubharmonic (resp. $\mathrm{psh} \leq 0$) functions on Ω .

Definition 1.1. Let Ω be a bounded hyperconvex domain (i.e. a domain possessing a negative psh exhaustion). Following Cegrell [Ce04], we introduce certain classes of psh functions on Ω , in relation with the definition of the Monge-Ampère operator:

(a)
$$\mathcal{E}_0(\Omega) = \{ \varphi \in \mathrm{PSH}^-(\Omega) : \lim_{z \to \partial \Omega} \varphi(z) = 0, \int_{\Omega} (dd^c \varphi)^n < +\infty \},$$

(b)
$$\mathcal{F}(\Omega) = \{ \varphi \in \mathrm{PSH}^-(\Omega) : \exists \mathcal{E}_0(\Omega) \ni \varphi_p \searrow \varphi, \sup_{p \ge 1} \int_{\Omega} (dd^c \varphi_p)^n < +\infty \},$$

(c)
$$\mathcal{E}(\Omega) = \{ \varphi \in \mathrm{PSH}^-(\Omega) : \exists \varphi_K \in \mathcal{F}(\Omega) \text{ such that } \varphi_K = \varphi \text{ on } K, \ \forall K \subset\subset \Omega \}.$$

It is proved in [Ce04] that the class $\mathcal{E}(\Omega)$ is the biggest subset of PSH⁻(Ω) on which the Monge-Ampère operator is well-defined. For a general complex manifold X, after removing

the negativity assumption of the functions involved, one can in fact extend the Monge-Ampère operator to the class

$$(1.2) \widetilde{\mathcal{E}}(X) \subset \mathrm{PSH}(X)$$

of psh functions which, on a neighborhood $\Omega \ni x_0$ of an arbitrary point $x_0 \in X$, are equal to a sum u + v with $u \in \mathcal{E}(\Omega)$ and $v \in C^{\infty}(\Omega)$; again, this is the biggest subclass of functions of $\mathrm{PSH}(X)$ on which the Monge-Ampère operator is locally well defined. It is easy to see that $\widetilde{\mathcal{E}}(X)$ contains the class of psh functions which are locally bounded outside isolated singularities.

For $\varphi \in \mathrm{PSH}(\Omega)$ and $0 \in \Omega$, we introduce the log canonical threshold at 0

(1.3)
$$c(\varphi) = \sup \{c > 0 : e^{-2c\varphi} \text{ is } L^1 \text{ on a neighborhood of } 0\},$$

and for $\varphi \in \widetilde{\mathcal{E}}(\Omega)$ we introduce the intersection numbers

(1.4)
$$e_j(\varphi) = \int_{\{0\}} (dd^c \varphi)^j \wedge (dd^c \log ||z||)^{n-j}$$

which can be seen also as the Lelong numbers of $(dd^c\varphi)^j$ at 0. Our main result is the following sharp estimate. It is a generalization and a sharpening of similar inequalities discussed in [Cor95], [Cor00], [dFEM03], [dFEM04]; such inequalities have fundamental applications to birational geometry (see [IM72], [Puk87], [Puk02], [Isk01], [Che05]).

Theorem 1.5. Let $\varphi \in \widetilde{\mathcal{E}}(\Omega)$ and $0 \in \Omega$. Then $c(\varphi) = +\infty$ if $e_1(\varphi) = 0$, and otherwise

$$c(\varphi) \ge \sum_{j=0}^{n-1} \frac{e_j(\varphi)}{e_{j+1}(\varphi)}.$$

Remark 1.6. By Lemma 2.1 below, we have $(e_1(\varphi), \ldots, e_n(\varphi)) \in D$ where

$$D = \{ t = (t_1, \dots, t_n) \in [0, +\infty)^n : \ t_1^2 \le t_2, \ t_i^2 \le t_{i-1} t_{i+1}, \ \forall i = 2, \dots, n-1 \},$$

i.e. $\log e_j(\varphi)$ is a convex sequence. In particular, we have $e_j(\varphi) \geq e_1(\varphi)^j$, and the denominators do not vanish in 1.5 if $e_1(\varphi) > 0$. On the other hand, a well known inequality due to Skoda [Sko72] tells us that

$$\frac{1}{e_1(\varphi)} \le c(\varphi) \le \frac{n}{e_1(\varphi)},$$

hence $c(\varphi) < +\infty$ iff $e_1(\varphi) > 0$. To see that Theorem 1.5 is optimal, let us choose

$$\varphi(z) = \max (a_1 \ln |z_1|, \dots, a_n \ln |z_n|)$$

with $0 < a_1 \le a_2 \le \ldots \le a_n$. Then $e_j(\varphi) = a_1 a_2 \ldots a_j$, and a change of variable $z_j = \zeta_j^{1/a_j}$ on $\mathbb{C} \setminus \mathbb{R}_-$ easily shows that

$$c(\varphi) = \sum_{j=1}^{n} \frac{1}{a_j}.$$

Assume that we have a function $f: D \to [0, +\infty)$ such that $c(\varphi) \geq f(e_1(\varphi), \dots, e_n(\varphi))$ for all $\varphi \in \widetilde{\mathcal{E}}(\Omega)$. Then, by the above example, we must have

$$f(a_1, a_1 a_2, \dots, a_1 \dots a_n) \le \sum_{i=1}^n \frac{1}{a_i}$$

for all a_j as above. By taking $a_j = t_j/t_{j-1}$, $t_0 = 1$, this implies that

$$f(t_1, \dots, t_n) \le \frac{1}{t_1} + \frac{t_1}{t_2} + \dots + \frac{t_{n-1}}{t_n}, \quad \forall t \in D,$$

whence the optimality of our inequality.

Remark 1.7. Theorem 1.5 is of course stronger than Skoda's lower bound $c(\varphi) \ge 1/e_1(\varphi)$. By the inequality between the arithmetic and geometric means, we infer the main inequality of [dFEM03], [dFEM04] and [Dem09]

(1.8)
$$c(\varphi) \ge \frac{n}{e_n(\varphi)^{1/n}}.$$

By applying the arithmetic-geometric inequality for the indices $1 \leq j \leq n-1$ in our summation $\sum_{j=0}^{n-1} e_j(\varphi)/e_{j+1}(\varphi)$, we also infer the stronger inequality

(1.9)
$$c(\varphi) \ge \frac{1}{e_1(\varphi)} + (n-1) \left[\frac{e_1(\varphi)}{e_n(\varphi)} \right]^{\frac{1}{n-1}}.$$

2. Log convexity of the multiplicity sequence

The log convexity of the multiplicity sequence can be derived from very elementary integration by parts and the Cauchy-Schwarz inequality, using an argument from [Ce04].

Lemma 2.1. Let
$$\varphi \in \widetilde{\mathcal{E}}(\Omega)$$
 and $0 \in \Omega$. We have $e_i(\varphi)^2 \leq e_{i-1}(\varphi)e_{i+1}(\varphi), \ \forall i=1,\ldots,n-1$.

Proof. Without loss generality, by replacing φ with a sequence of local approximations $\varphi_p(z) = \max(\varphi(z) - C, p \log |z|)$ of $\varphi(z) - C, C \gg 1$, we can assume that Ω is the unit ball and $\varphi \in \mathcal{E}_0(\Omega)$. Take also $h, \psi \in \mathcal{E}_0(\Omega)$. Then integration by parts and the Cauchy-Schwarz inequality yield

$$\left[\int_{\Omega} -h(dd^{c}\varphi)^{j} \wedge (dd^{c}\psi)^{n-j} \right]^{2} = \left[\int_{\Omega} d\varphi \wedge d^{c}\psi \wedge (dd^{c}\varphi)^{j-1} \wedge (dd^{c}\psi)^{n-j-1} \wedge dd^{c}h \right]^{2} \\
\leq \int_{\Omega} d\psi \wedge d^{c}\psi \wedge (dd^{c}\varphi)^{j-1} \wedge (dd^{c}\psi)^{n-j-1} \wedge dd^{c}h \int_{\Omega} d\varphi \wedge d^{c}\varphi \wedge (dd^{c}\varphi)^{j-1} \wedge (dd^{c}\psi)^{n-j-1} \wedge dd^{c}h \\
= \int_{\Omega} -h(dd^{c}\varphi)^{j-1} \wedge (dd^{c}\psi)^{n-j+1} \int_{\Omega} -h(dd^{c}\varphi)^{j+1} \wedge (dd^{c}\psi)^{n-j-1}.$$

Now, as $p \to +\infty$, take

$$h(z) = h_p(z) = \max\left(-1, \frac{1}{p}\log||z||\right) \nearrow \begin{cases} 0 & \text{if } z \in \Omega \setminus \{0\} \\ -1 & \text{if } z = 0. \end{cases}$$

By the monotone convergence theorem we get in the limit

$$\left[\int_{\{0\}} (dd^c \varphi)^j \wedge (dd^c \psi)^{n-j} \right]^2 \leq \int_{\{0\}} (dd^c \varphi)^{j-1} \wedge (dd^c \psi)^{n-j+1} \int_{\{0\}} (dd^c \varphi)^{j+1} \wedge (dd^c \psi)^{n-j-1}.$$

For $\psi(z) = \ln ||z||$, this is the desired estimate.

Corollary 2.2. Let $\varphi \in \widetilde{\mathcal{E}}(\Omega)$ and $0 \in \Omega$. We have the inequalities

$$e_j(\varphi) \geq e_1(\varphi)^j, \quad \forall j = 0, 1, \dots \leq n$$

 $e_k(\varphi) \leq e_j(\varphi)^{\frac{l-k}{l-j}} e_l(\varphi)^{\frac{k-j}{l-j}}, \quad \forall 0 \leq j < k < l \leq n.$

In particular $e_1(\varphi) = 0$ implies $e_k(\varphi) = 0$ for k = 2, ..., n-1 if $n \ge 3$.

Proof. If $e_j(\varphi) > 0$ for all j, Lemma 2.1 implies that $j \mapsto e_j(\varphi)/e_{j-1}(\varphi)$ is increasing, at least equal to $e_1(\varphi)/e_0(\varphi) = e_1(\varphi)$, and the inequalities follow from the log convexity. The general case can be proved by considering $\varphi_{\varepsilon}(z) = \varphi(z) + \varepsilon \log ||z||$, since $0 < \varepsilon^j \le e_j(\varphi_{\varepsilon}) \to e_j(\varphi)$ when $\varepsilon \to 0$. The last statement is obtained by taking j = 1 and l = n.

3. Proof of the main theorem

We start with a monotonicity statement.

Lemma 3.1. Let $\varphi, \psi \in \widetilde{\mathcal{E}}(\Omega)$ be such that $\varphi \leq \psi$ (i.e. φ is "more singular" than ψ). Then

$$\sum_{j=0}^{n-1} \frac{e_j(\varphi)}{e_{j+1}(\varphi)} \le \sum_{j=0}^{n-1} \frac{e_j(\psi)}{e_{j+1}(\psi)}.$$

Proof. As in Remark 1.6, we set

$$D = \{t = (t_1, \dots, t_n) \in [0, +\infty)^n : t_1^2 \le t_2, t_j^2 \le t_{j-1}t_{j+1}, \forall j = 2, \dots, n-1\}.$$

Then D is a convex set in \mathbb{R}^n , as can be checked by a straightforward application of the Cauchy-Schwarz inequality. We consider the function $f: \text{int } D \to [0, +\infty)$

(3.2)
$$f(t_1, \dots, t_n) = \frac{1}{t_1} + \frac{t_1}{t_2} \dots + \frac{t_{n-1}}{t_n}.$$

We have

$$\frac{\partial f}{\partial t_j}(t) = -\frac{t_{j-1}}{t_j^2} + \frac{1}{t_{j+1}} \le 0, \qquad \forall t \in D.$$

For $a, b \in \text{int } D$ such that $a_j \geq b_j$, $\forall j = 1, \ldots, n$, $[0, 1] \ni \lambda \to f(b + \lambda(a - b))$ is thus a decreasing function. This implies that $f(a) \leq f(b)$ for $a, b \in \text{int } D$, $a_j \geq b_j$, $\forall j = 1, \ldots, n$. On the other hand, the hypothesis $\varphi \leq \psi$ implies $e_j(\varphi) \geq e_j(\psi)$, $\forall j = 1, \ldots, n$, by the comparison principle (see e.g. [Dem87]). Therefore $f(e_1(\varphi), \ldots, e_n(\varphi)) \leq f(e_1(\psi), \ldots, e_n(\psi))$.

(3.3) Proof of the main theorem in the "toric case".

It will be convenient here to introduce Kiselman's refined Lelong numbers (cf. [Kis87], [Kis94a]):

Definition 3.4. Let $\varphi \in PSH(\Omega)$. Then the function

$$\nu_{\varphi}(x) = \lim_{t \to -\infty} \frac{\max\{\varphi(z) : |z_1| = e^{x_1 t}, \dots, |z_n| = e^{x_n t}\}}{t}$$

is called the refined Lelong number of φ at 0. This function is increasing in each variable x_j and concave on \mathbb{R}^n_+ .

By "toric case", we mean that $\varphi(z_1,\ldots,z_n)=\varphi(|z_1|,\ldots,|z_n|)$ depends only on $|z_j|$ for all j; then φ is psh if and only if $(t_1,\ldots,t_n)\mapsto \varphi(e^{t_1},\ldots,e^{t_n})$ is increasing in each t_j and convex. By replacing φ with $\varphi(\lambda z)-\varphi(\lambda,\ldots,\lambda),\ 0<\lambda\ll 1$, we can assume that $\Omega=\Delta^n$ is the unit polydisk, $\varphi(1,\ldots,1)=0$ (so that $\varphi\leq 0$ on Ω), and we have $e_1(\varphi)=n\,\nu_\varphi(\frac{1}{n},\ldots,\frac{1}{n})$. By convexity, the slope $\frac{\max\{\varphi(z):|z_j|=e^{x_jt}\}}{t}$ is increasing in t for t<0. Therefore, by taking t=-1 we get

$$\nu_{\varphi}(-\ln|z_1|,\ldots,-\ln|z_n|) \le -\varphi(z_1,\ldots,z_n).$$

Notice also that $\nu_{\varphi}(x)$ satisfies the 1-homogeneity property $\nu_{\varphi}(\lambda x) = \lambda \nu_{\varphi}(x)$ for $\lambda \in \mathbb{R}_+$. As a consequence, ν_{φ} is entirely characterized by its restriction to the set

$$\Sigma = \left\{ x = (x_1, \dots, x_n) \in \mathbb{R}_+^n : \sum_{j=1}^n x_j = 1 \right\}.$$

We choose $x^0 = (x_1^0, \dots, x_n^0) \in \Sigma$ such that

$$\nu_{\varphi}(x^0) = \max\{\nu_{\varphi}(x) : x \in \Sigma\} \in \left[\frac{e_1(\varphi)}{n}, e_1(\varphi)\right].$$

By Theorem 5.8 in [Kis94a] (see also [Ho01] for similar results in an algebraic context) we have the formula

$$c(\varphi) = \frac{1}{\nu_{\varphi}(x^0)}.$$

Set

$$\zeta(x) = \nu_{\varphi}(x^0) \min\left(\frac{x_1}{x_1^0}, \dots, \frac{x_n}{x_n^0}\right), \quad \forall x \in \mathbb{R}_+^n.$$

Then ζ is the smallest nonnegative concave 1-homogeneous function on \mathbb{R}^n_+ that is increasing in each variable x_j and such that $\zeta(x^0) = \nu_{\varphi}(x^0)$. Therefore we have $\zeta \leq \nu_{\varphi}$, hence

$$\varphi(z_{1}, \ldots, z_{n}) \leq -\nu_{\varphi}(-\ln|z_{1}|, \ldots, -\ln|z_{n}|)
\leq -\zeta(-\ln|z_{1}|, \ldots, -\ln|z_{n}|)
\leq \nu_{\varphi}(x^{0}) \max\left(\frac{\ln|z_{1}|}{x_{1}^{0}}, \ldots, \frac{\ln|z_{n}|}{x_{n}^{0}}\right) := \psi(z_{1}, \ldots, z_{n}).$$

By Lemma 3.1 and Remark 1.6 we get

$$f(e_1(\varphi),\ldots,e_n(\varphi)) \leq f(e_1(\psi),\ldots,e_n(\psi)) = c(\psi) = \frac{1}{\nu_{\varphi}(x^0)} = c(\varphi).$$

(3.5) Reduction to the case of psh functions with analytic singularities.

In the second step, we reduce the proof to the case $\varphi = \log(|f_1|^2 + \ldots + |f_N|^2)$, where f_1, \ldots, f_N are germs of holomorphic functions at 0. Following the technique introduced in [Dem92], we let $\mathcal{H}_{m\varphi}(\Omega)$ be the Hilbert space of holomorphic functions f on Ω such that

$$\int_{\Omega} |f|^2 e^{-2m\varphi} dV < +\infty,$$

and let $\psi_m = \frac{1}{2m} \log \sum |g_{m,k}|^2$ where $\{g_{m,k}\}_{k\geq 1}$ is an orthonormal basis of $\mathcal{H}_{m\varphi}(\Omega)$. Thanks to Theorem 4.2 in [DK00], mainly based on to the Ohsawa-Takegoshi L^2 extension theorem [OT87] (see also [Dem92]), there are constants $C_1, C_2 > 0$ independent of m such that

$$\varphi(z) - \frac{C_1}{m} \le \psi_m(z) \le \sup_{|\zeta - z| < r} \varphi(\zeta) + \frac{1}{m} \log \frac{C_2}{r^n}$$

for every $z \in \Omega$ and $r < d(z, \partial\Omega)$ and

$$\nu(\varphi) - \frac{n}{m} \le \nu(\psi_m) \le \nu(\varphi),$$

$$\frac{1}{c(\varphi)} - \frac{1}{m} \le \frac{1}{c(\psi_m)} \le \frac{1}{c(\varphi)}.$$

By Lemma 3.1, we have

$$f(e_1(\varphi), \dots, e_n(\varphi)) \le f(e_1(\psi_m), \dots, e_n(\psi_m)), \quad \forall m \ge 1.$$

The above inequalities show that in order to prove the lower bound of $c(\varphi)$ in Theorem 1.5, we only need to prove it for $c(\psi_m)$ and let m tend to infinity. Also notice that since the Lelong numbers of a function $\varphi \in \mathcal{E}(\Omega)$ occur only on a discrete set, the same is true for the functions ψ_m .

(3.6) Reduction of the main theorem to the case of monomial ideals.

The final step consists of proving the theorem for $\varphi = \log(|f_1|^2 + \ldots + |f_N|^2)$, where f_1, \ldots, f_N are germs of holomorphic functions at 0 [this is because the ideals $(g_{m,k})_{k \in \mathbb{N}}$ in the Noetherian ring $\mathcal{O}_{\mathbb{C}^n,0}$ are always finitely generated]. Set $\mathcal{J} = (f_1,\ldots,f_N)$, $c(\mathcal{J}) = c(\varphi)$, $e_j(\mathcal{J}) = e_j(\varphi)$, $\forall j = 0,\ldots,n$. By the final observation of 3.5, we can assume that \mathcal{J} has an isolated zero at 0. Now, by fixing a multiplicative order on the monomials $z^{\alpha} = z_1^{\alpha_1} \ldots z_n^{\alpha_n}$ (see [Eis95] Chap. 15 and [dFEM04]), it is well known that one can construct a flat family $(\mathcal{J}_s)_{s \in \mathbb{C}}$ of ideals of $\mathcal{O}_{\mathbb{C}^n,0}$ depending on a complex parameter $s \in \mathbb{C}$, such that \mathcal{J}_0 is a monomial ideal, $\mathcal{J}_1 = \mathcal{J}$ and $\dim(\mathcal{O}_{\mathbb{C}^n,0}/\mathcal{J}_s^t) = \dim(\mathcal{O}_{\mathbb{C}^n,0}/\mathcal{J}^t)$ for all s and $t \in \mathbb{N}$; in fact \mathcal{J}_0 is just the initial ideal associated to \mathcal{J} with respect to the monomial order. Moreover, we can arrange by a generic rotation of coordinates $\mathbb{C}^p \subset \mathbb{C}^n$ that the family of ideals $\mathcal{J}_{s \mid \mathbb{C}^p}$ is also flat, and that the dimensions

$$\dim(\mathcal{O}_{\mathbb{C}^p,0}/(\mathcal{J}_{s\,|\,\mathbb{C}^p})^t) = \dim(\mathcal{O}_{\mathbb{C}^p,0}/(\mathcal{J}_{|\,\mathbb{C}^p})^t)$$

compute the intermediate multiplicities

$$e_p(\mathcal{J}_s) = \lim_{t \to +\infty} \frac{p!}{t^p} \dim(\mathcal{O}_{\mathbb{C}^p,0}/(\mathcal{J}_{s \mid \mathbb{C}^p})^t) = e_p(\mathcal{J})$$

(notice, in the analytic setting, that the Lelong number of the (p, p)-current $(dd^c\varphi)^p$ at 0 is the Lelong number of its slice on a generic $\mathbb{C}^p \subset \mathbb{C}^n$); in particular $e_p(\mathcal{J}_0) = e_p(\mathcal{J})$ for all p. The semicontinuity property of the log canonical threshold (see for example [DK00]) now implies that $c(\mathcal{J}_0) \leq c(\mathcal{J}_s)$ for s small. As $c(\mathcal{J}_s) = c(\mathcal{J})$ for $s \neq 0$ (\mathcal{J}_s being a pull-back of \mathcal{J} by a biholomorphism, in other words $\mathcal{O}_{\mathbb{C}^n,0}/\mathcal{J}_s \simeq \mathcal{O}_{\mathbb{C}^n,0}/\mathcal{J}$ as rings, see again [Eis95], chap. 15), the lower bound is valid for $c(\mathcal{J})$ if it is valid for $c(\mathcal{J}_0)$.

REFERENCES

- [BT76] E. Bedford and B. A. Taylor, *The Dirichlet problem for a complex Monge-Ampère equation*, Invent. Math. **37** (1976) 1–44.
- [BT82] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982) 1–41.
- [Ce04] U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble)., **54**(2004), 159–179.
- [Che05] I. Chel'tsov, Birationally rigid Fano manifolds, Uspekhi Mat. Nauk **60:**5 (2005), 71-160 and Russian Math. Surveys **60:**5 (2005), 875–965.
- [Cor95] A. Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom., 4 (1995), 223–254.
- [Cor00] A. Corti, Singularities of linear systems and 3-fold birational geometry, London Math. Soc. Lecture Note Ser. 281 (2000) 259–312.
- [dFEM03] T. de Fernex, T, L. Ein and Mustață, Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett. 10 (2003) 219–236.
- [dFEM04] T. de Fernex, T, L. Ein and Mustață, *Multiplicities and log canonical thresholds*, J. Algebraic Geom. **13** (2004) 603–615.
- [Dem87] J.-P. Demailly, Nombres de Lelong généralisés, théorèmes d'intégralité et d'analyticité, Acta Math. 159 (1987) 153–169.
- [Dem92] J.-P. Demailly, Regularization of closed positive currents and Intersection Theory, J. Alg. Geom. 1 (1992), 361–409.

- [Dem93] J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Series in Math., edited by V. Ancona and A. Silva, Plenum Press, New-York, 1993.
- [DK00] J.-P. Demailly and J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. Ecole Norm. Sup. (4) **34** (2001), 525–556.
- [Dem09] J.-P. Demailly, Estimates on Monge-Ampère operators derived from a local algebra inequality, in: Complex Analysis and Digital geometry, Proceedings of the Kiselmanfest 2006, Acta Universitatis Upsaliensis, 2009.
- [Eis95] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Grad. Texts in Math.
 150, Springer, New York, 1995.
- [Ho01] J. Howald, Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc. 353 (2001), 2665–2671.
- [IM72] V.A. Iskovskikh and I.Yu. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. 86 (1971), 140–166; English transl., Math. Sb. 15 (1972), 141–166.
- [Isk01] V.A. Iskovskikh, Birational rigidity and Mori theory, Uspekhi Mat. Nauk **56**:2 (2001) 3-86, English transl., Russian Math. Surveys **56**:2 (2001), 207–291.
- [Kis87] C.O. Kiselman, Un nombre de Lelong raffiné, Séminaire d'Analyse Complexe et Géométrie 198587, Faculté des Sciences de Tunis & Faculté des Sciences et Techniques de Monastir, (1987) 61–70.
- [Kis94a] C.O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math. 60 (1994) 173–197.
- [OhT87] T. Ohsawa and K. Takegoshi, On the extension of L^2 holomorphic functions, Math. Zeit. 195 (1987) 197–204.
- [Puk87] A.V. Pukhlikov, Birational automorphisms of a four-dimensional quintic, Invent. Math. 87 (1987), 303–329.
- [Puk02] A.V. Pukhlikov, Birationally rigid Fano hypersurfaces, Izv. Ross. Akad. Nauk Ser. Mat. **66:**6 (2002), 159-186; English translation, Izv. Math. **66:** (2002), 1243–1269.
- [Sko72] H. Skoda, Sous-ensembles analytiques d'ordre fini ou infini dans \mathbb{C}^n , Bull. Soc. Math. France 100 (1972) 353–408.

Jean-Pierre Demailly

Université de Grenoble I, Département de Mathématiques Institut Fourier, 38402 Saint-Martin d'Hères, France *e-mail*: jean-pierre.demailly@ujf-grenoble.fr

Phạm Hoàng Hiệp

Department of Mathematics, National University of Education 136-Xuan Thuy, Cau Giay, Hanoi, Vietnam and Institut Fourier (on a Post-Doctoral grant from Univ. Grenoble I) e-mail: phhiep_vn@yahoo.com