
LINE BUNDLES ON COMPLEX TORI AND A CONJECTUREOF KODAIRAJEAN-PIERRE DEMAILLY, THOMAS ECKL, THOMAS PETERNELL1. A onjeture of KodairaA fundamental question in Kähler geometry asks whether any ompat Kählermanifold an be realised as a deformation of a projetive manifold. This is mademore preise in the followingDe�nition 1. A ompat Kähler manifold X an be approximated algebraially oris almost algebrai if there exists a omplex manifold X and a surjetive holomorphisubmersion π : X → ∆ to the unit dis ∆ ⊂ C suh that the �bers Xt = π−1(t)satisfy X0 ≃ X and there is a sequene (tk) onverging to 0 suh that all Xtk
areprojetive.In [Kod63℄ Kodaira proved that every Kähler surfae is almost algebrai, and it isby now a standard onjeture, known as the Kodaira onjeture, that this shouldbe true also in higher dimensions.One of the �rst things to try in higher dimensions is ertainly to look at projetivebundles over Kähler non algebrai manifolds (possibly starting with surfaes for thesake of simpliity). Essentially the Kodaira onjeture implies that holomorphivetor bundles over ertain Kähler manifolds should survive on su�iently manyalgebrai approximations. The idea is based on the following easy statement.Proposition 2. Let X be a ompat Kähler manifold whih has a Pr-bundle stru-ture X → A over some omplex torus A. Then for every deformation X → S with

X0 ≃ X, the nearby �bers Xt have a Pr-bundle struture Xt → At where A is adeformation of A in a neighborhood of t = 0. Moreover, if X = P(V ) for somevetor bundle V on A, then Xt = P(Vt) for a suitable deformation Vt → At of
V → A.Proof. We look at the relative Albanese map α : X → A. Then A → S is adeformation of tori suh that αt : Xt → At is the Albanese map for eah t ∈ S.Sine α0 is a submersion, αt should be also a submersion t in a neighborhood
U ⊂ S of 0, and the �bers of αt are deformations of Pr. Sine Pr is undeformable,we onlude that αt : Xt → At is also a Pr-bundle for small t. Now, the fat that
Xt = P(Vt) is equivalent to the fat that the relative antianonial bundle K1

Xt/Athas an (r+1)-root Lt on Xt, in whih ase Vt = (αt)∗(Lt). However, the obstrutionfor a line bundle to have an (r+1)-root lies in H2(Xt, Z/(r+1)Z). This is a disreteloally onstant oe�ient system, so if the obstrution vanishes for t = 0, it mustalso vanish on the onneted omponent of 0 in U ⊂ S. �Date: May 31, 2007.1991 Mathematis Subjet Classi�ation. 32Q15, 32J27.Key words and phrases. Kähler manifold; deformation; vetor bundles.1



2 JEAN-PIERRE DEMAILLY, THOMAS ECKL, THOMAS PETERNELLProposition 2 atually holds for arbitrary projetive bundles over ompat Käh-ler manifolds; the proof is slightly more involved and is given in the last setion.Proposition 2 however is su�ient for our purposes.In view of this, it is natural to look at the following potential andidate for aounter-example: Start with a 3-dimensional omplex torus A with Piard number
ρ(A) ≥ 3. Let Li ∈ NS(A) be (numerial equivalene lasses of) linearly indepen-dent holomorphi line bundles over A. Let U ⊂ C9 be a neighborhood of [A] inthe universal deformation spae of A. As explained in the next setion, every Lidetermines a 3-odimensional subspae Vi = V (Li) in U suh that c1(Li) is (1, 1),i.e. Li is a holomorphi line bundle on A′ if and only if [A′] ∈ Vi.Now we make the following Assumption:The intersetion of the Vi's has the expeted dimension 0, i.e.

(∗) V1 ∩ V2 ∩ V3 ontains {A} as an isolated point.Then onsider the 6-dimensional manifold
Y = P(OA ⊕ L1) ×A P(OA ⊕ L2) ×A P(OA ⊕ L3).This is a P3

1-bundle over A with projetion π : Y → A. In eah subspae P(OA⊕Li)there is a setion Zi at in�nity given by the diret summandOA. This gives a setion
Z of π by seleting over every a ∈ A the point (x1, x2, x3), where {xi} = Zi∩π−1(a).Proposition 3. The blow up σ : X → Y of Z ⊂ Y is rigid in the sense that thereis no positive-dimensional family of deformations of X.Proof. Notie that, denoting by P3

1(x) the blow up of P3
1 in one point, X is a P3

1(x)-bundle over A. So let (Xt) be a deformation of X = X0 over the 1-dimensionalunit dis ∆. The �rst step is to proof that, possibly after shrinking ∆, every Xt isa P3
1(x)-bundle over its (3-dimensional) Albanese torus At. In fat, q(Xt) = 3 forall t and the Albanese map αt is smooth for small t. In order to prove that αt is a

P3
1(x)− bundle, it su�es to show that P3

1(x) is rigid, i.e. every small deformationof P3
1(x) is again P3

1(x).In fat, let Z = P3
1(x) for simpliity of notations. Let τ : Z → P3

1 be the blow-upmap with exeptional divisor E ≃ P2. Then there is an exat sequene
0 → TZ → τ∗TP3

1

→ TE(−1) → 0.Sine dimH0(TP3

1

) = 9, dim H0(TZ) = 6, H0(TE(−1)) = 3 and H1(τ∗TP3

1

) = 0, bytaking ohomology of the above exat sequene it follows
H1(TZ) = 0,in partiular Z is rigid.Let X be the total spae of (Xt) and let π : X → A be the relative Albanese mapfor X → ∆. Then A → ∆ is a torus bundle; let At be the �ber over t, so that

A = A0. Now the exeptional divisor D of σ moves in X . This is easy to see byonsidering D ∩ π−1(a) = P2 for a ∈ A. In fat, the normal bundle of this P2 is
O(−1) ⊕ O4, so that the P2 moves and fores D to move. Therefore one obtainsa �berwise blow-down X → Y induing the birational map σ : X → Y . Of oursethere is a fatorisation X → Y → A and Y → A is a P3

1-bundle. Again let Yt bethe �ber over t. Next it is shown that it is possible to write
Yt = Y1,t ×At

Y2,t ×At
Y3,t



LINE BUNDLES ON COMPLEX TORI AND A CONJECTURE OF KODAIRA 3with P1-bundles Yi,t/At, and this an be done simultaneously, i.e. the (Yi,t) forma family Yi. The most eonomi way to do that is to note that the relative Piardnumber ρ(Y/A) equals 3 sine ρ(Y0/A0) = 3 and sine KYt
is relatively ample over

At (this is a produt situation). By taking relative extremal ontrations in thesense of Mori theory one gets a tower of three P1-bundles. Of ourse there are threehoies of the �rst one and then two hoies for the seond sine the situation isompletely symmetri in i. (This situation ould possibly lead to some monodromyation π1(At) → S3, but sine suh ations are disrete and depend ontinuouslyon t, the fat that we have a non twisted produt for t = 0 implies that we have nosuh twist for t arbitrary). The last ontration will provide the spae Yi for theappropriate i. Now onsider the anonial map
Yt → Y1,t ×At

Y2,t ×At
Y3,t.Then this map is immediately seen to be an isomorphism.Sine Yi,t is a P1-bundle over At and sine it is has a setion by onstrution, itfollows

Yi,t = P(Ei,t)with a rank 2-bundle Ei,t (normalized suh that E0,t = OA0
⊕Li), and the Ei,t forma holomorphi rank 2-bundle Ei over A. Sine the setion at in�nity in Y0 deformsby onstrution to setions in Yt, one obtains a global quotient Ei → Gi → 0 suhthat Gi|A0 = OA0

. By hanging Ei appropriately, one may assume that Gi = OA.Let Li be the kernel of Ei → OA. Then Li|A0 = Li. But this implies that there isa deformation of A = A0 suh that all three line bundles Li remain holomorphi.But the assumption
V1 ∩ V2 ∩ V3 = {A}implies that there is no suh (nontrivial) deformation of A. �It is therefore a very natural question to ask whether these rigid 6-dimensionalKähler manifolds are projetive or not. If they were not projetive, we would getounter-examples to the Kodaira onjeture. Unfortunately (in view of getting easyounter-examples!), Theorem 3 of the next setion tells us that a omplex torus Averifying Assumption (*) for some triple of holomorphi line bundles Li is alwaysan abelian variety.2. Holomorphi line bundles on omplex toriLet X be a omplex torus of dimension g. As explained in [BL99℄, [LB92℄ X admitsa period matrix of the form (τ,1g) with τ ∈ Mg(C), the g× g-matries with entriesin C suh that det(Im τ) 6= 0. Conversely every suh matrix is the period matrixof a omplex torus.If Λ ∈ Cg := V denotes the lattie generated by the olumns of (τ,1g) the Néron-Severi group of X may be desribed as

NS(X) =

{

E =

(

A B
−tB C

)

∈ M2g(Z)

∣

∣

∣

∣

A and C alternating, and
A − Bτ + tτ tB + tτCτ = 0

}

.The equality ensures that the alternating form E is a (1, 1)-form, f. [BL99, p. 10℄.



4 JEAN-PIERRE DEMAILLY, THOMAS ECKL, THOMAS PETERNELLTheorem 4. Let X be a 3-dimensional omplex torus with period matrix (τ,13)and let E1 · Z⊕E2 ·Z ⊕E3 ·Z ⊂ NS(X) be a rank 3 subgroup of the Néron-Severigroup NS(X) of X generated by E1, E2, E3 ∈ NS(X). Then there is a sequene
(Xn) of 3-dimensional omplex tori with period matries (τn,13) suh that(i) the τn onverge to τ for n → ∞,(ii) E1 · Z ⊕ E2 · Z ⊕ E3 · Z ⊂ NS(Xn) and(iii) Xn is a omplex abelian variety.As a �rst step towards a proof, E =

(

A B
−tB C

) may be onsidered as an el-ement of the free abelian group Z15: the matries A =





0 a1 a2

−a1 0 a3

−a2 −a3 0



 and
C =





0 c1 c2

−c1 0 c3

−c2 −c3 0



 are alternating, and B =





b1 b2 b3

b4 b5 b6

b7 b8 b9



 is arbitrary.Sine k · E ∈ NS(X) implies E ∈ NS(X), ondition (ii) is equivalent to
E1 · Q ⊕ E2 · Q ⊕ E3 · Q ⊂ NS(Xn) ⊗Z Q,and E1 · Q ⊕ E2 · Q ⊕ E3 · Q may be interpreted as a Q-rational point in theGrassmannian G(3, 15).For a given 3-dimensional subspae E1 · Q ⊕ E2 · Q ⊕ E3 · Q ⊂ Q15 the equations

Ai − Biτ + tτ tBi + tτCiτ = 0, i = 1, 2, 3 imply algebrai relations between theentries of
τ =





τ1 τ2 τ3

τ4 τ5 τ6

τ7 τ8 τ9



 :Sine the Ai − Biτ + tτ tBi + tτCiτ are alternating matries, the number of theserelations an be redued to 9 (i = 1, 2, 3):
(∗)

0 = ai1 − bi1τ2 − bi2τ5 − bi3τ8 + bi4τ1 + bi5τ4 + bi6τ7

+ ci1(τ1τ5 − τ2τ4) + ci2(τ1τ8 − τ2τ7) + ci3(τ4τ8 − τ5τ7)
0 = ai2 − bi1τ3 − bi2τ6 − bi3τ9 + bi7τ1 + bi8τ4 + bi9τ7

+ ci1(τ1τ6 − τ3τ4) + ci2(τ1τ9 − τ3τ7) + ci3(τ4τ9 − τ6τ7)
0 = ai3 − bi4τ3 − bi5τ6 − bi6τ9 + bi7τ2 + bi8τ5 + bi9τ8

+ ci1(τ2τ6 − τ3τ5) + ci2(τ2τ9 − τ3τ8) + ci3(τ5τ9 − τ6τ8).So there is an algebrai subset UE1,E2,E3
of C9 = C3 × C3 suhthat UE1,E2,E3

∩
{

τ ∈ C9 : det(Im τ) 6= 0
} desribes all τ 's with

E1 · Q ⊕ E2 · Q ⊕ E3 · Q ⊂ NS(Xτ ) ⊗Z Q where Xτ is the omplex torusorresponding to the period matrix (τ,13). In partiular, the union of all these
UE1,E2,E3

is an algebrai family U ⊂ G(3, 15) × C9. Let Ū ⊂ G(3, 15) × P9 denotethe projetive losure of U .The heart of the proof is now a areful analysis of this family Ū , espeially of the�bers over Q-rational points of G(3, 15). If they always ontain an (analytially)dense subset of τ 's suh that Xτ is a omplex abelian variety, the theorem willfollow.The �rst observation is that all oe�ients in the equations of (∗) are rational.Hene, Q is the �eld of de�nition of Ū , i.e. there exists a Q-sheme ŪQ suh that
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Ū = ŪQ ×Q Spec C. In partiular, every �ber of Ū over a Q-rational point of
G(3, 15) has Q as �eld of de�nition, too.Next, one omputes a �ber ŪE1,E2,E3

of Ū with su�iently general entries in the ma-tries E1, E2, E3. This an be done with the omputer algebra program Maaulay2([GS℄, [EGSS02℄). Setting
A1 =





0 0 0
0 0 2
0 −2 0



 , B1 =





1 1 0
1 1 2
1 1 2



 , C1 =





0 1 0
−1 0 0
0 0 0



 ,

A2 =





0 1 2
−1 0 1
−2 −1 0



 , B2 =





0 0 0
1 1 1
0 1 0



 , C2 =





0 0 0
0 0 1
0 −1 0



 ,

A3 =





0 1 2
−1 0 1
−2 −1 0



 , B3 =





1 1 1
1 2 1
1 2 1



 , C3 =





0 0 1
0 0 0
−1 0 0



 ,(the matrix entries were hosen by a random number generator) and using thefollowing Maaulay2 sriptk = QQ;PT = k[t_0..t_9℄;A1 = matrix(PT,{{0, 0, 0}, {0, 0, 2}, {0, -2, 0}});B1 = matrix(PT,{{1,1,0},{1,1,2},{1,1,2}});C1 = matrix(PT,{{0,1,0},{-1,0,0},{0,0,0}});A2 = matrix(PT,{{0,1,2},{-1,0,1},{-2,-1,0}});B2 = matrix(PT,{{0,0,0},{1,1,1},{0,1,0}});C2 = matrix(PT,{{0,0,0},{0,0,1},{0,-1,0}});A3 = matrix(PT,{{0,1,2},{-1,0,1},{-2,-1,0}});B3 = matrix(PT,{{1,1,1},{1,2,1},{1,2,1}});C3 = matrix(PT,{{0,0,1},{0,0,0},{-1,0,0}});gent = generiMatrix(PT,t_1,3,3);s1 = matrix(PT,{{t_0,0,0},{0,t_0,0},{0,0,t_0}});s2 = s1*s1;Q1 = A1*s2 - B1*gent*s1 + transpose(gent)*transpose(B1)*s1 +\transpose(gent)*C1*gent;Q2 = A2*s2 - B2*gent*s1 + transpose(gent)*transpose(B2)*s1 +\transpose(gent)*C2*gent;Q3 = A3*s2 - B3*gent*s1 + transpose(gent)*transpose(B3)*s1 +\transpose(gent)*C3*gent;Q = Q1|Q2|Q3;--- Q ontains the 9 relations between the t_i's homogenized with \



6 JEAN-PIERRE DEMAILLY, THOMAS ECKL, THOMAS PETERNELLrespet to t_0q = saturate(ideal(flatten Q), ideal(t_0))--- saturation with t_0 removes all omponents on the hyperplane\t_0 = 0betti qone gets 8 linear and 1 quadrati equation desribing the projetive losure of
UE1,E2,E3

:t_7+3/5t_8+8/5t_9t_6-3/20t_8+1/10t_9t_5-3/5t_8+2/5t_9t_4+1/2t_8+t_9t_3-1/20t_8-3/10t_9t_2+3/10t_8+9/5t_9t_1-3/10t_8+1/5t_9t_0-1/4t_8-3/2t_9t_8^2-48t_8t_9-172/3t_9^2Sine the quadrati generator has disriminant 242 + 4 172
3 > 0 whih is not thesquare of a rational number, this is a Q-irreduible 0-dimensional sheme of degree2; over C it onsists of two points.Unfortunately, these equations may ut out too muh, sine the projetive losure ofa �ber may be less than the �ber of the projetive losure of a family. To deal withthis problem one has to do a little detour: First one looks at the (inhomogeneous)ideal of the whole family U :k = QQ;P = k[t_0..t_9℄;PE = k[e_0..e_11,f_0..f_11,g_0..g_11℄;PT = P ** PE;A1 = matrix(PT,{{0, e_0, e_1}, {-e_0, 0, e_2}, {-e_1, -e_2, 0}});B1 = matrix(PT,{{e_3,e_4,e_5},{e_6,e_7,e_8},{e_9,e_10,e_11}});C1 = matrix(PT,{{0,1,0},{-1,0,0},{0,0,0}});A2 = matrix(PT,{{0, f_0, f_1}, {-f_0, 0, f_2}, {-f_1, -f_2, 0}});B2 = matrix(PT,{{f_3,f_4,f_5},{f_6,f_7,f_8},{f_9,f_10,f_11}});C2 = matrix(PT,{{0,0,0},{0,0,1},{0,-1,0}});A3 = matrix(PT,{{0, g_0, g_1}, {-g_0, 0, g_2}, {-g_1, -g_2, 0}});B3 = matrix(PT,{{g_3,g_4,g_5},{g_6,g_7,g_8},{g_9,g_10,g_11}});C3 = matrix(PT,{{0,0,1},{0,0,0},{-1,0,0}});gent = generiMatrix(PT,t_1,3,3);Q1 = A1 - B1*gent + transpose(gent)*transpose(B1) +\transpose(gent)*C1*gent;Q2 = A2 - B2*gent + transpose(gent)*transpose(B2) +\transpose(gent)*C2*gent;Q3 = A3 - B3*gent + transpose(gent)*transpose(B3) +\



LINE BUNDLES ON COMPLEX TORI AND A CONJECTURE OF KODAIRA 7transpose(gent)*C3*gent;Q = Q1|Q2|Q3;q = ideal flatten Q;The projetive losure of U may be determined by omputing a Groebner basisof this ideal with respet to a monomial order re�ning the order by degree in the
ti's and then homogenizing the generators with respet to t0 ([Eis95, 15.31℄). Thisomputation is too ompliated for the whole Groebner basis, but it is alreadyenough to look at the �rst few elements whih are added to the original generators:gbasis = gb(q,PairLimit=>31);hgbasis = homogenize(gens gbasis,t_0,{1,1,1,1,1,1,1,1,1,1, 0,0,0,\0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,\0,0});Evaluation at (E1, E2, E3)f = map(PT,PT,matrix(PT, {{t_0,t_1,t_2,t_3,t_4,t_5,t_6,t_7,t_8,\t_9, 0,0,2,1,1,0,1,1,2,1,1,2, 1,2,1,0,0,0,1,1,1,0,1,0, 1,2,1,1,\1,1,1,2,1,1,2,1}}));genfibre = ideal f(hgbasis);betti gb genfibreshows that the �bre (U)E1,E2,E3

is ontained in a sheme ut out by 8 linear and 1quadrati equation, so
(U)E1,E2,E3

= UE1,E2,E3
.One an get further informations about U from the homogenized equations olletedin hgbasis. Sine the projetive losure of a �ber is equal to the �ber of theprojetive losure on an open subset they ontain 9 equations desribing the �bersof U over an open subset around (E1, E2, E3). Furthermore the ommandtranspose leadTerm hgbasisshows that all of these equations ontain t-variables. Hene eah of these �bers isut out by 9 non-onstant equations, so it is not empty. Consequently, no �ber isempty.Turning to the �bers of U over C9 = C3 ×C3 (resp. P9) one sees immediately thatthese are non-empty linear subspaes. Hene U is onneted. Finally, U is regular,as may be shown by deriving the equations in (∗) with respet to the aij 's. Takenall these fats together it follows that U and hene U is irreduible. So by Steinfatorization every 0-dimensional �ber is of degree 2.Now it is easy to prove for these 0-dimensional �bers over Q-rational points thatthey desribe period matries τ belonging to omplex abelian varieties: Sine the�bers are Q-rational, too, the entries of τ are elements of a �eld extension of Q ofdegree 2. The de�ning equations of the Néron-Severi group show that then NS(Xτ )is a 15− 2× 3 = 9-dimensional Q-vetor spae. But a 3-dimensional omplex toruswith maximal Piard number 9 is algebrai (f. [BL99℄).What about the higher dimensional �bers ? Consider the Q-rational map

φ : G(3, 15) 99K Hilb2(P9
Q) whose existene is the essene of the arguments used



8 JEAN-PIERRE DEMAILLY, THOMAS ECKL, THOMAS PETERNELLabove. Let
G

π

��

φ

&&M

M

M

M

M

M

M

M

M

M

M

G(3, 15)
φ

// Hilb2(P9
Q)be the resolution of the singularities of φ by blowing up Q-regular enters. Thisis possible by the Hironaka pakage, see [Hir64℄, [BM97℄ or [HLOQ97℄. Now thetheorem is a onsequene of the followingLemma 5. Let Z ⊂ Y be an embedding of Q-regular Q-shemes, let z ∈ Z be a

Q-rational point and let φ : Ỹ → Y be the blow up of Y with enter Z. Then the
Q-rational points are dense on the �ber φ−1(z).Proof. This is almost trivial: Choose a Q-regular sequene (f1, . . . , fs, fs+1, . . . , ft)in the loal ring OY,z suh that mZ,z = (fs+1, . . . , f t) ⊂ OZ,z and
mY,z = (f1, . . . , ft). The blowing up of SpecOY,z with enter SpecOZ,z is givenby

Proj OY,z[fs+1, . . . , ft] = (Spec OY,z × Pt−s−1
Q )/V (Tifj − Tjfi),and the �ber over z is ∼= Pt−s−1

Q . �Apply the lemma on φ: If [E1 ·Q⊕E2 ·Q⊕E3 ·Q] = [W ] ∈ G(3, 15) is a Q-rationalpoint then π−1([W ]) ⊂ G will ontain an analytially dense subset of Q-rationalpoints, and the same will be true of the image φ(π−1([W ])) ⊂ Hilb2(P9
Q). But

Q-rational points in Hilb2(P9
Q) desribe pairs of points orresponding to abelianvarieties, and all pairs in φ(π−1([W ])) map surjetively on the �ber over [W ] in U .Hene this �ber ontains a dense open subset of period matries τ suh that Xτ isan abelian variety.Remark. Some words about the Maaulay2 omputations: Sine all the relevantequations and varieties are de�ned over Q and also the operations applied to themlike taking the projetive losure work over Q, these alulations give exat results.3. Modifiations and a general setting for ounter-examplesOf ourse the onstrution in setion 1 possibly ould be modi�ed in several waysand then might lead to a ounter-example to Kodaira's onjeture.First we show that in the setup before Proposition 2 - of ourse now withoutAssumption (*) - the variety X from Proposition 2 an be approximated alge-braially. In deed in that situation (using the old terminology), V1 ∩ V2 ∩ V3 on-tains other omplex tori than A. Then theorem 4 assures the existene of a sequene

{An}n∈N ⊂ V1 ∩ V2 ∩ V3 of abelian varieties onverging to A. The following lemmashows that this implies X almost algebrai:Lemma 6. Let E =

(

A B
−tB C

)

∈ M2g(Z) be a skew symmetri matrix withintegral entries and let
V =

{

τ ∈ M3(C)|A − Bτ + tτ tB + tτCτ = 0; det Imτ 6= 0
}

⊂ C9be the set of period matries τ suh that Xτ is a omplex torus with E ∈ NS(Xτ ).



LINE BUNDLES ON COMPLEX TORI AND A CONJECTURE OF KODAIRA 9Let X = V ×Cg/Λτ be the family of these tori Xτ where Λτ = (τ,1g) is the lattiebelonging to Xτ = Cg/Λτ . Then every τ0 ∈ V has an open neighborhood U ⊂ Vsuh that there exists a holomorphi line bundle LU on XU suh that c1(Lτ ) = Efor all τ ∈ U .Proof. Let π : X → V be the projetion of X onto V . By taking diret images withrespet to π and deriving the long exat sequene from 0 → Z → OX → O∗
X → 1one obtains the sequene

R1π∗O
∗
X → R2π∗Z → R2π∗OX .The skew symmetri matrix E gives a setion of R2π∗Z whih is mapped to 0 in

R2π∗OX sine E ∈ NS(Xτ ) for all τ ∈ V . Hene E is the image of a setion in
R1π∗O

∗
X . Take an open neighborhood U of τ0 suh that the setion restrited to Uis a ohomology lass in H1(X|π−1(U),O

∗
X ). This lass gives the line bundle LU . �Next, onsider the following more general setting: Take an n-dimensonal omplextorus A and k vetor bundles E1, . . . , Ek over A of rank r1, . . . , rk ≤ n. Let Y bethe (n + r1 + . . . + rk)-dimensional manifold

P(OA ⊕ E1) ×A · · · ×A P(OA ⊕ Ek).This a (Pr1 × . . .×Prk)-bundle over A with projetion π : Y → A. In eah subspae
P(OA ⊕Ei) there is a setion Zi at in�nity given by the diret summand OA. Thisgives a setion Z of π by seleting over every a ∈ A the point (x1, . . . , xk), where
{xi} = Zi ∩ π−1(a). Let σ : X → Y be the blow up of Z ⊂ Y .Similar arguments as in setion 1 showProposition 7. If there is a positive-dimensional family of deformations of X thenthere will also exist a deformation family of omplex tori {At}t∈∆ suh that A = A0and all vetor bundles E1, . . . , Ek remain holomorphi on At. �The ondition on the vetor bundles to remain holomorphi requires some furtherexplanations: Let E be a vetor bundle of rank r over an g-dimensional torus
A. Then the Chern lasses ci(E) are (i, i)-lasses in H2i(A, Z) =

∧2i
Hom(Λ, Z),where Λ ⊂ Cg =: V is a (non-degenerate) lattie suh that A = V/Λ. Sine

Hi,i(A, C) =
∧i

HomC(V, C) ×
∧i

HomC(V, C), the (i, i)-lasses in H2i(A, Z) maybe interpreted as a real valued alternating form F on ∧i
V suh that

F (iΦ, iΨ) = F (Φ, Ψ) and F (

i
∧

Λ,

i
∧

Λ) ⊂ Z.As in the ase of (1, 1)-lasses these onditions indue relations between F (writtenin terms of a base of Λ) and the period matrix τ . In a family {At}t∈∆ of omplextori these relations must be satis�ed for τt, t 6= 0, if a holomorphi vetor bundle
E on A0 still has a holomorphi struture on At.But the existene problem for vetor bundles of higher rank with presribed Chernlasses is muh more di�ult than in the ase of line bundles. On (non-algebrai)omplex tori this problem is ompletely solved only in dimension 2 and rank 2[Tom99℄, [TT02℄. Consequently, to onstrut a ounter-example to Kodaira's on-jeture with vetor bundles of higher rank it is not enough to give a set of Chernlasses and to prove that these lasses an be Chern lasses only for isolated periodmatrix. On the other hand if there is a positive family of suh period matries there



10 JEAN-PIERRE DEMAILLY, THOMAS ECKL, THOMAS PETERNELLmay be still a ounter-example depending on the existene of vetor bundles withthese Chern lasses only on isolated members of the families.Finally the two simplest ases of this general setting are onsidered.3.1. Line bundles in arbitrary dimensions. Let X be a omplex torus of di-mension g given by the period matrix (τ, 1g). By the haraterization of theNéron-Severi group in the last setion a skew symmetri matrix E ∈ M2g(Z) is a
(1, 1)-form i� the entries of τ satisfy (

g
2

) equations. Consequently, 3 skew sym-metri matries E1, E2, E3 ∈ M2g(Z) should determine at most a �nite number of
g × g period matries τ suh that E1, E2, E3 are �rst Chern lasses of line bundleson Xτ .As in the last setion, for given g one an hoose random entries for E1, E2, E3and ompute the lous V (E1) ∩ V (E2) ∩ V (E3) of τ 's as above. But already indimension 4 this lous turns out to be empty for randomly hosen entries. Thismeans that only speial triples of matries belong to the Néron-Severi group of aomplex torus, and it seems di�ult to �nd one suh that furthermore the abovelous onsists of isolated points. And then one has still to prove that the periodmatries in this lous determine a non-algebrai omplex torus.3.2. Rank 2 vetor bundles in dimension 3. This is the simplest ase withvetor bundles of rank > 1. Unfortunately, by Poinaré duality

H2,2(X, Z) ∼= H1,1(X, Z), H3,1(X, Z) ∼= H0,2(X, Z), H1,3(X, Z) ∼= H2,0(X, Z)and the equations for a skew symmetri matrix in M2g(Z) to be a (2, 2)-form donot di�er from those for (1, 1)-forms. Hene in this ase a ounter-example may befound only by loser onsidering the question for whih omplex tori exist rank 2vetor bundles with given Chern lasses.Of ourse more di�ult settings starting with rank 2 vetor bundles on 4-dimensional omplex tori may give positive results. On the other hand the examplesabove give enough evidene to turn around one's point of view, into an attempt toprove Kodaira's onjeture (at least in these speial ases).4. Deformations of Projetive BundlesIn this �nal setion we generalize Proposition 2:Theorem 8. Let X be a ompat Kähler manifold whih has a Pr-bundle struture
X → Y over some ompat Kähler manifold Y . Then for every deformation X → Swith X0 ≃ X, the nearby �bers Xt have a Pr-bundle struture Xt → Yt where Yis a deformation of Y in a neighborhood of t = 0. Moreover, if X = P(V ) forsome vetor bundle V on Y , then Xt = P(Vt) for a suitable deformation Vt → Ytof V → Y .Proof. Let q : C → T be the irreduible omponent of the yle spae relative to
π : X → S ontaining the �bers of X → Y. So T parametrizes deformations of the
Pr to nearby �bers Xy. Sine the normal bundle in C to these projetive spaesis trivial, it follows immediately that (possibly after shrinking S) T is smooth.Let p : C → X denote the projetion and notie that there is another anonialprojetion r : T → S realizing T as a family (Ts). We will also onsider Cs = q−1(Ts)with projetion qs to Ts. Now q0 is a Pr−bundle. Therefore for small s also the



LINE BUNDLES ON COMPLEX TORI AND A CONJECTURE OF KODAIRA 11maps qs are �rst submersions and seond projetive bundles (sine projetive spaeis loally rigid). Having in mind that p0 : C0 → X0 is an isomorphism, we see that
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