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Introduction. The goal of these notes is to study complex varieties, mainly compact or
projective algebraic ones, through a few geometric questions related to hyperbolicity in the
sense of Kobayashi : a complex space X is said to be hyperbolic essentially if analytic disks
f D — X through a given point form a normal family. If X is not hyperbolic, a basic
question is to analyze entire holomorphic curves f : C — X, and especially to understand the
locus Y C X where these curves can be located. A tantalizing conjecture by Green-Griffiths
and Lang says that one can take Y to be a proper algebraic subvariety of X whenever
X is a projective variety of general type. It is also expected that very generic algebraic
hypersurfaces X of high degree in complex projective space P*"t! are Kobayashi hyperbolic,
i.e. without any entire holomorphic curves f : C — X. A convenient framework for this
study is the category of “directed manifolds”, that is, the category of pairs (X, V) where X
is a complex manifold and V' a holomorphic subbundle of T'x, possibly with singularities —
this includes for instance the case of holomorphic foliations. If X is compact, the pair (X, V)
is hyperbolic if and only if there are no nonconstant entire holomorphic curves f : C - X
tangent to V', as a consequence of Brody’s criterion. We describe here the construction
of certain jet bundles Jip X, Ji(X, V), and corresponding projectivized k-jet bundles PV.
These bundles, which were introduced in various contexts (Semple in 1954, Green-Griffiths
in 1978) allow us to analyze hyperbolicity in terms of certain negativity properties of the
curvature. For instance, m; : P,V — X is a tower of projective bundles over X and carries
a canonical line bundle Op,y(1); the hyperbolicity of X is then conjecturally equivalent
to the existence of suitable singular hermitian metrics of negative curvature on Op, v (—1)
for k large enough. The direct images (7x),Op, v (m) can be viewed as bundles of algebraic
differential operators of order k£ and degree m, acting on germs of curves and invariant under
reparametrization.

Following an approach initiated by Green and Griffiths, we establish a basic Ahlfors-
Schwarz lemma in the situation when Op,y(—1) has a (possibly singular) metric of negative
curvature, and we infer that every nonconstant entire curve f : C — V tangent to V must be
contained in the base locus of the metric. Another fundamental tool is a vanishing theorem
asserting that entire curves must be solutions of the algebraic differential equations provided
by global sections of jet bundles, whenever their coefficients vanish on a given ample divisor.
These results can in turn be used to prove various geometric statements such as the Bloch
theorem, which asserts that the Zariski closure of an entire curve in a complex torus is a
translate of a subtorus. Another important consequence is a partial answer to the Green-
Griffiths-Lang conjecture : there exists a global algebraic differential operator P (in fact
many such operators P;) such that every entire curve f : C — X drawn in a projective
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variety of general type must satisfy the equations P;(f; f/,..., f*)) = 0. The main idea is
to make curvature calculations and use holomorphic Morse inequalities to show the existence
of global sections for the relevant jet bundles. Using this, a differentiation technique of Siu
based on “slanted” vector fields on jet bundles, implies that the Green-Griffiths conjecture
holds true for generic hypersurfaces of projective space of sufficiently high degree.

Key words: Kobayashi hyperbolic variety, directed manifold, genus of a curve, jet bundle,
jet differential, jet metric, Chern connection and curvature, negativity of jet curvature,
variety of general type.
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80. Preliminaries of complex differential geometry

80.A. Dolbeault cohomology and sheaf cohomology

Let X be a C-analytic manifold of dimension n. We denote by AP9T% the bundle of
differential forms of bidegree (p,q) on X, i.e., differential forms which can be written as

u = Z ULJdZ[/\dEJ.
|I1=p, |J|=q
Here (z1, ..., 2z,) denote local holomorphic coordinates, I = (i1,...,%p), J = (j1,...,]q) are
multiindices (increasing sequences of integers in the range [1,...,n|, of lengths |I| = p,
|J| =q), and
dZ] ideil/\.../\dZip, dEJ ::dijl/\.../\dzjq.

Let EP9 be the sheaf of germs of complex valued differential (p, ¢)-forms with C°° coefficients.
Recall that the exterior derivative d splits as d = 0 + 0 where

ou
ou = 3 aI’Jd,zk/\d,zIAdzJ,
I|=p, |J|=q1<k<n 0K
— ou
ou = Z ;"dzk/\dzIAdzJ
k

[I|=p,|J|=q,1<k<n

are of type (p+1,q), (p, g+ 1) respectively. (Another frequently used alternative notation is
d=d +d", where d’ = 0, d’ = 9). The well-known Dolbeault-Grothendieck lemma asserts
that any O-closed form of type (p,q) with ¢ > 0 is locally d-exact (this is the analogue
for O of the usual Poincaré lemma for d, see e.g. [Hor66]). In other words, the complex of
sheaves (EP+*, 9) is exact in degree ¢ > 0; in degree ¢ = 0, Ker 0 is the sheaf O of germs of

holomorphic forms of degree p on X.

More generally, if F'is a holomorphic vector bundle of rank r over X, there is a natural
0 operator acting on the space C™ (X, APYT% ® F) of smooth (p, ¢)-forms with values in F;
if s = ZKA@ sxex is a (p, q)-form expressed in terms of a local holomorphic frame of F,
we simply define 0s := Y sy ® ey, observing that the holomorphic transition matrices
involved in changes of holomorphic frames do not affect the computation of 9. It is then
clear that the Dolbeault-Grothendieck lemma still holds for F-valued forms. For every
integer p = 0,1, ...,n, the Dolbeault Cohomology groups HP*9(X, F') are defined to be the
cohomology groups of the complex of global (p, q) forms (graded by q):

(0.1) HP(X,F) = HY(C®(X,A\"*T% @ F)).
Now, let us recall the following fundamental result from sheaf theory (De Rham-Weil

isomorphism theorem): let (£°®,d) be a resolution of a sheaf A by acyclic sheaves, i.e. a
complex of sheaves (£°®,6) such that there is an exact sequence of sheaves

: 0 v
0—A L5200 Supt g Oy patt
and H*(X,L9) =0 for all ¢ > 0 and s > 1. Then there is a functorial isomorphism

(0.2) HI(T(X,L%) — HY(X,A).
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We apply this to the following situation: let £(F)P? be the sheaf of germs of C*° sections
of AP4T% ® F. Then (&(F)P®, ) is a resolution of the locally free O x-module Q% ® O(F)
(Dolbeault-Grothendieck lemma), and the sheaves E(F)P'? are acyclic as modules over the
soft sheaf of rings C>°. Hence by (0.2) we get

0.3. Dolbeault isomorphism theorem (1953). For every holomorphic vector bundle F
on X, there 1s a canonical 1somorphism

HP(X,F) ~ HY(X, 0% @ O(F)). O

If X is projective algebraic and F' is an algebraic vector bundle, Serre’s GAGA theorem
[Ser56] shows that the algebraic sheaf cohomology group H%(X, Q% ® O(F')) computed with
algebraic sections over Zariski open sets is actually isomorphic to the analytic cohomology
group. These results are the most basic tools to attack algebraic problems via analytic
methods. Another important tool is the theory of plurisubharmonic functions and positive
currents introduced by K. Oka and P. Lelong in the decades 1940-1960.

§0.B. Plurisubharmonic Functions

Plurisubharmonic functions have been introduced independently by Lelong and Oka in
the study of holomorphic convexity. We refer to [Lel67, 69] for more details.

0.4. Definition. A function u : Q — [—00, 40| defined on an open subset Q C C™ is said
to be plurisubharmonic (psh for short) if

a) u is upper semicontinuous ;

b) for every complex line L C C", ujqnr is subharmonic on QN L, that is, for all a € Q
and & € C" with |£| < d(a,CR), the function u satisfies the mean value inequality

1 27 .
u(a) < %/0 u(a + € €) db.

The set of psh functions on § is denoted by Psh(2).

We list below the most basic properties of psh functions. They all follow easily from the
definition.

0.5. Basic properties.

a) Every function u € Psh({?) is subharmonic, namely it satisfies the mean value inequality
on euclidean balls or spheres:

1
U(Cl) < Wn/n' /;(a’r) 'LL(Z) d)\(Z)
for every a € Q and r < d(a,0Q). Either u = —o0c or u € L{_ on every connected

component of 2.

b) For any decreasing sequence of psh functions uy € Psh(Q), the limit v = limuy, is psh
on €.
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c) Let u € Psh(Q2) be such that u Z —oo on every connected component of . If (p.) is a
family of smoothing kernels, then u % p. is C°° and psh on

Q. = {x € Q; d(z,0Q) > 8},

the family (u * pc) is increasing in € and lim._,o u * p. = u.

d) Let uq,...,u, € Psh(f2) and x : R» — R be a convex function such that x(t1,...,t,)
is increasing in each t;. Then x(u1,...,u,) is psh on €. In particular w; + - 4 up,
max{ui,...,up}, log(e" + .-+ e") are psh on . O

0.6. Lemma. A function u € C’Q(Q,ﬂ%) is psh on  if and only if the hermitian form
Hu(a)(§) = >_1<jren 0?u/0z;0z1(a) £;€,, is semipositive at every point a € €.

Proof. This is an easy consequence of the following standard formula

27 1
L[ wa+ ) d0 - ua) = 2 / D Hu(a+ ce)(€) ar©),
0 0

m tJicl<t

where d\ is the Lebesgue measure on C. Lemma 0.6 is a strong evidence that plurisubhar-
monicity is the natural complex analogue of linear convexity. a

For non smooth functions, a similar characterization of plurisubharmonicity can be
obtained by means of a regularization process.

0.7. Theorem. If u € Psh(f2), u Z —oo on every connected component of €, then for all
EeCr
H©= Y ST g e (@)
- - szﬁzk IS5k
1<g,k<n
is a positive measure. Conversely, if v € D'(Q) is such that Hv(&) is a positive measure for

every & € C™, there exists a unique function u € Psh(Q) which is locally integrable on Q and
such that v is the distribution associated to u. a

In order to get a better geometric insight of this notion, we assume more generally that
u is a function on a complex n-dimensional manifold X. If & : X — Y is a holomorphic
mapping and if v € C?(Y,R), we have the commutation relation 9d(vo ®) = ®*(9dv),
hence
H(vo ®)(a,¢) = Ho(0(a), @/(a) -€).

In particular Hu, viewed as a hermitian form on T, does not depend on the choice of
coordinates (21, ..., 2,). Therefore, the notion of psh function makes sense on any complex
manifold. More generally, we have

0.8. Proposition. If & : X — Y is a holomorphic map and v € Psh(Y), then
vo® e Psh(X). O

0.9. Example. It is a standard fact that log|z| is psh (i.e. subharmonic) on C. Thus
log | f| € Psh(X) for every holomorphic function f € H°(X,Ox). More generally

log (| f1]®* 4+ -+ fq|*?) € Psh(X)
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for every f; € H%(X,0x) and «; > 0 (apply Property 0.5d with u; = «; log|f;|). We
will be especially interested in the singularities obtained at points of the zero variety
fi=...= f; =0, when the o; are rational numbers. O

0.10. Definition. A psh function u € Psh(X) will be said to have analytic singularities if
u can be written locally as

(@]
U= §1Og (/1> + -+ [N ) + v,

where o € R, v is a locally bounded function and the f; are holomorphic functions. If X is
algebraic, we say that u has algebraic singularities if u can be written as above on sufficiently
small Zariski open sets, with o € Q4 and f; algebraic.

We then introduce the ideal § = J(u/a) of germs of holomorphic functions h such that
|h| < Ce*/® for some constant C, i.e.

Bl < C(IAl+- -+ fn]).

This is a globally defined ideal sheaf on X, locally equal to the integral closure J of the ideal
sheaf J = (f1,..., fn), thus J is coherent on X. If (g1, ..., gn’) are local generators of J, we
still have o

u=log (lgif* + - +lgn|?) + O(1).

If X is projective algebraic and u has analytic singularities with o € Q4, then u
automatically has algebraic singularities. From an algebraic point of view, the singularities
of u are in 1:1 correspondence with the “algebraic data” (J, ).

80.C. Positive Currents

The reader can consult [Fed69] for a more thorough treatment of current theory. Let
us first recall a few basic definitions. A current of degree ¢ on an oriented differentiable
manifold M is simply a differential ¢-form T with distribution coefficients. The space of
currents of degree ¢ over M will be denoted by D'?(M). Alternatively, a current of degree
q can be seen as an element 7' in the dual space D}, (M) := (DP(M))/ of the space DP(M)
of smooth differential forms of degree p = dim M — ¢ with compact support; the duality
pairing is given by

(0.11) <T,a):/MT/\a, a € DP(M).

A basic example is the current of integration [S] over a compact oriented submanifold S of
M:

(0.12) ([S], ) = /Sa, dega = p = dimg S.

Then [S] is a current with measure coefficients, and Stokes’ formula shows that d[S] =
(—1)771[09], in particular d[S] = 0 if S has no boundary. Because of this example, the
integer p is said to be the dimension of 7" when T' € D;,(M). The current 7' is said to be
closed if dT = 0.
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On a complex manifold X, we have similar notions of bidegree and bidimension; as in
the real case, we denote by
DPUX) =Dy, (X)), n = dim X,
the space of currents of bidegree (p, q) and bidimension (n — p,n — q) on X. According to

[Lel57], a current T of bidimension (p, p) is said to be (weakly) positive if for every choice of
smooth (1,0)-forms a1, ..., o, on X the distribution

0.13 TANANiog Nag A... Nia, AN is a positive measure.
P P

0.14. Exercise. If T' is positive, show that the coefficients T ; of T" are complex measures,
and that, up to constants, they are dominated by the trace measure

1 - .
UT:T/\HBPIQ_Z)ZTI,D b= %68|z|2:% Z de/\dzj,

1<j<n

which is a positive measure.

Hint. Observe that ) 77 is invariant by unitary changes of coordinates and that the
(p, p)-forms iy A@y A ... Aiay, A @) generate APPTE, as a C-vector space. a

A current T = iZlgj,kgn Tjrdz; A dz, of bidegree (1,1) is easily seen to be positive

if and only if the complex measure Z/\jkajk is a positive measure for every n-tuple
(A1,. ., ) € C™.

0.15. Example. If u is a (not identically —oo) psh function on X, we can associate with
u a (closed) positive current T = i90u of bidegree (1,1). Conversely, every closed positive
current of bidegree (1,1) can be written under this form on any open subset 2 C X such
that H% 5(,R) = H'(2,0) = 0, e.g. on small coordinate balls (exercise to the reader). O

It is not difficult to show that a product 71 A ... AT, of positive currents of bidegree
(1,1) is positive whenever the product is well defined (this is certainly the case if all 7; but
one at most are smooth; much finer conditions will be discussed in Section 2).

We now discuss another very important example of closed positive current. In fact, with
every closed analytic set A C X of pure dimension p is associated a current of integration

(0.16) ([A], ) = /A a, o€ DPP(X),

reg

obtained by integrating over the regular points of A. In order to show that (0.16) is a
correct definition of a current on X, one must show that A,., has locally finite area in a
neighborhood of Age. This result, due to [Lel57] is shown as follows. Suppose that 0 is a
singular point of A. By the local parametrization theorem for analytic sets, there is a linear
change of coordinates on C™ such that all projections

i (21,0 20) & (Zigy oo 2i))

define a finite ramified covering of the intersection ANA with a small polydisk A in C" onto
a small polydisk A; in CP. Let n; be the sheet number. Then the p-dimensional area of
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ANA is bounded above by the sum of the areas of its projections counted with multiplicities,
i.e.

Area(ANA) <> nyVol(Ay).

The fact that [A] is positive is also easy. In fact
iy AT A ... Ny AT, = | det(agy)|? dwr AT A LA dwy AT,

if o;j = Y ajrdwy in terms of local coordinates (wq, ..., wp) on Ayee. This shows that all
such forms are > 0 in the canonical orientation defined by iw; Aw; A ... A 1w, A w,. More
importantly, Lelong [Lel57] has shown that [A] is d-closed in X, even at points of Aging.
This last result can be seen today as a consequence of the Skoda-El Mir extension theorem.
For this we need the following definition: a complete pluripolar set is a set E such that there
is an open covering (€2;) of X and psh functions u; on Q; with ENQ; = uj_l(—oo). Any
(closed) analytic set is of course complete pluripolar (take u; as in Example 0.9).

0.17. Theorem (Skoda [Sko82], El Mir [EM84], Sibony [Sib85]). Let E be a closed
complete pluripolar set in X, and let T be a closed positive current on X ~ E such that the
coefficients Tt ; of T' are measures with locally finite mass near E. Then the trivial extension

T obtained by extending the measures Ty ; by 0 on E is still closed on X. a

The proof proceeds by rather direct mass estimates and will be omitted here. Lelong’s
result d[A] = 0 is obtained by applying the Skoda-El Mir theorem to T = [Aeg] on X \ Aging.

0.18. Corollary. Let T' be a closed positive current on X and let E be a complete pluripolar
set. Then WgT and Nx gT are closed positive currents. In fact, T = lx gT is the trivial

extension of Tyx g to X, and 1gT =T —T. O

As mentioned above, any current T' = i00u associated with a psh function u is a closed
positive (1,1)-current. In the special case u = log|f| where f € H°(X,Ox) is a non zero
holomorphic function, we have the important

0.19. Lelong-Poincaré equation. Let f € H°(X,0x) be a non zero holomorphic
function, Zy =Y m;Z;, m; € N, the zero divisor of f and [Z¢] = m;[Z;] the associated
current of integration. Then

i _
~0910g || = (7).

Proof (sketch). Tt is clear that i90log|f| = 0 in a neighborhood of every point x ¢
Supp(Zf) = U Z,, so it is enough to check the equation in a neighborhood of every point
of Supp(Zy). Let A be the set of singular points of Supp(Zy), i.e. the union of the pairwise
intersections Z; N Zj, and of the singular loci Zj ¢ing; we thus have dimA < n —2. In a
neighborhood of any point x € Supp(Zy) . A there are local coordinates (z1,...,2,) such
that f(z) = 2" where m; is the multiplicity of f along the component Z; which contains x
and z; = 0 is an equation for Z; near x. Hence

99 log| f| = m;—01og |21| = m;[Z;]
T T

in a neighborhood of z, as desired (the identity comes from the standard formula
~00log|z| = Dirac measure dy in C). This shows that the equation holds on X ~\ A.
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Hence the difference %85 log |f| — [Zf] is a closed current of degree 2 with measure coeffi-
cients, whose support is contained in A. By Exercise 0.20, this current must be 0, because
A has too small dimension to carry its support (A is stratified by submanifolds of real
codimension > 4). O

0.20. Exercise. Let T be a current of degree ¢ on a real manifold M, such that both T
and dT" have measure coefficients (“normal current”). Suppose that Supp 7T is contained in
a real submanifold A with codimg A > ¢. Show that 7" = 0.

Hint: Let m = dimg M and let (z1,...,2,,) be a coordinate system in a neighborhood
Q2 of a point a € A such that ANQ = {z; = ... =z, = 0}, k£ > ¢. Observe that
;T = x;dT = 0 for 1 < j < k, thanks to the hypothesis on supports and on the normality
of T, hence dx; AT = d(z;T) — z;dT =0, 1 < j < k. Infer from this that all coefficients in
T = Z|I|:q Trdz; vanish. O

80.D. Hermitian Vector Bundles, Connections and Curvature

The goal of this section is to recall the most basic definitions of hemitian differential
geometry related to the concepts of connection, curvature and first Chern class of a line

bundle.

Let F' be a complex vector bundle of rank r over a smooth differentiable manifold M.
A connection D on F is a linear differential operator of order 1

D:C®(M,NTy; @ F) = C®(M,AN""' T}, @ F)
such that
(0.21) D(f Au)=df ANu+ (1) f A Du

for all forms f € C®°(M,APT},), w € C°(X,AT}; ® F). On an open set 2 C M where F

admits a trivialization 6 : Fq =5 Q x C", a connection D can be written
Du~gdu+T Au

where I' € C®(Q, AT}, ® Hom(C",C")) is an arbitrary matrix of 1-forms and d acts
componentwise. It is then easy to check that

D*u~p (dl +T AT)Au on Q.
Since D? is a globally defined operator, there is a global 2-form
Rp € C®(M,A*T}; @ Home(F, F))
such that D?u = Rp A u for every form u with values in F. Locally, Rp is given by
(0.22) Rp ~pdI'+T AT

where T is the connection matrix.
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Assume now that F'is endowed with a C'>° hermitian metric h along the fibers and that
the isomorphism Fjo ~ Q x C" is given by a C* frame (ey). We then have a canonical
sesquilinear pairing {e,e} = {e, e},

0.23)  C®(M,APT}, ® F) x C®(M, AT}, ® F) —s C™ (M, APHT}, @ C)
(U, U) — {U’7 U}h

given by

{u,v}h:ZuA/\Eu<e>\,eu>h, u:ZuA@)e)\, U:ZUM®8M‘

A

We will frequently omit the subscript A when no confusion can arise. The connection D is
said to be hermitian (with respect to h) if it satisfies the additional property

d{u,v} = {Du, v} + (=1)9 “{u, Dv}.

Assuming that (ey) is orthonormal, one easily checks that D is hermitian if and only if
I' = —I, ie. I' is hermitian skew symmetric. In this case R}, = —Rp [observe that
(T AT)* = —=I'" AT and more generally (A A B)* = —B* A A* for products of matrices of
1-forms, since reversing the order of the product of 1-forms changes the sign|. Therefore the
2-form Op := ;- Rp = 5=D? takes values in hermitian symmetric tensors Herm(F, F), i.e.

Op € C®(M,A*T}; @ Herm(F, F))

where Herm(F, F') C Hom(F, F) is the real subspace of hermitian endomorphisms. (The
reason for introducing the additional factor 27 will appear below).

0.24. Special case. For a bundle F' of rank 1, the connection form I' of a hermitian
connection D can be seen as a l-form with purely imaginary coefficients (i.e. I' = iA4, A
real). Then we have Rp = dI"' = idA, therefore O p = %RD = —%dA is a d-closed and real
2-form. The (real) first Chern class of F is defined to be the cohomology class

ci(F)r = {®p} € Hpr(M,R).

This cohomology class is actually independent of the connection D taken on F': any other
connection D; differs by a global 1-form, i.e. Diu = Du+ B Awu, so that Op, = Op — %dB.
It is well-known that c; (F)g is the image in H?(M, R) of an integral class ¢ (F) € H?(M,Z);
by using the exponential exact sequence

0—-Z—&—E =0,

c1(F) can be defined in Cech cohomology theory as the image by the coboundary map
HY (M, &*) — H*(M,Z) of the cocycle {g;x} € H'(M,E*) defining F ; see e.g. [GrHT78] for

details. This is the essential reason for the introduction of a factor ﬁ in the definition of

Op. O

We now concentrate ourselves on the complex analytic case. If M = X is a complex
manifold X, every connection D on a complex C* vector bundle F' can be splitted in
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a unique way as a sum of a (1,0) and of a (0, 1)-connection, D = D’ + D”. In a local
trivialization 6 given by a C°° frame, one can write

(0.25") D'u~g d'u+T" Au,
(0.25") D"u~g d"u+T" ANu,
with I' = IV 4TI"". The connection is hermitian if and only if I = —(I'"")* in any orthonormal

frame. Thus there exists a unique hermitian connection D corresponding to a prescribed
(0,1) part D".

Assume now that the hermitian bundle (F,h) itself has a holomorphic structure. The
unique hermitian connection Dy, for which Dj is the 0 operator defined in §0.A is called the
Chern connection of F. In a local holomorphic frame (ey) of Ejq, the metric h is then given
by a hermitian matrix H = (hy,), hx, = (ex,e,). We have

{u,v} = ZhAuU/\ AT, =ul A HT,
A p
where u is the transposed matrix of u. Easy computations yield
d{u,v} = (du)" AN HT + (—1)38 %y A (dH AT + Hdv)
= (du+H 'd'H A u)T A HT 4 (—1)%8 "yt A (dv + H ~1d'H A v)

using the fact that dH = d'H + d’H and H' = H. Therefore the Chern connection Dy,
coincides with the hermitian connection defined by

Dyu ~g du+ H 'd"H A u,
(0.26) { e

Dy ~gd +H '"dHNe=H"d(Hs), Dj=d"

It is clear from the above relations (0.26) that D}? = D}? = 0. Consequently D3 is
given by to D7 = D} D} + D} D}, and the curvature tensor Rp, is of type (1,1). Since
d'd’"+d"d =0, we get

(D)D) + D) D\)u~g H 'dHANd"vw+d'(H 'dHAu)
=d"(H 'd'H)Au.

By the above calculation Rp, is given by the matrix of (1, 1)-forms
Rp, ~gd'(H 'dH)=H 'd'"dH-H 'd"HANH 'dH

Since H = FT is hermitian symmetric and transposition reverses products, we find again in
this setting that Rp, is hermitian skew symmetric

Ry, ~¢ H 'RiLH = —Rp,.

0.27. Definition and proposition. The Chern curvature tensor of (F,h) is defined to be
Of) :=0Op, = ﬁRDh where Dy, is the Chern connection. It is such that

Oy € C (X, AR Tk ®r Herm(F, F)) € C™ (X, AM'T% ®c Hom(F, F)).
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If 0 : Fio — Q x C" is a holomorphic trivialization and if H is the hermitian matriz
representing the metric along the fibers of Fiq, then

Orn ~ %d”(ﬁ_ldlﬁ) on 2. O
s

[ We will frequently omit the subscript h and write simply D, = D, Op) = Op when no
confusion can arise].

The next proposition shows that the Chern curvature tensor is the obstruction to the
existence of orthonormal holomorphic frames: a holomorphic frame can be made “almost
orthonormal” only up to curvature terms of order 2 in a neighborhood of any point.

0.28. Proposition. For every point g € X and every holomorphic coordinate system
(zj)1<i<n at To, there exists a holomorphic frame (ex)i<a<r of F' in a neighborhood of x
such that

(ex(2),€u(2)) =0xu— D ciran2iZk + O(|2%)

1<j,k<n

where (cjrau) are the coefficients of the Chern curvature tensor ©p(xg), namely

7 _
@F(CL’()) = 2— E Cjkkudzj /\dzk®e§\®eu.
71-
1<g,k<n, 1<, u<r

Such a frame (ey) is called a normal coordinate frame at x.
Proof. Let (hy) be a holomorphic frame of F. After replacing (hy) by suitable linear

combinations with constant coefficients, we may assume that (hx(zo)) is an orthonormal
basis of F,. Then the inner products (hy, h,) have an expansion

(ha(2), hu(2)) = O + Z(%Au 2 +ajy, %) + O(l2]")

J

for some complex coefficients a;y,, a;-M such that a;-M = @ . Set first
gr(2) = ha(2) = D ajan 2 hu(2).
Tk

: / 1
Then there are coefficients a;ix,, ik ikap such that

(97(2), 9u(2)) = Ox + O(l2*)

= Oxu+ Y (@jran 2%k + @ 252k + @, Zi%k) + O(12)%).
ik

The holomorphic frame (ey) we are looking for is

ex(z) = ga(2) = > @l 22k 9u(2).
Jk,p
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Since afjy,, = @)y, We easily find

(ex(2),eu(2)) = xu + Y ajin 27k + O(|2*),

Gk
d'(ex,en) = {D'ex,eu} = ajury Z dzj + O(|2]),
Gk
Op-ex=D"(D'ex) = Y ajerudze Adz; @ e, + O(|2]),
Jiksp
therefore cjpry = —ajrrp- |

According to (0.27), one can associate canonically with the curvature tensor of F' a
hermitian form on 7T'x ® F' defined by

(0.29) @)F(f ®v) = Z Cjk)\ufjgkv)\ﬁu, EeTx, verF.

1<g,k<n, IS, pusr

This leads in a natural way to positivity concepts, following definitions introduced by
Kodaira [Kod53], Nakano [Nak55] and Griffiths [Gri69].

0.30. Definition. The hermitian vector bundle F' is said to be

a) positive in the sense of Nakano if ©p () > 0 for all non zero tensors 7 =Y Tix0/0z; ®
ex €Ty ® F.

b) positive in the sense of Griffiths if @)F(f ®wv) > 0 for all non zero decomposable tensors
EuveTlx ®F;

Corresponding semipositivity concepts are defined by relaring the strict inequalities.

0.31. Special case of rank 1 bundles. Assume that F' is a line bundle. The hermitian
matrix H = (hy) associated to a trivialization 0 : F1q ~ 2 x C is simply a positive function
which we find convenient to denote by e~ ¥, o € C>°(€Q2,R). In this case the curvature form
Rrj, can be identified to the (1, 1)-form 99y, and thus we get a real (1,1)-form

G)F,h = i@écp
2

Hence F' is semipositive (in either the Nakano or Griffiths sense) if and only if ¢ is psh, resp.
positive if and only if ¢ is strictly psh. In this setting, the Lelong-Poincaré equation can be
generalized as follows: let o € H°(X, F) be a non zero holomorphic section. Then

(]

i
(0.32) %3810gHaHh:[Zg] 5

OFh.

Formula (0.32) is immediate if we write ||o||2 = |0(c)|?e~% and if we apply (0.19) to the
holomorphic function f = 0(o). As we shall see later, it is very important for the applications
to consider also singular hermitian metrics.

0.33. Definition. A singular (hermitian) metric h on a line bundle F' is a metric h which
is given in any trivialization 0 : Flq =5 xC by

I€l7 = 10@©)Pe ™), 2eQ, ¢€F,
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where ¢ is an arbitrary measurable function in L (Q), called the weight of the metric with
respect to the trivialization 0.

If 0/ : Floo — @ x C is another trivialization, ¢’ the associated weight and g €
O* (2N KY) the transition function, then ¢’ (£) = g(z) 6(¢) for € € F, and so ¢’ = p+log|g|?
on QN Q. The curvature form of F' is then given formally by the closed (1, 1)-current
OFpn = %35@ on €2 ; our assumption p € Llloc(Q) guarantees that ©p ), exists in the sense
of distribution theory. As in the smooth case, O, is globally defined on X and independent
of the choice of trivializations, and its De Rham cohomology class is the image of the first
Chern class ¢;(F) € H*(X,Z) in H3,(X,R). Before going further, we discuss two basic

examples.

0.34. Example. Let D = )" «a;D; be a divisor with coefficients a; € Z and let F' = O(D)
be the associated invertible sheaf of meromorphic functions u such that div(u)+D > 0; the
corresponding line bundle can be equipped with the singular metric defined by |u|| = |u|.
If g; is a generator of the ideal of D; on an open set Q@ C X then 0(u) = qu}lj
defines a trivialization of O(D) over €2, thus our singular metric is associated to the weight
¢ = > ajlogl|g;|?. By the Lelong-Poincaré equation, we find

i
= — = D
C'-)(‘)(D) o 68@ [ ]7
where [D] = )" o;[D;] denotes the current of integration over D. O

0.35. Example. Assume that o1,...,0xn are non zero holomorphic sections of F'. Then we
can define a natural (possibly singular) hermitian metric h* on F* by

2= Z ’E*.Jj(x)}Q for £ € Fy.

1< <n

1€7]

The dual metric h on F' is given by

10

(0.352) Il = @+ ... + 1on @)

with respect to any trivialization 6. The associated weight function is thus given by
o(z) = log (Z1<j<N 0(0;(x))|?). In this case ¢ is a psh function, thus ©p ), is a closed
positive current, given explicity by

P B N2
(0.35b) Orn = 5-00p = 27T8810g( 3 10(05(x)) )

1<G<N

Let us denote by ¥ the linear system defined by o1,...,0x and by By =) aj_l(()) its base
locus. We have a meromorphic map

Py, : X \ By, — PNL x> (o1(x) oa(z) ... on(T)).

Then O is equal to the pull-back by ®x, over X \ By of the so called Fubini-Study metric
on PVN-1:

(0.35¢) s = i@glogﬂzlﬁ oo+ ]en]?) O
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0.36. Ample and very ample line bundles. A holomorphic line bundle F over a compact
complex manifold X is said to be

a) wery ample if the map ®p| + X — PN=1 associated to the complete linear system
|F| = P(H°(X, F)) is a reqular embedding (by this we mean in particular that the base
locus is empty, i.e. Bjp| = 0).

b) ample if some multiple mF, m > 0, is very ample.

Here we use an additive notation for Pic(X) = H(X, O*), hence the symbol mF denotes
the line bundle F®™. By Example 0.35, every ample line bundle F' has a smooth hermitian
metric with positive definite curvature form; indeed, if the linear system |mF| gives an
embedding in projective space, then we get a smooth hermitian metric on F'®™, and the
m-th root yields a metric on F' such that ©p = %(I)rmmwps. Conversely, the Kodaira

embedding theorem [Kod54] tells us that every positive line bundle F' is ample.

81. Hyperbolicity concepts and directed manifolds

We first recall a few basic facts concerning the concept of hyperbolicity, according to
S. Kobayashi [Kob70, Kob76]. Let X be a complex n-dimensional manifold. We denote by
f A — X an arbitrary holomorphic map from the unit disk A C C to X. The Kobayashi-
Royden infinitesimal pseudometric on X is the Finsler pseudometric on the tangent bundle
T'x defined by

kx (&) =inf {A>0;3f: A = X, f(0) =z, Af'(0) =¢}, reX, Ee€Txy,

(see H. Royden [Roy71], [Roy74]). In the terminology of Kobayashi [Kob75], a Finsler metric
(resp. pseudometric) on a vector bundle E is a homogeneous positive (resp. nonnegative)
positive function N on the total space E, that is,

N(XE) = [A| N (€) forall A€ Cand £ € E,

but in general N is not assumed to be subbadditive (i.e. convex) on the fibers of E.

A Finsler (pseudo-)metric on E is thus nothing but a hermitian (semi-)norm on the
tautological line bundle Op(g)(—1) of lines of E over the projectivized bundle Y =
P(E). The Kobayashi pseudodistance d(x,y) is the geodesic pseudodistance obtained
by integrating the Kobayashi-Royden infinitesimal metric. The manifold X is said to be
hyperbolic (in the sense of Kobayashi) if di is actually a distance, namely if dg (z,y) > 0
for all pairs of distinct points (z,y) in X. In this context, we have the following well-known
results of Brody [Bro78].

1.1. Brody reparametrization lemma. Let w be a hermitian metric on X and let
f: A — X be a holomorphic map. For everye > 0, there exists a radius R > (1—e¢)||f'(0)||.
and a homographic transformation ¥ of the disk D(0, R) onto (1 —&)A such that

1

I(fed) (Ol =1, [(fod) (Dl < =R/ for every t € D(0, R).

In particular, if X is compact, given any sequence of holomorphic mappings f, : A — X
such that lim || f/(0)]|, = 400, one can find a sequence of homographic transformations
Y, : D(O,R,) — (1 —1/v)A with im R, = 400, such that, after passing possibly to a
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subsequence, (f, o 1,) converges uniformly on every compact subset of C towards a non
constant holomorphic map g : C — X with ||g’(0)||, =1 and sup,cc ||9'(t) || < 1.

Proof. The first assertion of Brody’s lemma is obtained by selecting t5 € A such that
(1 — [tP)|If'((1 — &)t)||, reaches its maximum for ¢+ = ty. The reason for this choice is
that (1 — |¢/*)]|f (1 — &)t)||. is the norm of the differential f'((1 —&)t) : Ta — Tx with
respect to the Poincaré metric |dt|?/(1 — [t|?)? on Ta, which is conformally invariant under
Aut(A). One then adjusts R and 1 so that (0) = (1 — ¢)to and [¢'(0)] || f'(¢(0))]|. = 1.

As [¢'(0)] = 155 (1 — [to[?), the only possible choice for R is

R=(1-¢e)(1~ [to*)Ilf' @)= (1= e)llF'(0)]

The inequality for (f o)’ follows from the fact that the Poincaré norm is maximum at the
origin, where it is equal to 1 by the choice of R. O

1.2. Corollary (Brody’s theorem). A compact complex manifold X is hyperbolic if and only
if there are no non constant entire holomorphic maps g : C — X.

Proof. The arguments are rather standard and will be developped in more detail in the
proof of Prop. 1.5 below. a

Now, more generally, let (X, V) be a complex manifold equipped with a holomorphic
subbundle V- C Tx. We will refer to such a pair as being a complex directed manifold.
A morphism @ : (X,V) — (Y,W) in the category of complex directed manifolds is a
holomorphic map such that ®,(V) C W. Our philosophy is that directed manifolds are
also useful to study the “absolute case”, i.e. the case V = Tx, because there are fonctorial
constructions which work better in the category of directed manifolds (see e.g. §4, 5, 6).
We think of directed manifolds as a kind of “relative situation”, covering e.g. the case when
V' is the relative tangent sheaf to a smooth map X — S. We want to stress here that no
assumption need be made on the Lie bracket tensor [, | : V x V — Tx/V, and the rank
r = rank V may be an arbitrary integer in the range 1 < r < n := dim¢ X. For the sake of
generality, one might also wish to allow singularities in the subbundle V: for this, one can
take V' to be given by an arbitrary coherent subsheaf V C O(Tx) such that O(Tx)/V has
no torsion; then V is a subbundle outside an analytic subset of codimension at least 2 (it is
however somewhat safer to view V* as given by a quotient sheaf morphism Q — V* and
let V* be the associated linear space, see Remark 3.10 below). For the sake of simplicity,
we will assume most of the time that V is actually a subbundle of Tx. In this situation, we
generalize the notion of hyperbolicity as follows.

1.3. Definition. Let (X,V) be a complex directed manifold.

i) The Kobayashi-Royden infinitesimal metric of (X, V') is the Finsler metric on'V defined
foranyx € X and £ €'V, by

kixvy(§) = inf {A>0;3f: A= X, f(0)=z, A\f'(0) =¢, f'(A) C V}.

Here A C C is the unit disk and the map f is an arbitrary holomorphic map which
is tangent to V, i.e., such that f'(t) € Viyy for all t € A. We say that (X,V) is
infinitesimally hyperbolic if k(x vy is positive definite on every fiber V, and satisfies a
uniform lower bound k(x v)(§) = €l|¢||. in terms of any smooth hermitian metric w on
X, when x describes a compact subset of X.
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ii) More generally, the Kobayashi-Eisenman infinitesimal pseudometric of (X,V) is the
pseudometric defined on all decomposable p-vectors & = & AN -+ NEp € APV, 1 < p <
r =rankV, by

elx.1y (&) =inf {X>0;3f:B, = X, f(0) ==z, AMfu(r0) = & fu(Th,) C V}

where By, is the unit ball in CP and 79 = 0/0t1 A --- N 0/0t, is the unit p-vector of CP
at the origin. We say that (X,V) is infinitesimally p-measure hyperbolic if eI(X’V) 18
positive definite on every fiber APV, and satisfies a locally uniform lower bound in terms
of any smooth metric.

If®:(X,V)— (Y,W) is a morphism of directed manifolds, it is immediate to check
that we have the monotonicity property

(1.4) kiy,w) (®+8) < kix,v)(§), VEeV,
(1.47) Py (D) S€ly ) (€, VE=EL AN €A

The following proposition shows that virtually all reasonable definitions of the hyperbolicity
property are equivalent if X is compact (in particular, the additional assumption that there
is locally uniform lower bound for k(x v is not needed). We merely say in that case that
(X, V) is hyperbolic.

1.5. Proposition. For an arbitrary directed manifold (X,V'), the Kobayashi-Royden in-
finitesimal metric k(x v s upper semicontinuous on the total space of V.. If X is compact,
(X, V) is infinitesimally hyperbolic if and only if there are no non constant entire curves
g:C — X tangent to V. In that case, k(x v is a continuous (and positive definite) Finsler
metric on V.

Proof. The proof is almost identical to the standard proof for kx, so we only give a brief
outline of the ideas. In order to prove the upper semicontinuity, let £, € V,, and € > 0
be given. Then there is a curve f : A — X tangent to V such that f(0) = z¢ and
Af(0) = & with 0 < A < kx(&) + . Take A = 1 for simplicity, and replace & by
A71¢. We may assume that f is a proper embedding, otherwise we replace (X,V) by
(X' V) = (X x A,priV@pr5Ta), f by f xIda, & by & @ 1, and use a monotonicity
argument for the projection pr; : X’ — X. If f is an embedding, then f(A) is a Stein
submanifold of X, and thus f(A) has a Stein neighborhood Q. As Q is Stein, there exists
a section § € HO(Q2,0(V)) extending f' € H(f(A),O(V)). The map f can be viewed as
the solution of the differential equation f’ = 6(f) with initial value f(0) = z¢. Take a small
perturbation ¢’ = 6,(g) with initial value g(0) = x, where 6,, = 0+ > n;s; and s1,...,sn
are finitely many sections of H?(Q, O(V)) which generate V in a neighborhood of xy. We
can achieve that ¢’(0) = 6, (x) is equal to any prescribed vector £ € V,, close to & = 0(zo),
and the solution g exists on (1 —¢)A if the perturbation is small enough. We conclude that
k(x v is upper semicontinuous by considering t — g((1 — ¢)t).

If there exists a non constant entire curve g : C — X tangent to V, it is clear that
kxvy(9'(t)) = 0, hence (X, V) cannot be hyperbolic. Conversely, if X is compact and if
there are no non constant entire curves g : C — X tangent to V', Brody’s lemma implies that
there is an absolute bound || f/(0)||, < C for all holomorphic maps f : A — X tangent to V';
hence k(x,v)(§) > C7Y¢||l. and (X, V) is infinitesimally hyperbolic. By reparametrizing f
with an arbitrary automorphism of A, we find || f'(#)||. < C/(1 — [t|?). The space of maps
f A — X tangent to V is therefore compact for the topology of uniform convergence on
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compact subsets of A, thanks to Ascoli’s theorem. We easily infer from this that kx v is
lower semicontinuous on V.

Another easy observation is that the concept of p-measure hyperbolicity gets weaker and
weaker as p increases :

1.6. Proposition. If (X,V) is p-measure hyperbolic, then it is (p + 1)-measure hyperbolic
forallpe{l,...,r—1}.

Proof. Asserting that (X, V') is p-measure hyperbolic means that for all maps f : B, — X
tangent to V with f(0) = =z, there is a uniform upper bound ||A?f.(0)|., < A for
APf.(0) : APTp, — APV with respect to a given hermitian metric w on X. Consider
g :Bpi1 — X tangent to V with g(0) = = fixed. Let us restrict g to all p-dimensional balls
B,+1 N H where H is a hyperplane in B?*!. Applying this to f = 91B,..nz and H arbitrary,
one gets a bound for ||(APg¢.(0))x||. and therefore a bound for |[APg,(0)||,. However, there
are orthonormal bases of CP*! and V ~ C" such that u := g,(0) : CP*! — V has a diagonal
matrix with diagonal entries A; € Ry (the \;’s are the square roots of the eigenvalues of the
hermitian form 7+ ||u(7)||?). Then

| ARu|? = Z (Niy - i )2, especially  [[APT1u||2 = (A1...A\ps1)?, hence

i1 <. .. <ig
p+1 -
IAPF R ulZ2 = T - Ay dpn)? S HIAPUEPFY, e APy, < [|APul|FP.
j=1
This implies our claim. a

We conclude this section by showing that hyperbolicity is an open property.

1.7. Proposition. Let (X,V) — S be a holomorphic family of compact directed manifolds
(by this, we mean a proper holomorphic map X — S together with a holomorphic subbundle
V C Tx,s of the relative tangent bundle, defining a deformation (X, Vi)ies of the fibers).
Then the set of t € S such that the fiber (X, Vi) is hyperbolic is open in S with respect to
the euclidean topology.

Proof. Take a sequence of non hyperbolic fibers (X; ,V;, ) with ¢, — ¢ and fix a hermitian
metric w on X. By Brody’s lemma, there is a sequence of entire holomorphic maps
g, : C = X, tangent to V; , such that ||g/,(0)|lo = 1 and [|g,|] < 1. Ascoli’s theorem
shows that there is a subsequence of (g,) converging uniformly to a limit g : C — X,
tangent to Vi, with ||¢’(0)||, = 1. Hence (X, V%) is not hyperbolic, and the collection of non
hyperbolic fibers is closed in S. O

Let us mention here an impressive result proved by Marco Brunella [Bru03, Bru05,
Bru06] concerning the behavior of the Kobayashi metric on foliated varieties.

1.8. Theorem (Brunella). Let X be a compact Kdhler manifold equipped with a (possibly
singular) holomorphic foliation which is not a foliation by rational curves. Then the
canonical bundle Kg of the foliation is pseudoeffective (i.e. the curvature of Ky is > 0
in the sense of currents).

The proof is obtained by putting on K4 precisely the metric induced by the Kobayashi
metric on the leaves whenever they are generically hyperbolic (i.e. covered by the unit disk).
The case of parabolic leaves (covered by C) has to be treated separately.
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§2. Hyperbolicity and bounds for the genera of curves

In the case of projective algebraic varieties, hyperbolicity is expected to be related to
other properties of a more algebraic nature. Theorem 2.1 below is a first step in this direction.

2.1. Theorem. Let (X, V) be a compact complex directed manifold and let y wjrdz; @ dzy
be a hermitian metric on X, with associated positive (1,1)-form w = 53 wjrdz; A dZy.
Consider the following three properties, which may or not be satisfied by (X, V) :

i) (X,V) is hyperbolic.

ii) There exists ¢ > 0 such that every compact irreducible curve C C X tangent to V
satisfies
—X(C) =29(C) =2 > ¢ deg,,(C)
where g(C) is the genus of the normalization C of C, x(C) its Euler characteristic and
deg,,(C) = fow. (This property is of course independent of w.)

iii) There does mot exist any non constant holomorphic map ® : Z — X from an abelian
variety Z to X such that ®,(Tz) C V.

Then i) = ii) = iii).

Proof. i)=-ii). If (X, V) is hyperbolic, there is a constant &g > 0 such that k(x v)(§) >
g0lléllw for all € € V.. Now, let C' C X be a compact irreducible curve tangent to V' and let
v : C — C be its normalization. As (X, V) is hyperbolic, C cannot be a rational or elliptic
curve, hence C' admits the disk as its universal covering p : A — C.

The Kobayashi-Royden metric ka is the Finsler metric |dz|/(1 — |2|?) associated with
the Poincaré metric |dz|?/(1 — |2|*)? on A, and kg is such that p*kz = ka. In other
words, the metric kg is induced by the unique hermitian metric on C of constant Gaussian
curvature —4. If oo = Zdz A dz/(1 — |2|*)? and oz are the corresponding area measures,

the Gauss-Bonnet formula (integral of the curvature = 27 x(C)) yields
1 T o —
6alag =7 UCUI‘V(kU) = —§X(C’)

On the other hand, if j : C'— X is the inclusion, the monotonicity property (1.4) applied
to the holomorphic map jov : C — X shows that

ka(t) = kx vy ((Fov)st) Zeol|Gov)ut],,  VteTs

From this, we infer dog > €§(j o v)*w, thus

—gx(?):/_d0'5>€(2)/_(jOV)*w:€(2)/ w.
C C c

Property ii) follows with ¢ = 23 /7.

ii) = iii). First observe that ii) excludes the existence of elliptic and rational curves tangent
to V. Assume that there is a non constant holomorphic map ® : Z — X from an abelian
variety Z to X such that ®,(7z) C V. We must have dim ®(Z) > 2, otherwise ¢(Z) would
be a curve covered by images of holomorphic maps C — ®(Z), and so ®(Z) would be elliptic
or rational, contradiction. Select a sufficiently general curve I' in Z (e.g., a curve obtained as
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an intersection of very generic divisors in a given very ample linear system |L| in Z). Then
all isogenies u,, : Z — Z, s — ms map ' in a 1 : 1 way to curves u,,(I') C Z, except maybe
for finitely many double points of u,,(I") (if dim Z = 2). It follows that the normalization of
U, (I) is isomorphic to I'. If T" is general enough, similar arguments show that the images

Cr = B(um () C X

are also generically 1 : 1 images of I, thus C,,, ~ I' and ¢g(C,,) = ¢g(I'). We would like to
show that C,, has degree > Const m?. This is indeed rather easy to check if w is Kihler,
but the general case is slightly more involved. We write

/cm YT /F@ 0 tm)"w = /Z[ﬂ Ay (PFw),

where I denotes the current of integration over I'. Let us replace I' by an arbitrary translate
I' + s, s € Z, and accordingly, replace C,, by Cy, s = ® o up,(I' + s). For s € Z in a Zariski
open set, C,, s is again a generically 1 : 1 image of I' + 5. Let us take the average of the last
integral identity with respect to the unitary Haar measure dp on Z. We find

/seZ (/om “) au(s) = /Z ( / s du(s>) N (7w),

Now, v := [, ,[[+s] du(s) is a translation invariant positive definite form of type (p—1,p—1)

on Z, where p = dim Z, and 7 represents the same cohomology class as [I'], i.e. v = ¢, (L)P~L.

Because of the invariance by translation, v has constant coefficients and so (wy, ).y = m?7.

Therefore we get
/ du(s)/ w= m2/ vy A P w.
SEZ Cm,s Z

In the integral, we can exclude the algebraic set of values z such that C,, s is not a generically
1: 1 image of '+ s, since this set has measure zero. For each m, our integral identity implies

that there exists an element s,, € Z such that g(C,, s,,) = g(I') and
deg,(Cp.s,,) = / w > m2/ YA PFw.
Conrsm z

As [ 7Y AN ®w > 0, the curves Cy, s,, have bounded genus and their degree is growing
quadratically with m, contradiction to property ii). a

2.2. Definition. We say that a projective directed manifold (X, V') is “algebraically hyper-
bolic” if it satisfies property 2.1 ii), namely, if there exists € > 0 such that every algebraic
curve C' C X tangent to V satisfies

29(C) =2 >  deg, ().
A nice feature of algebraic hyperbolicity is that it satisfies an algebraic analogue of the
openness property.

2.3. Proposition. Let (X,V) — S be an algebraic family of projective algebraic directed
manifolds (given by a projective morphism X — S). Then the set of t € S such that the fiber
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(X, Vi) is algebraically hyperbolic is open with respect to the “countable Zariski topology” of
S (by definition, this is the topology for which closed sets are countable unions of algebraic
sets).

Proof. After replacing S by a Zariski open subset, we may assume that the total space X
itself is quasi-projective. Let w be the Kéhler metric on X obtained by pulling back the
Fubini-Study metric via an embedding in a projective space. If integers d > 0, g > 0 are
fixed, the set Ay 4 of t € S such that X, contains an algebraic 1-cycle C'= ) m;C; tangent
to V; with deg,,(C) = d and ¢g(C) = Y. m;g(C;) < g is a closed algebraic subset of S
(this follows from the existence of a relative cycle space of curves of given degree, and from
the fact that the geometric genus is Zariski lower semicontinuous). Now, the set of non
algebraically hyperbolic fibers is by definition

N U A

k>0 2g—2<d/k

This concludes the proof (of course, one has to know that the countable Zariski topology
is actually a topology, namely that the class of countable unions of algebraic sets is stable
under arbitrary intersections; this can be easily checked by an induction on dimension). O

2.4. Remark. More explicit versions of the openness property have been dealt with in the
literature. H. Clemens ([Cle86] and [CKLS88]) has shown that on a very generic surface of
degree d > 5 in P3, the curves of type (d, k) are of genus g > kd(d — 5)/2 (recall that a
very generic surface X C P? of degree > 4 has Picard group generated by Ox (1) thanks
to the Noether-Lefschetz theorem, thus any curve on the surface is a complete intersection
with another hypersurface of degree k; such a curve is said to be of type (d, k) ; genericity
is taken here in the sense of the countable Zariski topology). Improving on this result of
Clemens, Geng Xu [Xu94] has shown that every curve contained in a very generic surface of
degree d > 5 satisfies the sharp bound g > d(d — 3)/2 — 2. This actually shows that a very
generic surface of degree d > 6 is algebraically hyperbolic. Although a very generic quintic
surface has no rational or elliptic curves, it seems to be unknown whether a (very) generic
quintic surface is algebraically hyperbolic in the sense of Definition 2.2.

2.5. Remark. It would be interesting to know whether algebraic hyperbolicity is open with
respect to the euclidean topology ; still more interesting would be to know whether Kobayashi
hyperbolicity is open for the countable Zariski topology (of course, both properties would
follow immediately if one knew that algebraic hyperbolicity and Kobayashi hyperbolicity
coincide, but they seem otherwise highly non trivial to establish). The latter openness
property has raised an important amount of work around the following more particular
question: is a (very) generic hypersurface X C P"*! of degree d large enough (say d > 2n+1)
Kobayashi hyperbolic 7 Again, “very generic” is to be taken here in the sense of the countable
Zariski topology. Brody-Green [BrGr77] and Nadel [Nad89] produced examples of hyperbolic
surfaces in P2 for all degrees d > 50, and Masuda-Noguchi [MaNo093] recently gave examples
of such hypersurfaces in P™ for arbitrary n > 2, of degree d > dy(n) large enough. The
question of studying the hyperbolicity of complements P™ ~\ D of generic divisors is in
principle closely related to this; in fact if D = {P(zp,...,2,) = 0} is a smooth generic
divisor of degree d, one may look at the hypersurface

X = {224_1 = P(20,...,2,)} CP"H!

which is a cyclic d:1 covering of P™. Since any holomorphic map f : C — P™ \\ D can be
lifted to X, it is clear that the hyperbolicity of X would imply the hyperbolicity of P™ ~ D.
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The hyperbolicity of complements of divisors in P" has been investigated by many authors.
Ul

In the “absolute case” V = T, it seems reasonable to expect that properties 2.1 i),
ii) are equivalent, i.e. that Kobayashi and algebraic hyperbolicity coincide. However, it
was observed by Serge Cantat [Can00] that property 2.1 (iii) is not sufficient to imply the
hyperbolicity of X, at least when X is a general complex surface: a general (non algebraic)
K3 surface is known to have no elliptic curves and does not admit either any surjective
map from an abelian variety; however such a surface is not Kobayashi hyperbolic. We are
uncertain about the sufficiency of 2.1 (iii) when X is assumed to be projective.

§3. The Ahlfors-Schwarz lemma for metrics of negative curvature

One of the most basic ideas is that hyperbolicity should somehow be related with suitable
negativity properties of the curvature. For instance, it is a standard fact already observed
in Kobayashi [Kob70] that the negativity of Tx (or the ampleness of 7% ) implies the
hyperbolicity of X. There are many ways of improving or generalizing this result. We
present here a few simple examples of such generalizations. If (V, h) is a holomorphic vector
bundle equipped with a smooth hermitian metric, we denote by Vj, = V), +V/ the associated
Chern connection and by Oy, = ﬁv,% its Chern curvature tensor.

3.1. Proposition. Let (X, V) be a compact directed manifold. Assume that V* is ample.
Then (X, V) is hyperbolic.

Proof (from an original idea of [Kob75]). Recall that a vector bundle E is said to be ample if
S™FE has enough global sections o1, ...,0N so as to generate 1-jets of sections at any point,
when m is large. One obtains a Finsler metric N on E* by putting

NO=( Y I -e?) " e

1<G<N

and N is then a strictly plurisubharmonic function on the total space of E* minus the zero
section (in other words, the line bundle Op(g+)(1) has a metric of positive curvature). By
the ampleness assumption on V*, we thus have a Finsler metric N on V' which is strictly
plurisubharmonic outside the zero section. By Brody’s lemma, if (X, V') is not hyperbolic,
there is a non constant entire curve g : C — X tangent to V such that supe ||¢|l. < 1
for some given hermitian metric w on X. Then N(g’) is a bounded subharmonic function
on C which is strictly subharmonic on {g’ # 0}. This is a contradiction, for any bounded
subharmonic function on C must be constant. a

This result can be generalized a little bit further by means of the Ahlfors-Schwarz lemma
(see e.g. [Lang87]).

3.2. Ahlfors-Schwarz lemma. Let y(t) = yo(t) i dtAdt be a hermitian metric on Ag where
log o is a subharmonic function such that i 00logo(t) = A~(t) in the sense of currents,
for some positive constant A. Then v can be compared with the Poincaré metric of Ar as
follows:
N < 2 R72|dt|?
S AT

More generally, let v =iy v,dt; Ndty be an almost everywhere positive hermitian form on
the ball B(0, R) C CP, such that — Ricci(y) := i 00logdety > A~ in the sense of currents,
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for some constant A > 0 (this means in particular that det v = det(v;) is such that logdet v
is plurisubharmonic). Then

det(7)<<p+1>p( 1

AR? 1— [t|2/R2)p+1°
Proof. 1t is of course sufficient to deal with the more general case of a ball in CP. First
assume that «y is smooth and positive definite on B(0, R). Take a point ¢ty € B(0, R) at which

(1 — [t|?/R?)P*! det(y(t)) is maximum. The logarithmic i 90-derivative of this function at
to must be < 0, hence

i00log det y(t)i—, — (p+1)i0dlog(1 — |t|*/R?) 2, <O0.
The hypothesis on the Ricci curvature implies
AP ~(to)? < (i 091og det v(t)t:to)p < (p+1)P (1 091og(1 — \t\Q/RQ)t_zlto)p.

An easy computation shows that the determinant of i 3dlog(1 — [t|?/R?)~! is equal to
R™2P(1 — |t|?/R?)"P~1. From this, we conclude that

2 ) p2\p+1 2 ) p2\p+1 pH+INP

(L= |t /B2 dety () < (1= |tof?/ B2 dety(to) < (57 ) -

If v is not smooth, we use a regularization argument. Namely, we shrink R a little bit and
look at the maximum of the function

u(t) = (1 — [t2/R2)"* exp (p.  log det y(1))
where (p.) is a family of regularizing kernels. The argument goes through because
i900(p. *logdety) = Ap. v
and log det(p. * ) = pe x logdety by concavity of the logdet function. a

3.3. Proposition. Let (X, V') be a compact directed manifold. Assume that V* is “very big”
in the following sense: there exists an ample line bundle L and a sufficiently large integer
m such that the global sections in H°(X,S™V* ® L~1) generate all fibers over X \'Y,
for some analytic subset Y C X. Then all entire curves f : C — X tangent to V satisfy
f(C) C Y [under our assumptions, X is a projective algebraic manifold andY is an algebraic
subvariety, thus it is legitimate to say that the entire curves are “algebraically degenerate”.

Proof. Let o1,...,on5 € H*(X,S™V*® L~1) be a basis of sections generating S™V* @ L1

over X \Y. If f: C — X is tangent to V, we define a semipositive hermitian form
v(t) = vo(t) |dt|? on C by putting

Yolt) = D oy (F@&) - /(&)™ 1172

where || ||z denotes a hermitian metric with positive curvature on L. If f(C) ¢ Y, the form
v is not identically 0 and we then find

— 2
i90logo > — f*O1
m
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where O is the curvature form. The positivity assumption combined with an obvious
homogeneity argument yield

2 .,
— O 2 e f I 1dt” = (1)

for any given hermitian metric w on X. Now, for any tg with vo(f9) > 0, the Ahlfors-
Schwarz lemma shows that f can only exist on a disk D(¢g, R) such that o (to) < %R_Q,
contradiction. |

There are similar results for p-measure hyperbolicity, e.g.

3.4. Proposition. Let (X, V) be a compact directed manifold. Assume that APV* is ample.
Then (X,V) is infinitesimally p-measure hyperbolic. More generally, assume that APV™* is
very big with base locus contained in' Y C X (see 3.3). Then €P is non degenerate over
X\Y.

Proof. By the ampleness assumption, there is a smooth Finsler metric N on APV which
is strictly plurisubharmonic outside the zero section. We select also a hermitian metric w
on X. For any holomorphic map f : B, = X we define a semipositive hermitian metric 7 on
B, by putting ¥ = f*w. Since w need not have any good curvature estimate, we introduce
the function 0(t) = Ny (AP f'(t) - 70), where 79 = 0/0t; A --- A 9/0t,, and select a metric
~v = Ay conformal to ¥ such that dety = §. Then AP is equal to the ratio N/APw on the
element AP f'(t) - 7o € APVyq). Since X is compact, it is clear that the conformal factor A
is bounded by an absolute constant independent of f. From the curvature assumption we
then get

i00logdety = i9dlogd = (f, APf)*(100log N) = ef*w > €' 4.

By the Ahlfors-Schwarz lemma we infer that dety(0) < C for some constant C, i.e.,
Ny (AP f(0) - 79) < C'. This means that the Kobayashi-Eisenman pseudometric e’(7 X I8
positive definite everywhere and uniformly bounded from below. In the case APV™* is very
big with base locus Y, we use essentially the same arguments, but we then only have N
being positive definite on X \ Y. a

3.5. Corollary ([Gri71], KobOT71]). If X is a projective variety of general type, the
Kobayashi-Eisenmann volume form €™, n = dim X, can degenerate only along a proper
algebraic set Y C X.

The converse of Corollary 3.5 is expected to be true, namely, the generic non degeneracy
of €” should imply that X is of general type, but this is only known for surfaces (see [GrGr80]
and [MoMu82]):

3.6. Conjecture (Green-Griffiths [GrGr80]). A projective algebraic variety X is measure
hyperbolic (i.e. €™ degenerates only along a proper algebraic subvariety) if and only if X is
of general type.

An essential step in the proof of the necessity of having general type subvarieties would be
to show that manifolds of Kodaira dimension 0 (say, Calabi-Yau manifolds and holomorphic
symplectic manifolds, all of which have ¢;(X) = 0) are not measure hyperbolic, e.g. by

exhibiting enough families of curves C; ; covering X such that (2¢(C; ) —2)/ deg(Cs,¢) — 0.
Another related conjecture which we will investigate at the end of these notes is
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3.7. Conjecture (Green-Griffiths [GrGr80]). If X is a variety of general type, there exists a
proper algebraic set’Y C X such that every entire holomorphic curve f : C — X is contained
Y.

The most outstanding result in the direction of Conjecture 3.7 is the proof of the Bloch
theorem, as proposed by Bloch [Blo26] and Ochiai [Och77]. The Bloch theorem is the special
case of 3.7 when the irregularity of X satisfies ¢ = h°(X, QL) > dim X. Various solutions
have then been obtained in fundamental papers of Noguchi [Nog77, 81, 84], Kawamata
[Kaw80] and Green-Griffiths [GrGr80], by means of different techniques. See section §9 for
a proof based on jet bundle techniques.

3.8. Conjecture ([Lang86, 87]). A projective algebraic variety X is hyperbolic if and only
if all its algebraic subvarieties (including X itself) are of general type.

The relation between these conjectures is as follows.

3.9. Proposition. Conjecture 3.7 implies the “if 7 part of conjecture 3.8, and Conjecture 3.6
implies the “only if” part of Conjecture 3.8, hence (3.6 and 3.7) = (3.8).

Proof. In fact if Conjecture 3.7 holds and every subariety Y of X is of general type, then it
is easy to infer that every entire curve f : C — X has to be constant by induction on dim X,
because in fact f maps C to a certain subvariety Y C X. Therefore X is hyperbolic.

Conversely, if Conjecture 3.6 holds and X has a certain subvariety Y which is not of
general type, then Y is not measure hyperbolic. However it is easy to see that hyperbolicity
implies measure hyperbolicity, since it is enough to bound a differential in every direction
to bound its determinant. Therefore Y is not hyperbolic and so X itself is not hyperbolic
either. a

84. Projectivization of a directed manifold

The basic idea is to introduce a fonctorial process which produces a new complex directed
manifold (X, V) from a given one (X, V). The new structure (X, V') plays the role of a space
of 1-jets over X. We let

X=PV), VcIx
be the projectivized bundle of lines of V', together with a subbundle V of Tx defined as
follows: for every point (z, [v]) € X associated with a vector v € V,, \ {0},

(41) v(w,[v]) - {£ € T;(I, (z,[v]) 5 77*& € CU}? CvCV, C TX,a:a

where 7 : X = P(V) — X is the natural projection and m, : Tx — 7m*Tx is its
differential. On X = P(V) we have a tautological line bundle Ox(—1) C 7*V such that
OX(—1)(z,[v)) = Cv. The bundle V is characterized by the two exact sequences

(4.2) 0— Tx/x — V 5 05(-1) — 0,
(4.2 0— O0x — 1 V®0ox(l) — Tx/x —0,

where T /X denotes the relative tangent bundle of the fibration 7 : X — X. The first
sequence is a direct consequence of the definition of V whereas the second is a relative



26 J.-P. Demailly, Kobayashi pseudo-metrics and hyperbolicity of algebraic varieties

version of the Euler exact sequence describing the tangent bundle of the fibers P(V,). From
these exact sequences we infer

(4.3) dimX =n+r—1, rank V = rank V = r,
and by taking determinants we find det(1x,x) = 7* det V ® Ox(r), thus
(4.4) det V =7*det V @ 05 (r — 1).

By definition, 7 : (X, V) — (X, V) is a morphism of complex directed manifolds. Clearly,
our construction is fonctorial, i.e., for every morphism of directed manifolds ® : (X,V) —
(Y, W), there is a commutative diagram

(4.5) ¢ lcp

< Ix7 s

Y, w) — (Y,W)

where the left vertical arrow is the meromorphic map P(V) ---» P(W) induced by the
differential @, : V' — ®*W (P is actually holomorphic if ®, : V' — ®*W is injective).

Now, suppose that we are given a holomorphic curve f : Agr — X parametrized by the
disk Ag of centre 0 and radius R in the complex plane, and that f is a tangent trajectory
of the directed manifold, i.e., f'(t) € Vyq) for every t € Ag. If f is non constant, there is
a well defined and unique tangent line [f'(t)] for every ¢, even at stationary points, and the
map

(4.6) frAr—= X,  te f(t)=(f@),[f'®)

is holomorphic (at a stationary point to, we just write f'(t) = (t — tq)%u(t) with s € N* and
u(to) # 0, and we define the tangent line at ¢y to be [u(to)], hence f(t) = (f(t), [u(t)]) near
to; even for t = tg, we still denote [f'(tg)] = [u(to)] for simplicity of notation). By definition
f'(t) € Ox(—=1)7) = Cu(t), hence the derivative f’ defines a section

(4.7) fliTa, = FFO%(=1).
Moreover 7 o f:: f, therefore
m () = f(t) € Cut) = F'(t) € Visuey = Vi

and we see that f: is a tangent trajectory of ()Z', ‘N/) We say that f is the canonical lifting
of f to X. Conversely, if g : Ag — X is a tangent trajectory of (X, V), then by definition
of V' we see that f = mo g is a tangent trajectory of (X,V) and that g = f (unless g is
contained in a vertical fiber P(V,,), in which case f is constant).

For any point xg € X, there are local coordinates (z1, ..., z,) on a neighborhood 2 of
xo such that the fibers (V}).cq can be defined by linear equations

(4.8) Vz:{fz Z Q%;ﬁj: Z a;i(2)Ek forj:r-l—l,...,n},

1<G<n J 1<k<r
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where (ajx) is a holomorphic (n —7) X matrix. It follows that a vector £ € V, is completely
determined by its first  components (&1, .. .,¢&.), and the affine chart &; # 0 of P(V);q can
be described by the coordinate system

SR e é)
S e ).

Let f ~ (f1,..., fn) be the components of f in the coordinates (z1, ..., z,) (we suppose here
R so small that f(Agr) C ). It should be observed that f is uniquely determined by its
initial value 2 and by the first » components (fi,..., f;). Indeed, as f'(t) € Vy(), we can
recover the other components by integrating the system of ordinary differential equations

(4.9) (21, ey 2

(4.10) f@) = > ap(FO)L®), >

1<kLr

on a neighborhood of 0, with initial data f(0) = x. We denote by m = m(f,ty) the
multiplicity of f at any point tg € Ag, that is, m(f,to) is the smallest integer m € N* such
that f;m) (to) # 0 for some j. By (4.10), we can always suppose j € {1,...,r}, for example
frm)(to) # 0. Then f'(t) = (t —to)™ ‘u(t) with u,(to) # 0, and the lifting f is described in
the coordinates of the affine chart &, # 0 of P(V)q by

r fi fra
(4.11) f:(fl,...,fn;f—z,..., 7 )
We end this section with a few curvature computations. Assume that V is equipped with
a smooth hermitian metric h. Denote by V; = V) + V/} the associated Chern connection
and by Oy = ﬁV% its Chern curvature tensor. For every point xy € X, there exists a
“normalized” holomorphic frame (ey);<a<r on a neighborhood of xg, such that

(4.12) (exsedn =0xui— Y ciranziZk + O(2%),
1<5,k<n
with respect to any holomorphic coordinate system (z1,...,z,) centered at zo. A compu-

tation of d'(ex, e, )n = (Vyex,eu)n and Viey = d"V) e, then gives

/heA = — Z Cjk)xuzk de ® €u + O(‘Z‘2)7
Jiksp
1
(4.13) Ov,n(zo) = o Z Cikandz; N dZ @ €X @ ey
j’k)\:li

The above curvature tensor can also be viewed as a hermitian form on Tx ® V. In fact, one
associates with Oy, the hermitian form (Oy ;) on T'x ® V defined for all (¢,v) € Tx xx V
by

(4.14) Oyn)(C®v) = > CitanCiCutaT

1<g, k<, IS, pusr

Let h; be the hermitian metric on the tautological line bundle O p(yy(—1) C 7*V induced by
the metric h of V. We compute the curvature (1, 1)-form Oy, (Op(yy(—1)) at an arbitrary
point (xo,[vo]) € P(V), in terms of Oyy. For simplicity, we suppose that the frame
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(ex)1<r<r has been chosen in such a way that [e,(zo)] = [vo] € P(V) and |vo|p, = 1. We
get holomorphic local coordinates (z1,...,2n; &1,-..,&-—1) on a neighborhood of (xg, [vg])
in P(V) by assigning

(21, oy 2n5 &1y ooy &rm1) — (2, [G161(2) + -+ &rm1er—1(2) + e.(2)]) € P(V).

Then the function
U(Z7§) ::5161(2)'+'"'4‘fr—1€r—1(2)'+'€r(2)

defines a holomorphic section of Op(yy(—1) in a neighborhood of (zo, [vo]). By using the
expansion (4.12) for h, we find

iz, =l =1+ = > cirrrziZe + O((l2] + €)?),
1<, k<n
i
On (Op(v) (1)) (wo [uo)) = —5-00log nl7,
i _
(4.15) - —( S ez AdZ— Y dEA dgx).

2m .
1<j,k<n 1<ALr—1

Now, the connection Vj, on V defines on X = P(V) a C* decomposition
Tx ="z ©'T%, "X p) =2 Txer TR (@) < TPV,).[0);

in horizontal and vertical components. With respect to this decomposition, (4.15) can be
rewritten as

(4.16) (Oh, (0P (1)) (20, 00]) (T) = (Ovin)ay (FT @ v0) — |V7|Es

where | |ps is the Fubini-Study metric along the fibers Tp(y,). By definition of V, we
have V' (o)) C Ve © Tp(v,),[v) With respect to the decomposition. By this observation, if we
equip P(V) with the Fubini-Study metric rescaled by p? > 0, the metric h on V induces a
canonical hermitian metric h, on V' such that

i = [Mwlf + o0l for w € Vi fu),

where fw € Cvy C V,, and Yw € Tp(v,,),lvo] 18 viewed as an element of vg C V,. A

computation (left to the reader) gives the formula

(7, (7)) o (7 9 ) = (Ov:n) (Pr @) (P = 2]V
+ 2 (Ov )y (@ V)
(417 (07wl VR ) = Vel

+O0(p)Irljwf ,  TETX, weV,
P

where |7|2 is computed from a fixed hermitian metric w on Tx.
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85. Jets of curves and Semple jet bundles

Let X be a complex n-dimensional manifold. Following ideas of Green-Griffiths
[GrGr80], we let Ji — X be the bundle of k-jets of germs of parametrized curves in X, that is,
the set of equivalence classes of holomorphic maps f : (C,0) — (X, z), with the equivalence
relation f ~ g if and only if all derivatives fU)(0) = ¢(9)(0) coincide for 0 < j < k, when
computed in some local coordinate system of X near x. The projection map Jp — X is
simply f + f(0). If (21,...,2,) are local holomorphic coordinates on an open set Q C X,
the elements f of any fiber Jj ., z € 2, can be seen as C"-valued maps

f=(fr,.--,fn): (C,0) = QcCC",

and they are completetely determined by their Taylor expansion of order k at t = 0

k
ft)=x+ tf/(O) + ;—Q!f”(O) S %f(’f)(o) + O(tk"H),

In these coordinates, the fiber Jj, , can thus be identified with the set of k-tuples of vectors
(f(0),..., f*)(0)) € (C™)*. It follows that .J, is a holomorphic fiber bundle with typical
fiber (C™)* over X (however, Jj, is not a vector bundle for k > 2, because of the nonlinearity
of coordinate changes; see formula (6.2) in §6).

According to the philosophy developed throughout this paper, we describe the concept
of jet bundle in the general situation of complex directed manifolds. If X is equipped with
a holomorphic subbundle V' C Ty, we associate to V' a k-jet bundle JV as follows.

5.1. Definition. Let (X, V') be a complex directed manifold. We define J,V — X to be the
bundle of k-jets of curves f : (C,0) — X which are tangent to V', i.e., such that f'(t) € Vi
for all t in a neighborhood of 0, together with the projection map f — f(0) onto X.

It is easy to check that JiV is actually a subbundle of J;. In fact, by using (4.8) and
(4.10), we see that the fibers J;V, are parametrized by

((F10): - L) (F(0), - F1O)i - (17(0), - £9(0)) € (€
for all z € Q, hence J,V is a locally trivial (C")*-subbundle of J. O

We now describe a convenient process for constructing “projectivized jet bundles”,
which will later appear as natural quotients of our jet bundles J;V (or rather, as suitable
desingularized compactifications of the quotients). Such spaces have already been considered
since a long time, at least in the special case X = P2, V = Tp2 (see Gherardelli [Ghe41],
Semple [Semb4]), and they have been mostly used as a tool for establishing enumerative
formulas dealing with the order of contact of plane curves (see [Coll88], [CoKe94]); the
article [ASS92] is also concerned with such generalizations of jet bundles™*.

We define inductively the projectivized k-jet bundle P,V = X (or Semple k-jet bundle)
and the associated subbundle V}, C Tx, by

(5.2) (Xo, Vo) = (X, V), (X, Vie) = (X i1, V1)

* Very recently, a preprint [LaTh96] by Laksov and Thorup has also appeared, dealing in depth with
algebraic-theoretic properties of jet differentials. The formalism of “higher order” differentials has been part
of the mathematical folklore during the 18th and 19th centuries (without too much concern, in those times,
on the existence of precise definitions!). During the 20th century, this formalism almost disappeared, before
getting revived in several ways. See e.g. the interested article by P.A. Meyer [Mey89], which was originally
motivated by applications to probability theory.
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In other words, (P.V, Vi) = (X, Vi) is obtained from (X, V') by iterating k-times the lifting
construction (X, V) — (X, V) described in §4. By (4.2-4.7), we find

(53) dim P,V =n+k(r—1),  rankVj,=r,

together with exact sequences

(54) 0— TPkV/Pk,ﬂ/ — Vk; % OPkV(_l) — 07
(5.4/) 0— 0Opv — W,:Vk_1 &® Opkv(l) — TP,CV/P,C,lv — 0.

where 7, is the natural projection 7y : PV — Pr_1V and (my), its differential. Formula
(4.4) yields

(5.5) det Vi = mp det Vi1 ® Op, v (r — 1).

Every non constant tangent trajectory f: Agr — X of (X,V) lifts to a well defined and
unique tangent trajectory fi : Ar — PV of (P,V, V). Moreover, the derivative f[/k—l]
gives rise to a section

(5.6) f[/k_1] N fﬁg]OPkV(_1>~

In coordinates, one can compute f) in terms of its components in the various affine charts
(4.9) occurring at each step: we get inductively

/ /

F51 Sr—1
(57) f[k]:<F177FN)7 f[k+1]:(F17"'7FN7F—,7"'7 J )

where N =n+k(r—1) and {s1,...,s.} C {1,...,N}. If £ > 1, {s1,...,s,} contains the
last » — 1 indices of {1, ..., N} corresponding to the “vertical” components of the projection
P,V — P,_1V, and in general, s, is an index such that m(F;_,0) = m(fy,0), that is, Fy_
has the smallest vanishing order among all components Fy (s, may be vertical or not, and
the choice of {s1,...,s,} need not be unique).

By definition, there is a canonical injection Op, v (—1) < 7;Vi_1, and a composition
with the projection (m;_1), (analogue for order k — 1 of the arrow (7). in sequence (5.4))
yields for all £ > 2 a canonical line bundle morphism

(m6)* (Tl —1) %

(58) Opkv(—:[) — W;Vk_l WEOPk,1V(_1>7

which admits precisely Dy = P(Tp, ,v/p, ,v) C P(Vk—1) = PV asits zero divisor (clearly,
Dy, is a hyperplane subbundle of P;V'). Hence we find

(5.9) Opv(1) = m0p,_,v(1) ® O(Dy).
Now, we consider the composition of projections
(5.10) Tjk = Tj41 0 - O0Mg_1 0Ty : PV — P;V.

Then my : PV — X = BV is a locally trivial holomorphic fiber bundle over X, and
the fibers PV, = 7r0_,1€(x) are k-stage towers of P"~!-bundles. Since we have (in both
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directions) morphisms (C",Ttr) < (X,V) of directed manifolds which are bijective on
the level of bundle morphisms, the fibers are all isomorphic to a “universal” nonsingular
projective algebraic variety of dimension k(r — 1) which we will denote by R, x; it is not
hard to see that R, j is rational (as will indeed follow from the proof of Theorem 6.8 below).
The following Proposition will help us to understand a little bit more about the geometric
structure of P,V. As usual, we define the multiplicity m(f,to) of a curve f: Arp — X at a
point ¢ € Ag to be the smallest integer s € N* such that f(*)(¢y) # 0, i.e., the largest s such
that 6(f(t), f(to)) = O(|t —to|*) for any hermitian or riemannian geodesic distance ¢ on X.
As fik—1) = Tk © fix], it is clear that the sequence m(fjy),t) is non increasing with k.

5.11. Proposition. Let f : (C,0) — X be a non constant germ of curve tangent
to V. Then for all j > 2 we have m(fjj—2,0) = m(fj—1,0) and the inequality is
strict if and only if fi;)(0) € D;. Conversely, if w € P,V is an arbitrary element and
mg=my = --- 2= mi_1 = 1 1S a sequence of integers with the property that

Vied{2,...,k}, mj_g >m;_1 if and only if 7;(w) € Dj,

there exists a germ of curve f : (C,0) — X tangent to V such that fj)(0) = w and
m(fi;,0) =my for all j € {0,...,k—1}.

Proof. i) Suppose first that f is given and put m; = m(f;,0). By definition, we
have f;) = (fij-1), [uj—1]) where fl, (1) = t™ 1"ty q(t) € Vi1, uj—1(0) # 0.
By composing with the differential of the projection 7;_1 : P;_1V — P;_oV, we find
flj—n(t) = tmi=1=1(m;_1)4uj—1(t). Therefore

mj—g = mj1 + ordi=o(mj—1)xu;-1(1),

and so mj_o > m;_ if and only if (m;_1).u;—1(0) = 0, that is, if and only if u;_;(0) €
Tp, yv/p;_,v, or equivalently fi;)(0) = (f(;-1](0), [u;-1(0)]) € D;.

ii) Suppose now that w € P,V and my, ..., my_1 are given. We denote by w; 1 = (wj, [n;]),
w; € P;V, n; € Vj, the projection of w to Pj4+1V. Fix coordinates (21, ..., z,) on X centered
at wo such that the r-th component 79 , of 1y is non zero. We prove the existence of the
germ f by induction on k, in the form of a Taylor expansion

f)=ag+tay+ - +t%aq + O™ ), dp=mo+my+---+mp_1.

If Kk =1 and w = (wo, [no]) € P1V,, we simply take f(t) = wo + t™ny + O(t™T1). In
general, the induction hypothesis applied to P,V = P_1(V1) over X; = P,V yields a curve
g : (C,0) — X such that gp_q) = w and m(g;,0) = mj41 for 0 < j <k —2. If wy ¢ Do,
then [gf,)(0)] = [m] is not vertical, thus f = 7 o g satisfies m(f,0) = m(g,0) = m1 = mg
and we are done.

If we € Dy, we express ¢ = (G1,...,Gn;Gpy1,...,Gpir—1) as a Taylor expansion
of order my + .-+ + mg_1 in the coordinates (4.9) of the affine chart & # 0. As
n = limy 0 ¢'(¢)/t™ 1 is vertical, we must have m(G,,0) > my for 1 < j < n. It follows
from (5.7) that G1, ..., G, are never involved in the calculation of the liftings g;). We can
therefore replace g by f ~ (f1,...,fn) where f.(t) = t™° and f1,..., fr_1 are obtained
by integrating the equations f/(t)/f/(t) = Gny;i(t), ie., fj(t) = mot™ G, ;(t), while
fr+1,- .-, fn are obtained by integrating (4.10). We then get the desired Taylor expansion
of order dj, for f. O
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Since we can always take my_; = 1 without restriction, we get in particular:

5.12. Corollary. Let w € P,V be an arbitrary element. Then there is a germ of curve
f:(C,0) = X such that fi,)(0) = w and f[/k—1](0) # 0 (thus the liftings fy.—1) and fr
are regular germs of curve). Moreover, if wg € P,V and w is taken in a sufficiently small
neighborhood of wg, then the germ f = f,, can be taken to depend holomorphically on w.

Proof. Only the holomorphic dependence of f,, with respect to w has to be guaranteed. If
fuw, 1s a solution for w = wy, we observe that ( fUJO)/[k;] is a non vanishing section of Vj along
the regular curve defined by (fuw,)ix) in PxV. We can thus find a non vanishing section &
of Vi on a neighborhood of wq in PV such that £ = ( fUJO)/[k;] along that curve. We define

t — F,(t) to be the trajectory of £ with initial point w, and we put f,, = mo  © Fy,. Then

fw is the required family of germs. |
Now, we can take f : (C,0) — X to be regular at the origin (by this, we mean f’(0) # 0)
if and only if mg =mq = --- = my_1 = 1, which is possible by Proposition 5.11 if and only

if w € P,V is such that m; p(w) ¢ D, for all j € {2,...,k}. For this reason, we define
PV™e = () 7 APV~ D),
2<5<k

PV = | | 7 (D;) = PV \ PV,

2<j<k

(5.13)

in other words, P,V is the set of values fi;;(0) reached by all regular germs of curves f.
One should take care however that there are singular germs which reach the same points
fir)(0) € P,V™8, e.g., any s-sheeted covering ¢ — f(¢*). On the other hand, if w € P, V"8,
we can reach w by a germ f with mg = m(f,0) as large as we want.

5.14. Corollary. Let w € P,Vs8 be given, and let mg € N be an arbitrary integer larger
than the number of components D; such that mj(w) € Dj. Then there is a germ of curve
[ (C,0) — X with multiplicity m(f,0) = mqg at the origin, such that fi)(0) = w and
Fhoy (0) £ 0.

86. Jet differentials

Following Green-Griffiths [GrGr80], we now introduce the concept of jet differential.
This concept gives an intrinsic way of describing holomorphic differential equations that a
germ of curve f : (C,0) — X may satisfy. In the sequel, we fix a directed manifold (X, V)
and suppose implicitly that all germs f are tangent to V.

Let Gj be the group of germs of k-jets of biholomorphisms of (C,0), that is, the group
of germs of biholomorphic maps

t @(t) = art + agt® + - - + axt”, a1 €C*, a; €C, j2>2,

in which the composition law is taken modulo terms t/ of degree j > k. Then Gy, is a k-
dimensional nilpotent complex Lie group, which admits a natural fiberwise right action
on JiV. The action consists of reparametrizing k-jets of maps f : (C,0) — X by a
biholomorphic change of parameter ¢ : (C,0) — (C,0), that is, (f,¢) — f o . There
is an exact sequence of groups

1-5G, =Gy —>C—1
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where G, — C* is the obvious morphism ¢ — ¢’(0), and G}, = [Gg, Gi] is the group of k-jets
of biholomorphisms tangent to the identity. Moreover, the subgroup H ~ C* of homotheties
©(t) = At is a (non normal) subgroup of Gj, and we have a semidirect decomposition
G = G), x H. The corresponding action on k-jets is described in coordinates by

A (ff o fR) = (N AR PR,

Following [GrGr80], we introduce the vector bundle EE%V* — X whose fibers are

complex valued polynomials Q(f', f”,..., f*)) on the fibers of J,V, of weighted degree m
with respect to the C* action defined by H, that is, such that

(6.1) QNS N2 XEFEY = XmQ(f!, ..., fF)

for all A € C* and (f', f",..., f®) € J,V. Here we view (f', f”,..., f*) as indeterminates
with components

(L I L F s (P, £ 9)) € (e,

Notice that the concept of polynomial on the fibers of J;V makes sense, for all coordinate
changes z — w = ¥(z) on X induce polynomial transition automorphisms on the fibers of
Ji V', given by a formula

(6.2) (To f)) = ) fO) +Z S i () (FO0 L FE)

s=2 gji+jot-+js=37

with suitable integer constants cj, ;. (this is easily checked by induction on s). In the
“absolute case” V = T'x, we simply write EGG T = EE% If V. c W C Tx are holomorphic
subbundles, there are natural inclusions

JLV C W C Jg, PV c PLW C P.
The restriction morphisms induce surjective arrows
EGS = EGGW* — EZSV*,
in particular E,S”SnV* can be seen as a quotient of E,gg (The notation V* is used here to

make the contravariance property implicit from the notation).

If Q € EE%V* is decomposed into multihomogeneous components of multidegree

(€1,09,....0,)in £, ", ..., f*) (the decomposition is of course coordinate dependent), these
multidegrees must satisfy the relation

The bundle EGG V* will be called the bundle of jet differentials of order k and weighted
degree m. Itis Clear from (6.2) that a coordinate change f +— Wo f transforms every monomial
(fCeNE = (M- (fR) of partial weighted degree |€|, := €1 + 205 + -+ + sls,
1<s< k, into a polynomial ((¥ o f) ‘)) in (f, f"”,..., f®) which has the same partial
weighted degree of order s if ls11 = --- = {; = 0, and a larger or equal partial degree
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of order s otherwise. Hence, for each s = 1,...,k, we get a well defined (i.e., coordinate
invariant) decreasing filtration F'? on EE%V* as follows:

QU f" ..., f®) e EE%V* involving

6.3 FP(EFSV*) =
63 EnV) {only monomials (/)¢ with |¢], > p

} , Vp € N.
The graded terms Gr},_,(EFSV*) associated with the filtration Fy_, (EZ3V*) are pre-

cisely the homogeneous polynomials Q(f’, ..., f*)) whose monomials (f*) all have partial
weighted degree |¢|,_; = p (hence their degree £, in f(®) is such that m — p = k£, and
Gri_l(E,ggnV*) = 0 unless k|m — p). The transition automorphisms of the graded bundle
are induced by coordinate changes f +— W o f, and they are described by substituting the
arguments of Q(f', ..., f*)) according to formula (6.2), namely fU) s (¥ o £)) for j < k,
and f*) s U/(f)o f*) for j = k (when j = k, the other terms fall in the next stage F]ffll of

the filtration). Therefore f(*) behaves as an element of V' C T under coordinate changes.
We thus find

(6.4) GrF(BESV*) = EFCG e V* ® SHV™.

Combining all filtrations F? together, we find inductively a filtration F'* on EE%V* such
that the graded terms are

(6.5) Gr'(EfSVv) =8"V* @ S°V @ @ S%V*,  (eN', |f=m.
The bundles EE%V* have other interesting properties. In fact,

BV = EZSV*
m2>=0
is in a natural way a bundle of graded algebras (the product is obtained simply by taking
the product of polynomials). There are natural inclusions E,S’EV* C E,?fl’,v* of algebras,
hence ESS,V* = Ur>o EEEV* is also an algebra. Moreover, the sheaf of holomorphic

sections (‘)(ESOG. V*) admits a canonical derivation V given by a collection of C-linear maps
(6.6) V0BGV = O(EZE V),

constructed in the following way. A holomorphic section of Eggv* on a coordinate open
set 2 C X can be seen as a differential operator on the space of germs f : (C,0) — € of the
form

Q(f) = > Aoy o (F) (F)OH ()2 - (f )

|a1|+2\a2\+~~~+k|ak\:m

in which the coefficients aq,. .o, are holomorphic functions on 2. Then V() is given by the
formal derivative (VQ)(f)(t) = d(Q(f))/dt with respect to the 1-dimensional parameter ¢
in f(t). For example, in dimension 2, if Q € H(Q, O(EFY)) is the section of weighted
degree 4

Q(f) = alfr, f2) [1* 5 + b(f1, f2) [,

we find that VQ € H°(Q, O(Eg}g})) is given by
oa 14 o1 Oa 13 p1 b 1 el
(VQ)(f) = 6—21(f1’f2) s+ a—@(fl,fz) e+ a—zl(fl’fQ) ff?

- %(fl, f2) B30+ al o, f2) BFP A F5 4 S0 + b f2) 207 1
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Associated with the graded algebra bundle E,?fV*, we have an analytic fiber bundle
Proj(EGSV*) = J, V"¢ /C* over X, which has weighted projective spaces P(11] 2"kl
as ﬁbers’(these weighted projective spaces are singular for k£ > 1, but they only have quotient
singularities, see [Dol81]; here Ji V"¢ denotes the set of non constant jets of order k; we
refer e.g. to Hartshorne’s book [Har77] for a definition of the Proj fonctor). However, we
are not really interested in the bundles J V"¢ /C* themselves, but rather on their quotients
JV"¢ /Gy (would such nice complex space quotients exist!). We will see that the Semple
bundle P,V constructed in §5 plays the role of such a quotient. First we introduce a
canonical bundle subalgebra of EE?V*.

6.7. Definition. We introduce a subbundle Ej ,,V* C EE%V*, called the bundle of
invariant jet differentials of order k and degree m, defined as follows: Ey, ,,V* is the set
of polynomial differential operators Q(f', f",..., f(k)) which are invariant under arbitrary
changes of parametrization, i.e., for every ¢ € Gy

Q((fow),(fop) ....(for)®) =4 O™Q(f, f",..., f*).

Alternatively, Ey,V* = (E,S’EV*)G;c is the set of invariants of EE%V* under the
action of G). Clearly, Eo oV* = Uk>0 @m>0 Ey V™ is a subalgebra of EE%V* (observe
however that this algebra is not invariant under the derivation V, since e.g. f;' = Vfj
is not an invariant polynomial). In addition to this, there are natural induced filtrations
FP(EpmV*) = ErmV*N FSP(EESLV*) (all locally trivial over X'). These induced filtrations
will play an important role later on.

6.8. Theorem. Suppose that V has rank r > 2. Let moy : P,V — X be the Semple
jet bundles constructed in section 5, and let J V™8 be the bundle of regular k-jets of maps
f:(C,0) = X, that is, jets [ such that f'(0) # 0.

i) The quotient J, V'8 /Gy, has the structure of a locally trivial bundle over X, and there is
a holomorphic embedding J,V*°® /Gy, — P,V over X, which identifies JV*°% /Gy, with
P Vree (thus P,V is a relative compactification of J V'8 /Gy, over X).

ii) The direct image sheaf
(7T07k)*0pkv(m) >~ O(Ek,mV*)

can be identified with the sheaf of holomorphic sections of Ej, .,V *.

iii) For every m > 0, the relative base locus of the linear system |Op, v (m)| is equal to the
set P VS8 of singular k-jets. Moreover, Op, v (1) is relatively big over X .

Proof. i) For f € J, V'8, the lifting £ is obtained by taking the derivative (f, [f']) without
any cancellation of zeroes in f’, hence we get a uniquely defined (k — 1)-jet f: (C,0) — X.
Inductively, we get a well defined (k — j)-jet fi; in P;V/, and the value f;)(0) is independent
of the choice of the representative f for the k-jet. As the lifting process commutes with
reparametrization, i.e., (f o)~ = f o and more generally (f o)y = fix) © @, we conclude
that there is a well defined set-theoretic map

J V' Gy — PV, f mod Gk = fiiy(0)-

This map is better understood in coordinates as follows. Fix coordinates (z1,...,2,) near
a point xg € X, such that V,, = Vect(0/0z1,...,0/0z.). Let f = (f1,..., fn) be a regular
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k-jet tangent to V. Then there exists ¢ € {1,2,...,7} such that f/(0) # 0, and there is a
unique reparametrization ¢ = ¢(7) such that foyp =g = (91,92, ..,9n) with g;(7) = 7
(we just express the curve as a graph over the z;-axis, by means of a change of parameter
T = fi(t), i.e. t = (1) = f;1(7)). Suppose i = r for the simplicity of notation. The space
P,V is a k-stage tower of P"~!-bundles. In the corresponding inhomogeneous coordinates
on these P"~'’s, the point fi(0) is given by the collection of derivatives

((91(0), -+ gh_1(0)); (47(0), - g1 (0)); -5 (9(0), ..., g™, (0))).

[Recall that the other components (g,i1,...,9n) can be recovered from (gi,...,g,) by
integrating the differential system (4.10)]. Thus the map JV*™¢ /Gy — PV is a bijection
onto P,V and the fibers of these isomorphic bundles can be seen as unions of r affine
charts ~ (C"~1)k associated with each choice of the axis z; used to describe the curve
as a graph. The change of parameter formula -& L

i = T % expresses all derivatives
g,gj)(T) = d’g;/d77 in terms of the derivatives fi(j)(t) =dlf;/dt?

(G152 Gr1) = (f{ L)

?7 ) f/
el /d) 1 / el
fr_frf r— fr_fr r—
(6.9) (97,97 1) = (% : [z 1); s
(k) ¢ (k) ¢r (k) ¢/ (k) 1
k k f fr_fT f fr— f?“_fT fr—
(g% )7"'797("—)1):( L G L=t e 1>—|—(order<l<;).
Also, it is easy to check that f;%_lgi(k) is an invariant polynomial in f’, ", ..., f*) of total

degree 2k — 1, i.e., a section of Ej, o5_1.

ii) Since the bundles P,V and Ej ,,V* are both locally trivial over X, it is sufficient to
identify sections o of Op,y(m) over a fiber PV, = 7r0_,1€(x) with the fiber E} ,,, V), at any

point z € X. Let f € Ji V)¢ be a regular k-jet at . By (5.6), the derivative f[/k:—l](0>

defines an element of the fiber of Op,v(—1) at fi;(0) € P,V. Hence we get a well defined
complex valued operator

(6.10) QU 1", F¥) = a(fig (0)) - (fx_yy(0)™.

Clearly, @ is holomorphic on J; V¢ (by the holomorphicity of o), and the Gg-invariance
condition of Def. 6.7 is satisfied since f;(0) does not depend on reparametrization and
(f 0 @)—11(0) = fl_1)(0)¢(0). Now, JpV;° is the complement of a linear subspace of
codimension n in J;V,, hence Q extends holomorphically to all of J;V, =~ (C")* by
Riemann’s extension theorem (here we use the hypothesis r > 2; if r = 1, the situation is
anyway not interesting since P,V = X for all k). Thus ) admits an everywhere convergent
power series

Q(f/7f//7~"7f(k)) = Z Qo ..o (f/)a1<f//)a2"'(f(k))ak‘

a1,09,...,0 ENT

The Gg-invariance (6.7) implies in particular that @) must be multihomogeneous in the sense
of (6.1), and thus @ must be a polynomial. We conclude that Q € Ej ,,V, as desired.

Conversely, Corollary 5.12 implies that there is a holomorphic family of germs f, :
(C,0) — X such that (fu)p(0) = w and (fu)y,_y)(0) # 0, for all w in a neighborhood of
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any given point wyg € PrV,. Then every Q) € E} ,, V) yields a holomorphic section o of
Op,v(m) over the fiber PV, by putting

(6.11) o(w) = Q(fr, fir -+ FINO) ((fu) iy (0))

iii) By what we saw in i-ii), every section ¢ of Op, v (m) over the fiber PV, is given by a
polynomial Q) € Ej, ,,, V), and this polynomial can be expressed on the Zariski open chart
fL#£0 of PV}® as

(6'12) Q(f/7 f//7 R f(k)) = f’ll‘m@(g/7g//7 R 7g(k))7

where @ is a polynomial and g is the reparametrization of f such that g,.(7) = 7. In fact Q\

is obtained from @) by substituting f. = 1 and fﬁj ) =0 for j = 2, and conversely () can be
recovered easily from @) by using the substitutions (6.9).

In this context, the jet differentials f — fi,..., f — f/ can be viewed as sections of
Op,v(1) on a neighborhood of the fiber P;V,. Since these sections vanish exactly on Py Vsing,
the relative base locus of Op, v (m) is contained in P, V"8 for every m > 0. We see that
Op,v (1) is big by considering the sections of Op, v (2k — 1) associated with the polynomials
QUf,...,f*) = f;%_lgi(]), 1<i<r—1,1<j <k; indeed, these sections separate all
points in the open chart f] # 0 of P,V 8.

Now, we check that every section o of Op,y(m) over PV, must vanish on P V;ing. Pick
an arbitrary element w € P, V"8 and a germ of curve f : (C,0) — X such that fi1(0) = w,
J(—17(0) # 0 and s = m(f,0) > 0 (such an f exists by Corollary 5.14). There are local
coordinates (z1,...,2,) on X such that f(t) = (fi(¢),..., fn(t)) where f,.(t) =t°. Let Q, Q
be the polynomials associated with ¢ in these coordinates and let (f/)®t(f")o2 - .- (f*))ox
be a monomial occurring in @, with a; € N, |oj| = €5, b1 + 203 + - - - + kl;, = m. Putting
7 = t°, the curve t — f(t) becomes a Puiseux expansion 7 — ¢(7) = (¢1(7),..., gr—1(7), T)
in which g; is a power series in 7/¢, starting with exponents of 7 at least equal to 1. The
derivative gU )(7) may involve negative powers of 7, but the exponent is always > 1 + % —7.

Hence the Puiseux expansion of @(g’, g",...,9%™) can only involve powers of T of exponent
> —maxy((1—2)l+- -+ (k—1-1)4,). Finally f/(t) = st*~' = sr171/% thus the
lowest exponent of 7 in Q(f’, ..., f¥)) is at least equal to

(=21 s (=12

2min(1—%)€1—|—(1—§)€2+~-~+<1—k_l)ﬁk

y4 S
where the minimum is taken over all monomials (f/)®(f")2.--(fEN)%  |ay| = ¢,
occurring in ). Choosing s > k, we already find that the minimal exponent is positive,
hence Q(f/, ..., f*))(0) =0 and o(w) = 0 by (6.11). ]

Theorem (6.8 iii) shows that Op, v (1) is never relatively ample over X for k > 2. In
order to overcome this difficulty, we define for every a = (ai,...,ax) € Z* a line bundle
Op,v(a) on P,V such that

(6.13) Op,v(a) =71 ,0pv(a1) ® 75, 0p,v(az2) @ @ Op,v(ar).
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By (5.9), we have 77, Op,v (1) = Op,v (1) ® Op,v (=7 1y x Dj+1 — - — Dg), thus by putting
Dy =miq pDjy1 for 1 < j <k —1and Dp =0, we find an identity

(614) Opkv(a) = OPkV(bk) X Opkv(—b . D*>, where
b= (by,....,bp) €Z", bj=a1+---+a;

b-D* = Z bj 7T;_|_17ij_|_1.

1<j<k—1
In particular, if b € N* ie., a; +---+ aj = 0, we get a morphism

(615) Opkv(a) = OPkV(bk:) (059 Opkv(—b . D*) — OPkV(bk)

6.16. Proposition. Let a = (ay,...,a;) € Z*¥ and m = a1 + -+ + ay.

i)  We have the direct image formula
(Wo,k)*Opkv(a) ~ O(FaEk’mV*) C O(Ek,mV*)

where FaEk,mV* is the subbundle of polynomials Q(f', f", ..., f¥)) € Ey ., V* involving
only monomials (f(*))¢ such that

lsi1+ 20540+ -+ (k—s)lp < asp1+ -+ ag

foralls=0,...,k—1.

i) Ifa; > 3ag,...,ax—2 = 3ax_1 and ax_1 > 2ay > 0, the line bundle Op, v (a) is relatively
nef over X.
iii) If a1 > 3ag,...,ax—2 = 3ax_1 and ax_1 > 2ay > 0, the line bundle Op, v (a) is relatively

ample over X.
Proof. i) By (6.15), we find a sheaf injection
(m0,1)xOp,v (@) = (m0,1)+Op,v(m) = O(E V).
Given a section o of Op, v (a) over a fiber PV, the associated polynomial
QU I IW) € By mVy
is given by the identity
QU " S = a(fwg (0)) - (£/(0))* - (ffyy(0))™ -+ (ff—1y(0)) ™

Indeed, we see this from (6.10) and from the fact that f} _,(0) is mapped to f{;_,,(0) by
the projection morphism

(Tj—1,k-1)x : Opv(=1) = 7} Op,v(—1)
(cf. (5.8)), which is dual to the corresponding morphism (6.15). Now, we prove the inclusion

(m0.x)xOp,v(a) € O(F*Eg,,V*) by induction on k. For s = 0, the desired inequality
comes from the weighted homogeneity condition, hence we may assume s > 1. Let f
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run over all regular germs having their first derivative f’(0) fixed. This means that o

is viewed as a section of Wg’k(f)pﬂ/(ag) ® -+ ® Op,v(ax) on the fibers of the projection
P,V = P,_1Vi = X1 = P;V. Then we get a polynomial Q)1 € Ey_1 m—q, V7" such that

Qufty Iy I = QU 7 ).
In the affine chart f; # 0, the map f};) is defined in coordinates by
= (frseoo fus Fi/ B0 Fla ) fr)-
Its derivative f[’l] € Vi can thus be described by f[’l] ~ ((f{/f;)’, N 7{_1/f7{)’,f7{), by

taking r — 1 vertical components and a horizontal one. All this becomes much simpler if we
replace f by g = fo f1, since g,(t) =t and ¢.(t) = 1. Then we get

k k
(g/7gll7~'~7g(k)) = ((.917"'79;—171)7(91/7"'7g;~/—170)7~'~7(g§ )7“‘797(1—)170))7

k k k
(gfl]agﬁpvg[(l])) = ((gila"'vg;’/—lv1)7(gi//w"79;//—170>7-'-7(g§ )7797(1—)170»

in the corresponding charts of JpV and Jx_1V;. The inequality (6.161) for the monomi-
als (g% of Q(g',4",...,9"®) follows clearly from the corresponding inequality on the

monomials (g[(;]))é of @1, when (k,s) is replaced by (kK — 1,s —1). Now, thanks to (6.9),

we get Q(f, f",....f®) = (f)™Q(g',¢",...,g™), and the desired inequality (6.161) for
the monomials (f(*))* follows easily. In the opposite direction, if we are given a section
QU f" ..., f") e O(FaEk,mV*), we see by induction on k that ) defines a section of

Op,v(a1) ® (m1k)« (75 ,Op,v (a2) ® - - - @ Op, v (ar))

on PV, and we conclude that we get a section of (79 x)«Op,v(a) by taking the direct image
by (1)

that Op, v (1) ® mfLi_1 is relatively nef; by definition, this is equivalent to saying that the
vector bundle V;* | ® Ly_1 is relatively nef (for the notion of a nef vector bundle, see e.g.
[DPS94]). Since Op,v (1) is relatively ample, we can start with Ly = Ox. Suppose that
Lj_1 has been constructed. The dual of (5.4) yields an exact sequence

0—O0pv(l) =V —Tpy/p_,v —0.
As an extension of nef vector bundles is nef, it is enough to select L; in such a way that
(6.17) Opv(l)® Ly and Tpy p, v ® Ly are relatively nef.
By taking the second wedge power of the central term in (5.4"), we get an injection

0— Tpv/p, v — AN (T Vi1 ® Op,v(1)).

By dualizing and twisting with Op, ,v(2) ® 715 LY? |, we find a surjection

TN (Vi ® Li—q) — T;kV/Pk_l\/ ® O0p,v(2) @ Ty L2, — 0.
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As V' | ® Ly_; is relatively nef by the induction hypothesis, we obtain that its quotient
Tpv/p,_ v @O0pv(2)® TrLY? is also relatively nef. Hence Condition (6.17) is achieved if

we take Ly > mjLi_q and Ly > Op,v(2) ® W;L%El (the ordering relation > is the one given
by the cone of relatively nef line bundles). We need only define Ly inductively by

Ly =0pyv(2) @ mp L3 .

The relative ampleness of Ly, is then clear by induction, since Op,y (1) @ mxLi_1 is relatively
nef over X and relatively ample over P,_1V. The resulting formula for Lj is

Li=0pyv((2-3F12.3"2,...,6,2)).
By definition, we then find
Op,v(1) @ TfLi—1 = Op,v((2-3%72,2.3"73,...,6,2,1))  relatively nef.
These properties imply ii) and iii) by taking suitable convex combinations. O

6.18. Remark. As in Green-Griffiths [GrGr80], Riemann’s extension theorem shows that
for every meromorphic map ® : X ---» Y there are well-defined pullback morphisms

o* - HY(Y,EgG) — HY(X,EFD),  © : HY(Y, Epm) = H(X, Erm).

In particular the dimensions h"(X, Egg) and h°(X, Egﬁ) are bimeromorphic invariants

of X. The same is true for spaces of sections of any subbundle of EE% or Ey, n, constructed
by means of the canonical filtrations Fy.

87. k-jet metrics with negative curvature

The goal of this section is to show that hyperbolicity is closely related to the existence of
k-jet metrics with suitable negativity properties of the curvature. The connection between
these properties is in fact a simple consequence of the Ahlfors-Schwarz lemma. Such ideas
have been already developed long ago by Grauert-Reckziegel [GRec65], Kobayashi [Kob75]
for 1-jet metrics (i.e., Finsler metrics on Tx) and by Cowen-Griffiths [CoGr76], Green-
Griffiths [GrGr80] and Grauert [Gra89] for higher order jet metrics. However, even in the
standard case V' = Tx, the definition given below differs from that of [GrGr80], in which the
k-jet metrics are not supposed to be G/ -invariant. We prefer to deal here with G/ -invariant
objects, because they reflect better the intrinsic geometry. Grauert [Gra89] actually deals
with Gj-invariant metrics, but he apparently does not take care of the way the quotient
space J, ®V/Gy, can be compactified; also, his metrics are always induced by the Poincaré
metric, and it is not at all clear whether these metrics have the expected curvature properties
(see 7.14 below). In the present situation, it is important to allow also hermitian metrics
possessing some singularities (“singular hermitian metrics” in the sense of [Dem90]).

7.1. Definition. Let L — X be a holomorphic line bundle over a complexr manifold X. We
say that h is a singular metric on L if for any trivialization L,y ~ U x C of L, the metric
is given by |€|2 = [£|2e™ % for some real valued weight function ¢ € LL (U). The curvature
current of L is then defined to be the closed (1,1)-current ©r, j, = ﬁ@gcp, computed in the
sense of distributions. We say that h admits a closed subset ¥ C X as its degeneration set

if @ s locally bounded on X X and is unbounded on a neighborhood of any point of 3.
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An especially useful situation is the case when the curvature of h is positive definite.
By this, we mean that there exists a smooth positive definite hermitian metric w and a
continuous positive function € on X such that O j > ew in the sense of currents, and we
write in this case ©r j, > 0. We need the following basic fact (quite standard when X is
projective algebraic; however we want to avoid any algebraicity assumption here, so as to
be able the case of general complex tori in §9).

7.2. Proposition. Let L be a holomorphic line bundle on a compact complex manifold X .

i) L admits a singular hermitian metric h with positive definite curvature current Orn>0
if and only if L is big.

Now, define B,, to be the base locus of the linear system |[H®(X, L®™)| and let
®,, : X \ By, &> PV

be the corresponding meromorphic map. Let 3., be the closed analytic set equal to the union
of By, and of the set of points x € X ~\ By, such that the fiber ®_ 1(®,,(x)) is positive
dimensional.

ii) If ©,, # X and G is any line bundle, the base locus of L®* @ G~ is contained in %,
for k large. As a consequence, L admits a singular hermitian metric h with degeneration
set ¥y, and with O, }, positive definite on X.

iii) Conversely, if L admits a hermitian metric h with degeneration set ¥ and positive
definite curvature current Op 5, there exists an integer m > 0 such that the base locus
B, is contained in X and ®,, : X N X — P, is an embedding.

iv) Assume that L admits a singular hermitian metric h with positive definite curvature
current, such that the degeneration set Y is an analytic subset of X. Assume moreover
that for each irreducible component 3; of ¥, Lis; admits a singular hermitian metric
hj with positive definite curvature current on X; and degeneration set ¥ C X;.

Then L admits a_singular hermitian metric h of positive curvature current on X, with
degeneration set ¥ = J; , ¥ k-

Proof. 1) is proved e.g. in [Dem90, 92], so we will only briefly sketch the details. If L is big,
then X is Moishezon and we can even assume that X is projective algebraic after taking
a suitable modification X (apply Hironaka [Hir64]; observe moreover that the direct image
of a strictly positive current is strictly positive). So, assume that X is projective algebraic.
Then it is well-known that some large multiple of L can be written as L™ = Ox (D + A)
with divisors D, A such that D is effective and A ample. The invertible sheaf Ox (D) can
be viewed as a subsheaf of the sheaf of meromorphic functions. We get a singular metric
|s]? on sections of Ox (D) by just taking the square of the modulus of s viewed as a complex
valued (meromorphic) function. By the Lelong-Poincaré equation, the curvature current of
that metric is equal to the current of integration [D] > 0 over the divisor D. We thus get
Or = L([D]4+0.4) = LO4 > 0 for a suitable choice of the metric on Ox(A). In the other
direction, if O 5, is positive, one can construct a “lot of” sections in H°(X, L®™), m > 0,
by using Hérmander’s L? estimates; the Hérmander-Bombieri-Skoda technique implies that
these sections can be taken to have arbitrary jets at all points in a given finite subset of
X \ X, if 3 is the degeneration set of h. This also proves property iii).
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ii) The assumption 3, # X shows that there is a generically finite meromorphic map from
X to an algebraic variety, and this implies again that X is Moishezon. By blowing-up the
ideal

Iy = Im (H(X, L) ® Ox (L¥™™) = Ox) C Ox

and resolving the singularities, we obtain a smooth modification y : X — X and aline bundle
L= p*(L®")®@0%(—E) (where E is a pi-exceptional divisor with support in pH(%,,), such
that L is base point free; after possibly blowing-up again, we may assume furthermore that
X is projective algebraic. Clearly, it is enough to prove the result for L, and we are thus
reduced to the case when L is base point free and X is projective algebraic. We may finally
assume that G is very ample (other we add a large ample divisor to G to make it very ample).
In this situation, we have a holomorphic map ®,, : X — P¥ such that L&™ = &_1(0(1)),
and ®,, is finite-to-one outside ¥,,. Hence, if z € X \%,,, the set ®_1(P,,(x)) is finite, and
we can take a smooth divisor D € |G| such that DN®, 1 (®,,(z)) = 0. Thus ®,,(D) Z @ ()
in PV, Tt follows that there exists a hypersurface H = o~ 1(0) € |Opn~ (k)| of sufficiently large
degree k, such that H contains ®,,(D) but does not pass through ®,,(z). Then ®; o can
be viewed as a section of ®* Opn (k) ® Ox(—D) = L®*™ @ G~1, and ®*,0 does not vanish
at x. By the Noetherian property, there exists kg such that the base locus of L®*™ @ G~!
is contained in X, for k > k¢ large. Claim ii) follows.

iv) is obtained by extending the metric h; to a metric ?Lj on a neighborhood of ¥, (it is
maybe necessary to modify ?Lj slightly by adding some “transversally convex terms” in the
weight, so as to obtain positive curvature in all directions of T’x, on a suitable neighborhood
of 3;), and then taking A = min(h, eh;) with € > 0 small enough. O

We now come to the main definitions. By (5.6), every regular k-jet f € JV gives rise
to an element ff; ;,(0) € Op,v(—1). Thus, measuring the “norm of k-jets” is the same as

taking a hermitian metric on Op, v (—1).

7.3. Definition. A smooth, (resp. continuous, resp. singular) k-jet metric on a complex
directed manifold (X, V') is a hermitian metric hy on the line bundle Op, v (—1) over PV
(i.e. a Finsler metric on the vector bundle Vi,_1 over Py_1V'), such that the weight functions
@ representing the metric are smooth (resp. continuous, Llloc). We let Xy, C P,V be the
singularity set of the metric, i.e., the closed subset of points in a neighborhood of which the

weight ¢ is not locally bounded.

We will always assume here that the weight function ¢ is quasi psh. Recall that a
function ¢ is said to be quasi psh if ¢ is locally the sum of a plurisubharmonic function and

of a smooth function (so that in particular ¢ € L{ ). Then the curvature current

17—
@hlzl(Opkv(l» = %86(p

is well defined as a current and is locally bounded from below by a negative (1, 1)-form with
constant coefficients.

7.4. Definition. Let hy be a k-jet metric on (X,V). We say that hy has negative jet
curvature (resp. negative total jet curvature) if O, (Op,v(—1)) is negative definite along the
subbundle Vi, C Tp,v (resp. on all of Tp,v), i.e., if there is € > 0 and a smooth hermitian
metric wy on T'p,v such that

(0,1 (0pv(1))(E) 2 €léls,,  YEEVECTpy (resp. ¥ €Tny).
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(If the metric hy is not smooth, we suppose that its weights @ are quasi psh, and the curvature
inequality is taken in the sense of distributions.)

It is important to observe that for k£ > 2 there cannot exist any smooth hermitian metric
hy on Op,v (1) with positive definite curvature along T’x, /x, since Op, v (1) is not relatively
ample over X. However, it is relatively big, and Prop. 7.2 i) shows that Op, y(—1) admits a
singular hermitian metric with negative total jet curvature (whatever the singularities of the
metric are) if and only if Op, (1) is big over P, V. It is therefore crucial to allow singularities
in the metrics in Def. 7.4.

7.5. Special case of 1-jet metrics. A 1-jet metric hy on Op,y (—1) is the same as a Finsler
metric N = v/h; on V C Tx. Assume until the end of this paragraph that h; is smooth.
By the well known Kodaira embedding theorem, the existence of a smooth metric hy such
that @hfl (Op,v (1)) is positive on all of T,y is equivalent to Op,y (1) being ample, that is,
V* ample. In the absolute case V = Ty, there are only few examples of varieties X such
that T is ample, mainly quotients of the ball B,, C C" by a discrete cocompact group of
automorphisms. The 1-jet negativity condition considered in Definition 7.4 is much weaker.
For example, if the hermitian metric h; comes from a (smooth) hermitian metric » on V,
then formula (4.16) implies that h; has negative total jet curvature (i.e. @hfl(OPlv(l))
is positive) if and only if (Oy)(¢ ® v) < 0 for all ¢ € Tx ~ {0}, v € V ~ {0}, that is,
if (V,h) is negative in the sense of Griffiths. On the other hand, V3 C Tpy consists by
definition of tangent vectors 7 € T'p,v,(z,[,]) Whose horizontal projection Hr is proportional
to v, thus O, (Op,v(—1)) is negative definite on V; if and only if Oy, satisfies the much
weaker condition that the holomorphic sectional curvature (©v ) (v®wv) is negative on every
complex line. |

We now come back to the general situation of jets of arbitrary order k. Our first
observation is the fact that the k-jet negativity property of the curvature becomes actually
weaker and weaker as k increases.

7.6. Lemma. Let (X,V) be a compact complex directed manifold. If (X,V) has a (k —1)-
jet metric hx_1 with negative jet curvature, then there is a k-jet metric hy with negative jet
curvature such that Sy, C 7 (Sh,_,) U Di. (The same holds true for negative total jet
curvature).

Proof. Let w,_1, wy be given smooth hermitian metrics on T'p, v and Tp, yy. The hypothesis
implies

(©)-1 (Op_,v(W)(€) = elell, . VEE Vi

for some constant € > 0. On the other hand, as Op, vy (Dy) is relatively ample over P,_1V
(Dy, is a hyperplane section bundle), there exists a smooth metric h on Op, v (Dy) such that

(O5:(0pv(D))(E) = 0[EL2, — Clmi)ll, . VEE€Thy

for some constants §, C' > 0. Combining both inequalities (the second one being applied to
¢ € Vi, and the first one to (7)€ € Vik—1), we get

(© (s )i (MkOP_, v (P) ® Op v (D)) (E) =
> 0|E)Z, + (pe — O)(mi)ul2, ., VEEVh.
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Hence, for p large enough, (ﬁ,:hk_l)_pﬁ has positive definite curvature along Vj. Now, by
(5.9), there is a sheaf injection

Op,v(—p) = 10p,_,v(—p) @ Op,v (—pDi) = (730p,_,v(p) ® Oka(Dk))_l

obtained by twisting with Op,v((p — 1)Dy). Therefore hy := ((w,:hk_l)_pﬁ)_l/p =
(mrhk_1)h~Y/? induces a singular metric on Op,y (1) in which an additional degeneration
divisor p~!(p — 1) Dy, appears. Hence we get ¥j, = 7rk_12h,€_1 U D;, and

1 p—1

0,-1(0p,v(1)) = O ih i T[Dk]

is positive definite along V). The same proof works in the case of negative total jet curvature.
O

One of the main motivations for the introduction of k-jets metrics is the following list
of algebraic sufficient conditions.

7.7. Algebraic sufficient conditions. We suppose here that X is projective algebraic,
and we make one of the additional assumptions i), ii) or iii) below.

i) Assume that there exist integers k,m > 0 and b € NF such that the line bundle
Op,v(m)® Op,yv(—=b- D*) is ample over P,V. Set A = Op,v(m) ® Op,v(—b-D*). Then
there is a smooth hermitian metric hy on A with positive definite curvature on P,V. By
means of the morphism 1 : Op,v(—m) — A™!, we get an induced metric hy, = (u*h")Y/™
on Op,v(—1) which is degenerate on the support of the zero divisor div(u) = b- D*. Hence
Yh, = Supp(b- D*) C P, V5" and

1 1 1
®h;1(OPkV(1)> = E@hA(A> + E[b -D*] > E@m (A) > 0.

In particular hy has negative total jet curvature.
ii) Assume more generally that there exist integers k, m > 0 and an ample line bundle L on
X such that H°(P,V,Op,v(m) ® 7r87kL_1) has non zero sections o1,...,0n. Let Z C P,V

be the base locus of these sections; necessarily Z D> P, V5" by 6.8 iii). By taking a smooth
metric hy, with positive curvature on L, we get a singular metric hj, on Op, v (—1) such that

/m
M@= ¥ lojw-e2.)"" weRV, £e0nv(-D.

1< <N
Then X, = Z, and by computing %85 log h} (&) we obtain

1
Oy -1(Opv (1)) = —mg O

By (6.15) and 6.16 iii), there exists b € Q% such that Op,v (1) ® Op,v(—b- D*) is relatively
ample over X. Hence A = Op,y(1) ® Op,v(=b- D*) ® mj5,L®" is ample on X for
p > 0. The arguments used in i) show that there is a k-jet metric by on Op,v(—1) with
Ehy = Supp(b- D*) = P, V"¢ and

O, -1(0p,v(1) =Oa+[b- D] —pm,Or,
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where ©4 is positive definite on P,V. The metric hy = (h;cmphg)l/(mp+1) then satisfies
Ypy =2p = Z and

1
mp+ 1

@h;1<Oka<1)) > O4 > 0.

iii) If Ey ,,V* is ample, there is an ample line bundle L and a sufficiently high symmetric
power such that SP(Ej ,,V*) ® L™! is generated by sections. These sections can be viewed
as sections of Op, v (mp) ® 7} kL_1 over P,V , and their base locus is exactly Z = P, Ve
by 6.8 iii). Hence the k-jet metric hy, constructed in ii) has negative total jet curvature and
satisfies ¥, = P, Vsing, O

An important fact, first observed by [GRe65] for 1-jet metrics and by [GrGr80] in the
higher order case, is that k-jet negativity implies hyperbolicity. In particular, the existence
of enough global jet differentials implies hyperbolicity.

7.8. Theorem. Let (X,V) be a compact complex directed manifold. If (X,V) has a k-jet
metric hy with negative jet curvature, then every entire curve f : C — X tangent to V is
such that fii)(C) C Xy, . In particular, if Xy, C P V8 then (X, V) is hyperbolic.

Proof. The main idea is to use the Ahlfors-Schwarz lemma, following the approach of
[GrGr80]. However we will give here all necessary details because our setting is slightly
different. Assume that there is a k-jet metric hy as in the hypotheses of Theorem 7.8. Let
wy, be a smooth hermitian metric on T’p,y. By hypothesis, there exists € > 0 such that

(0,1 (Onv ()(E) > elel?,  VEE€ Vi

Moreover, by (5.4), (7). maps Vi continuously to Op, v (—1) and the weight e¥ of hy is
locally bounded from above. Hence there is a constant C' > 0 such that

(m1)&li, < CIELZ.,  VEE VL

Combining these inequalities, we find

(€, (0w (NE) > Glm)eh,,  VE€ Vi

Now, let f : Ag — X be a non constant holomorphic map tangent to V on the disk Ap.
We use the line bundle morphism (5.6)

F=fl_1: Tagr = flyOpv(=1)
to obtain a pullback metric
v =(t) dt ® dt = F*hy, on Th,-

If fiy(Ar) C Xp, then v = 0. Otherwise, F'(t) has isolated zeroes at all singular points
of fir—1) and so 7(t) vanishes only at these points and at points of the degeneration set
(fir]) ' (Eh,) which is a polar set in Ag. At other points, the Gaussian curvature of ~
satisfies

(i ()

k

i00logyo(t) =27 (/)" On (Opv(=1))  (On 1 (Orv (L)
|

) e
= = >
() F T Ol ¢



46 J.-P. Demailly, Kobayashi pseudo-metrics and hyperbolicity of algebraic varieties

since f[’k_l](t) = (7Tk>*f[/k](t>. The Ahlfors-Schwarz lemma 3.2 implies that v can be
compared with the Poincaré metric as follows:

<X B g, <
O < ey Ol < TR

If f:C — X is an entire curve tangent to V' such that fj;)(C) ¢ X, , the above estimate
implies as R — 400 that fx_;) must be a constant, hence also f. Now, if 35, C P V*®"8,
the inclusion fi;;(C) C ¥, implies f'(t) = 0 at every point, hence f is a constant and
(X, V) is hyperbolic. O

Combining Theorem 7.8 with 7.7 ii) and iii), we get the following consequences.

7.9. Corollary. Assume that there exist integers k,m > 0 and an ample line bundle L on
X such that HO(P,V,Op,v(m) @7y, L) =~ HY (X, Ex m(V*) @ L) has non zero sections
01y...,0n. Let Z C P,V be the base locus of these sections. Then every entire curve
[+ C = X tangent to V is such that f;;(C) C Z. In other words, for every global Gy-
invariant polynomial differential operator P with values in L™, every entire curve f must
satisfy the algebraic differential equation P(f) = 0. O

7.10. Corollary. Let (X,V) be a compact complex directed manifold. If Ey .,,V* is ample
for some positive integers k,m, then (X, V) is hyperbolic. a

7.11. Remark. Green and Griffiths [GrGr80] stated that Corollary 7.9 is even true with
sections o; € H(X, EE%(V*) ® L~1), in the special case V = T they consider. We refer
to the recent preprint [SiYe96¢| by Siu and Yeung for a detailed proof of this fact, based on a
use of the well-known logarithmic derivative lemma in Nevanlinna theory (the original proof
given in [GrGr80] does not seem to be complete, as it relies on an unsettled pointwise version
of the Ahlfors-Schwarz lemma for general jet differentials); other proofs seem to have been
circulating in the literature in the last years. We give here a very short proof for the case
when f is supposed to have a bounded derivative (thanks to Brody’s theorem, this is enough
if one is merely interested in proving hyperbolicity, thus Corollary 7.10 will be valid with
EE%V* in place of E ,,V*). In fact, if f’ is bounded, one can apply the Cauchy inequalities
to all components f; of f with respect to a finite collection of coordinate patches covering X.
As f’ is bounded, we can do this on sufficiently small discs D(¢,0) C C of constant radius
§ > 0. Therefore all derivatives f', f”, ... f*) are bounded. From this we conclude that
0;(f) is a bounded section of f*L~!. Its norm |o;(f)|L-: (with respect to any positively
curved metric | |5 on L) is a bounded subharmonic function, which is moreover strictly
subharmonic at all points where f’ # 0 and o;(f) # 0. This is a contradiction unless f is
constant or o;(f) = 0. O

The above results justify the following definition and problems.
7.12. Definition. We say that X, resp. (X, V), has non degenerate negative k-jet curvature

if there exists a k-jet metric hy, on Op, v (—1) with negative jet curvature such that ¥, C
P,Vsing,

7.13. Conjecture. Let (X,V) be a compact directed manifold. Then (X,V') is hyperbolic
if and only if (X,V') has nondegenerate negative k-jet curvature for k large enough.
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This is probably a hard problem. In fact, we will see in the next section that the
smallest admissible integer £ must depend on the geometry of X and need not be uniformly
bounded as soon as dim X > 2 (even in the absolute case V = Tx). On the other hand,
if (X,V) is hyperbolic, we get for each integer k& > 1 a generalized Kobayashi-Royden
metric kK(p, ,v,v;,_,) on Vi1 (see Definition 1.3), which can be also viewed as a k-jet metric
hi on Op,v(—1); we will call it the Grauert k-jet metric of (X, V'), although it formally
differs from the jet metric considered in [Gra89] (see also [DGr91]). By looking at the
projection m : (PpV, Vi) — (Px—1V,Vk_1), we see that the sequence hj is monotonic,
namely wihy < hiqp for every k. If (X,V) is hyperbolic, then h; is nondegenerate and
therefore by monotonicity ¥, C P,V for k > 1. Conversely, if the Grauert metric
satisfies X5, C P,V it is easy to see that (X, V) is hyperbolic. The following problem
is thus especially meaningful.

7.14. Problem. Estimate the k-jet curvature ©,-1(0p,v (1)) of the Grauert metric hy on
k
(P:V, Vi) as k tends to 4+o0.

88. Algebraic criterion for the negativity of jet curvature

Our goal is to show that the negativity of k-jet curvature implies strong restrictions of an
algebraic nature, similar to property 2.1 ii). Using this we give examples, for any prescribed
integer k, of hyperbolic projective surfaces which do not admit any k-jet metric of negative
jet curvature.

8.1. Theorem. Let (X, V) be a compact complex directed manifold and let w be a hermitian
metric on X. If (X, V) has negative k-jet curvature, there exists a constant € > 0 such that
every closed irreducible curve C' C X tangent to V' satisfies

—x(C) =2¢(C) — 2> ¢ deg,(C) + Z(mk_l(t) —1)>0

where g(C) is the genus of the normalization v : C — C C X, and my(t) is the multiplicity
at point t of the k-th lifting vy : C — PpV of v.

Proof. By (5.6), we get a lifting v : C — PV of the normalization map v, and there is a

canonical map

ka—l] : Ta — V@]Opkv(—l).

Let t; € C be the singular points of Vik—1], and let m; = my—1(t;) be the corresponding

multiplicity. Then ka_l] vanishes at order m; — 1 at ¢; and thus we find

TU ~ V[*k]OPkV(_1> ® Oa( - Z(m] - 1>pj> .

Taking any k-jet metric hy with negative jet curvature on Op, vy (—1), the Gauss-Bonnet
formula yields

29(C) —2 = /_@Té => (m;—1)+ /gy@]@hgl(opkv(1)>.

C

Now, the curvature hypothesis implies

(0,1 (0py () = 1€, 2 &"l(mop)alll  VE €V,
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for some €', ¢” > 0 and some smooth hermitian metric wy on P,V. As m o vy = v, we
infer from this V@]@hgl(Oka(l)) > v*w, hence

1

/ Vj©p,-1(0p,v (1)) 2 ;— /_V*w = ¢ deg,, (C)

C

with ¢ = ¢” /2w, Theorem 8.1 follows. O

8.2. Theorem. Let k > 1 be any positive integer. Then there is a nonsingular algebraic
surface X (depending on k) which is hyperbolic, but does not carry any nondegenerate k-jet
metric with negative jet curvature. In fact, given any two curves I',T' of genus at least 2,
the surface X may be constructed as a fibration X — I' in which one of the fibers Cy is
singular and has T as its normalization.

Proof. The idea is to construct X in such a way that the singular fiber C' which is normalized
by IV violates the inequality obtained in Theorem 8.1. For this we need only having a singular
point to such that mg_1(tg) — 1 > 29(C) — 2, i.e., mp_1(to) > 29(I"). Moreover, as I is
hyperbolic, X will be hyperbolic if and only if all fibers of X — I' have geometric genus at

least 2.

We first construct from I' a singular curve I'" with normalization ' =1, simply by
modifying the structure sheaf Ops at one given point wy € I’'. Let ¢ be a holomorphic
coordinate on I’ at wy. We replace Ors,, = C{t} by Orv., = C{t%t*}, where
a < b are relatively prime integers. The corresponding singularity is described by the
germ of embedding t — f(t) = (t%,t°) in (C%0). Now, f'(t) = (at* 1, bt*"1), thus
[£/(t)] € P =~ CU{oo} is given by [f/(t)] = 2t*=¢. By induction, we see that the singularity
of the j-th lifting f};) is described by the embedding

s (8780 et L et € IR cj=a’blb—a) - (b—(j—1)a)

if b > ja. Then we have m(f};,0) = min(a,b — ja). If we take for instance a = 2g(I")
and b = ka + 1, then m(f;_1),0) = a. We embed I' in some projective space P" and let
C = p(I') to be a generic projection to a plane P? C P" in such a way that C has only
xo = p(wp) and some nodes (ordinary double points) as its singular points. By construction,
the Zariski tangent space to I'" at wyg is 2-dimensional, so we may assume that p projects
that plane injectively into Tp2. Then we get a curve C C P? with C = I, such that
m(vjg—1], wo) = a = 2¢g(C), if v : C — P? is the normalization.
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Figure 1. Construction of the surface X

Let Py(z0,21,22) = 0 be an equation of C' in P2. Since C has geometric genus at least
2, we have d = deg Py > 4. We complete P, into a basis (P,...,Py) of the space of
homogeneous polynomials of degree d, and consider the universal family

F={(lz0: 21 : 22], [Mo, A1, ..., An]) € P2 x PNy Y "N Pi(2) =0} C P2 x PV

of curves Cy = {> \;P;j(z) = 0} of degree d in P?. As is well known, the set Z of points
A € PV such that Oy is a singular curve is an algebraic hypersurface, and the set Z' C Z of
points A such that C, has not just a node in its singularity set satisfies codim Z’ > 2. The
curve C' = Cj itself corresponds to the point 0 =[1:0:---:0] € Z’. Since codim Z" > 2, we
can embed I" in PV in such a way that I'NZ’ = {0}. We then take X — T to be the family
of curves (Cy)aer. If X is singular, we move I' by a generic automorphism of PV leaving 0
fixed. Then, since JF is smooth (it is a smooth PV =1 subbundle of P2 x PV over P?), Bertini’s
theorem implies that X \ Cy will become nonsingular. That X will be also nonsingular near
Co depends only on the following first order condition: if [1: @A} :---: aA], a € C, is the
tangent line to I' at 0, then .-, A P;j(z) does not vanish at any of the singular points of Co.
Now, all nonsingular fibers C of the fibration X — I' have genus (d —1)(d —2)/2 > 3, and
the singular ones other than Cyp only have one node, so their genus is (d—1)(d—2)/2—1 > 2.
Ul

If we make an assumption on the total jet curvature (as is the case with the algebraic
sufficient conditions 7.7), Theorem 8.1 can be strengthened to curves which are not
necessarily tangent to V, again by introducing the concept of deviation. We start with
a general purpose statement.

8.3. Proposition. Let (X,V) be a compact complex directed manifold and let L be a
holomorphic line bundle over X. Assume that L is equipped with a singular hermitian metric
h of degeneration set Xy, such that the curvature (computed in the sense of distributions)
satisfies

Orn = a, apy = owy
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where § is a positive constant, w a smooth hermitian metric and « is a continuous real
(1,1)-form on X. Then for every compact irreducible curve C' C X not contained in %p,
there exists a constant € > 0 such that the following a priori inequality holds

max (L - C, devZ(C/V)) > e deg,,(C).

Proof. By the continuity of o and the compactness of X, our assumption oy > dw implies
that there is a constant M > 0 such that

a-l—Mle > —w

| Sq

(to get this, one merely needs to apply the Cauchy-Schwarz inequality to mixed terms
V* ® (V1)* in a hermitian form on V). In particular, we find

Or.n+ ]\4(40‘/L = QW
This inequality gives rise to a corresponding numerical inequality on every irreducible curve
C ¢ ¥, for the difference has a well defined and nonnegative restriction to C' (we use here
the fact that the weight of h is quasi-psh and locally bounded at some point of C, hence
locally integrable along C'). From this we infer

L-C+Mdevi(C/V) > g deg_(C),

and the left hand side is at most equal to (M + 1) max (L - C, dev?, (Cc/v)). O

8.4. Proposition. Let (X,V) be a compact complex directed manifold. Assume that there
are integers k,m > 0 and b € N* such that Op,v(m) ® Op v (=b - D*) is an ample line
bundle over P,V. Then (X,V) is hyperbolic and there exists € > 0 such that every closed
curve C' C X satisfies

max (= x(C) = Y (mg_1(t) = 1),devi’ (C/V)) > & deg,,(C).
teC

Proposition 8.4 is likely to be true also if we assume more generally that (X, V) has
non degenerate total k-jet curvature but, in this case, some technical difficulties appear in

the construction of the required singular hermitian metric hy on Op, 7, (1) (see the proof
below).

Proof. The hyperbolicity of (X, V') follows from 7.7 i) and Theorem 7.8. Now, the identity
map defines a natural monomorphism (X, V) — (X, Tx) of directed manifolds and therefore
induces an embedding P,V — P,Tx for each k. With respect to this embedding, we have

Oprx (D1pv = Op,v (1),
Op,1x (M) © Op,x (=b- D*)1pv = Opv(m) @ Opv(=b- D7)

By our assumptions, Op, 7, (m) ® Op, 7, (—b - D*) is ample over P,V and over the fibers
of the projection P,Tx — X. Hence, we can find a smooth hermitian metric Ay m.p
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on Op,ry(m) @ Op, 1 (—b - D*) such that the curvature form is positive definite on a
neighborhood U of P,V and satisfies

@(OPkTX (m) ® OPkTX <_b ' D*)) > _CWI:,OW

for some Kahler metric w over X. This metric hy ,, p gives rise to a hermitian metric hy on
Op, 1y (1) with singularity set X, C P, "®Tx and similar curvature properties, that is

-7y, gw on P.Tx,

)

0
dwy, = 8’75 ow onUDPRV,

VoV

{ G)hk (OPkTX (1>)
(8.5)

where wy, is a hermitian metric on P,Tx and 9, 6’ > 0. Now, assume that the conclusion
of Prop. 8.4 is wrong. Then there would exist a sequence of curves (Cy) and a sequence of
positive numbers €, converging to 0, such that

Op,rx (1) - Cp iy < gpdeg,,(Cy), deviy (Cp/V)) < erdeg, (Cy)

where Cj () is the lifting of C; to PyTx [indeed, we have Op, 7y (1) - Coppy = —x(Co) —
S (mp-1(t) = 1)]. Let v, : C; — X be the normalization map. As devyy (C¢/V)) =
sup v} (wy 1 )/do where do is the Poincaré metric and do the associated normahzed metric,
the second condition means

vi(wyr) _ egdeg,(Cy) f@ Viw
sup || pry1 vg||2 ,, = sup —* < =gl
oW do f@g do f@ do

In addition to this, we have

fausz 2
= - L :
fa do = &

and R = sup Ry < +0oo, otherwise the proof of Prop. 2.9 would produce a non constant entire
curve g : C — X tangent to V, contradicting the hyperbolicity of (X, V). An application of
the Cauchy inequalities to the components of pry . on sufficiently small disks in the universal
covering of C'; and in suitable trivializations of Tx /V shows that there is a constant My, > 0
such that

= sup |4z,

viw
sup || pry . Vg < My sup || pry . 1/2||§’w < Mye foz ¢
NG foe
As VW = f@ do, we infer
su Ty S
(86) / p1<]<k H Pry .V, Mka@/ VZW.
Cy ”VEHO',w tell

Since U is a neighborhood of PV, there exists a constant n > 0 such that

supy < || prye v (1)]12,

e (N7

= <n =yt el
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for any t € C,. By the integral estimate (8.6), the set Sy of “bad points” ¢ € C, at which
the left hand inequality does not hold has area < Mye, deg,,(Cr)/n with respect to vjw. By
(8.5), we then get

Op,1x (1) - Co i) :/6 < VZ[k]QokaX(l)JF/S V0 1190 p, 7y (1)
£Pn n

26’/_ yzw—C’/ viw
C[\Sn S'r]

= (5/(1 — Myee/n) — CMk5£/77) deg,,(Cp).

This contradicts our initial hypothesis that Op, 7y (1) - Cp 1) < e¢deg,,(Cy) when €; is small
enough. a

The above results lead in a natural way to the following questions, dealing with the
“directed manifold case” of Kleiman’s criterion (Kleiman’s criterion states that a line bundle
L on X is ample if and only if there exists € > 0 such that L-C > edeg,, C for every curve
CcCX).

8.7. Questions. Let (X,V) be a compact directed manifold and let L be a line bundle
over X. Fiz p € [2,400].

i) Assume that
max (L - C,devl (C/V)) = edeg, (C)

for every algebraic curve C C X (and some € > 0). Does L admit a smooth hermitian
metric h with (O ) v positive definite ¢

ii) Assume more generally that there is an analytic subset Y 2 X such that i) holds for
all curves C ¢ Y. Does L admit a singular hermitian metric h with (Or, ) v positive
definite, and with degeneration set ¥, CY ¢

iii) Assume that there exists € > 0 such that every closed curve C C X satisfies

max (— x(C) = Y _(mp_1(t) — 1),dev’(C/V)) > e deg,,(C).
teC

Does it follow that (X, V) admits non degenerate negative k-jet (total) curvature ?

The answer to 8.7 i) is positive if V' is the vertical tangent sheaf of a smooth map X — S,
and in that case one can even restrict oneself to curves that are tangent to V' (i.e. vertical
curves): this is just the relative version of Kleiman’s criterion. However, in general, it is
not sufficient to deal only with curves tangent to V' (if X is an abelian variety and V' is a
constant line subbundle of Tx with non closed leaves, the condition required for algebraic
curves C' is void, hence L can be taken negative on X ; then, of course, the curvature cannot
be made positive along V'.)

89. Proof of the Bloch theorem

The core of the result can be expressed as a characterization of the Zariski closure of an
entire curve drawn on a complex torus. The proof will be obtained as a simple consequence
of the Ahlfors-Schwarz lemma (more specifically Theorem 7.8), combined with a jet bundle
argument. Our argument works in fact without any algebraicity assumption on the complex
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tori under consideration (only the case of abelian or semi-abelian varieties seems to have
been treated earlier).

9.1. Theorem. Let Z be a complex torus and let f : C — Z be a holomorphic map. Then
the (analytic) Zariski closure f(C)%® is a translate of a subtorus, i.e. of the form a + Z',
a € Z, where Z' C Z is a subtorus.

The converse is of course also true: for any subtorus Z’ C Z, we can choose a dense line
L C 7', and the corresponding map f : C ~ a+ L < Z has Zariski closure f(C)%* = a+ 7.

Proof (based on the ideas of [GrGr80]). Let f: C — Z be an entire curve and let X be the
Zariski closure of f(C). We denote by Z = Pi(T7z) the k-jet bundle of Z and by X the
closure of X,*® = Py(T'xres) in Zi. As Ty is trivial, we have Z, = Z x R,,  where R,, j, is
the rational variety introduced in § 5. By Proposition 6.16 iii), there is a weight a € N* such
that Oz, (a) is relatively very ample. This means that there is a very ample line bundle
Og, ,(a) over R, ; such that Oz, (a) = pr; Og, , (a). Consider the map ®; : Xp — R,
which is the restriction to X}, of the second projection Z;, — R,, . By fonctoriality, we have
Ox, (a') = q)ZORn,k (a')

Define By, C X to be the set of points x € X} such that the fiber of ®; through x
is positive dimensional. Assume that By # Xj. By Proposition 7.2 ii), Ox, (a) carries a
hermitian metric with degeneration set By, and with strictly positive definite curvature on Xy,
(if necessary, blow-up X} along the singularities and push the metric forward). Theorem 7.8
shows that fi;(C) C B, and this is of course also true if By = Xj. The inclusion fj;;(C) C
By, means that through every point fi)(to) there is a germ of positive dimensional variety
in the fiber <I>,;1(<I>k(f[k](t0))), say a germ of curve t’ — u(t') = (2(t'),jx) € Xk C Z X R,
with u(0) = fig)(to) = (20, Jx) and 2o = f(to). Then (2(t'),jx) is the image of fi;(to) by
the k-th lifting of the translation 75 : z — z 4+ s defined by s = 2(t') — z9. Now, we have
f(C) ¢ X3 since X is the Zariski closure of f(C), and we may therefore choose ¢ so that
f(to) € X™® and f(tp) is a regular point. Let us define

Ap(f)={s€Z : fu(to) € Pu(X) N Pr(m_s(X))}.

Clearly Ag(f)is an analytic subset of Z containing the curve t’ — s(t') = z(t')—zo through 0.
Since

Ai(f) D Ao(f) DD AR(f) D -+,

the Noetherian property shows that the sequence stabilizes at some Ay (f). Therefore, there
is a curve D(0,7) — Z, t' — s(t') such that the infinite jet jo, defined by f at to is s(¢)-
translation invariant for all ¢. By uniqueness of analytic continuation, we conclude that
s(t')+ f(t) € X for all t € C and ¢’ € D(0,r). As X is the Zariski closure of f(C), we
must have s(t') + X C X for all ¢/ € D(0,r); also, X is irreducible, thus we have in fact
s(t') + X = X. Define

W:{SEZ; s-l—X:X}.

Then W is a closed positive dimensional subgroup of Z. Let p: Z — Z/W be the quotient
map. As Z/W is a complex torus with dim Z/W < dim Z, we conclude by induction on
dimension that the curve f pof:C— Z/W has its Zariski closure X := f( )Z2ar = p(X)
equal to a translate s+ T of some subtorus 7' C Z /W. Since X is W-invariant, we get

X = s+p YT), where p~1(T) is a closed subgroup of Z. This implies that X is a translate
of a subtorus, as expected. |
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We now state two simple corollaries, and then the “Bloch theorem” itself (see also
[Och77], [Nog77, 81, 84], [Kaw80] for other approaches in the algebraic case).

9.2. Corollary. Let X be a complexr analytic subvariety in a complex torus Z. Then X is
hyperbolic if and only if X does not contain any translate of a subtorus.

9.3. Corollary. Let X be a complex analytic subvariety of a complex torus Z. Assume
that X is not a translate of a subtorus. Then every entire curve drawn in X is analytically
degenerate.

9.4. Bloch theorem. Let X be a compact complex Kdahler variety such that the irreqularity
q = h°(X, QL) is larger than the dimension n = dim X. Then every entire curve drawn in
X is analytically degenerate.

Here X may be singular and QY can be defined in any reasonable way (direct image of

the QL of a desingularization X or direct image of Qf, where U is the set of regular points
in the normalization of X).

Proof. By blowing-up, we may assume that X is smooth. Then the Albanese map a: X —
Alb(X) sends X onto a proper subvariety Y C Alb(X) (as dimY < dim X < dim Alb(X)),
and Y is not a translate of a subtorus by the universal property of the Albanese map. Hence,
for every entire curve f : C — X we infer that ao f : C — Y is analytically degenerate; it
follows that f itself is analytically degenerate. a

§10. Projective meromorphic connections and Wronskians

We describe here an important method introduced by Siu [Siu87] and later developped by
Nadel [Nad89], which is powerful enough to provide explicit examples of algebraic hyperbolic
surfaces. It yields likewise interesting results about the algebraic degeneration of entire
curves in higher dimensions. The main idea is to use meromorphic connections with low
pole orders, and the associated Wronskian operators. In this way, Nadel produced examples
of hyperbolic surfaces in P? for any degree of the form p = 6k +3 > 21. We present
here a variation of Nadel’s method, based on the more general concept of partial projective
connection, which allows us to extend his result to all degrees p > 11. This approach is
inspired from a recent work of J. El Goul [EG96], and is in some sense a formalization of
his strategy.

Let X be a complex n-dimensional manifold. A meromorphic connection V on Tx is a
C-linear sheaf morphism

MU, Tx) — MU, Q% @ Tx)

(where M(U, o) stands for meromorphic sections over U), satisfying the Leibnitz rule
V(fs)=df ® s+ fVs

whenever f € M(U) (resp. s € M(U,Tx)) is a meromorphic function (resp. section of T'x).
Let (z1,...,2,) be holomorphic local coordinates on an open set U C X. The Christoffel
symbols of V with respect to these coordinates are the coefficients F;‘u such that

I‘z = Z I‘;‘Hdzj = A-th component of V(i>

- 0z,
1<j<n
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The associated connection form on U is the tensor

I = Z F dZJ X dZM

14, usn

0
e MU, TY @ Tk @ Tx).
82)\

Then, for all local sections v =3, \, v,\%, W=D 1 ngn wka of M(U, Tx), we get

Z (dm—l— Z FAUM>——dU+F-U,

1<ALn 1<pusn
61))\ 0
Vv = g ( E I‘wwjvu)— =dyv+T - (w,v).
1<j,ALn ISpsn

The connection V is said to be symmetric if it satisfies V,w — V,v = [v, w], or equivalently,
if the Christoffel symbols F;‘u = Ff;j are symmetric in j, u.

We now turn ourselves to the important concept of Wronskian operator. Let B be the
divisor of poles of V, that is, the divisor of the least common multiple of all denominators
occuring in the meromorphic functions I'},. If 8 € H°(X,0(B)) is the canonical section of
divisor B, then the operator SV has holomorphic coefficients. Given a holomorphic curve
f:D(0,7) — X whose image does not lie in the support |B| of B, one can define inductively
a sequence of covariant derivatives

o=V, ..o, 8T v (p8,
These derivatives are given in local coordinates by the explicit inductive formula
kt1 d / .(k k
(10.1) v =2 (0 + D0 e N (0
1spsn

Therefore, if Im f ¢ |B|, one can define the Wronskian of f relative to V as

(10.2) Wy (f)=f' AfEn-- A LS.

Clearly, Wy (f) is a meromorphic section of f*(A"Tx). By induction B(f)** (vk) is
holomorphic for all & > 1. We infer that B(f)""~V/2Wg(f) is holomorphic and can
be seen as a holomorphic section of the line bundle f*(A"Tx ® Ox(4n(n — 1)B). From
(10.1) and (10.2) we see that P = B™"~D/21¥g is a global holomorphic polynomial
operator f +— P(f', f",..., f(™) of order n and total degree n(n + 1)/2, with values in
A"Tx ® Ox(3n(n — 1)B). Moreover, if we take a biholomorphic reparametrization ¢, we
get inductively

(fo (P)(Vk) = (¢')* (k) o ¢ + linear combination of f(J) op, j<k.

Therefore
Wy (f o) = (¢)""TDWg(f)

and B”(”_l)/QWv can be viewed as a section

(10.3) prn=VR2We € HY(X, B,y miny2I% @ L7,
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where L is the line bundle
1
L=Kx ®®X(— Snln— 1)B>.

From this, we get the following theorem, which is essentially due to [Siu87] (with a more
involved proof based on suitable generalizations of Nevanlinna’s second main theorem).

10.4. Theorem (Y.T. Siu). Let X be a compact complex manifold equipped with a
meromorphic connection V of pole divisor B. If Kx ® Ox(—in(n—1)B) is ample, then for
every non constant entire curve f : C — X, one has either f(C) C |B| or Wy (f) = 0.

Proof. By Corollary 7.9 applied with P = g"(»~1/21Wg, we conclude that

B DR (W (f) =0,
whence the result. O

10.5. Basic observation. It is not necessary to know all Christoffel coefficients of the
meromorphic_connection V in order to be able to compute its Wronskian Wy. In fact,
assume that V is another connection such that there are meromorphic 1-forms «, § with

V=V+a®ldr, +(B@1dr)r,,  ie.,
Vv = Vv + a(w)o + B(v)w,

where 712 means transposition of first and second arguments in the tensors of 7% @ T% @ 1T'x .

Then Wy = W5. Indeed, the defining formula f(%k“) =V #( f(%k)) implies that f(%kﬂ) =
Vf/(f(%k)) + Oz(f/)f(%k) + B(f%k))f', and an easy induction then shows that the V derivatives
can be expressed as linear combinations with meromorphic coefficients

O S ORI SR TONU OF =

1<j<k

The essential consequence of Remark 10.5 is that we need only have a “partial projective
connection” V on X, in the following sense.

10.6. Definition. A (meromorphic) partial projective connection V on X is a section of
the quotient sheaf of meromorphic connections modulo addition of meromorphic tensors in
Q5 @Idry, )B(QY ®Idry )7y, In other words, it can be defined as a collection of meromorphic
connections V j relative to an open covering (U;) of X, satisfying the compatibility conditions

Vi — Vj = Ok X IdTX +(6jl€ ® IdTX)7'12
for suitable meromorphic 1-forms o, B on U; N Uy.

If we have similar more restrictive compatibility relations with 3;;, = 0, the connection
form T is just defined modulo Q% ® Id7, and can thus be seen as a 1-form with values
in the Lie algebra pgl(n, C) = sl(n,C) rather than in gl(n,C). Such objects are sometimes
referred to as “projective connections”, although this terminology has been also employed in
a completely different meaning. In any event, Proposition 10.4 extends (with a completely
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identical proof) to the more general case where V is just a partial projective connection.
Accordingly, the pole divisor B can be taken to be the pole divisor of the trace free part

=T mod (% ®Idr,)® (2% @ Idry )r,,-

Such partial projective connections occur in a natural way when one considers quotient
varieties under the action of a Lie group. Indeed, let W be a complex manifold in which a
connected complex Lie group G acts freely and properly (on the left, say), and let X = W/G
be the quotient complex manifold. We denote by m : W — X the projection. Given a
connection V on W and a local section o : U — W of 7, one gets an induced connection on
Tx |y by putting

(10.7) V =, 0 (0*V),

where 0*V is the induced connection on o*Ti w and m, @ Ty — w*Tx is the projection.
Of course, the connection V may depend on the choice of o, but we nevertheless have the
following simple criterion ensuring that it yields an intrinsic partial projective connection.

10.8. Lemma. Let V = d+1T be a meromorphic connection on W. Assume that v satisfies
the following conditions:

i) V is G-invariant;

ii) there are meromorphic 1-forms a, 8 € M(W, Ty, x) along the relative tangent bundle
of X — W, such that for all G-invariant holomorphic vector fields v, T on W (possibly
only defined locally over X) such that T is tangent to the G-orbits, the vector fields

Vv —a(r)v, Vor — B(T)v

are_again tangent to the G-orbits (o and (3 are thus necessarily G-invariant, and o = 3
if V is symmetric).

Then Formula (10.7) yields a partial projective connection NV which is globally defined on X
and independent of the choice of the local sections o.

Proof. Since the expected conclusions are local with respect to X, it is enough to treat the
case when W = X x G and G acts on the left on the second factor. Then W/G ~ X and
7 : W — X is the first projection. If dg is the canonical left-invariant connection on G, we

can write V as _ _ o
V=dx +dg+T, '=I(z,9), z€X, geaq,

where dx is some connection on X, e.g. the “coordinate derivative” taken with respect to
given local coordinates (z1,...,2,) on X. Then V is left invariant on W = X x G if and
only if I'(x, g) = I'(z) is independent of g € G (this is meaningful since the tangent bundle
to G is trivial), and condition ii) means that

[(z) - (r,v) —a(t)v and T'(z)- (v,7)—B(T)v

are tangent to the G-orbits. A local section o : U — W of 7 can be written o(z) = (z, h(z))
for some holomorphic function h : U — G. Formula (10.7) says more explicitly that

Vv = m((a*%)wv) = T, (do,woxv + Too)- (oaw, o.v)).
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Let v = > v;(2)0/0z;, w = > w;(2)0/0z; be local vector fields on U C X. Since
0,0 = v + dh(v), we get

(07 V) ¥ = duy - an(w) (v + dh(v)) + T(z, h(z)) - (w + dh(w),v + dh(v))
= dyv + d*h(w,v) + T'(z) - (w + dh(w), v + dh(v)).

As v, w, dh(v), dh(w) depend only on X, they can be seen as G-invariant vector fields
over W, and dh(v), dh(w) are tangent to the G-orbits. Hence

[(z) - (dh(w),v) — a(dh(w))v, T(z)-(w,dh(v)) — B(dh(v))w, T(z)-(dh(w),dh(v))
are tangent to the G-orbits, i.e., in the kernel of 7,. We thus obtain
Vv = W*((U*ﬁ)wv) =duv+T'(2) - (w,v) + a(dh(w))v + B(dh(v))w.

From this it follows by definition that the local connections Vy, defined by various sections
o; : U; — W can be glued together to define a global partial projective connection V on X.
d

10.9. Remark. Lemma 10.8 is also valid when V is a partial projective connection.
Hypothesis 10.8 ii) must then hold with local meromorphic 1-forms o, 8; € M(U;, Tw/x)
relatively to some open covering U; of W. a

In the special case P = (C"! \ {0})/C*, we get

10.10. Corollary. Let V = d+T be a meromorphic connection on C*+1. Lete = 3" 2;0/0z;
be the Euler vector field on C"*1 and 7 : C" 1\ {0} — P™ be the canonical projection. Then
V induces a meromorphic partial projective connection on P™ provided that

i) the Christoffel symbols F;‘M are homogeneous rational functions of degree —1 (homothety
invariance of the connection V) ;

ii) there are meromorphic functions «, 5 and meromorphic 1-forms v, n such that

Fo(eu)=avta()e, T (we) = fu+n(w)e
for all vector fields v, w. O

Now, our goal is to study certain hypersurfaces Y of sufficiently high degree in P".
Assume for the moment that Y is an hypersurface in some n-dimensional manifold X, and
that Y is defined locally by a holomorphic equation s = 0. We say that Y is totally geodesic
with respect to a meromorphic connection V on X if Y is not contained in the pole divisor
|B| of V, and for all pairs (v, w) of (local) vector fields tangent to Y the covariant derivative
Vv is again tangent to Y. (Notice that this concept also makes sense when V is a partial
projective connection.) If Y is totally geodesic, the ambient connection V on Ty induces
by restriction a connection V}y on Ty.

We now want to derive explicitly a condition for the hypersurface Y = {s = 0} to be
totally geodesic in (X, V). A vector field v is tangent to Y if and only if ds-v = 0 along
s = 0. By taking the differential of this identity along another vector field w tangent to Y,
we find

(10.11) d*s - (w,v) +ds - (dyv) =0
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along s = 0 (this is meaningful only with respect to some local coordinates). On the other
hand, the condition that V,,v = d,v +I' - (w,v) is tangent to Y is

ds - Vv =ds- (dyv)+dsol - (w,v) =0.

By subtracting the above from (10.11), we get the following equivalent condition: (d?s —
dsoT) - (w,v) = 0 for all vector fields v, w in the kernel of ds along s = 0. Therefore we
obtain the

10.12. Characterization of totally geodesic hypersurfaces. The hypersurface Y =
{s = 0} is totally geodesic with respect to V if and only if there are holomorphic 1-forms
a=Y ajdz;, b=> bjdz; and a 2-form ¢ =) ¢;,dz; @ dz, such that

V*(ds) =d?’s —dsoT =a®ds+ds @b+ sc
in a neighborhood of every point of Y (here V* is the induced connection on Ty ).
From this, we derive the following useful lemma.

10.13. Lemma. Let Y C X be an analytic hypersurface which is totally geodesic with respect
to a meromorphic connection V, and let n = dim X = dimY + 1. Let f: D(0,R) — X be
a holomorphic curve such that Wy (f) = 0. Assume that there is a point to € D(0, R) such
that

i) f(to) is not contained in the poles of V ;

ii) the system of vectors (f'(t), f&(t),..., (vn_l)(t)) achieves its generic rank (i.e. its

mazimal rank) at t = tg;

iii) f(to) €Y and f'(to), f&(to),-.., fo' " (to) € Ty s(ro)-
Then f(D(0,R)) C Y.

Proof. Since Wy (f) = 0, the vector fields f/, fZ,. .., f(vn) are linearly dependent and satisfy
a non trivial relation

u (8) f(8) + ua (8) fG (1) + -+ un ()£ (£) = 0

with suitable meromorphic coefficients u;(t) on D(0, R). If u, happens to be = 0, we take
V-derivatives in the above relation so as to reach another relation with wu, # 0. Hence we

can always write
(Vn) =vif +oafg+--+ vn_lf(vn_l)

for some meromorphic functions vy, ...,v,—1. We can even prescribe the v; to be 0 eXcept
for indices j = j € {1,...,n—1} such that ( gk)(t)) is a minimal set of generators at t = t;.
Then the coefficients v; are uniquely defined and are holomorphic near ¢y. By taking further
derivatives, we conclude that f(vk)(to) € T'x f(ty) for all k. We now use the assumption that

X is totally geodesic to prove the following claim: if s = 0 is a local equation of Y, the k-th
dk

“w(s0 f(t)) can be expressed as a holomorphic linear combination

derivative

gg(sof@»::%*“)sof“)+ S vt dss - 1)

1<j<k
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on a neighborhood of ¢y. This will imply 5‘;—2(8 o f)(tg) = 0 for all £k > 0, hence so f = 0.
Now, the above claim is clearly true for k¥ = 0,1. By taking the derivative and arguing
inductively, we need only show that

d .
i (dsp 13 )

is again a linear combination of the same type. However, Leibnitz’s rule for covariant
differentiations together with 10.12 yield

%(dSm) SP0) = dsy - (% )+ [ds) g - (£ £ 1))
=ds- V) + (a- (1) (ds - £I (1)
+(ds- f'(£) (b £ (1) + (s 0 ) (e~ (F' (1), FL 1)),
as desired. O

If Y = {s =0} C X is given and a connection V on X is to be found so that Y is
totally geodesic, condition 10.12 amounts to solving a highly underdetermined linear system
of equations

2
0%s ZFA 0s 8s+b 0s

) Jh J Ko, .
020z, 0z 0z, 0z;

+Scju7 1<],M<7’L,
1<A<n

in terms of the unknowns I‘;‘M, aj, b, and c¢;,. Nadel’s idea is to take advantage of this

indeterminacy to achieve that all members in a large linear system (Y,,) of hypersurfaces are
totally geodesic with respect to V. The following definition is convenient.

10.14. Definition. For any (n + 2)-tuple of integers (p, ko, k1 ..., k) with 0 < k; < p/2,
let 8p. ke,...k, be the space of homogeneous polynomials s € Clzo, 21, . .., 2n] of degree p such
that every monomial of s is a product of a power zﬁ_kj of one of the variables with a lower

degree monomial of degree kj. Any polynomial s € 8y k... k, admits a unique decomposition

§=380+ 81+ -+ Sn, 55 € Spiko,.rikn

o —k;
where s; is divisible by z? ’

Given a homogeneous polynomial s = sg 4 s1 + -+ + 5, € 8p. ky,... k., We consider the
linear system

(10.15) Y, = {aoso + 181+ -+ oSy, = 0}, a=(ag,...,a,) € C".

Our goal is to study smooth varieties Z which arise as complete intersections Z =
Y1 N+ --NY,e of members in the linear system (the o’ being linearly independent elements
in C"*1). For this, we want to construct a (partial projective) meromorphic connection
V on P such that all Y, are totally geodesic. Corollary 10.10 shows that it is enough to
construct a meromorphic connection V = d +T' on C"** satisfying 10.10 i) and ii), such
that the conic affine varieties Y, C C"*! lying over the Y, are totally geodesic with respect
to V. Now, Characterization 10.12 yields a sufficient condition in terms of the linear system
of equations

~, Os 0?%s
10.16 § Y =25 = r 0<j < n.
o<A<n
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(We just fix the choice of a;, b, and c;, to be 0). This linear system can be considered as
a collection of decoupled linear systems in the unknowns (F;‘u) x, when j and p are fixed.
Each of these has format (n+1) x (n+1) and can be solved by Cramer’s rule if the principal
determinant

08,

(10.17) § == det (—

GzA)ogn,,\gn #0

is not identically zero. We always assume in the sequel that this non degeneracy assumption
is satisfied. As Js,/0z\ is homogeneous of degree p—1 and 0?s,,/02;0z, is homogeneous of
degree p—2, the Solutig)vns F;-‘H(z) are homogeneous rational functions of degree —1 (condition
10.10 i)). Moreover, V is symmetric, for 8%s/0z;0z, is symmetric in j, u. Finally, if we
multiply (10.16) by z; and take the sum, Euler’s identity yields

A K K K
Z erju—: Z i a ={p-1)7, 0< Kk, < n.
0<j,A<n Oz 0<j<n 02;0z, Oz
The non degeneracy assumption implies (Z] ij?u) A = (p — 1)1d, hence
f(gv U) = f(vag) = (p - ].)U

and condition 10.10 ii) is satisfied. From this we infer

10.18. Proposition. Let s = sg + -+ + 8, € Sp. ky,....k, be satisfying the non degeneracy
condition § := det(0s,/02x)o<k,r<n 0. Then the solution I' of the linear system (10.16)
provides a partial projective meromorphic connection on P™ such that all hypersurfaces

Yo ={apso+ -+ aps, =0}

are totally geodesic. Moreover, the divisor of poles B of V has degree at most equal
ton+1+> k;.

Proof. Only the final degree estimate on poles has to be checked. By Cramer’s rule, the
solutions are expressed in terms of ratios

A
i _ O

in 5
where 5;-‘H is the determinant obtained by replacing the column of det(0s,/02x)o<sk,r<nOf
index A by the column (9?s,,/02;0z,)o<k<n- Now, ds,/0z, is a homogeneous polynomial
of degree p— 1 which is divisible by 22~%<~1 hence § is a homogeneous polynomial of degree

(n+2)(p— 1) which is divisible by [ zf_kj_l. Similarly, 0s,,/0z;0z, has degree p — 2 and

is divisible by 22~%+=2. This implies that 5;-‘H is divisible by [] zf “RT2 0 After removing this
common factor in the numerator and denominator, we are left with a denominator of degree

Yo(p=-D=(p—k=2) =D (kj+1)=n+1+> k,
osisn

as stated. O

An application of Theorem 10.4 then yields the following theorem on certain complete
intersections in projective spaces.
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10.19. Theorem. Let s € 8y ky,...knsy C Cl20, 21, .-, Zniq] be a homogeneous polynomial
satisfying the non degeneracy assumption det(0s,/0zy) # 0 in C"Ta+L, Let

Y, = {aoso + o151+ QpggSntqg = O} C prta
be the corresponding linear system, and let
Z=YpuN--NYy CP"1

be a smooth n-dimensional complete intersection, for some linearly independent elements
ol € C"atLl such that dsar A -+ A dsqa does not vanish along Z. Assume that Z is not
contained in the set of poles |B| of the meromorphic connection V defined by (10.16), nor
in any of the coordinate hyperplanes z; = 0, and that

1
pq>n—|—q—i—1+5n(n—1)<n+q+1—|—2kj).

Then every nonconstant entire curve f : C — Z 1s algebraically degenerate and satisfies
either

i) f(C)cZn|B| or
ii) f(C) c ZNY, for some member Y, which does not contain Z.

Proof. By Proposition 10.18, the pole divisor of V has degree at most equal to n+q+1+) k;,
hence, if we let B=0(n+q+ 1+ Y k;), we can find a section 3 € H°(P"*4, B) such that
the operator f + B*(tD/2(fYWy ¢ (f) is holomorphic. Moreover, as Z is smooth, the
adjunction formula yields

Ky = (K[perq ® O(pQ))rZ = Oz(pq L 1)'

By (10.3), the differential operator A" V/2(f)W,¢(f) defines a section in
HO(Zv En,n(n-l—l)/QTE ® L_l) with

L:KZ®OZ<—%n(n—1)B)
:(‘)Z(pq—n—q—l—%n(n—l)(n-i—q-i—l-l—Zk‘j)).

Hence, if f(C) ¢ |B|, we know by Theorem 10.4 that W, v (f) = 0. Fix a point ¢, € C such

that f(to) ¢ |B| and (f'(to), f&(to),- .., FO"(to)) is of maximal rank r < n. There must
exist an hypersurface Y, 2 Z such that

F(to) € Yay  f'(to), FE(to)s -y FI(t0) € Ty pit).

In fact, these conditions amount to solve a linear system of equations

ST oas(fto) =0, > ayds;(f¥(t) =0

0<j<ntgq 0<j<n+tq

in the unknowns (ag, a1, ..., n4+q) = @, which has rank < r + 1 < n. Hence the solutions
form a vector space Sol of dimension at least ¢ + 1, and we can find a solution « which is
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linearly independent from a?,...,a?. We complete (o, al,...,a?) into a basis of C*T4+!
and use the fact that the determinant § = det(Js,/0syx) does not vanish identically on Z,
since

Zn{o=0yczn(Blu{]]z=0}) < Z

From this we see that ) «aj;ds; does not vanish identically on Z, in particular Z ¢ Y.
By taking a generic element o € Sol, we get a smooth n-dimensional hypersurface
Zo = YoNYyeeN---NYqe in W =Y2N---NY,. Lemma 10.13 applied to the pair
(Za, W) shows that f(C) C Z,, hence f(C) C ZNZ, =ZNY,, as desired. O

If we want to decide whether Z is hyperbolic, we are thus reduced to decide whether
the hypersurfaces Z N |B| and Z N'Y, are hyperbolic. This may be a very hard problem,
especially if Z N |B| and Z NY,, are singular. (In the case of a smooth intersection Z NY,,
we can of course apply the theorem again to Z/ = ZNY, and try to argue by induction).
However, when Z is a surface, ZN|B| and ZNY,, are curves and the problem can in principle
be solved directly through explicit genus calculations.

10.20. Examples.
i) Consider the Fermat hypersurface of degree p
Z={++-+2z,,=0}
in P**! which is defined by an element in 8p.0,....0. A simple calculation shows that
§ = p”+2Hz§_1 #Z 0 and that the Christoffel symbols are given by T, = (p — 1)/;

(with all other coefficients being equal to 0). Theorem 10.19 shows that all nonconstant
entire curves f: C — Y are algebraically degenerate when

1
p>n+2—|—§n(n—1)(n+2).

In fact the term in(n — 1)(n + 2) coming from the pole order estimate of the Wronskian is

by far too pessiinstic. A more precise calculation shows in that case that (zg---2,41)" "
can be taken as a denominator for the Wronskian. Hence the algebraic degeneracy occurs
for p>n+2+ (n+2)(n—1),ie., p > (n+ 1)2. However, the Fermat hypersurfaces are
not hyperbolic. For instance, when n = 2, they contain rational lines z; = wzg, 23 = w29

associated with any pair (w,w’) of p-th roots of —1.

ii) Following J. El Goul ([EG96, 97]), let us consider surfaces Z C IP? of the form
Z = {5+ 4+ 28+ 5 (028 +e12? +exk 4+ 22) =0},
defined by the element in 8. ¢ 0,02 such that s3 = zp‘2(5023 +e122 +egzs + 232)) and s; = zﬁ-’
for 0 < j < 2. One can check that Z is smooth provided that
p

P 2 )
p—2 P\ p—2
(10.21) St —(— 5) . VJc{0,1,2},
jed
for any choice of complex roots of order p — 2. The connection V=d+Tis computed by
solving linear systems with principal determinant 6 = det(9s,/0z)) equal to

ph ! 0 0 0

0 p ! 0 0

0 0 pbt 0
2502025_2 2512125_2 2522225_2 (p— 2)z§_3 (5023 +e122 + 025 + ]%232,)

=p(p—2)28 1T TR (502‘3 + €128 + €225 + ]%292,) £ 0.
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The numerator of f;‘u is obtained by replacing the column of index A of § by

—2 p—2 p—2 _p—4 .
(0%8,:/02;02,)0xr<s, and 2§ “277“257°287" cancels in all terms. Hence the pole order

of V and of W< is 6 (as given by Proposition 10.18), with

2 2 2 P -
20212223 (5020 +¢e12] + €225 + 223)
p —_

as the denominator, and its zero divisor as the divisor B. The condition on p we get is
p >n+2+6 = 10. An explicit calculation shows that all curves Z N |B| and Z NY,, have
geometric genus > 2 under the additional hypothesis

(10.22) { none of the pairs (g;,¢;) is equal to (0,0),

gifej # —62 whenever 0 is a root of 67 = —1.

[(10.22) excludes the existence of lines in the intersections Z NY, ]

10.23. Corollary. Under conditions (10.21) and (10.22), the algebraic surface
Z={B+ 28+ 28+ 28 % (e02d + €123 + 225 +25) =0} C P
1s smooth and hyperbolic for all p > 11. a

Another question which has raised considerable interest is to decide when the comple-
ment P? \. C of a plane curve C is hyperbolic. If C = {0 = 0} is defined by a polynomial
(20,21, 22) of degree p, we can consider the surface X in P? defined by 28 = o(20, 21, 22).
The projection

p: X — P2 (20, 21, 22, 23) > (20, 21, 22)

is a finite p : 1 morphism, ramified along C. It follows that P2 \. C is hyperbolic if and only
if its unramified covering X ~ p~1(C) is hyperbolic; hence a sufficient condition is that X
itself is hyperbolic. If we take €5 = 0 in Cor. 10.23 and exchange the roles of z5, 23, we get
the following

10.24. Corollary. Consider the plane curve

C={zf+2+ B2 g0z + €127 + 22) = 0} C P?, €0, €1 € C*.
_pb_
Assume that neither of the numbers eg, €1, €9 + €1 1S equal to }%( — g)P—Q and that
g1/e0 # —0? whenever P = —1. Then P? \ C is hyperbolic. |

811. Morse inequalities and the Green-Griffiths-Lang conjecture

The goal of this section is to study the existence and properties of entire curves
f : C — X drawn in a complex irreducible n-dimensional variety X, and more specifically
to show that they must satisfy certain global algebraic or differential equations as soon
as X is projective of general type. By means of holomorphic Morse inequalities and a
probabilistic analysis of the cohomology of jet spaces, we are able to prove a significant step
of a generalized version of the Green-Griffiths-Lang conjecture on the algebraic degeneracy
of entire curves.
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11.A. Introduction

Let X be a complex n-dimensional manifold ; most of the time we will assume that X is
compact and even projective algebraic. By an “entire curve” we always mean a non constant
holomorphic map defined on the whole complex line C, and we say that it is algebraically
degenerate if its image is contained in a proper algebraic subvariety of the ambient variety.
If o : X — X is a modification and f : C — X is an entire curve whose image f(C) is
not contained in the image u(E) of the exceptional locus, then f admits a unique lifting
f :C — X. For this reason, the study of the algebraic degeneration of f is a birationally
invariant problem, and singularities do not play an essential role at this stage. We will
therefore assume that X is non singular, possibly after performing a suitable composition of
blow-ups. We are interested more generally in the situation where the tangent bundle T'x
is equipped with a linear subspace V' C Tx, that is, an irreducible complex analytic subset
of the total space of Tx such that

(11.1) all fibers V,, :=V N Tx , are vector subspaces of Tx ;.

Then the problem is to study entire curves f : C — X which are tangent to V, i.e. such
that f.7c C V. We will refer to a pair (X,V) as being a directed variety (or directed
manifold). A morphism of directed varieties ® : (X,V) — (Y, W) is a holomorphic map
® : X — Y such that .,V C W ; by the irreducibility, it is enough to check this condition
over the dense open subset X ~ Sing(V) where V' is actually a subbundle. Here Sing(V')
denotes the indeterminacy set of the associated meromorphic map « : X ---» G,.(Tx) to
the Grassmannian bbundle of r-planes in T’x, r = rank V'; we thus have V|x sing(v) = a*S
where S — G,.(Tx) is the tautological subbundle of G,.(T'x). In that way, we get a category,
and we will be mostly interested in the subcategory whose objects (X, V) are projective
algebraic manifolds equipped with algebraic linear subspaces. Notice that an entire curve
f:C — X tangent to V is just a morphism f: (C,T¢) — (X, V).

The case where V' = Ty /g is the relative tangent space of some fibration X — S is of
special interest, and so is the case of a foliated variety (this is the situation where the sheaf of
sections O(V') satisfies the Frobenius integrability condition [O(V), O(V)] € O(V)); however,
it is very useful to allow as well non integrable linear subspaces V. We refer to V = Tx
as being the absolute case. Our main target is the following deep conjecture concerning the
algebraic degeneracy of entire curves, which generalizes similar statements made in [GrGr79]
(see also [Lang86, Lang87]).

11.2. Generalized Green-Griffiths-Lang conjecture. Let (X,V) be a projective
directed manifold such that the canonical sheaf Ky is big (in the absolute case V. = Tx,
this means that X is a variety of general type, and in the relative case we will say that
(X, V) is of general type). Then there should exist an algebraic subvariety Y C X such that
every non constant entire curve f : C — X tangent to V is contained in'Y .

The precise meaning of Ky and of its bigness will be explained below — our definition
does not coincide with other frequently used definitions and is in our view better suited
to the study of entire curves of (X,V). One says that (X,V) is Brody-hyperbolic when
there are no entire curves tangent to V. According to (generalized versions of) conjectures
of Kobayashi [Kob70, Kob76] the hyperbolicity of (X, V) should imply that Ky is big,
and even possibly ample, in a suitable sense. It would then follow from conjecture (11.2)
that (X,V) is hyperbolic if and only if for every irreducible variety ¥ C X, the linear
subspace V5 = 5 5N uitV C T% has a big canonical sheaf whenever p : Y — Y is a
desingularization and E is the exceptional locus.
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The most striking fact known at this date on the Green-Griffiths-Lang conjecture is a
recent result of Diverio, Merker and Rousseau [DMR10] in the absolute case, confirming the
statement when X C ]P’gJrl is a generic non singular hypersurface of large degree d, with a
(non optimal) sufficient lower bound d > 2" . Their proof is based in an essential way on a
strategy developed by Siu [Siu02, Siu04], combined with techniques of [Dem95]. Notice that
if the Green-Griffiths-Lang conjecture holds true, a much stronger and probably optimal
result would be true, namely all smooth hypersurfaces of degree d > n + 3 would satisfy the
expected algebraic degeneracy statement. Moreover, by results of Clemens [Cle86] and Voisin
[Voi96], a (very) generic hypersurface of degree d > 2n + 1 would in fact be hyperbolic for
every n > 2. Such a generic hyperbolicity statement has been obtained unconditionally by
McQuillan [McQu98, McQu99] when n = 2 and d > 35, and by Demailly-El Goul [DeEG00]
when n = 2 and d > 21. Recently Diverio-Trapani [DT10] proved the same result when
n = 3 and d > 593. By definition, proving the algebraic degeneracy means finding a non
zero polynomial P on X such that all entire curves f : C — X satisfy P(f) = 0. All known
methods of proof are based on establishing first the existence of certain algebraic differential
equations P(f; f', f",..., f®)) = 0 of some order k, and then trying to find enough such
equations so that they cut out a proper algebraic locus Y C X.

Let JiV be the space of k-jets of curves f : (C,0) — X tangent to V. One defines the
sheaf O(EE%V*) of jet differentials of order k and degree m to be the sheaf of holomorphic
functions 15(2;51, ...&) on JiV which are homogeneous polynomials of degree m on the
fibers of J¥V — X with respect to local coordinate derivatives &; = £ (0) (see below in
case V has singularities). The degree m considered here is the weighted degree with respect
to the natural C* action on J*¥V defined by A - f(t) := f(At), i.e. by reparametrizing the
curve with a homothetic change of variable. Since (X - f)W)(t) = M fU)(At), the weighted
action is given in coordinates by

(11.3) A (61,6 ) = (NELL A, .. AR,

One of the major tool of the theory is the following result due to Green-Griffiths [GrGr79]
(see also [Blo26], [Dem95, Dem97], [SiYe96a, SiYe96¢|, [Siu97]), which is a strenghtening of
Theorem 7.8 and Corollary 7.9.

11.4. Fundamental vanishing theorem. Let (X,V) be a directed projective vari-
ety and f : (C,Tc) — (X,V) an entire curve tangent to V. Then for every global
section P € HY(X,ESCV* ® O(—A)) where A is an ample divisor of X, one has
P(f5 f 8" JB) = 0.

Let us give the proof of (11.4) in a special case. We interpret here Eggv*@)O(—A) as the
bundle of differential operators whose coefficients vanish along A. By Brody’s lemma [Bro78],
for every entire curve f : (C,T¢) — (X, V), one can extract a convergent “renormalized”
sequence g = lim f o h, where h, are suitable homographic functions, in such a way that
g is an entire curve with bounded derivative sup,cc [|¢'(¢)|ls < +oo (with respect to any

given Hermitian metric w on X); the image g(C) is then contained in the cluster set f(C),
but it is possible that g(C) € f(C). Then Cauchy inequalities imply that all derivatives g/)
are bounded, and therefore, by compactness of X, u = P(g; ¢',g",...,9"*) is a bounded
holomorphic function on C. However, after raising P to a power, we may assume that A
is very ample, and after moving A € |A|, that Supp A intersects g(C). Then u vanishes
somewhere, hence u = 0 by Liouville’s theorem. The proof for the general case is more

subtle and makes use of Nevanlinna’s second main theorem (see the above references).




§11. Morse inequalities and the Green-Griffiths-Lang conjecture 67

It is expected that the global sections of HO(X, EFSV* ® O(—A)) are precisely those
which ultimately define the algebraic locus ¥ C X where the curve f should lie. The
problem is then reduced to the question of showing that there are many non zero sections
of HO(X, ESSV* ® O(—A)), and further, understanding what is their joint base locus. The
first part of this program is the main result of this chapter.

11.5. Theorem. Let (X,V) be a directed projective variety such that Ky is big and let A
be an ample divisor. Then for k > 1 and § € Q1 small enough, 6 < c(logk)/k, the number
of sections h°(X, ECSV* ® O(—=mdA)) has mazimal growth, i.e. is larger that cym™*r—1
for some m = my, where ¢, ce >0, n=dimX andr =rankV. In particular, entire curves
f:(C,Tc) — (X, V) satisfy (many) algebraic differential equations.

The statement is very elementary to check when r = rank V = 1, and therefore when
n = dimX = 1. In higher dimensions n > 2, only very partial results were known at
this point, concerning merely the absolute case V' = Tx. In dimension 2, Theorem 11.5
is a consequence of the Riemann-Roch calculation of Green-Griffiths [GrGr79], combined
with a vanishing theorem due to Bogomolov [Bog79] — the latter actually only applies to
the top cohomology group H™, and things become much more delicate when extimates of
intermediate cohomology groups are needed. In higher dimensions, Diverio [Div08, Div09]
proved the existence of sections of H%(X, ES%V* ® O(—1)) whenever X is a hypersurface
of IP’(?:H of high degree d > d,, assuming £ > n and m > m,. More recently, Merker
[Mer10] was able to treat the case of arbitrary hypersurfaces of general type, i.e. d > n + 3,
assuming this time k to be very large. The latter result is obtained through explicit algebraic
calculations of the spaces of sections, and the proof is computationally very intensive. Bérczi
[Ber10] also obtained related results with a different approach based on residue formulas,
assuming d > 27718,

All these approaches are algebraic in nature. Here, however, our techniques are based on
more elaborate curvature estimates in the spirit of Cowen-Griffiths [CoGr76]. They require
holomorphic Morse inequalities (see 11.10 below) — and we do not know how to translate our
method in an algebraic setting. Notice that holomorphic Morse inequalities are essentially
insensitive to singularities, as we can pass to non singular models and blow-up X as much
as we want: if 4 : X — X is a modification then 1,05 = Ox and R7u, 0% is supported on
a codimension 1 analytic subset (even codimension 2 if X is smooth). As already observed
in Section IIT 3, it follows from the Leray spectral sequence that the cohomology estimates
for L on X or for L = p*L on X differ by negligible terms, i.e.

ha(X,LE™) — h4(X, L®™) = O(m"1).

Finally, singular holomorphic Morse inequalities (see Setion III 6) allow us to work with
singular Hermitian metrics h; this is the reason why we will only require to have big line
bundles rather than ample line bundles. In the case of linear subspaces V' C T'x, we introduce
singular Hermitian metrics as follows.

11.6. Definition. A singular Hermitian metric on a linear subspace V- C Tx is a metric
h on the fibers of V such that the function logh : & — log|€|3 is locally integrable on the
total space of V.

Such a metric can also be viewed as a singular Hermitian metric on the tautological line
bundle Op(y)(—1) on the projectivized bundle P(V) =V ~\ {0}/C*, and therefore its dual
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metric h* defines a curvature current ©¢, ., (1),n~ of type (1,1) on P(V) C P(Tx), such
that

P OO (1)1 = 2L6glog h, where p: V ~ {0} — P(V).
T

If logh is quasi-plurisubharmonic (or quasi-psh, which means psh modulo addition of a
smooth function) on V, then log h is indeed locally integrable, and we have moreover

(117) @Op(v)(l),h* 2 —Cw

for some smooth positive (1, 1)-form on P(V') and some constant C' > 0 ; conversely, if (11.7)
holds, then log h is quasi-psh.

11.8. Definition. We will say that a singular Hermitian metric h on V' is admissible if h
can be written as h = e¥hg)y where hg is a smooth positive definite Hermitian on Tx and ¢
is a quasi-psh weight with analytic singularities on X, as in (11.6). Then h can be seen as a
singular Hermitian metric on Op(yy(1), with the property that it induces a smooth positive
definite metric on a Zariski open set X' C X \Sing(V') ; we will denote by Sing(h) D Sing(V')
the complement of the largest such Zariski open set X'.

If h is an admissible metric, we define O, (V*) to be the sheaf of germs of holomorphic
sections sections of V| X~ Sing(h) which are h*-bounded near Sing(h); by the assumption on
the analytic singularities, this is a coherent sheaf (as the direct image of some coherent sheaf
on P(V)), and actually, since h* = e~ %hf, it is a subsheaf of the sheaf O(V*) := Oy, (V*)
associated with a smooth positive definite metric hg on T’x. If r is the generic rank of V' and
m a positive integer, we define similarly Ky, to be sheaf of germs of holomorphic sections
of (det |X,) = (A" |X,)®m which are det h*-bounded, and K3} := Ky}, .

If V is defined by o : X ---» G, (Tx), there always exists a modification s : X > X
such that the composition aw o p : X — G,(u*Tx) becomes holomorphic, and then
V-1 (X ~sing(v)) extends as a locally trivial subbundle of p*Tx which we will simply
denote by p*V. If h is an admissible metric on V', then u*V can be equipped with the
metric p*h = e?°*u*hg where p*hg is smooth and positive definite. We may assume that
¢ o u has divisorial singularities (otherwise just perform further blow-ups of X to achieve
this). We then see that there is an integer mg such that for all multiples m = pmg the
pull-back u*K{}fh is an invertible sheaf on X, and det h* induces a smooth non singular
metric on it (when h = hg, we can even take my = 1). By definition we always have
Ky, = s (N*K\@?h) for any m > 0. In the sequel, however, we think of Ky} not really as a
coherent sheaf, but rather as the “virtual” Q-line bundle p, (p*K m0)1/ ™o and we say that
Ky, is big if h°(X, Ky'y,) =2 em” for m > mq, with ¢ > 0, i.e. if the invertible sheaf M*K‘T}lz
is big in the usual sense.

At this point, it is important to observe that “our” canonical sheaf Ky differs from
the sheaf Ky := i,O(Ky ) associated with the injection i : X ~ Sing(V) — X, which is
usually referred to as being the “canonical sheaf”, at least when V' is the space of tangents
to a foliation. In fact, Ky is always an invertible sheaf and there is an obvious inclusion
Ky C Ky . More precisely, the image of O(A™T% ) — Ky is equal to Ky ®¢  J for a certain
coherent ideal J C Ox, and the condition to have hg-bounded sections on X ~ Sing(V')
precisely means that our sections are bounded by Const) |g;| in terms of the generators
(9;) of Ky ®oy 3, i.e. Ky = Ky ®0,, J where J is the integral closure of J. More generally,

—m/mg

m m
Ky, =Xy ®@0x Ihmy
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where J;, 7/7100 C Ox 1is the (m/myp)-integral closure of a certain ideal sheaf g ,,, C Ox,

which can itself be assumed to be integrally closed; in our previous discussion, p is chosen
so that p*Jn m, is invertible on X.

The discrepancy already occurs e.g. with the rank 1 linear space V' C Tpn consisting
at each point z # 0 of the tangent to the line (0z) (so that necessarily Vo = Tpn o). As a
sheaf (and not as a linear space), i.O(V) is the invertible sheaf generated by the vector field
£ =) 2;0/0z; on the affine open set C* C P¢, and therefore Ky := i, 0(V*) is generated
over C™ by the unique 1-form u such that u(£) = 1. Since & vanishes at 0, the generator
u is unbounded with respect to a smooth metric ho on Tpn, and it is easily seen that Ky
is the non invertible sheaf Ky = Ky ® mpz . We can make it invertible by considering
the blow-up p: X — X of X =Pg at 0, so that p*Ky is isomorphic to p*Ky @ 0% (—FE)
where FE is the exceptional divisor. The integral curves C' of V' are of course lines through 0,
and when a standard parametrization is used, their derivatives do not vanish at 0, while
the sections of i,.O(V) do — another sign that i,.O(V') and i, O(V*) are the wrong objects to
consider. Another standard example is obtained by taking a generic pencil of elliptic curves
AP(2) + pQ(z) = 0 of degree 3 in P2, and the linear space V consisting of the tangents to
the fibers of the rational map P2 ---» P{ defined by z — Q(z)/P(z). Then V is given by

0 — ,0(V) — O(Tpz) ——20

where S = Sing(V') consists of the 9 points {P(z) = 0} N {Q(z) = 0}, and Jg is the
corresponding ideal sheaf of S. Since det O(Tp2) = O(3), we see that KXy = O(3) is ample,
which seems to contradict (11.2) since all leaves are elliptic curves. There is however no such
contradiction, because Ky = Ky ®dg is not big in our sense (it has degree 0 on all members
of the elliptic pencil). A similar example is obtained with a generic pencil of conics, in which
case Ky = O(1) and card S = 4.

For a given admissible Hermitian structure (V, h), we define similarly the sheaf EE%V;
to be the sheaf of polynomials defined over X \ Sing(h) which are “h-bounded”. This means
that when they are viewed as polynomials P(z; &1,...,&) interms of {; = (V,ll’oo)jf(()) where

V,lmo is the (1, 0)-component of the induced Chern connection on (V] hg), there is a uniform
bound

(11.9) P& < (X Ig1E)"

near points of X ~\ X’ (see section 2 for more details on this). Again, by a direct image
argument, one sees that EGG Vi is always a coherent sheaf. The sheaf EGG V* is defined
to be EGG V7 when h = ho (it is actually independent of the choice of ho, as follows from
arguments similar to those given in section 2). Notice that this is exactly what is needed to
extend the proof of the vanishing theorem 11.4 to the case of a singular linear space V' ; the
value distribution theory argument can only work when the functions P(f; f,..., f*)(t)
do not exhibit poles, and this is guaranteed here by the boundedness assumption.

Our strategy can be described as follows. We consider the Green-Griffiths bundle of
k-jets XJG = JFV ~ {0}/C*, which by (11.3) consists of a fibration in weighted projective
spaces, and its associated tautological sheaf

L - OXGG(l),

viewed rather as a virtual Q-line bundle O yca (mo)'/™0 with mg = lem(1,2, ..., k). Then,
if m, + X GG _, X is the natural projection, we have

Ek,m = (Wk>*OX$G (m) and RY (ﬂk)*(‘)xsc; (m) =0 for ¢ > 1.



70 J.-P. Demailly, Kobayashi pseudo-metrics and hyperbolicity of algebraic varieties

Hence, by the Leray spectral sequence we get for every invertible sheaf F' on X the
isomorphism
HY(X,EfaV* ® F) ~ HI(X{9, 0xoa (m) @ T F).

The latter group can be evaluated thanks to holomorphic Morse inequalities. Let us recall
the main statement.

11.10. Holomorphic Morse inequalities ([Dem85]). Let X be a compact complex
manifolds, E — X a holomorphic vector bundle of rank r, and (L,h) a hermitian line
bundle. The dimensions hi(X, E ® L¥) of cohomology groups of the tensor powers E & L*
satisfy the following asymptotic estimates as k — +o00 :

(WM) Weak Morse inequalities:

k’n

h(X,E@ L") <r—
n.

/ (—1)907 , + o(k™) .
X (L,h,q)

(SM) Strong Morse inequalities :

o k™
Y (D)X, Ee LF) <r—
0<j<q "

[ e o
X(L,h,<q)

(RR) Asymptotic Riemann-Roch formula:

o En
WXEOLY)i= Y ()W Ee L) =rin [ ep, 4 o).

- n' Jx 7
0<j<n
Moreover (cf. Bonavero’s PhD thesis [Bon93]), if h = e~ ¥ is a singular hermitian metric
with analytic singularities, the estimates are still true provided all cohomology groups are
replaced by cohomology groups H4(X,E ® L* ® J(h*)) twisted with the multiplier ideal
sheaves

I(h*) =I(kp) = {f € Ox, IV > x, / 1£(2)]Pe *dN(2) < o0}
Vv

The special case of 11.10 (SM) when g = 1 yields a very useful criterion for the existence of
sections of large multiples of L.

11.11. Corollary. Under the above hypotheses, we have

n

k
(X, EQLF) >h(X,Ex L") —h(X,E® L") > r—'/ n—o(k") .
n:Jx(L,h<1)

Especially L is big as soon as fX(L h<1) 0%, > 0 for some hermitian metric h on L.

Now, given a directed manifold (X, V'), we can associate with any admissible metric h
on V a metric (or rather a natural family) of metrics on L = Oxgc(l). The space X ¢
always possesses quotient singularities if k& > 2 (and even some more if V' is singular), but
we do not really care since Morse inequalities still work in this setting thanks to Bonavero’s
generalization. As we will see, it is then possible to get nice asymptotic formulas as k — +oo.
They appear to be of a probabilistic nature if we take the components of the k-jet (i.e. the
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successive derivatives {; = f (1)(0), 1 < j < k) as random variables. This probabilistic
behaviour was somehow already visible in the Riemann-Roch calculation of [GrGr79]. In
this way, assuming Ky big, we produce a lot of sections o; = HO(XJ, O yca(m) @ 73 F),
corresponding to certain divisors Z; C X ,?G. The hard problem which is feft in order to
complete a proof of the generalized Green-Griffiths-Lang conjecture is to compute the base
locus Z = (1 Z; and to show that Y = m;(Z) C X must be a proper algebraic variety.

11.B. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kéahler metrics on weighted projective
spaces, and to evaluate the corresponding volume forms. Here we put d° = ﬁ (0—0) so that
dd® = %65. The normalization of the d° operator is chosen such that we have precisely
(dd°log|z|*)* = Jp for the Monge-Ampere operator in C"; also, for every holomorphic
or meromorphic section o of a Hermitian line bundle (L, h) the Lelong-Poincaré can be
formulated

ddlog |o}, = [Z5] — Or .,

where O j = %D%’h is the (1, 1)-curvature form of L and Z, the zero divisor of o. The
closed (1,1)-form ©y, 5, is a representative of the first Chern class ¢;(L). Given a k-tuple of
“weights” a = (aq,...,ax), i.e. of integers as > 0 with ged(aq,...,ax) = 1, we introduce the
weighted projective space P(ay,...,ax) to be the quotient of C* \. {0} by the corresponding
weighted C* action:

(11.12) P(ai,...,a;) = C* < {0}/C*, Az= A"z, 0, A% 2.

As is well known, this defines a toric (k — 1)-dimensional algebraic variety with quotient
singularities. On this variety, we introduce the possibly singular (but almost everywhere
smooth and non degenerate) Kéhler form w, , defined by

* 1
(11.13) ToWa,p = dd*pap, Pa,p(2) = —log Z |ZS|2p/asa
PG
where 7, : C¥ < {0} — P(ay,...,ax) is the canonical projection and p > 0 is a positive

constant. It is clear that ¢, , is real analytic on C* < {0} if p is an integer and a common
multiple of all weights a,. It is at least C? if p is real and p > max(a,), which will be
more than sufficient for our purposes (but everything would still work for any p > 0).
The resulting metric is in any case smooth and positive definite outside of the coordinate
hyperplanes z; = 0, and these hyperplanes will not matter here since they are of capacity

zero with respect to all currents (dd®g, ;). In order to evaluate the volume fP(al an) wk—1

a a,p

one can observe that

k—1 * k—1 c
/ W p / ToWa p AN dpq p
P(al,...,ak) ZG(Ck7()0a7p(z):O

ze s Pa,plZ =0

(11.14) _ L (ddceP#ar)k,

k
D™ JzeCk, pu p(2)<0

The first equality comes from the fact that {y,,(2) = 0} is a circle bundle over
P(ai,...,ax), together with the identities @, ,(A - 2) = @ap(2) + log|A?> and
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f| =1 d°log|\? = 1. The third equality can be seen by Stokes formula applied to the
(2k — 1)-form
(ddeeoer 2 N doePPer = Pen (ddga,p) ™ A dpay

on the pseudoconvex open set {z € C¥; ¢, ,(2) < 0}. Now, we find

(s) et = (a3 Jpre) = I (2

S

£ (el

1<s<k 1<s<k
k
(11.16) / (dd°er?er)k = H p__ P
z€Ck, pq.p(2)<0 1<s<k Qg ai...ag
In fact, (11.15) and (11.16) are clear when p = a; = ... = a, = 1 (this is just the standard

calculation of the volume of the unit ball in C¥); the general case follows by substituting
formally z4 + 2% / s and using rotational invariance together with the observation that the
arguments of the complex numbers z2/®* now run in the interval [0, 27p/as] instead of [0, 27|
(say). As a consequence of (11.14) and (11.16), we obtain the well known value

1
(11.17) / Wyt = ———,
P(a17"'7ak) ’ ap...ak

for the volume. Notice that this is independent of p (as it is obvious by Stokes theorem,
since the cohomology class of w,, does not depend on p). When p tends to +oo, we
have @q (%) = Ya,00(2) = logmaxis<i |2s] 2/as and the volume form wk 1 converges to
a rotationally invariant measure supported by the image of the polycircle H{|zs| =1} in
P(ai,...,a). This is so because not all |z,|?/® are equal outside of the image of the
polycircle, thus ¢, (2) locally depends only on k — 1 complex variables, and so wk L=0
there by log homogeneity.

Our later calculations will require a slightly more general setting. Instead of looking at
C*, we consider the weighted C* action defined by

(11.18) Cll=cCm x...xC", Aoz= A%z, .., A% 2).

Here z; € C™ for some k-tuple r = (r1,...,rg) and |r| = r1 + ...+ rg. This gives rise to a
weighted projective space

P(ay™,. .. aL’““)=P(a1,---,a17---,akw-- ak),

(11.19) Tar: C x ... xC™ {0} — P(a [rl],. aer])

obtained by repeating r, times each weight as. On this space, we introduce the degenerate
Kahler metric wq,,p, such that

(11.20) T Wa,rp = Ad°Pa r.p, arp(2 log Z |2 |2p/as
1<s<k

where |2;| stands now for the standard Hermitian norm (37, ¢, |25, 2)1/2 on C". This
metric is cohomologous to the corresponding “polydisc-like” metric wq, already defined,
and therefore Stokes theorem implies

1
(11.21) / whl=t — — —
a,r,p T1 Tk
P(a[lrl],...,aE:k]) a; ... ak
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Since (dd®log|zs|?)™ = 0 on C"s \ {0} by homogeneity, we conclude as before that the weak

T r|—1 r|—1 . .
limit limy, 4 wL'r,p = wll,lr,oo associated with

2/ag

(11.22) Pa,ro00(2) = log max |26|%/

is a measure supported by the image of the product of unit spheres [][S?"~! in
Pl .. .,ag’“]), which is invariant under the action of U(ry) x...x U(rg) on
C™ x ... x C", and thus coincides with the Hermitian area measure up to a constant deter-
mined by condition (11.21). In fact, outside of the product of spheres, ¢, , o locally depends
only on at most k£ —1 factors and thus, for dimension reasons, the top power (alalcgoamoo)|7"|_1
must be zero there. In the next section, the following change of variable formula will be
needed. For simplicity of exposition we restrict ourselves to continuous functions, but a stan-
dard density argument would easily extend the formula to all functions that are Lebesgue

integrable with respect to the volume form wlﬁlﬂ}.

11.23. Proposition. Let f(z) be a bounded function on P(a[lrl],...,agk]) which is
continuous outside of the hyperplane sections zs = 0. We also view f as a C*-invariant
continuous function on [[(C"s \ {0}). Then

[r|—1

f(R)w
/I;(a[lrl],...,ag:k]) @b
rs—1

rl—1)! a1 /2 ag/2 Zg
_ <|H| - / FGE st ) T] = dedutw)
s '8 (‘r,u)eAk_leS%sfl 1<s<k T's '

where Ag_1 is the (k — 1)-simplex {xs > 0, Y xs =1}, dv =dx1 N ... Ndxp_1 its standard
measure, and where dp(u) = dpy(u1) . . . dpg(ug) is the rotation invariant probability measure
on the product ], S2rs=1 of unit spheres in C™ x ... x C"™. As a consequence

lim flz)wll = ﬁ /H o f(u) du(u).

p—+oo P(a[lrl],...,aLTk])

Proof. The area formula Ff ]the disc f| <1
Tk

bundle over P(a[lrl], ...,ap ") imply that

I, = / f(z) WJZT’lI’_pl = / f(2) (ddc‘;pa,r,p)lr'_l A dde?ere.
P(a[fl],...,agk]) o z€CImlpa,rp(2)<0

Now, a straightforward calculation on CI"l gives

(ddc8p<,0a,r,p)|7"| — (ddc Z |Zs|2p/as)

dd°|\|* = 1 and a consideration of the unit disc

|7

1<s<k
rs+1
= TL (2)"7 faeree o aaefy.
1<s<k °
On the other hand, we have (dd¢|z|?)I"l = 7’1!|~7t|~i‘k! ngsgk(ddc|zs|2)“ and

|7l

(ddcep(pa,r,p)l'd — (pepSOa,'r,p (ddccpa,r,p +pd@a,r’p /\dcﬁpa,np))
— ‘r‘plr|+1e|71|p(pa,r,p(ddccpa’r’p)'T‘_l A d@a,T,p A dc@a,T,p
— ‘r‘p‘r|+1e(‘r|p_1)(pa,r,p (ddccpa’r’p)|r‘_1 /\ ddce@a,'r,p,
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thanks to the homogeneity relation (ddcgpayr’p)w = 0. Putting everything together, we find

(Ir| = VPt £(2) (dd2, )
11

I, = / ~
p ZG(C‘T‘,QOQ,T,p(Z)<O (ZS ‘Zs|2p/as)|71‘_1/p TS! a23+1|23‘27"b(1—p/ab)

A standard calculation in polar coordinates with z, = psus, us € S?7s~1, yields

(dde|zs]?)"

‘Zs|2Ts

dps
= 2r, p dps(ug)

S

where 4 is the U(r,)-invariant probability measure on S2"s~1. Therefore

2prs/as B
I _/ (|7‘| ) k= 1f(,01u17~- 7Pkuk)H2pp / dp dﬂs(’“s)
P Journ 020 (Dycuep p20) i1/ e
(Ir| = D p =L f (49 PPy 5% Pg ) p 0=Vt dypng ()

/1;36.5’27“8—1,2153<1 (Z1<s<k ) rl=1/p (Ts_1>!ags

S

by putting t, = |22/ = p2P/* ie. p, = t2/? t, €]0,1]. We use still another change of

variable tg = tz, with t = 21@@ ts and z5 € |0, 1], Z1<s<k zs = 1. Then

dty A.. . ANdty =t""tdzdt  where dz =dxy A ... Advg_y.
The C* invariance of f shows that

27 rdug(us)  dxdt

I, = r| — D)Lf (2% %y ...mak/qu
’ Euse_iQIZ]_oan - o k)1<«51_[<k (rs = Dlag> pti=1/p
)
= — DI (2% ok /2p Ts"  Aps(Us)
/E (Irl = DU @5, [ F—r do
rg=1 1<s<k

This is equivalent to the formula given in Proposition 11.23. We have zj 20:/P 4 1 as p — 400,

and by Lebesgue’s bounded convergence theorem and Fubini’s formula, we get

rs—1

. _ (r[=D! / x
lim I, = f(uw) ——— dr dp(u).
p——+o00 p HS CLS (x’u)eAkilxn S2rs—1 1<SH<I€ (7“5 — 1)!
It can be checked by elementary integrations by parts and induction on k, rq,...,r; that

(11.24) / I v 'dey .. daps = T |1_ 0 IT =1

€A1 1<s<k 1<s<k

This implies that (|r| —1)! H1<S<k ( 1), dz is a probability measure on Ai_; and that

1
li I, = —— d .
P—Ell-loo P CLQS /UEH g2rs—1 f(u> M(u>

Even without an explicit check, Formula (11.24) also follows from the fact that we must
have equality for f(z) =1 in the latter equality, if we take into account the volume formula
(11.21). O
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11.C. Probabilistic estimate of the curvature of k-jet bundles

Let (X, V) be a compact complex directed non singular variety. To avoid any technical
difficulty at this point, we first assume that V is a holomorphic vector subbundle of Ty,
equipped with a smooth Hermitian metric h.

According to the notation already specified in the introduction, we denote by J*V the
bundle of k-jets of holomorphic curves f : (C,0) — X tangent to V at each point. Let us set
n = dimc X and r = rankc V. Then J*V — X is an algebraic fiber bundle with typical fiber
C"" (see below). It has a canonical C*-action defined by A- f : (C,0) — X, (A-f)(t) = f(\t).
Fix a point zp in X and a local holomorphic coordinate system (z1, ..., z,) centered at xg
such that V,, is the vector subspace (0/0z1,...,0/0z,) at xg. Then, in a neighborhood U
of xg, V admits a holomorphic frame of the form

(11.25) o , > aapl2) 0 1< B<r, ans(0)=0.

0z 024’
B r+1<asn «

Let f(t) = (fi(t),...,fa(t)) be a k-jet of curve tangent to V starting from a point
f(0) =z € U. Such a curve is entirely determined by its initial point and by the projection

f(t) == (fi(t),..., f(t)) to the first r-components, since the condition f’(t) € V() implies
that the other components must satisfy the ordinary differential equation

FL) = > aas(f()f5(D).

1<B<r

This implies that the k-jet of f is entirely determined by the initial point z and the Taylor
expansion

(11.26) Fi) —F =&t + &t + .+ &1F + O+

where & = (£sa)1<a<r € C7. The C* action (A, f) — A - f is then expressed in coordinates
by the weighted action

(1127) A (517527 RS gk) = ()\517 )‘2527 SRR )‘kgk)

associated with the weight a = (111, 2[7] .. k['l). The quotient projectivized k-jet bundle
(11.28) XP6 .= (JFV L {o})/C”

considered by Green and Griffiths [GrGr79] is therefore in a natural way a
P(l[’"],Q[’"], .. .,k:[r]) weighted projective bundle over X. As such, it possesses a canoni-
cal sheaf O xce (1) such that Oxce (m) is invertible when m is a multiple of lem(1,2, ..., k).

Under the natural projection 73 : XF¢ — X, the direct image (m1).0O yca(m) coincides
with the sheaf of sections of the bundle E,?Snv* of jet differentials of order % and degree m,
namely polynomials

(11.29) P(z; &, 6) = D Gaya(2) &80 G0

agENT, 1<e<k

of weighted degree |ay |+ 2|az| +. ..+ k|ag| = m on J¥V with holomorphic coefficients. The
jet differentials operate on germs of curves as differential operators

(11.30) P()(t) =Dty (F8) £/ F P (1),
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In the sequel, we do not make any further use of coordinate frames as (11.25), because they
need not be related in any way to the Hermitian metric h of V. Instead, we choose a local
holomorphic coordinate frame (e, (2))1<a<r of V' on a neighborhood U of zg, such that

(11.31) ea()es(2) = bas+ 3 cijapzz +O(P)

1<i,5<n, 1S, B

for suitable complex coefficients (cjjnp). It is a standard fact that such a normalized
coordinate system always exists, and that the Chern curvature tensor ﬁD%/’h of (V,h)
at g is then given by

)
(11.32) Ov,n(wo) = —5— D cCijapdzi ANdZ; @ €, ® ep.
i7j7a75

Also, instead of defining the vectors {; € C" as in (11.26), we consider a local holomorphic
connection V on Vi (e.g. the one which turns (e,) into a parallel frame), and take
& = VF£(0) € V, defined inductively by V! f = f' and V*f = V(V*~1f). This is just
another way of parametrizing the fibers of J*V over U by the vector bundle V|’£’] Notice
that this is highly dependent on V (the bundle J*V actually does not carry a vector bundle
or even affine bundle structure); however, the expression of the weighted action (11.27) is
unchanged in this new setting. Now, we fix a finite open covering (U, )qaer of X by open
coordinate charts such that V|y_ is trivial, along with holomorphic connections V, on V|y, .
Let 6., be a partition of unity of X subordinate to the covering (U,). Let us fix p > 0 and
small parameters 1 = &1 > €9 > ... > ¢ > 0. Then we define a global weighted exhaustion
on J*V by putting for any k-jet f € J¥V

153 V()= (D 0ue) Y wssoin)”

acl 1<s<k

where || [[5(z) is the Hermitian metric h of V' evaluated on the fiber V;, x = f(0). The
function Wy, ,, . satisfies the fundamental homogeneity property

(1134) \I[h,p,s()\ ' f) = \Ijh,pﬁ(f) ‘)\‘2

with respect to the C* action on J*V, in other words, it induces a Hermitian metric on the
dual L* of the tautological Q-line bundle L; = OX’?G (1) over XJCG. The curvature of Ly, is
given by

(11.35) T.OL, vy = dd®log Uy p

where 71 : J¥V {0} — X is the canonical projection. Our next goal is to compute
precisely the curvature and to apply holomorphic Morse inequalities to L — X ,?G with the
above metric. It might look a priori like an untractable problem, since the definition of
W, p.e is a rather unnatural one. However, the “miracle” is that the asymptotic behavior of
U, pe as €5/es—1 — 0 is in some sense uniquely defined and very natural. It will lead to a
computable asymptotic formula, which is moreover simple enough to produce useful results.

11.36. Lemma. On each coordinate chart U equipped with a holomorphic connection V
of Viu, let us define the components of a k-jet f € JRV by & = V2 £(0), and consider the
rescaling transformation

pv,s(éhg% s 7€k) = (6%51763527 o 75112516) on ng; reU
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(it commutes with the C*-action but is otherwise unrelated and not canonically defined over
X as it depends on the choice of V). Then, if p is a multiple of lem(1,2,...,k) and

€s/€s—1 — 0 for all s = 2,...,k, the rescaled function ¥y, . o pg’ls(fl, ..., &) converges
towards
2p 1/p
(% tel)
1<s<k

on every compact subset of JkV|U ~ {0}, uniformly in C* topology.

Proof. Let U C X be an open set on which Vi is trivial and equipped with some

holomorphic connection V. Let us pick another holomorphic connection V =V + T where
I e HY(U, Q% @ Hom(V, V). Then V2f = V2f +T(f)(f’) - f’, and inductively we get

Vef=Vof+PJ(f; Vf,...,V5Lf)

where P(x; &1,...,&s—1) is a polynomial with holomorphic coefficients in € U which is of
weighted homogeneous degree s in ({1, ...,&s—1). In other words, the corresponding change
in the parametrization of J kV|U is given by a C*-homogeneous transformation

fs :§3+Ps(«r§€1a---7§s—1)-

Let us introduce the corresponding rescaled components

(51@7"'7§kﬁ) ::(5%517~'~75£§k)7 (E&ﬁ?"‘?gkﬁ) ::<€%£17~'~7€£Ek»

Then _ )
fs,e = Es,e + 5§ Ps(w; 61_151,67 v 755,__(81_ )gs—l,s)

= &se +0(es/es-1)° Oll€1ell + -+ (16516

and the error terms are thus polynomials of fixed degree with arbitrarily small coefficients
as €5/€s—1 — 0. Now, the definition of ¥}, ,, . consists of glueing the sums

2n/s 2p/s
STl = Y ew i

1<s<k 1<s<k

1/(5—1))5

corresponding to &, = V2, f(0) by means of the partition of unity »_ 6,(z) = 1. We see that
by using the rescaled variables £, . the changes occurring when replacing a connection V,
by an alternative one Vg are arbitrary small in C'*° topology, with error terms uniformly
controlled in terms of the ratios €5/e,_1 on all compact subsets of V¥~ {0}. This shows that
in C* topology, ¥p, p. 0,06715(51, .-+, &k) converges uniformly towards (3, <y, HEkHip/s)l/p,
whatever the trivializing open set U and the holomorphic connection V used to evaluate the
components and perform the rescaling are. a

Now, we fix a point o € X and a local holomorphic frame (eq(z))1<a<r satisfying
(11.31) on a neighborhood U of xy. We introduce the rescaled components £, = €3V? f(0)
on J kV|U and compute the curvature of

1/p
— 2p/s
\Ilh7p75opv,1s(z; 517"'76]@) = < Z ||€S||hp/ )

1<s<k
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(by Lemma 11.36, the errors can be taken arbitrary small in C'*° topology). We write
& = Zl<a<r €sa€a- By (11.31) we have

&l = D 1€sal® + D cijapziZi€saep + O IE]%).

1:7j7a713

The question is to evaluate the curvature of the weighted metric defined by

1/p
W6t = (X 16IE)

1<s<k
2 _ P\ 3
(T (Tl + X cnanzmtadss)”) + 0P
1<s<k loY i,7,a,

We set |52 =, |€sal?. A straightforward calculation yields
IOg\I/(Z7 517- . 7§/€> =

L R O Sabss | 1.1
og Z €] + Z _Et |§t‘2p/t Z CijaBRiZj T F 1o 1€, ]2 (|2]7).

1<s<k 1<s<k i,7,a,

By (11.35), the curvature form of L, = OXGG(l) is given at the central point xo by the
following formula.

11.37. Proposition. With the above choice of coordinates and with respect to the rescaled
components £ = €3V f(0) at xg € X, we have the approximate expression

i 1 és 2p/s fsags —
®Lk,\P;7p7€(x07 [€]) = wa,rp(§) + 5= Z —L Z Cijaf 13 ‘Qﬁ dz; N\ dz;

20/t
2m 1<s<k ® 2o &l i,j,a,B

where the error terms are O(maxocs<k(€s/€s—1)%) uniformly on the compact variety
XSG, Here warp is the (degenerate) Kdihler metric associated with the weight a =
(1l 2l K of the canonical C* action on JFV.

Thanks to the uniform approximation, we can (and will) neglect the error terms in the
calculations below. Since wg,,) is positive definite on the fibers of X EG — X (at least
outside of the axes §s = 0), the index of the (1,1) curvature form ©p, v: ., _(2,[€]) is equal

to the index of the (1, 1)-form

i 1 |&2P/s €salsp _
(11.38) Yi(2,&) i= — —— Cijap(2) dz; N dz;

3m 2 5T apr 2 e J
depending only on the differentials (dz;)1<j<n on X. The g-index integral of (L, ¥7, , ) on

X ]SG is therefore equal to

n+kr—1
/ GG @Lk’qjh ,D,E o
Xk (Lk,q)

(n+kr—1)! / / k-1
= " 1 z, 2, )"
nl kr — 1 cex Jeepari. ki We TP (g) ’Yk:Q( f)ﬁ)/k( g)
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where 1, 4(2,§) is the characteristic function of the open set of points where v;(2,&) has
signature (n — ¢,q) in terms of the dz;’s. Notice that since v;(z,£)" is a determinant, the
product 1, ,(z,&)vk(z, &)™ gives rise to a continuous function on X F¢. Formula 11.24 with

ry =...=r =r and as; = s yields the slightly more explicit integral
/ @n—i—kr*—l _ (TL + kr — 1)' %
XSG(Lk,q) Lk’qj}hpﬁ n'(k')T
(.’131 ce .’Bk)r_l
/ / Ly, o(2 2, u)gr (2, z,u)" TN dx dp(u),
z€X J(zu)EAE_1X(S2r—1)k (7‘ )
where gi(2,x,u) = Yr(z, xi/qul, - x’;/quk) is given by
) 1 _ _
(11.39) gk(z,z,u) = o Z gxs Z Cijap(2) UsaTsp dz; N dZ;
1<s<k i,7,a,
and 1, ,(z,x,u) is the characteristic function of its ¢-index set. Here
(21...23)" ¢
is a probability measure on Ag_1, and we can rewrite
/ @n+kr—1 — (n + kr — 1)'
XSG(Lk,q) Lk’\llhapas n!(k!)r(k’r - 1)!
(11.41) / / Ny, .q(z, 2, u) gk (2, z,w)" dvg »(x) dp(u).
2€X J(z,u)EAL_1 X (S2r—1)k

Now, formula (11.39) shows that gx(z, x,u) is a “Monte Carlo” evaluation of the curvature
tensor, obtained by averaging the curvature at random points u, € S?"~! with certain
positive weights x5/s; we should then think of the k-jet f as some sort of random
parameter such that the derivatives V¥ f(0) are uniformly distributed in all directions. Let
us compute the expected value of (z,u) — gr(z, x,u) with respect to the probability measure
dvr () dp(u). Since [go,— 1 UsaTspdp(us) = 1605 and ‘fAkfl Ts dvg, () = 4, we find

1 1 -
E(gk(z,0,0)> = H Z g . % Z Cijaa(z> dZZ A\ de.

1<S<k i:jﬁo‘
In other words, we get the normalized trace of the curvature, i.e.

1 1 1
(11.42) E(gk(z, o, 0)) = (1 +-+.. .+ _>@det(v*),det h*s

©kr 2 k
where Ogeq(v+),det n+ 18 the (1, 1)-curvature form of det(V*) with the metric induced by h. It
is natural to guess that g (z, z, u) behaves asymptotically as its expected value E(gi(z, e, ))
when k tends to infinity. If we replace brutally gi by its expected value in (11.41), we get

the integral
(m+kr—1)! 1 ( 1 1)”/
I+-+...+- 1, "
WDy (hr — D)l Geryr T2 T g ) e
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where 7 1= Oget(v+),det n+ and 1, 4 is the characteristic function of its g-index set in X.
The leading constant is equivalent to (logk)™/n!(k!)” modulo a multiplicative factor 1 +
O(1/logk). By working out a more precise analysis of the deviation, we will prove the
following result.

11.43. Probabilistic estimate. Fiz smo_oth Hermitian metrics h on V and w =
5= > wijdz; NdZ; on X. Denote by Oy, = —5= 3 Cijapdzs N dZ; @ €}, ® eg the curvature
tensor of V' with respect to an h-orthonormal frame (ey), and put
1 _
n(z) = @det(V*),det h* = o Z nijdz; N\ dz;, Nij = Z Cijaa-

1<i,5<n 1<agr

Finally consider the k-jet line bundle Ly = Oxgc(l) — XEG equipped with the induced
metric V; (as defined above, with 1 = g1 > 9 > ... > ¢ > 0). When k tends to

infinity, the integral of the top power of the curvature of L on its g-index set XEG(Lk, q)
s given by

_ log k)™ -
oyt (o8] (/ 1,..n" + O((log k 1)
/)‘(’?G(Lk’q) LeYpe — pl(k) \ [y ™9 (( )7)

forallq=0,1,...,n, and the error term O((logk)™1) can be bounded explicitly in terms of
Oy, n and w. Moreover, the left hand side is identically zero for ¢ > n.

The final statement follows from the observation that the curvature of Lj is positive
along the fibers of X EG — X, by the plurisubharmonicity of the weight (this is true even
when the partition of unity terms are taken into account, since they depend only on the
base); therefore the g-index sets are empty for ¢ > n. We start with three elementary
lemmas.

11.44. Lemma. The integral

T n
Irn:/ ( —S) dvi r(x
k., - \Z . ko (2)

s given by the expansion

(a) T =

Z 1 (k’?‘ — 1)' ngigk(r -1+ Bz)'
$182...8, (r—1)Ik (kr +n—1)!

1<s1,82,0,8n <k

where B; = pi(s) = card{j; s; =i}, > Bi =n, 1 <i< k. The quotient

(1+1+ +1>n
St

,’,.’)’L

[ r,n
s /kr(kr—l—l)...(kr—i—n—l)

s bounded below by 1 and bounded above by

n

(b) 1+12%(1+%+...+%)_ =1+ 0((logk)™?)
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As a consequence

© o = g (g o )+ 00w ™)
_ {logk +9)" +O((log )"~
kn

where v is the Euler-Mascheroni constant.
Proof. Let us expand the n-th power (Z1<s<k %)n This gives
1 B1 Bk
Iy rn = Z _ xt ot dvg ()
1<51,82,...,8n <k 5152 --8n JA

and by definition of the measure v, we have

kr —1)! _ 4B —
/ xfl mf’“ dvy () = %/ x§+51 L. .xk+6k Vdzy ... dxy.
Ak—l (T_ ]‘) Ak—l

By Formula (11.24), we find

kr —1)! e (r+ B — 1!
[ ot ang = G0 a6
Apy (r—1)! (kr +n —1)!

L a4 DA+ 2) . 1+ 2
kr(kr+1)...(kr +n—1) ’

and (11.44 a) follows from the first equality. The final product is minimal when r = 1, thus

r B1 Br
< e dvy,
kr(kr+1)...(kr+n—1) /Ak_lxl x, " dvg . (x)
" ngigk Bi!

< :
kr(kr+1)...(kr+n—1)

(11.45)

Also, the integral is maximal when all §; vanish except one, in which case one gets

n _or(r+1)..(r+n—1)
(11.46) /Ak_l 7 A (@) = kr(kr+1)...(kr+n—1)

By (11.45), we find the lower and upper bounds

(11.47) I > rn <1+1+ + 1>n
' B e+ 1) (kr+n—1)\ 2 TR
r’ Bi!... 0!
(11.48) I rm < —_.
DS kr(kr +1) .. (kr +n—1) 1<31;sn<k S1...5n
In order to make the upper bound more explicit, we reorganize the n-tuple (si,...,s,) into

those indices ¢; < ... < t;, which appear a certain number of times o; = ¢, > 2, and those,
say tp41 < ... < tgym, which appear only once. We have of course > 5; = n —m, and
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each choice of the ¢;’s corresponds to n!/ay!. .. a,! possibilities for the n-tuple (si,...,sp).
Therefore we get

Bil... B! " 1 1
)k LD DR DD

7t e e
1<51,...,8n <k m=0 ¥/, Ya;=n—m (tz) 1 / 0+1 l+m

A trivial comparison series vs. integral yields

s<t<+o0
and in this way, using successive integrations in ty, ty_1, ... , we get inductively
> o < ! <L
1<t <. .. <t <400 i 't?e h ngige(O%—H-l +...+ap—1) =

since a; > 2 implies ay_;+1 + ...+ oy — ¢ > i. On the other hand

1 1 1 1 1 "
— < — —=— 1+ =+ ] .
Z = om! Z 51 . m!<+2+ +k)

t R ! ..S
1<top1 <o <topm<k 1 ttm 1<51,. o sm <k m

Since partitions a; +. ..+ ay = n —m satisfying the additional restriction a; > 2 correspond
to af = a; — 2 satisfying Y a} = n — m — 2¢, their number is equal to

n—m-—20+/0—1 _ n—m-—+~¢—1 < gn-m—t-1
(-1 (-1

and we infer from this
Bil... B! gn—m—t=1p| 1 1\" 1 1\"
— < _ (1 4+ =4+...+ = 1+—-4+...+—
Z S$1...5n Z 2'm)! +2+ +k + +2+ +k

1<s1,...,sn <k £>1
~X b Al (AN 2£+m<n

where the last term corresponds to the special case ¢ = 0, m = n. Therefore

n—2 m n
Bl .. Bkl e2—1 on—mp| 1 1 1 1
< 1+=+... 4= I+=+...4—
2. e S 2 o gty ) gty

1<s; <k ’ m=0
<]'§: AL PSS R CUE S A
=3 (n —m)! 2 Tk 2 k)

This estimate combined with (11.47, 11.48) implies the upper bound (11.44 b) (the lower
bound 1 being now obvious). The asymptotic estimate (11.44 c) follows immediately. d

\)

11.49. Lemma. If A is a Hermitian n x n matriz, set 14 4 to be equal to 1 if A has
signature (n — q,q) and 0 otherwise. Then for all n x n Hermitian matrices A, B we have
the estimate

’]IA,q det A —1p, detB} < ||[A - B| Z ||A||i||B||n—1_7;7

0<i<n—1
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where ||Al|, |B| are the Hermitian operator norms of the matrices.

Proof. We first check that the estimate holds for |det A — det B|. Let A\y < ... < A\, be
the eigenvalues of A and \] < ... < A, be the eigenvalues of B. We have |\;| < ||4],
|IAJ| < ||B|| and the minimax principle implies that |[\; — \}| < [|[A — BJ|. We then get the
desired estimate by writing

det A—detB=A... A, =X ... A, = > Ap.. — AN N

1<i<n

This already implies (11.49) if A or B is degenerate. If A and B are non degenerate we only
have to prove the result when one of them (say A) has signature (n — ¢, ¢) and the other one
(say B) has a different signature. If we put M(t) = (1 — t)A + tB, the already established
estimate for the determinant yields

n—1
|- et M (1) < nll A~ B IM(1)] < nll A~ BI (1~ D]}l +1]B])

However, since the signature of M () is not the same for ¢t = 0 and t = 1, there must exist
to € ]0,1] such that (1 — ¢g)A + toB is degenerate. Our claim follows by integrating the
differential estimate on the smallest such interval [0, %], after observing that M(0) = A,
det M (tp) = 0, and that the integral of the right hand side on [0, 1] is the announced bound.
a

11.50. Lemma. Let Q4 be the Hermitian quadratic form associated with the Hermitian
operator A on C™. If p is the rotation invariant probability measure on the unit sphere
S2n=1 of C™ and \; are the eigenvalues of A, we have

[ 1a©Ra©) = et (S0t ()

The norm ||A|| = max|\;| satisfies the estimate

AP [ 1Qa0PauQ) < ar®

Proof. The first identity is an easy calculation, and the inequalities follow by computing
the eigenvalues of the quadratic form Y A? + (3 /\7;) —cA\?, ¢ > 0. The lower bound is

207

attained e.g. for Q4(¢) = [C1]* = 2(|¢2|* + ... 4 ]¢n]?) when we take g =1 and ¢ = 14 +. O

Proof of the Probabilistic estimate 11.43. Take a vector ( € Tx ., ( = ZQ%,
with ||{|| = 1, and introduce the trace free sesquilinear quadratic form

~ = _ - 1
Qzc(u) = Z Cijap(2) GiCj ualip, Cijap = CijaB — ;7713'5055, ueCr

i?j’a’/B

where 7;; = > 1 <., Cijaa- We consider the corresponding trace free curvature tensor
N AN

(11.51) Oy = — Z Cijap dzi NdZ; ® e}, @ eg.
5,08
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As a general matter of notation, we adopt here the convention that the canonical corre-
spondence between Hermitian forms and (1, 1)-forms is normalized as ) a;;dz; ® dZ; <
% > a;jdz; N\ dZj, and we take the liberty of using the same symbols for both types of ob-
jects; we do so especially for g (z,z,u) and n(z) = 5= > m;;(2)dz; A dz; = TrOy(z). First
observe that for all k-tuples of unit vectors u = (u,...,ux) € (ST V¥ us = (usa)1<as<r
we have

/527‘ 1)k

where V(Q. ) is the variance of Q. on S* ! This is so because we have a sum
over s of independent random variables on (S?"~1)*  all of which have zero mean value
(Lemma 11.50 shows that the variance V(Q) of a trace free Hermitian quadratic form
Q(u) = 31 casr Aaltial? on the unit sphere S*" ! is equal to S~ A2 | but we only give
the formula to fix the ideas). Formula (11.46) yields

+1
200 (x) = — =
/Ak_l vy () k(kr + 1)

Therefore, according to notation (11.39), we obtain the partial variance formula

2

dp(u) = Y SV(Qu0)

1<s<k

Z —CCS Z CUOZB CiZjusaﬂsﬁ

1<s <k i,7,a,0

7"(7"—|—1)

/ (952 2, 1) (€) — T (2 2) (O) Pl () dps(w)
Ap_1x(S2r—1)k

(1) 1 o (O 2
- <1£k S LACH)
in which

GEDS éxsizcingzj:( 3 %%)%U(Z)(C),

1<s<k ijo 1<s<k
oh(Ov (¢, 0)* = V(ur (Ov (¢, Qu,u)p) = / . (O (¢, C)u, u)n| *dps(u)
weS2r—1

By integrating over ¢ € $?"~! C C" and applying the left hand inequality in Lemma 11.50
we infer

LK; ” )kHgk(zvmvu)_-gk(z7x>H3de¢(w)du(u)
k—1X 2r—1

n?(r +1) 1 ~
(11.52) < m( > S_Q)Uw,h(e)V)

1<s<k

where awﬁ(év) is the standard deviation of ©y on §27~! x §2r—1 .

Gun(@y) = / (0 (¢, Oy wh| *dpa(C) dpa).
[{lw=1, |u|p=1

On the other hand, brutal estimates give the Hermitian operator norm estimates

(11.53) gz o < (2 1) L)l

1<s<k

(1.5 lontalle < (3 1o

1<s<k
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where
1Ovlwr= sup  [(Ov((,Q)u,u)n|.
Clo=1, Juln=1
We use these estimates to evaluate the g-index integrals. The integral associated with
75 (2, z) is much easier to deal with than g (z,z,u) since the characteristic function of the
g-index set depends only on z. By Lemma 11.49 we find

‘]lgkyq(z,x,u) det gi (2, z,u) — 1, 4(2) det §k(z,x)}

n—1—1

0<ign—1

<

The Cauchy-Schwarz inequality combined with (11.52 — 11.54) implies

/ [Ty (2, 2, u) det gi(z, 2, u) — 1 4(2) det Gy (2, 2)| dv () dpa(w)
Ap_1x(S2r-1)k
5 1/2
s (/ lge(z, 2, w) —%(zw)\\wdvk,r(@dmu)) x
Ap_1x(82r—1)k

</A“x<sm1>k( 2 "g’f('z’f”’“>”i“§k<w>l|2‘1‘i)dek,r<x>du<u>)

o<i<n—1

1/2

n(1+1/r)'/? ( 1 )1/2 ~ 1 n—1-i
< Y Ow, @ @ Zd —1IM2)||w
(k(k +1/r))1/2 1<§<k 52 n( V)1<§—1” vl ’h<r” () )
2n—2 1/2 ne1
T log k
. (/ ( 3 ?) dyk,r@)) _ o(leshr
Ar—1 \1g<s<k

by Lemma 11.44 with n replaced by 2n — 2. This is the essential error estimate. As one
can see, the growth of the error mainly depends on the final integral factor, since the initial
multiplicative factor is uniformly bounded over X. In order to get the principal term, we
compute

( > %) nde,r(x)

k=1 N 1<s<k

1
| e dn, (o) = S detn(e) [
Ag_q r A

log k)™
~ %detn(z).

From there we conclude that
/ / ]lgkaq<27x7 U’)gk(’z7 x? u)n dyk,r(w)d/,[/(u)
z€X J(zu) €A1 X (52— 1)k

_ (logk)" n (log k)"~1
= [ e +0(FE—)

The probabilistic estimate 11.43 follows by (11.41). O

11.55. Remark. If we take care of the precise bounds obtained above, the proof gives in
fact the explicit estimate

_ + kr — 1)' I
@n—FkT’* 1 (n AL / 1 n rnJ
/Xsm,@ LoV T (R — )L\ e R
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where
k 1 1/2 . onzl . .
J:”<1+1/T>“2(ZS—2) JRIC) S C O P
s=1 i=1
and

(L (5%) )

(ki + 1) [ (i 2 o)

|5k,r,n X

Ap_1
m C\ 1/2
1 2n—2 2™ (2n—2)! 1 1 m
(1 + 5 2= (2n—;—m)! (I+5+.+7) ) 1
h I+i+...+1 log k

by the lower and upper bounds of Ij,.,, Ij,2n—2 obtained in Lemma 11.44. As
(2n —2)!/(2n — 2 —m)! < (2n — 2)™, one easily shows that

(31/15)1/2

for k > 5n—5.
log & or e

(11.56) lek,rn] <

Also, we see that the error terms vanish if Oy is identically zero, but this is of course a
rather unexpected circumstance. In general, since the form ©y is trace free, Lemma 11.50
applied to the quadratic form u — (O (¢, ()u,u) on C" implies

Uw,h(év) < (r+1)"Y26

This yields the simpler bound

1/2
(11.57) J<nr1/2< ) rlOv L () 2w, 0

It will be useful to extend the above estimates to the case of sections of

(11.58) Ly, = Oxoo(1 )®7rko(k; (1+;+ +]1)F)

where F € Picg(X) is an arbitrary Q-line bundle on X and mj : XS¢ — X is the natural
projection. We assume here that F'is also equipped with a smooth Hermitian metric hp.
In formulas (11.41-11.43), the renormalized curvature ng(z, z,u) of Ly takes the form

1
Z(A+i+...4+ 1)

(11.59) m(z,z,u) = gr(z,z,u) + Opp,(2),

and by the same calculations its expected value is
(11.60) N(z) :=En(z,0,0)) = Odet v+ det h* (2) + O np (2).

Then the variance estimate for 7 — n is unchanged, and the LP bounds for n; are still
valid, since our forms are just shifted by adding the constant smooth term O, (2). The
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probabilistic estimate 11.43 is therefore still true in exactly the same form, provided we use
(11.58 — 11.60) instead of the previously defined Ly, 1, and n. An application of holomorphic
Morse inequalities gives the desired cohomology estimates for

hq(X,E V*®O<kr(1+%+...+%)F)>

1 1
= hi(XEC, 0 x0a (m )®7rk0<k ( +o —|—k>F>)
provided m is sufficiently divisible to give a multiple of F' which is a Z-line bundle.

11.61. Theorem. Let (X,V) be a directed manifold, F — X a Q-line bundle, (V,h) and
(F, hg) smooth Hermitian structure on V and F respectively. We define

1 1 1
Lk:OXSG(l)(gWZ <E(1+§++E)F),

7 = Odet V*,det h* + OF hy-

Then for all ¢ = 0 and all m > k > 1 such that m is sufficiently divisible, we have

(f mq)(—lw+0<<logk>—1>),

mn—|—kr—1 (lOg k)n

)

0 . n+kr—1 (logk)” . .
e oy > s ([ - otesn ™),
)

)

(n+kr—1)! nl (k)"

(a) h(XEC,0(L™)) <

mn—|—kr—1 (logk n
(n+kr— 1! nl (k)"

(c) X(XEE 0(LE™)) = (cr(V* @ F)" 4+ O((log k) ™).

Green and Griffiths [GrGr79] already checked the Riemann-Roch calculation (11.61c¢)
in the special case V = T% and F' = Ox. Their proof is much simpler since it relies
only on Chern class calculations, but it cannot provide any information on the individual
cohomology groups, except in very special cases where vanishing theorems can be applied;
in fact in dimension 2, the Euler characteristic satisfies x = h® — h' + h? < hY + h?, hence
it is enough to get the vanishing of the top cohomology group H? to infer h® > x; this
works for surfaces by means of a well-known vanishing theorem of Bogomolov which implies

in general
1 1
" X, ESCT: ( ( L —>F>) -
( ATk @0 (1 5+t 7 0

as soon as Kx ® F is big and m > 1.

In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [Bon93], every-
thing works almost unchanged in the case where V' C Tx has singularities and h is an
admissible metric on V' (see (11.8)). We only have to find a blow-up p : X — Xj so that
the resulting pull-backs p*Ly and p*V are locally free, and p* det h*, pu*Wy, , . only have
divisorial singularities. Then 7 is a (1, 1)-current with logarithmic poles, and we have to
deal with smooth metrics on p*LY™ @ O(—mE),) where Ej, is a certain effective divisor on
X} (which, by our assumption (11.8), does not project onto X). The cohomology groups
involved are then the twisted cohomology groups

HY(XEC, O(LE™) @ dm)
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where Ji.m = p(O(—mEy)) is the corresponding multiplier ideal sheaf, and the Morse
integrals need only be evaluated in the complement of the poles, that is on X (n,q) \ S
where S = Sing(V') U Sing(h). Since

(M) (O(LE™) @ p.m) C EESV* O(%(l + % T %)F))

we still get a lower bound for the H? of the latter sheaf (or for the H® of the un-twisted
line bundle O(LY™) on XF¢). If we assume that Ky ® F is big, these considerations also
allow us to obtain a strong estimate in terms of the volume, by using an approximate Zariski
decomposition on a suitable blow-up of (X, V). The following corollary implies in particular
Theorem 11.5.

11.62. Corollary. If F is an arbitrary Q-line bundle over X, one has
WO XSG, 0 vaa(m) @w*o(ﬁQ P l)F)
k Y Xk k kT 2 tet k
S mn—l—kr—l (log k)n
T (n+kr— D! nl(EYHr

(VOI(KV ® F) — O((log k)_1)> o 0(m”+kr-1),

when m > k > 1, in particular there are many sections of the k-jet differentials of degree
m twisted by the appropriate power of F' if Kyy ® F' s big.

Proof. The volume is computed here as usual, i.e. after performing a suitable modification
1 X — X which converts Ky into an invertible sheaf. There is of course nothing to prove if
Ky ® F is not big, so we can assume Vol(Ky ® F') > 0. Let us fix smooth Hermitian metrics
ho on Tx and hp on F. They induce a metric u*(det hy' ® hp) on p*(Ky @ F) which, by
our definition of Ky, is a smooth metric. By the result of Fujita [Fuj94] on approximate
Zariski decomposition, for every § > 0, one can find a modification us : X5 — X dominating
w1 such that
WKy & F) = 05 (A+E)

where A and E are Q-divisors, A ample and E effective, with
Vol(A) = A™ > Vol(Ky @ F) — 6.

If we take a smooth metric h4 with positive definite curvature form ©,4 ,, then we get
a singular Hermitian metric hahg on pj(Ky ® F) with poles along F, i.e. the quotient
hahg/p*(det hgl ® hr) is of the form e~% where ¢ is quasi-psh with log poles log |0 x|
(mod C*°(Xj)) precisely given by the divisor E. We then only need to take the singular
metric h on T'x defined by

b — hoe%(us)*w

(the choice of the factor % is there to correct adequately the metric on detV). By
construction h induces an admissible metric on V' and the resulting curvature current
N = Ok det h* + OFn, is such that

pusn =0©an, + [E], [E] = current of integration on E.

Then the 0-index Morse integral in the complement of the poles is given by

/ nn:/~ m o, = A" > Vol(Ky ® F) — §
X(n,0)\8 '

Xs
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and (11.62) follows from the fact that 6 can be taken arbitrary small. a

11.63. Example. In some simple cases, the above estimates can lead to very ex-
plicit results. Take for instance X to be a smooth complete intersection of multidegree
(di,da,...,ds) in IP’(%JFS and consider the absolute case V' = Tx. Then

KX:OX<d1—|—...—|—ds—n—S—1).

Assume that X is of general type, i.e. ) d; > n+ s+ 1. Let us equip V = Tx with
the restriction of the Fubini-Study metric h = ©¢(1) ; a better choice might be the Kahler-
Einstein metric but we want to keep the calculations as elementary as possible. The standard
formula for the curvature tensor of a submanifold gives

Oryn = (O1,, . n)x +B°AB

where 8 € C°°(AY'T% @ Hom(Tx, @ O(d;))) is the second fundamental form. In other
words, by the well known formula for the curvature of projective space, we have

(O1 1 (¢, Quy u) = [C][ul® + (¢, w)* = 1B(C) - ul*.
The curvature p of (Kx,det h*) (i.e. the opposite of the Ricci form TrOry, 5) is given by
(11.64) p=—TrOp, p, =Tr(BAS*)—(n+1)h > —(n+1)h.

We take here F' = Ox(—a), a € Q4+, and we want to determine conditions for the existence
of sections

m

1 1
(11.65) H0<X,E,?§nT§®O(—ak <1+§+'“+E)>>’ m> 1.
’ T

We have to choose Kx ®Ox (—a) ample, i.e. ) d; > n+s+a+1, and then (by an appropriate
choice of the metric of F' = Ox(—a)), the form n = Ox g0, (~a) can be taken to be any
positive form cohomologous to (> d; — (n+s+a-+1))h. We use remark 11.55 and estimate
the error terms by considering the Kéhler metric

w=p+(n+s+2)h= (Zdj+1)h-

Inequality (11.64) shows that w > 2h and also that w > Tr(5 A 8*). From this, one easily
concludes that ||n|, < 1 by an appropriate choice of 7, as well as ||Ory nllw,r < 1 and

1075 allw.r < 2. By (11.57), we obtain for n > 2

n—1 47
Jgng’/QL ><2n /wn< _nn+1/2/ o
V6 n—1 Jx V6 X

where [, w® = (Y d; +1)" deg(X). On the other hand, the leading term [, 7" equals
(Xdj—n—s—a— 1)” deg(X) with deg(X) = d; ...ds. By the bound (11.56) on the error
term €g ., we find that the leading coefficient of the growth of our spaces of sections is
strictly controlled below by a multiple of

(Zdj —n—s—a—l)n—47r<%>l/2 nIZ;1;2(Zdj+1>n
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if kK > e®™~5. A sufficient condition for the existence of sections in (11.65) is thus

(11.66) k> exp (7.38 n““/?(zd _anil’i — 1)”).
J

This is good in view of the fact that we can cover arbitrary smooth complete intersections of
general type. On the other hand, even when the degrees d; tend to 400, we still get a large
lower bound k ~ exp(7.38 n™*1/2) on the order of jets, and this is far from being optimal :
Diverio [Div08, Div09] has shown e.g. that one can take k = n for smooth hypersurfaces of
high degree. It is however not unlikely that one could improve estimate (11.66) with more
careful choices of w, h. O

811.D. Non probabilistic estimate of the Morse integrals

We assume here that the curvature tensor (c;jo) satisfies a lower bound

(1167) Z Cijagfigjuaﬂg = — Z’Y’LJ&E‘] ‘”LL|2, V£ eTx, ue X
i7j7a75
for some semipositive (1,1)-form v = 5= > 7;;(2)dz; A dz; on X. This is the same as

assuming that the curvature tensor of (V*, h*) satisfies the semipositivity condition
(11.67) Oy« p +y@Idy- >0

in the sense of Griffiths, or equivalently Oy ;, —y®Idy < 0. Thanks to the compactness of X,
such a form v always exists if i is an admissible metric on V. Now, instead of replacing Oy
with its trace free part Oy and exploiting a Monte Carlo convergence process, we replace
Oy with O, = Oy —y ®Idy <0, i.e. ¢jja by C:iyjaﬁ = Cijap + Vij0ap. Also, we take a line
bundle F = A™! with ©4,, > 0, i.e. F seminegative. Then our earlier formulas (11.39),
(11.58), (11.59) become instead

1 1 _ _
0L68) (e = 3 o B us(e) iy s Ay >0

1<s<k 15,0,
(11.69) Ly = Oycc(l)® *o( 1(1+1+ +1>A>
. k — XEG ﬂ-k kfr 2 « o k 5
1

(11'70) ®Lk = nk(%x,U) = gg(zvxvu) - (G)A,hA (Z) + T’Y(Z))'

=(1+34+...4+3)

In fact, replacing ©y by Oy — v ® Idy has the effect of replacing Oget v+ = TrOy+« by
Oget v+ +77. The major gain that we have is that g, = ©r, is now expressed as a difference
of semipositive (1, 1)-forms, and we can exploit the following simple lemma, which is the key
to derive algebraic Morse inequalities from their analytic form (cf. [Dem94], Theorem 12.3).

11.71. Lemma. Let n = o — B be a difference of semipositive (1,1)-forms on an n-
dimensional complex manifold X, and let 1, <, be the characteristic function of the open set
where n s non degenerate with a number of negative eigenvalues at most equal to q. Then

(=1 <q 1" < Z (-1 T,

0<ixg
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in particular
1, <1 n" > a" — na A B forq=1.

Proof. Without loss of generality, we can assume « > 0 positive definite, so that a can be
taken as the base hermitian metric on X. Let us denote by

AMZX=2... 2020
the eigenvalues of 8 with respect to a. The eigenvalues of 7 = o — § are then given by
1M <... <12 <1 =21 <...<1= Ay,

hence the open set {\;41 < 1} coincides with the support of 1, <, except that it may also
contain a part of the degeneration set n™ = 0. On the other hand we have

(")ar a8 =ara

where o7 ()\) is the j-th elementary symmetric function in the A;’s. Thus, to prove the
lemma, we only have to check that

S (1N = A (D! T =2 >0

0<isg 1<isn

This is easily done by induction on n (just split apart the parameter A, and write
cl(N) =0l _ (N +alE ) a). O

We apply here Lemma 11.71 with

1

(15t ) @ )

a:gz(z,x,u), 6:/616 9

which are both semipositive by our assumption. The analogue of (11.41) leads to

@n—l—kr*—l
/X,?G(Lk, <py e
(n+kr—1)! / /
= 1, ) (9] = Br)" dvk () dp(u)
Tl E) R — D! Loex Jaen, s sz —Br,<1 (g

(n-l—k;r—l / / N S
> g.)" —n(g.)" " A Br) dvg »(x) du(u).
AT e o ron g (G0 =D A B0) i)

The resulting integral now produces a “closed formula” which can be expressed solely in
terms of Chern classes (at least if we assume that v is the Chern form of some semipositive
line bundle). It is just a matter of routine to find a sufficient condition for the positivity
of the integral. One can first observe that g; is bounded from above by taking the trace of
(Cijap), in this way we get

0< g7 < ( > Q;S)(@detw +17)

1<s<k
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where the right hand side no longer depends on v € (S?"~1)*. Also, g, can be written as a
sum of semipositive (1, 1)-forms

xS — —
g= Y, T0Ww), W= Y cpuatipds Ndzj,

1<s<k i,J,0,8

hence for k > n we have

GO =nl > BT g YA (ug) A A (ug,).

S1...8
1<s1<..<sn<k 1 n

Since [go, 1 07 (u) dp(u) = £ Tr(Oy« + ) = £Oger v+ + 7, we infer from this

/ (67)" dvpr () dpu(a)
(z,u)EA)_1 X (S2r—1)k ’

1 1 n
> nl 7( oz dus, )(_@e . )
n > T /A“xl T dvg,p(x) ) ( ~Oactve +7

1<81<<Sn<k
By putting everything together, we conclude:

11.72. Theorem. Assume that Oy« > —y @ Idy« with a semipositive (1,1)-form v on X.
Then the Morse integral of the line bundle

Lk:OXSG(1)®W,:0(—%(1+%+...+%)A), A0

satisfies for k = n the inequality

1 n+kr—1
(n + kr — 1)! XGG(Ly,<1) L,V e

1 n n—
()= e =) /X e (Qaetve +17)" = e (et ve +719)" " A (O ans +77)

where

n! 1
Crrk = —n( Z 7) / 1 ... Ty dvg (),
" Mg n<k: ' A
x TL—l
/ Z —S> dvi ().
Ap_q S

1<s<k

1<..
n 1
ot = g (L4 3+

Especially we have a lot of sections in HO(XEG,mLk), m > 1, as soon as the difference
occurring in (x) is positive.

The statement is also true for & < n, but then ¢, ,; = 0 and the lower bound (x)
cannot be positive. By Corollary 11.11, it still provides a non trivial lower bound for
RO(X GG mLy) — kY (XFG mLy), though. For k > n we have ¢, > 0 and (x) will be
positive if O4et v+ is large enough. By Formula 11. 20 we have

(11.73) ¢ FM 3 R (Y}
k=D S s (b= DY
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(with equality for kK = n), and by ([Dem11], Lemma 2.20 (b)) we get the upper bound

n—1

o (krdn—1)r""2, 1 e 1 2m (n — 1)! 1 1\-m
k< 1=+... —) 14 = —(1 St —) .

The case k = n is especially interesting. For k = n > 2 one can show (with » < n and H,
denoting the harmonic sequence) that

c 2 —1
(11.74) LS nn n"? exp (
Cn,k,r 3

2(n—1)
Hn

(nlog(nlog 24n))n.

1
—l—nloan) < 3

We will later need the particular values that can be obtained by direct calculations (cf.
Formula (11.24) and [Dem11, Lemma 2.20]).

1 9 CIQ 2.9 45
]_]_.75 = — / g 7 —
( 2) 027272 207 02,2,2 167 62’2’2 4 Y
1 , 451 533 4961

(11753) 63’3’3 =

990" P33T U860°  cass 54

811.E. Global generation of the twisted tangent space of the universal family

In [Siu02, Siu04], Y.T. Siu developed a new stategy to produce jet differentials, involving
meromorphic vector fields on the total space of jet bundles — these vector fields are used to
differentiate the sections of E,Sgn so as to produce new ones with less zeroes. The approach
works especially well on universal families of hypersurfaces in projective space, thanks to the
good positivity properties of the relative tangent bundle, as shown by L. Ein [Ein88, Ein91]
and C. Voisin [Voi96]. This allows at least to prove the hyperbolicity of generic surfaces
and generic 3-dimensional hypersurfaces of sufficiently high degree. We reproduce here the
improved approach given by [Pau08] for the twisted global generation of the tangent space of
the space of vertical two jets. The situation of k-jets in arbitrary dimension n is substantially
more involved, details can be found in [Mer09].

Consider the universal hypersurface X C P**1 x PNa of degree d given by the equation

> Az =0,

|a|=d
where [Z] € P"*, [A] € PY, a = (o, ..., any1) € N2 and
N, — <n-|—2l+1) .

Finally, we denote by V C X the vertical tangent space, i.e. the kernel of the projection
7:X — U c PN

where U is the Zariski open set parametrizing smooth hypersurfaces, and by J;V the bundle
of k-jets of curves tangent to V, i.e. curves contained in the fibers X, = 7~ 1(s). The goal is
to describe certain meromorphic vector fields on the total space of J;V. In the special case
n = 2, k = 2 considered by Paun [Pau08], one fixes the affine open set

uo = {Z() 7é 0} X {AOdOO 7é 0} ~ (C3 X CNd
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in P3 x PN with the corresponding inhomogeneous coordinates (z; = Z;/Zp);j=1,2,3 and
(@a = Aa/A0d00)|a|=d,a1<d- Since ag is determined by ag = d — (a1 + a2 + a3), with a
slight abuse of notation in the sequel, o will be seen as a multiindex (g, as, a3) in N3, with
moreover the convention that agqo9 = 1. On this affine open set we have

Xo:=XNUy = {zf+ > aazo‘:()}-

la|<d, a1 <d

We now write down equations for the open variety J2V,, where we indicated with Vg the
restriction of V C T, the kernel of the differential of the second projection, to Xy: elements
in J5Vq are therefore 2-jets of germs of “vertical” holomorphic curves in X, that is curves

tangent to vertical fibers. The equations, which live in a natural way in (ng xClexC3, xC3,,,
J J
stand as follows.

Z aq 2% =0,

ol <d

aOé
Z Z aaaizjz;:O,

1<G<3 |a|<d

Z Zao‘ ZH+ Z Z 8238,% %% =0

1<5<3 |al<d 1<5,k<3 |a|<d
Let Wy to be the closed algebraic subvariety of J>Vy defined by
Wo ={(2,a,2',2") € JLVo | 2/ A 2" =0}
and let W be the Zariski closure of Wq in Jo'V: we call this set the Wronskian locus of J5'V.

Explicit calculations (cf. [Pau08]) then produce the following vector fields:

First family of tangent vector fields. For any multiindex o such that a; > 3, consider the

vector field 5 5 5 5
A . N K A
aaa 8aa—61 aaa 261 aao¢—3<‘51
where d; € N* is the multiindex whose j-th component is equal to 1 and the others are zero.
For the multiindexes a which verify a1 > 2 and as > 1, define

0 0 0 0
0210 = — 22 — 2 B —
¢ 0 a ! aaa—51 2 aaa—t?g ! aaa—251
0
4229290 —— P ——
Oo—6,—6, Ota—25,—b,

Finally, for those o for which aq,as, a3 > 1, set

gt _ 0 ) 9 9
=5 — % — 22 — z3
« Oay, 0o —s, 0o—s, 0 s,
+ 2122 + 2123 + 2023 7/
8a0{—51—52 60/0(—51—53 aaa—52—53
0
— Z2122Z%3

8a0{—51—62—53
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Second family of tangent vector fields. We construct here the holomorphic vector fields in
order to span the 0/0z;-directions. For j = 1,2, 3, consider the vector field

0 0
g — Z ((l/j + 1)aa+5j 87
T a+61<d «

Third family of tangent vector fields. In order to span the jet directions, consider a vector
field of the following form:

2
Op = Z pa(z,a,b)%+ Z Zﬁj(k) 9

(k)’
la|<d, 1 <d 1<5<3 k=1 9z;

where €®) = B .20 k=12 and B = (bjx) varies among 3 x 3 invertible matrices with
complex entries. By studying more carefully these three families of vector fields, one obtains:

11.76. Theorem. The twisted tangent space T,y @ Ops(7) @ Opn, (1) is generated over
by its global sections over the complement JoV ~'W of the Wronskian locus W. Moreover,

one can choose generating global sections that are invariant with respect to the action of Go
on JoV.

By similar, but more computationally intensive arguments [Mer09], one can investigate
the higher dimensional case. The following result strengthens the initial announcement

of [Siu04].
11.77. Theorem. Let J*"*(X) be the space of vertical k-jets of the universal hypersurface
X C Pt x pa

parametrizing all projective hypersurfaces X C P*"*1 of degree d. Then for k = n, there exist
constants ¢, and ¢, such that the twisted tangent bundle

Tjgert(x) (29 OIP)n+1 (Cn> (29 O[P’Nd (C;’L)

is generated by its global Gy -invariant sections outside a certain exceptional algebraic subset
¥ C JYH(X). One can take either c, = 3(n? +5n), ¢, =1 and ¥ defined by the vanishing

n
of certain Wronskians, or ¢, = n? +2n and a smaller set ¥ C ¥ defined by the vanishing of
the 1-jet part.

11.F. General strategy of the proof of hyperbolicity properties
Let again X C P"*! x PN¢ be the universal hypersurface of degree d in P*+1.

(11.78) Assume that we can prove the existence of a non zero polynomial differential operator
P e H)(X, EgS Ty ® O(—A)),

where A is an ample divisor on X, at least over some Zariski open set U in the base of the
projection m: X — U C PNa,

Observe that we now have a lot of techniques to do this; the existence of P over the
family follows from lower semicontinuity in the Zariski topology, once we know that such a
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section P exists on a generic fiber X, = 77 1(s). Let Y C X be the set of points x € X where
P(z) = 0, as an element in the fiber of the vector bundle EFSTs ® O(—A)) at . Then Y
is a proper algebraic subset of X, and after shrinking U we may assume that Yy =Y N X, is
a proper algebraic subset of X, for every s € U.

(11.79) Assume also, according to Theorems 11.76 and 11.77, that we have enough global
holomorphic Gy -invariant vector fields 6; on JiV with values in the pull-back of some ample
divisor B on X, in such a way that they generate T';,v@p; B over the dense open set (J,'V)"8
of reqular k-jets, i.e. k-jets with non zero first derivative (here py : JyV — X is the natural
projection).

Considering jet differentials P as functions on J;V, the idea is to produce new ones by
taking differentiations

szzejl...QjZP, Ogggm,j:(jl,,j@
Since the 0;’s are Gj-invariant, they are in particular C*-invariant, thus
Q; € HY(X,EJ$Ts @ O(—A+(B))

(and @ is in fact G}, invariant as soon as P is). In order to be able to apply the vanishing
theorems of §8, we need A — mB to be ample, so A has to be large compared to B. If
f:C — X, is an entire curve contained in some fiber Xy C X, its lifting ji(f) : C — J;V
has to lie in the zero divisors of all sections ();. However, every non zero polynomial of
degree m has at any point some non zero derivative of order ¢ < m. Therefore, at any
point where the 6; generate the tangent space to JiV, we can find some non vanishing
section ;. By the assumptions on the 0;, the base locus of the @);’s is contained in the
union of p, ' (Y) U (JV)5&; there is of course no way of getting a non zero polynomial at
points of Y where P vanishes. Finally, we observe that j5(f)(C) ¢ (J,V)*™8 (otherwise f is
constant). Therefore j,(f)(C) C p,, ' (Y) and thus f(C) C Y, ie. f(C)CYs=YN X,.

11.80. Corollary. Let X C P! x PN¢ be the universal hypersurface of degree d in P" 1. If
d > d,, is taken so large that conditions (11.78) and (11.79) are met with A—mB ample, then
the generic fiber X of the universal family X — U satisfies the Green-Griffiths conjecture,
namely all entire curves f : C — X, are contained in a proper algebraic subvariety Yy C X,
and the Ys can be taken to form an algebraic subset Yy C X.

This is unfortunately not enough to get the hyperbolicity of X, because we would have to
know that Y itself is hyperbolic. However, one can use the following simple observation due
to Diverio and Trapani [DT10]. The starting point is the following general, straightforward
remark. Let & — X be a holomorphic vector bundle let o € H(X, &) # 0; then, up to
factorizing by an effective divisor D contained in the common zeroes of the components
of o, one can view ¢ as a section

o€ H(X, & ® Ox(—D)),

and this section now has a zero locus without divisorial components. Here, when n > 2,
the very generic fiber X has Picard number one by the Noether-Lefschetz theorem, and so,
after shrinking U if necessary, we can assume that Oy (—D) is the restriction of Opn+1(—p),
p = 0 by the effectivity of D. Hence D can be assumed to be nef. After performing this
simplification, A —mB is replaced by A —mB + D, which is still ample if A —mB is ample.
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As a consequence, we may assume codimYy > 2, and after shrinking U again, that all Y
have codim Y, > 2.

11.81. Additional statement. In corollary 11.80, under the same hypotheses (11.78) and
(11.79), one can take all fibers Yy to have codim Yy > 2.

This is enough to conclude that X is hyperbolic if n = dim Xy < 3. In fact, this is clear
if n = 2 since the Y, are then reduced to points. If n = 3, the Y, are at most curves, but
we know by Ein and Voisin that a generic hypersurface X, C P* of degree d > 7 does not
possess any rational or elliptic curve. Hence Y is hyperbolic and so is X, for s generic. O

11.82. Corollary. Assume that n =2 or n = 3, and that X C P! x PNa js the universal
hypersurface of degree d > d,, = 2n + 1 so large that conditions (11.78) and (11.79) are met
with A—mB ample. Then the very generic hypersurface X, C P! of degree d is hyperbolic.

§11.G. Proof of the Green-griffiths conjecture for generic hypersurfaces in P71

The most striking progress made at this date on the Green-Griffiths conjecture itself is
a recent result of Diverio, Merker and Rousseau [DMR10], confirming the statement when
X C IP’E+1 is a5generic hypersurface of large degree d, with a (non optimal) sufficient lower
bound d > 2™ . Their proof is based in an essential way on Siu’s strategy as developed
in §11.E, combined with the earlier techniques of [Dem95]. Using our improved bounds
from § 11.D, we obtain here a better estimate (actually of exponential order one O(exp(n'*¢)
rather than order 5).

11.83. Theorem. A generic hypersurface X C P"*! of degree d > d,, with
’I’L4 n
dy =286, dz =7316, d, = L? (nlog(nlog(24n))) J forn >4,

satisfies the Green-Griffiths conjecture.

Proof. Let us apply Theorem 11.72 with V = Tk, r = n and £ = n. The main starting
point is the well known fact that T3, ® Opn+1(2) is semipositive (in fact, generated by its
sections). Hence the exact sequence

0 = Opn+1(—=d) = Tpuiy x = Tx =0

implies that T% ® Ox(2) > 0. We can therefore take v = Og(2) = 2w where w is the
Fubini-Study metric. Moreover det V* = Kx = Ox(d —n — 2) has curvature (d — n — 2)w,
hence Oget v+ + 17y = (d +n — 2)w. The Morse integral to be computed when A = Ox(p) is

/ (Cn,n,n(d +n—2)"— c;w’n(d +n— 2)”_1(p + 2n)>w”,
X

so the critical condition we need is
/

c
d+mn—2>"22(p+2n).
n,n,n

On the other hand, Siu’s differentiation technique requires 7’5 (1 + % +.o. 4+ %)A —mB to be
ample, where B = Ox (n? + 2n) by Merker’s result 11.77. This ampleness condition yields

= (1+1+ +1) (n+2n) >0

— —+...+—)p—(n n

n? 2 n) ’
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so one easily sees that it is enough to take p = n* —2n for n > 3. Our estimates (11.74) and
(11.75) give the expected bound d,,. O

Thanks to 11.81, one also obtains the generic hyperbolicity of 2 and 3-dimensional
hypersurfaces of large degree.

11.84. Theorem. For n =2 or n = 3, a generic hypersurface X C P**! of degree d > d,
1s Kobayashi hyperbolic.

By using more explicit calculations of Chern classes (and invariant jets rather than
Green-Griffiths jets) Diverio-Trapani [DT10] obtained the better lower bound d > d3 = 593
in dimension 3. In the case of surfaces, Paun [Pau08] obtained d > dy = 18, using deep
results of McQuillan [McQu98].

One may wonder whether it is possible to use jets of order k£ < n in the proof of 11.83 and
11.84. Diverio [Div08] showed that the answer is negative (his proof is based on elementary
facts of representation theory and a vanishing theorem of Briickmann-Rackwitz [BR9IO0]):

11.85. Proposition ([Div08]). Let X C P"! be a smooth hypersurface. Then
H (X, B Tx) =0

form >1 and 1 < k <n. More generally, if X C P""% is a smooth complete intersection
of codimension s, there are no global jet differentials for m > 1 and k < n/s.
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