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1. Introduction

Modern algebraic geometry is one the most intricate crossroads between various
branches of mathematics : commutative algebra, complex analysis, global analysis
on manifolds, partial differential equations, differential topology, symplectic geom-
etry, number theory ... . This interplay has already been strongly emphasized
by historical precursors, including Hodge, Kodaira, Hirzebruch and Grauert. Of
course, there have been also fruitful efforts to establish purely algebraic foundations
of the major results of algebraic geometry, and many prominent mathematicians
such as Grothendieck, Deligne and Mumford stand out among the founders of this
trend. The present contribution stands closer to the above mentioned wider ap-
proch ; its goal is to explain some recent applications of local and global complex
analytic methods to the study of projective algebraic varieties.

A unifying theme is the concept of positivity : ample line bundles are char-
acterized by the positivity of their curvature in the complex geometric setting
(Kodaira [35]). Projective manifolds thus appear as a subclass of the class of com-
pact Kähler manifolds, and their cohomological properties can be derived from the
study of harmonic forms on Kähler manifolds (Hodge theory). In this vein, another
central concept is the concept of positive current, which was introduced by P. Le-
long during the 50’s. By carefully studying the singularities and the intersection
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theory of such currents, we derive precise structure theorems for the Kähler cone
and for the cone of effective divisors of arbitrary projective varieties ([5], [18]).

L2 estimates for solutions of ∂ equations are another crucial technique for pro-
ving vanishing theorems for the cohomology of vholomorphic vector bundles or
sheaves. A combination of the Bochner-Kodaira differential geometric estimate
with PDE techniques of Kohn, Hörmander and Andreotti-Vesentini led in the 60’s
to powerful existence theorems for ∂-equations in hermitian vector bundles of pos-
itive curvature. A more recent and equally decisive outcome is the L2 extension
theorem by Ohsawa and Takegoshi [48] in 1987. Among applications, we have
various forms of approximation theorems (closed positive (1, 1)-currents can be
approximated by algebraic divisors, and their singularities can be approximated
by algebraic singularities). In the analytic setting, this turns out to be the key
for the study of adjunction theory (generation properties of adjoint linear systems
KX + L, pluricanonical embeddings ...). As an illustration, we present a recent
proof, adapted from work by Y.T. Siu [58], [59], S. Takayama [62] and M. Pǎun [52],
of the deformation invariance of plurigenera h0(Xt,mKXt

), for an arbitrary pro-
jective family (Xt) of algebraic varieties.

2. Basic concepts and results of complex geometry

This section mostly contains only well-known definitions and results. However, we
want to fix the notation and describe in detail our starting point.

2.1. Forms, currents, Kähler metrics. Let X be a compact com-
plex manifold and n = dimC X . In any local holomorphic coordinate system
z = (z1, . . . , zn), a differential form u of type (p, q) can be written as a sum
u(z) =

∑
|J|=p,|K|=q uJK(z) dzJ∧dzK extended to all increasing multi-indices J, K

of length p, q, with the usual notation dzJ = dzj1 ∧ . . . ∧ dzjp
. We are especially

interested in positive currents of type (p, p)

T = ip
2

∑

|J|=|K|=p

TJK(z)dzJ ∧ dzK .

Recall that a current is a differential form with distribution coefficients, and that
a current is said to be positive if the distribution

∑
λjλkTJK is a positive real

measure for all complex numbers λJ (which implies TKJ = T JK , hence T = T ).
The coefficients TJK are then complex measures – and the diagonal ones TJJ are
positive (real) measures.

A current is said to be closed if dT = 0 in the sense of distributions. Important
examples of closed positive (p, p)-currents are currents of integration over codimen-
sion p analytic cycles [A] =

∑
cj [Aj ] where the current [Aj ] is defined by duality

as

〈[Aj ], u〉 =

∫

Aj

u|Aj
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for every (n − p, n − p) test form u on X . Another important example of (1, 1)-
current is the Hessian form T = i∂∂ϕ of a plurisubharmonic function on an open set
Ω ⊂ X (plurisubharmonic functions are upper semi-continuous functions satisfying
the mean value inequality on complex analytic disc; they are characterized by
positivity of i

∑
∂2ϕ/∂zj∂zk dzj ∧ dzk). A Kähler metric on X is a positive

definite hermitian (1, 1)-form

ω(z) = i
∑

1≤j,k≤n

ωjk(z)dzj ∧ dzk such that dω = 0,

with smooth coefficients. The manifold X is said to be Kähler if it possesses at
least one Kähler metric ω. It is clear that every complex analytic and locally
closed submanifold X ⊂ PN

C
is Kähler (the restriction of the Fubini-Study metric

ωFS = i
2π log(|z0|2 + |z1|2 + . . . + |zN |2) to X is a Kähler metric. Especially

projective algebraic varieties are Kähler.

2.2. Cohomology of compact Kähler manifolds. To every d-closed
complex valued k-form or current α (resp. to every ∂-closed complexe valued (p, q)-
form or current α) is associated its De Rham (resp. Dolbeault) cohomology class

{α} ∈ Hp+q(X,C) (resp. Hp,q(X,C))

This definition hides a nontrivial result, namely the fact that all cohomology groups
involved (De Rham, Dolbeault, . . .) can be defined either in terms of smooth forms
or in terms of currents. In fact, if we consider the associated complexes of sheaves,
forms and currents both provide acyclic resolutions of the same sheaf (locally
constant functions, resp. holomorphic sections). One of the main results of Hodge
theory, historically obtained by W.V.D. Hodge through the theory of harmonic
forms, is the following fundamental

Theorem 2.1. Let (X,ω) be a compact Kähler manifold. Then there is a canonical
isomorphism

Hk(X,C) =
⊕

p+q=k

Hp,q(X,C),

where each group Hp,q(X,C) can ve viewed as the space of (p, q)-forms α which
are harmonic with respect to ω, i.e. ∆ωα = 0.

Now, observe that every analytic cycle A =
∑
λjAj of codimension p with

integral coefficients defines a cohomology class

{[A]} ∈ Hp,p(X,C) ∩H2p(X,Z)/{torsion} ⊂ Hp,p(X,C) ∩H2p(X,Q)

where H2p(X,Z)/{torsion} ⊂ H2p(X,Q) ⊂ H2p(X,C) denotes the image of inte-
gral classes in complex cohomology. When X is a projective algebraic manifold,
this observation leads to the following statement, known as the Hodge conjecture
(which was to become one of the famous seven Millenium problems of the Clay
Mathematics Institute . . .).
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Conjecture 2.2. Let X be a projective algebraic manifold. Then the space of
“Hodge classes” Hp,p(X,C) ∩ H2p(X,Q) of type (p, p) is generated by classes of
algebraic cycles of codimension p with Q-coefficients.

At present, not much is known to support the positive direction of the Hodge
conjecture, not even the case of abelian varieties (i.e. projective algebraic complex
toriX = C/Λ) – which is the reason why several experts believe that the conjecture
could eventually lead to a counterexample. There are however a number of cases
where the cohomology algebra can be explicitly computed in terms of the geometry,
and which do satisfy the conjecture: flag manifolds (Schubert cycles generate the
cohomology ring), moduli spaces of stable or parabolic bundles over a general curve
(I. Biswas and M.S. Narasimhan [2]).

In the Kähler case, the conjecture is trivially wrong as shown by a general
complex torus possessing a line bundle with indefinite curvature. Moreover, by a
recent result of C. Voisin [66], even a considerably weakened form of the conjec-
ture – adding Chern classes of arbitrary coherent analytic sheaves to the pool of
potential generators – is false for non projective complex tori:

Theorem 2.3. (C. Voisin [66]) There exists a 4-dimensional complex torus X
which possesses a non trivial Hodge class of degree 4, such that every coherent
analytic sheaf F on X satisfies c2(F) = 0.

The idea is to show the existence of a 4-dimensional complex torus X = C4/Λ
which does not contain any analytic subset of positive dimension, and such that
the Hodge classes of degree 4 are perpendicular to ωn−2 for a suitable choice of
the Kähler metric ω. The lattice Λ is explicitly found via a number theoretic con-
struction of Weil based on the number field Q[i], also considered by S. Zucker [70].
The theorem of existence of Hermitian Yang-Mills connections for stable bundles
combined with Lübke’s inequality then implies c2(F) = 0 for every coherent sheaf
F on the torus.

2.3. Fundamental L2 existence theorems. Let X be a complex man-
ifold and (E, h) a hermitian holomorphic vector bundle of rank r over X . If
E|U ≃ U × Cr is a local holomorphic trivialization, the hermitian product can be
written as 〈u, v〉 = tuH(z)v where H(z) is the hermitian matric of h and u, v ∈ Ez .
It is well known that there exists a unique “Chern connection” D = D1,0 +D0,1

such that D0,1 = ∂ and such that D is compatible with the hermitian metric; in

the given trivialization we have D1,0u = ∂u+ Γ1,0 ∧ u where Γ1,0 = H
−1
∂H , and

its curvature operator ΘE,h = D2 is the smooth section of Λ1,1T ∗
X ⊗ Hom(E,E)

given by ΘE,h = ∂(H
−1
∂H). If E is of rank r = 1, then it is customary to

write H(z) = e−ϕ(z), and the curvature tensor then takes the simple expression
ΘE,h = ∂∂ϕ. In that case, the first Chern class of E is the cohomology class
c1(E) = { i

2π ΘE,h} ∈ H1,1(X,C), which is also an integral class in H2(X,Z)).
In case (X,ω) is a Kähler manifold, the bundles Λp,qT ∗

X ⊗ E are equipped
with the hermitian metric induced by Λp,qω ⊗ h, and we have a Hilbert space of
global L2 sections over X by integrating with respect to the Kähler volume form
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dVω = ωn/n!. If A, B are differential operators acting on L2 space of sections (in
general, they are just closed and densely defined operators), we denote by A∗ the
formal adjoint of A, and by [A,B] = AB−(−1)deg A deg BBA the usual commutator
bracket of operators. The fundamental operator Λω of Kähler geometry is the
adjoint of the wedge multiplication operator u 7→ ω ∧ u.

In this context, we have the following fundamental existence theorems for ∂-
equations, which is the culmination of several decades of work by Bochner [3], Ko-
daira [35], Kohn [36], Andreotti-Vesentini [1], Hörmander [25], Skoda [60], Ohsawa-
Takegoshi [48] (and many others). The proofs always proceed through differential
geometric inequalities relating the Laplace-Beltrami operators with the curvature
(Bochner-Kodaira identities and inequalities). The most basic result is the L2

existence theorem for solutions of ∂-equations.

Theorem 2.4. ([1], see also [10]) Let (X,ω) be a Kähler manifold which is “com-
plete” in the sense that it possesses a geodesically complete Kähler metric ω̃. Let
E be a hermitian holomorphic vector bundle of rank r over X, and assume that
the curvature operator Ap,q

E,h,ω = [iΘE,h,Λω] is positive definite everywhere on

Λp,qT ⋆
X ⊗ E, q ≥ 1. Then for any form g ∈ L2(X,Λp,qT ⋆

X ⊗ E) satisfying ∂g = 0
and

∫
X
〈(Ap,q

E,h,ω)−1g, g〉 dVω < +∞, there exists f ∈ L2(X,Λp,q−1T ⋆
X ⊗ E) such

that ∂f = g and ∫

X

|f |2 dVω ≤

∫

X

〈(Ap,q
E,h,ω)−1g, g〉 dVω.

It is thus of crucial importance to study conditions under which the operator
Ap,q

E,h,ω is positive definite. An easier case is when E is a line bundle. Then we
denote by γ1(z) ≤ . . . ≤ γn(z) the eigenvalues of the real (1, 1)-form iΘE,h(z) with
respect to the metric ω(z) at each point. A straightforward calculation shows that

〈Ap,q
E,h,ωu, u〉 =

∑

|J|=p,|K|=q

( ∑

k∈K

γk −
∑

j∈∁J

γj

)
|uJK |2.

In particular, for (n, q)-forms the negative sum −
∑

j∈∁J γj disappears and we have

〈An,q
E,h,ωu, u〉 ≥ (γ1 + . . .+ γq)|u|

2, 〈(An,q
E,h,ω)−1u, u〉 ≤ (γ1 + . . .+ γq)

−1|u|2

provided the line bundle (E, h) has positive definite curvature. Therefore ∂-
equations can be solved for all L2 (n, q)-forms with q ≥ 1, and this is the major
reason why vanishing results for Hq cohomology groups are usually obtained for
sections of the “adjoint line bundle” Ẽ = KX ⊗ E, where KX = ΛnT ∗

X = Ωn
X is

the “canonical bundle” of X , rather than for E itself. Especially, if X is compact
(or weakly pseudoconvex) and iΘE,h > 0, then Hq(X,KX ⊗ E) = 0 for q ≥ 1
(Kodaira), and more generally Hp,q(X,E) = 0 for p+ q ≥ n+1 (Kodaira-Nakano,
take ω = iΘE,h, in which case γj ≡ 1 for all j and

∑
k∈K γk−

∑
j∈∁J γj = p+q−n).

As shown in [10], Theorem 2.4 still holds true in that case when h is a singular
hermitian metric, i.e. a metric whose weights ϕ are arbitrary locally integrable func-
tions, provided that the curvature is (E, h) is positive in the sense of currents (i.e.,
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the weights ϕ are strictly plurisubharmonic). This implies the well-known Nadel
vanishing theorem ([42], [12], [15]), a generalization of the Kawamata-Viehweg
vanishing theorem [28], [65].

Theorem 2.5. (Nadel) Let (X,ω) be a compact (or weakly pseudoconvex) Kähler
manifold, and (L, h) a singular hermitian line bundle such that ΘL,h ≥ εω for some
ε > 0. Then Hq(X,KX ⊗ L ⊗ I(h)) = 0 for q ≥ 1, where I(h) is the multiplier
ideal sheaf of h, namely the sheaf of germs of holomorphic functions f on X such
that |f |2e−ϕ is locally integrable with respect to the local weights h = e−ϕ.

It is well known that Theorems 2.4 and 2.5, more specifically, its “singular
hermitian” version, imply almost all other fundamental vanishing or existence the-
orems of algebraic geometry, as well as their analytic counterparts in the framework
of Stein manifolds (general solution of the Levi problem by Grauert), see e.g. De-
mailly [16] for a recent account. In particular, one gets as a consequence the
Kodaira embedding theorem [35].

Theorem 2.6. Let X be a compact complex n-dimensional manifold. Then the
following properties are equivalent.

(i) X can be embedded in some projective space PN
C

as a closed analytic subman-
ifold (and such a submanifold is automatically algebraic by Chow’s thorem).

(ii) X carries a hermitian holomorphic line bundle (L, h) with psoitive definite
smooth curvature form iΘL,h > 0.

(iii) X possesses a Hodge metric, i.e., a Kähler metric ω such that {ω} ∈ H2(X,Z).

If property (ii) holds true, then for m ≥ m0 ≫ 1 the multiple L⊗m is very ample,
namely we have an embedding given by the linear system V = H0(X,L⊗m) of
sections,

ΦL⊗m : X −→ P (V ∗), z 7→ Hz = {σ ∈ V ; σ(z) = 0} ⊂ V,

and L⊗m ≃ Φ∗
L⊗mO(1) is the pull-back of the canonical bundle on P (V ∗).

Another fundamental existence theorem is the L2-extension result by Ohsawa-
Takegoshi [48]. Many different versions and generalizations have been given in
recent years [43], [44], [45], [46], [47]. Here is another one, due to Manivel [40],
which is slightly less general but simpler to state.

Theorem 2.7. (Ohsawa-Takegoshi [48], Manivel [40]) Let X be a compact or
weakly pseudoconvex n-dimensional complex manifold equipped with a Kähler met-
ric ω, let L (resp. E) be a hermitian holomorphic line bundle (resp. a hermitian
holomorphic vector bundle of rank r over X), and s a global holomorphic section
of E. Assume that s is generically transverse to the zero section, and let

Y =
{
x ∈ X ; s(x) = 0,Λrds(x) 6= 0

}
, p = dim Y = n− r.

Moreover, assume that the (1, 1)-form iΘ(L) + r i ∂∂ log |s|2 is semipositive and
that there is a continuous function α ≥ 1 such that the following two inequalities
hold everywhere on X :
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(i) iΘ(L) + r i ∂∂ log |s|2 ≥ α−1 {iΘ(E)s, s}

|s|2
,

(ii) |s| ≤ e−α.

Then for every holomorphic section f over Y of the adjoint line bundle L̃ = KX⊗L
(restricted to Y ), such that

∫
Y
|f |2|Λr(ds)|−2dVω < +∞, there exists a holomorphic

extension F of f over X, with values in L̃, such that

∫

X

|F |2

|s|2r(− log |s|)2
dVX,ω ≤ Cr

∫

Y

|f |2

|Λr(ds)|2
dVY,ω ,

where Cr is a numerical constant depending only on r.

The proof actually shows that the extension theorem holds true as well for
∂-closed (0, q)-forms with values in L̃, of which the stated theorem is the special
case q = 0.

There are several other important L2 existence theorems. One of them is
Skoda’s criterion for the surjectivity of holomorphic bundle morphisms – more
concretely, a Bezout type division theorem for holomorphic function. It can be
derived either from Theorem 2.4 on ∂-equations through sharp curvature calcula-
tions (this is Skoda’s original approch in [60]), or as a consequence of the above
extension theorem 2.7 (see Ohsawa [46]).

2.4. Positive cones. We now introduce some further basic objects of pro-
jective or Kähler geometry, namely cones of positive cohomology classes.

Definition 2.8. Let X be a compact Kähler manifold and H1,1(X,R) the space
of real (1, 1) cohomology classes.

(i) The Kähler cone is the set K ⊂ H1,1(X,R) of cohomology classes {ω} of
Kähler forms. This is clearly an open convex cone.

(ii) The pseudo-effective cone is the set E ⊂ H1,1(X,R) of cohomology classes
{T } of closed positive currents of type (1, 1). This is a closed convex cone
(as follows from the weak compactness property of bounded sets of positive
measures or currents).

It is follows from this definition that K ⊂ E . In general the inclusion is strict.
To see this, it is enough to observe that a Kähler class {α} satisfies

∫
Y
αp > 0 for

every p-dimensional analytic set. On the other hand, ifX is the surface obtained by
blowing-up P2 in one point, then the exceptional divisor E ≃ P1 has a cohomology
class {α} such that

∫
E
α = E2 = −1, hence {α} /∈ K, although {α} = {[E]} ∈ E .

In case X is projective, it is interesting to consider also the algebraic analogues
of our “transcendental cones” K and E , which consist of suitable integral divisor
classes. Since the cohomology classes of such divisors live in H2(X,Z), we are led
to introduce the Neron-Severi lattice and the associated Neron-Severi space

NS(X) := H1,1(X,R) ∩
(
H2(X,Z)/{torsion}

)
,
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NSR(X) := NS(X) ⊗Z R.

All classes of real divisors D =
∑
cjDj , cj ∈ R, lie by definition in NSR(X).

Notice that the integral lattice H2(X,Z)/{torsion} need not hit at all the subspace
H1,1(X,R) ⊂ H2(X,R) in the Hodge decomposition, hence in general the Picard
number, defined as

ρ(X) = rankZ NS(X) = dimR NSR(X)

satisfies ρ(X) ≤ h1,1 = dimR H
1,1(X,R), but the equality can be strict (actually,

it is well known that a generic complex torus X = Cn/Λ satisfies ρ(X) = 0 and
h1,1 = n2). In order to deal with the case of algebraic varieties we introduce

KNS = K ∩ NSR(X), ENS = E ∩ NSR(X).

A very important fact is that the “Neron-Severi part” of any of the open or closed
transcendental cones K, E , K, E◦ is algebraic, i.e. can be characterized in simple
algebraic terms.

Theorem 2.9. Let X be a projective manifold. Then

(i) ENS is the closure of the cone generated by classes of effective divisors, i.e.
divisors D =

∑
cjDj, cj ∈ R+.

(ii) KNS is the open cone generated by classes of ample (or very ample) divi-
sors A (Recall that a divisor A is said to be very ample if the linear system
H0(X,O(A)) provides an embedding of X in projective space).

(iii) The interior E◦
NS is the cone generated by classes of big divisors, namely

divisors D such that h0(X,O(kD)) ≥ c kdim X for k large.

(iv) The closed cone KNS consists of the closure of the cone generated by nef
divisors D (or nef line bundles L), namely effective integral divisors D such
that D · C ≥ 0 for every curve C.

By extension, we will say that K is the cone of nef (1, 1)-cohomology classes
(even though they are not necessarily integral).

Sketch of proof. (see also [13] for more details). If we denote by Kalg the open
cone generated by ample divisors, resp. by Ealg the closure of the cone generated
by effective divisors, we have Kalg ⊂ KNS, Ealg ⊂ ENS, and clearly the interesting
part lies in the converse inclusions. The inclusion KNS ⊂ Kalg is equivalent to the
Kodaira embedding theorem : if a rational class {α} is in K, then some multiple
of {α} is the first Chern class of a hermitian line bundle L whose curvature form
is Kähler. Therefore L is ample and {α} ∈ Kalg ; property (ii) follows.

Similarly, if we take a rational class {α} ∈ E◦
NS, then we still have {α−εω} ∈ E◦

NS

by subtracting a small multiple εω of a Kähler class, hence α − εω ≡ T ≥ 0 for
some positive current T . Therefore some multiple {m0α} is the first Chern class
of a hermitian line bundle (L, h) with curvature current T

ΘL,h := −
i

2π
i∂∂ log h = m0(T + εω) ≥ m0εω.
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Theorem 2.4 on L2 estimates for ∂-equations then shows that large multiples L⊗k

admit a large number of sections, hence L⊗k can be represented by a big divisor.
This implies (iii) and also that E◦

NS ⊂ Ealg. Therefore ENS ⊂ Ealg by passing to
the closure ; (i) follows. The statement (iv) about nef divisors follows e.g. from
Klaiman [34] and Hartshorne [24], since every nef divisor is a limit of a sequence
of ample rational divisors.

As a natural extrapolation of the algebraic situation, we say that K is the cone
of nef (1, 1)-cohomology classes (even though these classes are not necessarily
integral). Property 2.9 (i) also explains the terminology used for the pseudo-
effective cone.

2.5. Approximation of currents and Zariski decomposition.
Let X be compact Kähler manifold and let α ∈ E◦ be in the interior of the
pseudo-effective cone. In analogy with the algebraic context, such a class α is
called “big”, and it can then be represented by a Kähler current T , i.e. a closed
positive (1, 1)-current T such that T ≥ δω for some smooth hermitian metric ω and
a constant δ ≪ 1. Notice that the latter definition of a Kähler current makes sense
even if X is an arbitrary (non necessarily Kähler) compact complex manifold.

Theorem 2.10. (Demailly [14], Boucksom [4], 3.1.24) If T is a Kähler current
on a compact complex manifold X, then one can write T = limTm for a se-
quence of Kähler currents Tm in the same cohomology class as T , which have
logarithmic poles and coefficients in 1

mZ. This means that there are modifications

µm : X̃m → X such that
µ⋆

mTm = [Em] + βm

where Em is an effective Q-divisor on X̃m with coefficients in 1
mZ (Em is the “fixed

part” and βm a closed semi-positive form, the “movable part”).

Proof. We just recall the main idea and refer to [14] for details. Locally we
can write T = i∂∂ϕ for some strictly plurisubharmonic potential ϕ on X . The
approximating potentials ϕm of ϕ are defined as

ϕm(z) =
1

2m
log

∑

ℓ

|gℓ,m(z)|2

where (gℓ,m) is a Hilbert basis of the space H(Ω,mϕ) of holomorphic functions
which are L2 with respect to the weight e−2mϕ. The Ohsawa-Takegoshi L2 exten-
sion theorem 2.7 (applied to extension from a single isolated point) implies that
there are enough such holomorphic functions, and thus ϕm ≥ ϕ − C/m. On the
other hand ϕ = limm→+∞ ϕm by a Bergman kernel trick and by the mean value
inequality.

The Hilbert basis (gℓ,m) is also a family of local generators of the globally

defined multiplier ideal sheaf I(mT ) = I(mϕ). The modification µm : X̃m → X
is obtained by blowing-up this ideal sheaf, so that

µ⋆
mI(mT ) = O(−mEm).
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for some effective Q-divisor Em with normal crossings on X̃m. Now, we set Tm =
i∂∂ϕm and βm = µ∗

mTm − [Em]. Then βm = i∂∂ψm where

ψm =
1

2m
log

∑

ℓ

|gℓ,m ◦ µm/h|
2 locally on X̃m

and h is a generator of O(−mEm), and we see that βm is a smooth semi-positive

form on X̃m. The construction can be made global by using a gluing technique,
e.g. via partitions of unity.

Remark 2.11. The more familiar algebraic analogue would be to take α = c1(L)
with a big line bundle L and to blow-up the base locus of |mL|, m ≫ 1, to get a
Q-divisor decomposition

µ⋆
mL ∼ Em +Dm, Em effective, Dm free.

Such a blow-up is usually referred to as a “log resolution” of the linear system
|mL|, and we say that Em + Dm is an approximate Zariski decomposition of L.
We will also use this terminology for Kähler currents with logarithmic poles.

KNS

ENS

NSR(X̃m)

α̃

[Em]
βm

α̃ = µ⋆
mα = [Em] + βm

In the above construction, βm is not just semi-positive, it is even positive definite
on tangent vectors which are not mapped to 0 by the differential dµm, in parti-
cular βm is positive definite outside the exceptional divisor. However, if E is the
exceptional divisor of the blow-up along a smooth centre Y ⊂ X , then O(−E) is
relatively ample with respect to the blow-up map π, hence the negative current
−[E] is cohomologous to a smooth form θE which is positive along the fibers of π.
As a consequence, we can slightly perturb the decomposition of α̃ by increasing
multiplicities in the components of Em and adding recursively to βm small multiples
εEθE in such a way that β̃m +

∑
εEθE becomes a Kähler metric on X̃m. This in
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turn implies that X̃m is Kähler and we thus get the following characterization
of the Fujiki class C of compact complex manifolds which are bimeromorphic to
Kähler manifolds:

Corollary 2.12. A compact complex manifold is bimeromorphic to a Kähler mani-
fold (or equivalently, dominated by a Kähler manifold) if and only if it carries a
Kähler current T .

3. Numerical characterization of the Kähler cone

We describe here the main results obtained in Demailly-Pǎun [18]. The upshot
is that the Kähler cone depends only on the intersection product of the cohomol-
ogy ring, the Hodge structure and the homology classes of analytic cycles. More
precisely, we have :

Theorem 3.1. Let X be a compact Kähler manifold. Let P be the set of real (1, 1)
cohomology classes {α} which are numerically positive on analytic cycles, i.e. such
that

∫
Y α

p > 0 for every irreducible analytic set Y in X, p = dim Y . Then the
Kähler cone K of X is one of the connected components of P.

Corollary 3.2. If X is projective algebraic, then K = P.

These results (which are new even in the projective case) can be seen as a
generalization of the well-known Nakai-Moishezon criterion. Recall that the Nakai-
Moishezon criterion provides a necessary and sufficient criterion for a line bundle
to be ample: a line bundle L → X on a projective algebraic manifold X is ample
if and only if

Lp · Y =

∫

Y

c1(L)p > 0,

for every algebraic subset Y ⊂ X, p = dimY .
It turns out that the numerical conditions

∫
Y α

p > 0 also characterize arbitrary
transcendental Kähler classes when X is projective : this is precisely the meaning
of Cor. 3.2.

Example 3.3. The following example shows that the cone P need not be con-
nected (and that the components of P need not be convex, either). Consider for
instance a complex torus X = Cn/Λ. It is well-known that a generic torus X does
not possess any analytic subset except finite subsets and X itself. In that case,
the numerical positivity is expressed by the single condition

∫
X
αn > 0. However,

on a torus, (1, 1)-classes are in one-to-one correspondence with constant hermitian
forms α on Cn. Thus, for X generic, P is the set of hermitian forms on Cn such
that det(α) > 0, and Theorem 3.1 just expresses the elementary result of linear
algebra saying that the set K of positive definite forms is one of the connected
components of the open set P = {det(α) > 0} of hermitian forms of positive deter-
minant (the other components, of course, are the sets of forms of signature (p, q),
p+ q = n, q even. They are not convex when p > 0 and q > 0).
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Sketch of proof of Theorem 3.1 and Cor. 3.2. As is well known, the singularities
of a closed positive current T can be measured by its Lelong numbers

ν(T, x) = lim inf
z→x

ϕ(z)

log |z − x|
,

where T = i
π∂∂ϕ near x. A fundamental theorem of Siu Siu [56] states that the

Lelong sublevel sets Ec(T ) := {x ∈ X ; ν(T, x) ≥ c} are analytic sets for every
c > 0 (this fact can nowadays be derived in a rather straightforward manner from
the approximation theorem 2.10). The crucial steps of the proof of Theorem 3.1
are contained in the following statements.

Proposition 3.4. (Pǎun [49], [50]) Let X be a compact complex manifold (or more
generally a compact complex space). Then

(i) The cohomology class of a closed positive (1, 1)-current {T } is nef if and only
if the restriction {T }|Z is nef for every irreducible component Z in any of
the Lelong sublevel sets Ec(T ).

(ii) The cohomology class of a Kähler current {T } is a Kähler class (i.e. the class
of a smooth Kähler form) if and only if the restriction {T }|Z is a Kähler class
for every irreducible component Z in any of the Lelong sublevel sets Ec(T ).

The proof of Proposition 3.4 is not extremely hard if we take for granted the
fact that Kähler currents can be approximated by Kähler currents with logarithmic
poles, a fact which was proved in Demailly [14] (see also Theorem 2.10 below).
The main point then consists in an induction on dimension and a standard gluing
procedure : if T = α + i

π∂∂ϕ where ϕ is smooth on X rZ and has −∞ poles
along Z, then we can remove the poles of ϕ by replacing ϕ with max(ϕ, ψ − C),
provided ψ is smooth and defined near Z and C is a large constant.

The next (and more substantial step) consists of the following result which is
reminiscent of the Grauert-Riemenschneider conjecture (Siu [57], Demailly [11]).

Theorem 3.5. (Demailly-Pǎun [18]) Let X be a compact Kähler manifold and let
{α} be a nef class (i.e. {α} ∈ K). Assume that

∫
X αn > 0. Then {α} contains a

Kähler current T , in other words {α} ∈ E◦.

Proof. The basic argument is to prove that for every irreducible analytic set
Y ⊂ X of codimension p, the class {α}p contains a closed positive (p, p)-current
Θ such that Θ ≥ δ[Y ] for some δ > 0. We check this by observing that α + εω
is a Kähler class, hence by the Calabi-Yau theorem Yau [69] the Monge-Ampère
equation

(α+ εω + i∂∂ϕε)
n = fε

can be solved with an arbitrary right-hand side fε > 0 such that

∫

X

fε = Cε =

∫

X

(α+ εω)n.
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However, by our assumption that
∫

X
αn > 0, the constant Cε is bounded away

from 0. We use this fact in order to concentrate a fixed amount of volume of
the volume form fε in an ε-tubular neighborhood of Y . We then show that the
sequence of (p, p)-forms (α+εω+i∂∂ϕε)

p converges weakly to the desired current Θ
(this part relies heavily on the theory of currents). The second and final part uses
a “diagonal trick”: apply the result just proved to

X̃ = X ×X, Ỹ = diagonal ⊂ X̃, α̃ = pr∗1 α+ pr∗2 α.

It is then clear that α̃ is nef on X̃ and that
∫

eX
(α̃)2n > 0. It follows by the above

that the class {α̃}n contains a Kähler current Θ such that Θ ≥ δ[Ỹ ] for some δ > 0.
Therefore the push-forward

T := (pr1)∗(Θ ∧ pr∗2 ω)

is numerically equivalent to a multiple of α and dominates δω, and we see that T
is a Kähler current.

End of Proof of Theorem 3.1. Clearly the open cone K is contained in P , hence
in order to show that K is one of the connected components of P , we need only
show that K is closed in P , i.e. that K ∩ P ⊂ K. Pick a class {α} ∈ K ∩ P . In
particular {α} is nef and satisfies

∫
X
αn > 0. By Theorem 3.5 we conclude that

{α} contains a Kähler current T . However, an induction on dimension using the
assumption

∫
Y α

p for all analytic subsets Y (we also use resolution of singularities
for Y at this step) shows that the restriction {α}|Y is the class of a Kähler current
on Y . We conclude that {α} is a Kähler class by 3.4 (ii), therefore {α} ∈ K, as
desired.

The projective case 3.2 is a consequence of the following variant of Theorem 3.1.

Corollary 3.6. Let X be a compact Kähler manifold. A (1, 1) cohomology class
{α} on X is Kähler if and only if there exists a Kähler metric ω on X such that∫

Y α
k∧ωp−k > 0 for all irreducible analytic sets Y and all k = 1, 2, . . . , p = dimY .

Proof. The assumption clearly implies that
∫

Y

(α+ tω)p > 0

for all t ∈ R+, hence the half-line α+ (R+)ω is entirely contained in the cone P of
numerically positive classes. Since α+ t0ω is Kähler for t0 large, we conclude that
the half-line in entirely contained in the connected component K, and therefore
α ∈ K.

In the projective case, we can take ω = c1(H) for a given very ample divisor
H , and the condition

∫
Y α

k ∧ ωp−k > 0 is equivalent to
∫

Y ∩H1∩...∩Hp−k
αk > 0

for a suitable complete intersection Y ∩ H1 ∩ . . . ∩ Hp−k, Hj ∈ |H |. This shows
that algebraic cycles are sufficient to test the Kähler property, and the special case
3.2 follows. On the other hand, we can pass to the limit in 3.6 by replacing α by
α+ εω, and in this way we get also a characterization of nef classes.
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Corollary 3.7. Let X be a compact Kähler manifold. A (1, 1) cohomology class
{α} on X is nef if and only if there exists a Kähler metric ω on X such that∫

Y
αk∧ωp−k ≥ 0 for all irreducible analytic sets Y and all k = 1, 2, . . . , p = dim Y .

By a formal convexity argument, one can derive from 3.6 or 3.7 the following
interesting consequence about the dual of the cone K.

Theorem 3.8. Let X be a compact Kähler manifold. A (1, 1) cohomology class
{α} on X is nef if and only for every irreducible analytic set Y in X, p = dimX
and every Kähler metric ω on X we have

∫
Y
α ∧ ωp−1 ≥ 0. In other words, the

dual of the nef cone K is the closed convex cone in Hn−1,n−1
R

(X) generated by
cohomology classes of currents of the form [Y ] ∧ ωp−1 in Hn−1,n−1(X,R), where
Y runs over the collection of irreducible analytic subsets of X and {ω} over the
set of Kähler classes of X.

4. Deformations of compact Kähler manifolds

If S is an analytic space, recall that a deformation of compact complex manifolds
is a proper holomorphic map π : X → S such that the fibers are smooth and such
that X is locally the product of the base by a neighborhood of any point in any
fiber (with π being the first projection of such a local decomposition). For any
t ∈ S, we denote by Xt = π−1(t) the fiber over t.

Since compact Kähler manifolds share many common features with projective
algebraic manifolds – e.g. good Hodge theoretic properties – rather strong prop-
erties are expected for their deformation theory. Kodaira showed in the 60’s that
every Kähler surfaceX is a limit by deformation of algebraic surfaces, namely there
exists a deformation X → S such that X = Xt0 for some t0, and Xtm

is projective
algebraic for a sequence tm → t0. It was therefore a natural – and long-standing –
question whether a similar property holds in higher dimensions. C. Voisin showed
in a series of recent papers that the general answer is negative, and in fact there
exist rigid non projective compact Kähler manifolds.

Theorem 4.1. (recent results by C. Voisin [67], [68])

(i) In any dimension ≥ 4, there exist compact Kähler manifolds which do not
have the homotopy type (or even the homology ring) of a complex projective
manifold ([67]).

(ii) In any dimension ≥ 8, there exist compact Kähler manifolds X such that no
compact bimeromorphic model X ′ of X has the homotopy type of a complex
projective manifold ([68]).

The example in (i) is obtained by selecting a complex torus T of dimension ≥ 2
possessing a linear endomorphism ϕ which has non real eigenvalues (pairwise dis-
tinct and non conjugate). Then X is obtained by blowing-up the finite set of
pairwise intersection points of of the four subsets T ×{0}, {0}×T , ∆ = diagonal,
Gϕ = graph of ϕ, and then their strict transforms in the first stage blow-up. By
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using rather elementary considerations of Hodge theory, this provides an example
of a rigid Kähler variety which does not have the homotopy type of a projective
variety. The example in (ii) is obtained via the Poincaré bundle on T × T̂ ; we refer
to [67] and [68] for details.

Another fundamental fact proved by Kodaira and Spencer [37] is the observa-
tion that the Kähler property is open with respect to deformation: if Xt0 is Kähler
for some t0 ∈ S, then the nearby fibers Xt (for t in a metric topology neighborhood
of t0 in S) is also Kähler. The proof consists in showing that the desired Kähler
metrics are solutions of a suitably chosen 4-th order elliptic differential operator
for which there is no jump of the kernel at t0. However, the numerous known
examples leave hopes for a much stronger openness property.

Conjecture 4.2. Let X → S be a deformation with irreducible base space S
such that some fiber Xt0 is Kähler. Then there should exist a finite (or possibly
countable) union of analytic strata Sν ⊂ S, Sν 6= S, such that

(i) Xt is Kähler for t ∈ Sr
⋃
Sν .

(ii) Xt is bimeromorphic to a Kähler manifold for t ∈
⋃
Sν .

A crucial step in analyzing the conjecture is to describe the behaviour of the
Kähler cone of Xt as t approaches the “bad strata”. This question is now fully
understood thanks to the following result which is a direct corollary of our charac-
terization of the Kähler cone (Theorem 3.1). As a consequence, a “collapse” of the
Kähler cone could only come from a degeneration of the Hodge decomposition, the
behaviour of which is complex analytic thanks to the Frölicher spectral sequence.

Theorem 4.3. (Demailly-Pǎun [18]) Let π : X → S be a deformation of compact
Kähler manifolds over an irreducible base S. Then there exists a countable union
S′ =

⋃
Sν of analytic subsets Sν ( S, such that the Kähler cones Kt ⊂ H1,1(Xt,C)

of the fibers Xt = π−1(t) are invariant over SrS′ under parallel transport with
respect to the (1, 1)-projection ∇1,1 of the Gauss-Manin connection ∇ in the de-
composition of

∇ =



∇2,0 ∗ 0
∗ ∇1,1 ∗
0 ∗ ∇0,2




on the Hodge bundle H2 = H2,0 ⊕H1,1 ⊕H0,2.

Sketch of Proof. The result is local on the base, hence we may assume that S
is contractible. Then the family is differentiably trivial, the Hodge bundle t 7→
H2(Xt,C) is the trivial bundle and t 7→ H2(Xt,Z) is a trivial lattice. We use the
existence of a relative cycle space Cp(X/S) ⊂ Cp(X ) which consists of all cycles
contained in the fibres of π : X → S. It is equipped with a canonical holomorphic
projection

πp : Cp(X/S) → S.

We then define the Sν ’s to be the images in S of those connected components of
Cp(X/S) which do not project onto S. By the fact that the projection is proper
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on each component, we infer that Sν is an analytic subset of S. The definition of
the Sν ’s implies that the cohomology classes induced by the analytic cycles {[Z]},
Z ⊂ Xt, remain exactly the same for all t ∈ SrS′. This result implies in its turn
that the conditions defining the numerically positive cones Pt remain the same,
except for the fact that the spaces H1,1(Xt,R) ⊂ H2(Xt,R) vary along with the
Hodge decomposition. At this point, a standard calculation implies that the Pt are
invariant by parallel transport under ∇1,1. Moreover, the connected component
Kt ⊂ Pt cannot jump from one component to the other thanks to the already
metionned results by Kodaira-Spencer [37]. This concludes the proof.

Theorem 4.3 was essentially already known in the cases of complex surfaces
(i.e. in dimension 2), thanks to the work of N. Buchdahl [6], [7] and A. Lamari
[38], [39].

Shortly after the original [18] manuscript appeared in April 2001, Daniel Huy-
brechts [27] informed us Theorem 3.1 can be used to calculate the Kähler cone of
a very general hyperkähler manifold: the Kähler cone is then equal to a suitable
connected component of the positive cone defined by the Beauville-Bogomolov
quadratic form. In the case of an arbitrary hyperkähler manifold, S.Boucksom
[Bou02] later showed that a (1, 1) class {α} is Kähler if and only if it lies in the
positive part of the Beauville-Bogomolov quadratic cone and moreover

∫
C α > 0

for all rational curves C ⊂ X (see also Huybrechts [26]).

5. Positive cones in Hn−1,n−1(X) and Serre duality

5.1. Basic definitions. In a way which will be shown to be dual to the case
of divisors and positive (1, 1)-currents, we consider in Hn−1,n−1

R
(X) the cone N

generated by classes of positive currents T of type (n− 1, n− 1) (i.e., of bidimen-
sion (1, 1)). In the projective case, we also consider the intersection of N with the
space N1(X) generated by integral (n − 1, n − 1)-classes (by the hard Lefschetz
theorem, N1(X) is just the dual of NSR(X)).

Definition 5.1. Let X be a compact Kähler manifold.

(i) We define N to be the (closed) convex cone in Hn−1,n−1
R

(X) generated
by classes of positive currents T of type (n− 1, n− 1) (i.e., of bidimension
(1, 1)).

(ii) We define the cone M ⊂ Hn−1,n−1
R

(X) of “movable classes” to be the closure
of the convex cone generated by classes of currents of the form

µ⋆(ω̃1 ∧ . . . ∧ ω̃n−1)

where µ : X̃ → X is an arbitrary modification (one could just restrict oneself
to compositions of blow-ups with smooth centers), and the ω̃j are Kähler

forms on X̃. Clearly M ⊂ N .
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(iii) Correspondingly, we introduce the intersections

NNS = N ∩N1(X), MNS = M∩N1(X),

in the space generated by integral bidimension (1, 1)-classes

N1(X) := (Hn−1,n−1
R

(X) ∩H2n−2(X,Z)/{torsion}) ⊗Z R.

(iv) If X is projective, we define NE(X) to be the convex cone generated by all
effective curves. Clearly NE(X) ⊂ NNS.

(v) If X is projective, we say that C is a “strongly movable” curve if

C = µ⋆(Ã1 ∩ . . . ∩ Ãn−1)

for suitable very ample divisors Ãj on X̃, where µ : X̃ → X is a modifica-
tion. We let SME(X) be the convex cone generated by all strongly movable
(effective) curves. Clearly SME(X) ⊂ MNS.

(vi) We say that C is a movable curve if C = Ct0 is a member of an analytic
family (Ct)t∈S such that

⋃
t∈S Ct = X and, as such, is a reduced irreducible

1-cycle. We let ME(X) to be the convex cone generated by all movable
(effective) curves.

The upshot of this definition lies in the following easy observation.

Proposition 5.2. Let X be a compact Kähler manifold. Consider the Poincaré
duality pairing

H1,1(X,R) ×Hn−1,n−1
R

(X) −→ R, (α, β) 7−→

∫

X

α ∧ β.

Then the duality pairing takes nonnegative values

(i) for all pairs (α, β) ∈ K ×N ;

(ii) for all pairs (α, β) ∈ E ×M.

(iii) for all pairs (α, β) where α ∈ E and β = [Ct] ∈ ME(X) is the class of a
movable curve.

Proof. (i) is obvious. In order to prove (ii), we may assume that β = µ⋆(ω̃1∧ . . .∧

ω̃n−1) for some modification µ : X̃ → X , where α = {T } is the class of a positive

(1, 1)-current on X and ω̃j are Kähler forms on X̃. Then

∫

X

α ∧ β =

∫

X

T ∧ µ⋆(ω̃1 ∧ . . . ∧ ω̃n−1) =

∫

X

µ∗T ∧ ω̃1 ∧ . . . ∧ ω̃n−1 ≥ 0.

Here, we have used the fact that a closed positive (1, 1)-current T always has a
pull-back µ⋆T , which follows from the fact that if T = i∂∂ϕ locally for some
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plurisubharmonic function in X , we can set µ⋆T = i∂∂(ϕ ◦ µ). For (iii), we
suppose α = {T } and β = {[Ct]}. Then we take an open covering (Uj) on X such
that T = i∂∂ϕj with suitable plurisubharmonic functions ϕj on Uj . If we select a
smooth partition of unity

∑
θj = 1 subordinate to (Uj), we then get

∫

X

α ∧ β =

∫

Ct

T|Ct
=

∑

j

∫

Ct∩Uj

θji∂∂ϕj|Ct
≥ 0.

For this to make sense, it should be noticed that T|Ct
is a well defined closed positive

(1, 1)-current (i.e. measure) on Ct for almost every t ∈ S, in the sense of Lebesgue
measure. This is true only because (Ct) covers X , thus ϕj|Ct

is not identically
−∞ for almost every t ∈ S. The equality in the last formula is then shown by
a regularization argument for T , writing T = limTk with Tk = α + i∂∂ψk and
a decreasing sequence of smooth almost plurisubharmonic potentials ψk ↓ ψ such
that the Levi forms have a uniform lower bound i∂∂ψk ≥ −Cω (such a sequence
exists by Demailly [14]). Then, writing α = i∂∂vj for some smooth potential vj

on Uj , we have T = i∂∂ϕj on Uj with ϕj = vj +ψ, and this is the decreasing limit
of the smooth approximations ϕj,k = vj + ψk on Uj . Hence Tk|Ct

→ T|Ct
for the

weak topology of measures on Ct.

If C is a convex cone in a finite dimensional vector space E, we denote by C∨ the
dual cone, i.e. the set of linear forms u ∈ E⋆ which take nonnegative values on all
elements of C. By the Hahn-Banach theorem, we always have C∨∨ = C. Proposition
5.2 leads to the natural question whether the cones (K,N ) and (E ,M) are dual
under Poincaré duality, according to the following schematic picture.

K

KNS

E

ENS

NSR(X) H1,1(X,R)

MNS

M

N

NNS

N1(X)Hn−1,n−1
R

(X)

duality

It is indeed well-known that the cone KNS of nef divisors is dual to the cone NNS of
effective curves if X is projective. The transcendental version K = N∨ also follows
from our Theorem 3.8.
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Theorem 5.3. (Demailly-Pǎun) If X is Kähler, then the cones K ⊂ H1,1(X,R)
and N ⊂ Hn−1,n−1

R
(X) are dual by Poincaré duality, and N is the closed convex

cone generated by classes [Y ] ∧ ωp−1 where Y ⊂ X ranges over p-dimensional
analytic subsets, p = 1, 2, . . . , n, and ω ranges over Kähler forms.

Proof. Indeed, Prop. 5.2 shows that the dual cone K∨ contains N which itself
contains the cone N ′ of all classes of the form {[Y ] ∧ ωp−1}. The main result of
Demailly-Pǎun [18] conversely shows that the dual of (N ′)∨ is equal to K, so we
must have

K∨ = N ′ = N . �

The other duality statement E = M∨ will be investigated in the next sections.

5.2. Concept of volume and movable intersections. We start with
the very important concept of volume.

Definition 5.4. We define the volume, or movable self-intersection of a big class
α ∈ E◦ to be

Vol(α) = sup
T∈α

∫

eX

βn > 0

where the supremum is taken over all Kähler currents T ∈ α with logarithmic
poles, and µ⋆T = [E] + β with respect to some modification µ : X̃ → X .

By Fujita [21] and Demailly-Ein-Lazarsfeld [17], if L is a big line bundle, we
have

Vol(c1(L)) = lim
m→+∞

Dn
m = lim

m→+∞

n!

mn
h0(X,mL),

and in these terms, we get the following statement.

Proposition 5.5. Let L be a big line bundle on the projective manifold X. Let
ε > 0. Then there exists a modification µ : Xε → X and a decomposition µ∗(L) =
E + β with E an effective Q-divisor and β a big and nef Q-divisor such that

Vol(L) − ε ≤ Vol(β) ≤ Vol(L).

It is very useful to observe that the supremum in Definition 5.4 is actually
achieved by a collection of currents whose singularities satisfy a filtering property.
Namely, if T1 = α + i∂∂ϕ1 and T2 = α + i∂∂ϕ2 are two Kähler currents with
logarithmic poles in the class of α, then

(5.2) T = α+ i∂∂ϕ, ϕ = max(ϕ1, ϕ2)

is again a Kähler current with weaker singularities than T1 and T2. One could
define as well

(5.2′) T = α+ i∂∂ϕ, ϕ =
1

2m
log(e2mϕ1 + e2mϕ2),

where m = lcm(m1,m2) is the lowest common multiple of the denominators oc-

curing in T1, T2. Now, take a simultaneous log-resolution µm : X̃m → X for
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which the singularities of T1 and T2 are resolved as Q-divisors E1 and E2. Then
clearly the associated divisor in the decomposition µ⋆

mT = [E] + β is given by
E = min(E1, E2).

Theorem 5.6. (Boucksom [4]) Let X be a compact Kähler manifold. We denote

here by Hk,k
≥0 (X) the cone of cohomology classes of type (k, k) which have non-

negative intersection with all closed semi-positive smooth forms of bidegree (n −
k, n− k).

(i) For each k = 1, . . . , n, there exists a canonical “movable intersection product”

E × · · · × E → Hk,k
≥0 (X), (α1, . . . , αk) 7→ 〈α1 · α2 · · ·αk−1 · αk〉

such that Vol(α) = 〈αn〉 whenever α is a big class.

(ii) The product is increasing, homogeneous of degree 1 and superadditive in each
argument, i.e.

〈α1 · · · (α
′
j + α′′

j ) · · ·αk〉 ≥ 〈α1 · · ·α
′
j · · ·αk〉 + 〈α1 · · ·α

′′
j · · ·αk〉.

It coincides with the ordinary intersection product when the αj ∈ K are nef
classes.

(iii) The movable intersection product satisfies the Teissier-Hovanskii inequalities

〈α1 · α2 · · ·αn〉 ≥ (〈αn
1 〉)

1/n . . . (〈αn
n〉)

1/n (with 〈αn
j 〉 = Vol(αj) ).

(iv) For k = 1, the above “product” reduces to a (non linear) projection operator

E → E1, α→ 〈α〉

onto a certain convex subcone E1 of E such that K ⊂ E1 ⊂ E. Moreover, there
is a “divisorial Zariski decomposition”

α = {N(α)} + 〈α〉

where N(α) is a uniquely defined effective divisor which is called the “negative
divisorial part” of α. The map α 7→ N(α) is homogeneous and subadditive,
and N(α) = 0 if and only if α ∈ E1.

(v) The components of N(α) always consist of divisors whose cohomology classes
are linearly independent, thusN(α) has at most ρ = rankZ NS(X) components.

Proof. We refer to S. Boucksom’s thesis [4] for details. Boucksom’s treatment also
covers the case of compact non Kähler manifolds, so it is fairly general. We only
give a very rough construction of the movable intersection product.

First assume that all classes αj are big, i.e. αj ∈ E◦. We select Kähler currents
Tj,m ∈ αj with logarithmic poles and their approximate Zariski decompositions as
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in Theorem 2.10. We can then find a simultaneous log-resolution µm : X̃m → X
such that

µ⋆Tj,m = [Ej ,m] + βj,m.

We consider the direct image current µm ⋆(β1,m ∧ . . . ∧ βk,m) (which is a closed
positive current of bidegree (k, k) on X). It turns out by rather elementary mono-
tonicity arguments based on the filtering property 5.2 that one can can extract a
weakly convergent limit

〈α1 · α2 · · ·αk〉 = lim ↑
m→+∞

{(µm)⋆(β1,m ∧ β2,m ∧ . . . ∧ βk,m)}

and that the corresponding cohomology class in Hk,k(X) is uniquely defined. Now,
the intersection product can be extended to the full closed cone E by monotonicity
again, namely by setting

〈α1 · α2 · · ·αk〉 = lim ↓
δ↓0

〈(α1 + δω) · (α2 + δω) · · · (αk + δω)〉

for arbitrary classes αj ∈ E .

Definition 5.7. For a class α ∈ H1,1(X,R), we define the numerical dimension
ν(α) to be ν(α) = −∞ if α is not pseudo-effective, and

ν(α) = max{p ∈ N ; 〈αp〉 6= 0}, ν(α) ∈ {0, 1, . . . , n}

if α is pseudo-effective.

By the results of Demailly-Peternell [18], a class is big (α ∈ E◦) if and only if
ν(α) = n. Classes of numerical dimension 0 can be described much more precisely,
again following Boucksom [4].

Theorem 5.8. Let X be a compact Kähler manifold. Then the subset D0 of ir-
reducible divisors D in X such that ν(D) = 0 is countable, and these divisors
are rigid as well as their multiples. If α ∈ E is a pseudo-effective class of nu-
merical dimension 0, then α is numerically equivalent to an effective R-divisor
D =

∑
j∈J λjDj, for some finite subset (Dj)j∈J ⊂ D0 such that the cohomology

classes {Dj} are linearly independent and some λj > 0. If such a linear combina-
tion is of numerical dimension 0, then so is any other linear combination of the
same divisors.

Using the Iitaka fibration, it is immediate to see that κ(X) ≤ ν(X) always holds
true, and from the currently known examples a natural expectation would be

Conjecture 5.9. (“generalized abundance conjecture”) For an arbitrary compact
Kähler manifold X, the Kodaira dimension should be equal to the numerical di-
mension :

κ(X) = ν(X) := ν(c1(KX)).
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This appears to be a fairly strong statement. In fact, it is not difficult to show
that the generalized abundance conjecture contains the Cn,m conjectures about
additivity of Kodaira dimension (since it is not very difficult to show that the
numerical dimension is additive with respect to fibrations). A few extreme cases
are known.

Theorem 5.10. The generalized abundance conjecture is true at least in the cases
ν(X) = −∞, ν(X) = 0, ν(X) = n.

Proof. In fact ν(X) = −∞ means that KX is not pseudo-effective, so no multiple
of KX can have sections and thus κ(X) = −∞. In case ν(X) = n, we have to
show that KX is big (KX ∈ E◦); this follows from [18] and from the solution
of the Grauert-Riemenschneider conjecture in the form proven in Demailly [11].
Remains the case ν(X) = 0. Then Theorem 5.8 gives KX ≡

∑
λjDj for some

effective divisor with numerically independent components such that ν(Dj) = 0.
It follows that the λj are rational and therefore

KX =
∑

λjDj + F where λj ∈ Q+, ν(Dj) = 0 and F ∈ Pic0(X).

In that case Campana and Peternell [8] have shown that F is a torsion element of
Pic0(X), and so κ(X) = 0.

5.3. The orthogonality estimate. The goal of this section is to show
that, in an appropriate sense, approximate Zariski decompositions are almost or-
thogonal.

Theorem 5.11. Let X be a projective manifold, and let α = {T } ∈ E◦
NS be a

big class represented by a Kähler current T . Consider an approximate Zariski
decomposition

µ⋆
mTm = [Em] + [Dm]

Then
(Dn−1

m ·Em)2 ≤ 20 (Cω)n
(
Vol(α) −Dn

m

)

where ω = c1(H) is a Kähler form and C ≥ 0 is a constant such that ±α is
dominated by Cω (i.e., Cω ± α is nef ).

Proof. For every t ∈ [0, 1], we have

Vol(α) = Vol(Em +Dm) ≥ Vol(tEm +Dm).

Now, by our choice of C, we can write Em as a difference of two nef divisors

Em = µ⋆α−Dm = µ⋆
m(α+ Cω) − (Dm + Cµ⋆

mω).

Lemma 5.12. For all nef R-divisors A, B we have

Vol(A−B) ≥ An − nAn−1 · B

as soon as the right hand side is positive.
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Proof. In case A and B are integral (Cartier) divisors, this is a consequence of the
holomorphic Morse inequalities, (Demailly [16], 8.5). If A and B are Q-Cartier, we
conclude by the homogeneity of the volume. The general case of R-divisors follows
by approximation using the upper semi-continuity of the volume (Boucksom [4],
3.1.26). In fact, we expect Lemma 5.12 to hold true also in the case of transcen-
dental nef cohomology classes – unfortunately the required generalization of Morse
inequalities is still missing at this point.

End of proof of Theorem 5.11. In order to exploit the lower bound of the volume,
we write

tEm +Dm = A−B, A = Dm + tµ⋆
m(α+ Cω), B = t(Dm + Cµ⋆

mω).

By our choice of the constant C, both A and B are nef. Lemma 5.12 and the
binomial formula imply

Vol(tEm +Dm) ≥ An − nAn−1 · B

= Dn
m + ntDn−1

m · µ⋆
m(α + Cω) +

n∑

k=2

tk
(
n

k

)
Dn−k

m · µ⋆
m(α+ Cω)k

− ntDn−1
m · (Dm + Cµ⋆

mω)

− nt2
n−1∑

k=1

tk−1

(
n− 1

k

)
Dn−1−k

m · µ⋆
m(α+ Cω)k · (Dm + Cµ⋆

mω).

Now, we use the obvious inequalities

Dm ≤ µ⋆
m(Cω), µ⋆

m(α + Cω) ≤ 2µ⋆
m(Cω), Dm + Cµ⋆

mω ≤ 2µ⋆
m(Cω)

in which all members are nef (and where the inequality ≤ means that the difference
of classes is pseudo-effective). In this way we get

Vol(tEm +Dm) ≥ Dn
m + ntDn−1

m · Em − nt2
n−1∑

k=1

2k+1tk−1

(
n− 1

k

)
(Cω)n.

We will always take t smaller than 1/10n so that the last summation is bounded
by 4(n− 1)(1 + 1/5n)n−2 < 4ne1/5 < 5n. This implies

Vol(tEm +Dm) ≥ Dn
m + ntDn−1

m · Em − 5n2t2(Cω)n.

Now, the choice t = 1
10n (Dn−1

m · Em)((Cω)n)−1 gives by substituting

1

20

(Dn−1
m · Em)2

(Cω)n
≤ Vol(Em +Dm) −Dn

m ≤ Vol(α) −Dn
m

(and we have indeed t ≤ 1
10n ), whence Theorem 5.11. Of course, the constant 20

is certainly not optimal.
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Corollary 5.13. If α ∈ ENS, then the divisorial Zariski decomposition
α = N(α) + 〈α〉 is such that 〈αn−1〉 ·N(α) = 0.

Proof. By replacing α by α+ δc1(H), one sees that it is sufficient to consider the
case where α is big. Then the orthogonality estimate implies

(µm)⋆(D
n−1
m )·(µm)⋆Em = Dn−1

m ·(µm)⋆(µm)⋆Em ≤ Dn−1
m ·Em ≤ C(Vol(α)−Dn

m)1/2.

Since 〈αn−1〉 = lim(µm)⋆(D
n−1
m ), N(α) = lim(µm)⋆Em and limDn

m = Vol(α), we
get the desired conclusion in the limit.

5.4. Proof of duality between ENS and MNS. The main point is the
following characterization of pseudo-effective classes, proved in [5] (the “only if”
part already follows from 5.2 (iii)).

Theorem 5.14. (Boucksom-Demailly-Pǎun-Peternell [5]) If X is projective, then
a class α ∈ NSR(X) is pseudo-effective if (and only if ) it is in the dual cone of the
cone SME(X) of strongly movable curves.

In other words, a line bundle L is pseudo-effective if (and only if) L ·C ≥ 0 for
all movable curves, i.e., L · C ≥ 0 for every very generic curve C (not contained
in a countable union of algebraic subvarieties). In fact, by definition of SME(X),
it is enough to consider only those curves C which are images of generic complete
intersection of very ample divisors on some variety X̃, under a modification µ :
X̃ → X . By a standard blowing-up argument, it also follows that a line bundle L
on a normal Moishezon variety is pseudo-effective if and only if L ·C ≥ 0 for every
movable curve C. The Kähler analogue should be :

Conjecture 5.15. For an arbitrary compact Kähler manifold X, the cones E and
M are dual.

E

ENS

M∨

(MNS)∨

NSR(X) H1,1(X,R)

MNS

α− εω

α
α+ δω

ω

Γ

N1(X)
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Proof of Theorem 5.14. (see [5]). We want to show that ENS = SME(X)∨. By
5.2 (iii) we have in any case

ENS ⊂ (SME(X))∨.

If the inclusion is strict, there is an element α ∈ ∂ENS on the boundary of ENS

which is in the interior of SME(X)∨.
Let ω = c1(H) be an ample class. Since α ∈ ∂ENS, the class α + δω is big for

every δ > 0, and since α ∈ ((SME(X))∨)◦ we still have α − εω ∈ (SME(X))∨ for
ε > 0 small. Therefore

(5.4) α · Γ ≥ εω · Γ

for every movable curve Γ. We are going to contradict (5.4). Since α + δω is big,
we have an approximate Zariski decomposition

µ⋆
δ(α + δω) = Eδ +Dδ.

We pick Γ = (µδ)⋆(D
n−1
δ ). By the Hovanskii-Teissier concavity inequality

ω · Γ ≥ (ωn)1/n(Dn
δ )(n−1)/n.

On the other hand

α · Γ = α · (µδ)⋆(D
n−1
δ )

= µ⋆
δα ·Dn−1

δ ≤ µ⋆
δ(α+ δω) ·Dn−1

δ

= (Eδ +Dδ) ·D
n−1
δ = Dn

δ +Dn−1
δ · Eδ.

By the orthogonality estimate, we find

α · Γ

ω · Γ
≤
Dn

δ +
(
20(Cω)n(Vol(α + δω) −Dn

δ )
)1/2

(ωn)1/n(Dn
δ )(n−1)/n

≤ C′(Dn
δ )1/n + C′′ (Vol(α+ δω) −Dn

δ )1/2

(Dn
δ )(n−1)/n

.

However, since α ∈ ∂ENS, the class α cannot be big so

lim
δ→0

Dn
δ = Vol(α) = 0.

We can also take Dδ to approximate Vol(α+δω) in such a way that (Vol(α+δω)−
Dn

δ )1/2 tends to 0 much faster than Dn
δ . Notice that Dn

δ ≥ δnωn, so in fact it is
enough to take

Vol(α+ δω) −Dn
δ ≤ δ2n.

This is the desired contradiction by (5.4).

As a corollary, we also get a solution of the “Hodge conjecture” for positive
cones of Hn−1,n−1(X), namely positive integral classes are generated by the cor-
responding cones of curves. This settles in the affirmative many of the conjectures
made in [19].
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Corollary 5.16. Let X be a projective manifold. Then

(i) NNS = NE(X).

(ii) MNS = SME(X) = ME(X).

Proof. (i) is indeed (mostly) a standard result of algebraic geometry, a restatement
of the fact that the cone of effective curves NE(X) is dual to the cone KNS of nef
divisors (see e.g. [24]) : clearly NNS ⊃ NE(X) = K∨

NS, and the other direction
NNS ⊂ K∨

NS is a consequence of 5.2 (i).

(ii) It is obvious that SME(X) ⊂ ME(X) ⊂ MNS ⊂ (ENS)∨ (the latter inclusion
follows from 5.2 (iii)). Now Theorem 5.14 implies (ENS)∨ = SME(X), and (ii)
follows.

Remark 5.17. If holomorphic Morse inequalities were known also in the Kähler
case, we would infer by the same proof that “α not pseudo-effective” implies the
existence of a blow-up µ : X̃ → X and a Kähler metric ω̃ on X̃ such that α ·
µ⋆(ω̃)n−1 < 0. In the special case when α = KX is not pseudo-effective, we would
expect the Kähler manifold X to be covered by rational curves. The main trouble
is that characteristic p techniques are no longer available. On the other hand it is
tempting to approach the question via techniques of symplectic geometry :

Question 5.18. Let (M,ω) be a compact real symplectic manifold. Fix an almost
complex structure J compatible with ω, and for this structure, assume that
c1(M) · ωn−1 > 0. Does it follow thatM is covered by rational J-pseudoholomorphic
curves ?

5.5. Applications and conjectures. The most important special case
of Theorem 5.14 is

Theorem 5.19. If X is a projective manifold and is not uniruled, then KX is
pseudo-effective, i.e. KX ∈ ENS.

Proof. If KX /∈ ENS, Prop. 5.2 shows that there is a moving curve Ct such that
KX · Ct < 0. The standard “bend-and-break” lemma of Mori then implies that
there is family Γt of rational curves with KX · Γt < 0, so X is uniruled.

Of course, if the “abundance conjecture” is correct, the fact that KX is pseudo-
effective would imply κ(X) ≥ 0, and so every non uniruled variety shoud satisfy
κ(X) ≥ 0. This still seems beyond reach at the moment.

6. Plurigenera and the Minimal Model Program

In the case of algebraic surfaces, the Minimal Model Program (MMP) was already
initiated by Italian geometers at the turn of the XXth century, and was finally
completed by Zariski and Kodaira for all complex surfaces. The case of higher
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dimensions (starting with dimension 3) is a major endeavor of modern times, re-
vitalized by Mori [41], Kawamata [29], [30], [31] and Shokurov [53], [54] among
others (see also [33] for a good survey).

The basic question is to prove that every birational class of non uniruled al-
gebraic varieties contains a “minimal” member X exhibiting mild singularities
(“terminal singularities”), where “minimal” is taken in the sense of avoiding un-
necessary blow-ups; minimality actually means that KX is nef and not just pseudo-
effective (pseudo-effectivity follows in general from Theorem 5.19). This requires
performing certain birational transforms known as flips, and important questions
are whether a) flips are indeed possible (“existence of flips”), b) the process termi-
nates (“termination of flips”). Thanks to Kawamata [31] and Shokurov [53], [54],
this has been proved in dimension 3 at the end of the 80’s. Very recently, C. Hacon
and J. McKernan [23] announced that flips exist in dimension n, if one assumes
that a slightly stronger version of MMP (involving log pairs with real divisors)
holds true in dimension n − 1. As a consequence, the existence of flips obtained
by Shokurov [55] in 2003 would be achieved in dimension 4 via a more systematic
method. Strongly related to these issues are the following fundamental questions

(i) Finiteness of the canonical ring: is the canonical ring R =
⊕
H0(X,mKX)

of a variety of general type always finitely generated ?
If true, Proj(R) of this graded ring R yields of course a “canonical model”
in the birational class of X .

(ii) Boundedness of pluricanonical embeddings: is there a bound rn depending
only on dimension dimX = n, such that the pluricanonical map ΦmKX

of a
variety of general type yields a birational embedding in projective space for
m ≥ rn ?

(iii) Invariance of plurigenera: are plurigenera pm = h0(X,mKX) always invari-
ant under deformation ?

These questions involve taking “limits” of divisors as m→ +∞, and therefore
transcendental methods are a strong contender in the arena. Question (ii) was
indeed solved in the affirmative by H. Tsuji [64], [63] under the assumption that
the MMP program is solved, and in general by S. Takayama [61], and Ch. Hacon-
J. McKernan [22] by pursuing further Tsuji’s ideas. Question (iii) was completely
settled by Y.T. Siu ([58] in the case of varieties of general type, and [59] for
arbitrary varieties). Quite recently, M. Pǎun gave a very elementary proof based
merely on the Ohwawa-Takegoshi extension theorem, that we briefly sketch below.
Y.T. Siu’s work also gives strong support for the hope that (i) can be solved by a
suitable combination of the L2 existence theorems (Skoda’s division theorem being
one of the main ingredients). The following is a very slight extension of results
by M. Pǎun [52] and B. Claudon [9], which are themselves based on the ideas of
Y.T. Siu [59] and S. Takayama [62].

Theorem 6.1. Let π : X → ∆ be a projective family over the unit disk, and let
(Lj, hj)0≤j≤m−1 be (singular) hermitian line bundles with semipositive curvature
currents iΘLj,hj

≥ 0 on X . Assume that
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(i) the restriction of hj to the central fiber X0 is well defined (i.e. not identi-
cally +∞).

(ii) additionally the multiplier ideal sheaf I(hj|X0
) is trivial for 1 ≤ j ≤ m− 1.

Then any section σ of O(mKX +
∑
Lj)|X0

⊗ I(h0|X0
) over the central fiber X0

extends to X .

We first state the technical version of the Ohsawa-Takegoshi L2 extension theo-
rem needed for the proof, which is a special case of Theorem 2.7 (see also Siu [59]).

Lemma 6.2. Let π : X → ∆ be as before and let (L, h) be a (singular) hermitian
line bundle with semipositive curvature current iΘL,h ≥ 0 on X . Let ω be a global
Kähler metric on X , and dVX , dVX0

the respective induced volume elements on
X0 and X . Assume that hX0

is well defined. Then any holomorphic section u of
O(KX + L) ⊗ I(h|X0

) extends into a section ũ over X satisfying an L2 estimate

∫

X

‖ũ‖2
ω⊗hdVX ≤ C0

∫

X0

‖u‖2
ω⊗hdVX0

,

where C0 ≥ 0 is some universal constant (independent of X , L, . . . ).

Proof. We write hj = e−ϕj in terms of local plurisubharmonic weights. Fix an
auxiliary line bundle A (which will later be taken to be sufficiently ample), and
define inductively a sequence of line bundles Fp by putting F0 = A and

Fp = Fp−1 +KX + Lr if p = mq + r, 0 ≤ r ≤ m− 1.

By construction we have Fp+m = Fp +mKX +
∑

j Lj and

F0 = A, F1 = A+KX + L1, . . . , Fp = A+ pKX + L1 + . . .+ Lp, 1 ≤ p ≤ m− 1.

The game is to construct inductively families of sections, say (ũ
(p)
j )j=1...Np

, of Fp

over X in such a way that

(a) for p = 0, . . . ,m− 1, Fp is generated by its sections (ũ
(p)
j )j=1...Np

;

(b) we have the m-periodicity relations Np+m = Np and ũ
(p)
j is an extension of

u
(p)
j := σqu

(r)
j over X for p = mq + r, where u

(r)
j := ũ

(r)
j|X0

, 0 ≤ r ≤ m− 1.

Property (a) can certainly be achieved by taking A ample enough so that F0, . . . ,

Fm−1 are generated by their sections, and by choosing the ũ
(p)
j appropriately for

p = 0, . . . ,m− 1. Now, by induction, we equip Fp−1 with the tautological metric

|ξ|2/
∑

|ũ
(p−1)
j (x)|2, and Fp − KX = Fp−1 + Lr with that metric multiplied by

hr = e−ϕr ; it is clear that these metrics have semipositive curvature currents (the
metric on Fp itself if obtained by using a smooth Kähler metric ω on X ). In this
setting, we apply the Ohsawa-Takegoshi theorem to the line bundle Fp−1 + Lr to
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extend u
(p)
j into a section ũ

(p)
j over X . By construction the pointwise norm of that

section in Fp|X0
in a local trivialization of the bundles involved is the ratio

|u
(p)
j |2

∑
ℓ |u

(p−1)
ℓ |2

e−ϕr ,

up to some fixed smooth positive factor depending only on the metric induced by
ω on KX . However, by the induction relations, we have

∑
j |u

(p)
j |2

∑
ℓ |u

(p−1)
ℓ |2

e−ϕr =






∑
j |u

(r)
j |2

∑
ℓ |u

(r−1)
ℓ |2

e−ϕr for p = mq + r, 0 < r ≤ m− 1,

∑
j |u

(0)
j |2

∑
ℓ |u

(m−1)
ℓ |2

|σ|2e−ϕ0 for p ≡ 0 mod m.

Since the sections (u
(r)
j ) generate their line bundle, the ratios involved are positive

functions without zeroes and poles, hence smooth and bounded [possibly after
shrinking the base disc ∆, as is permitted]. On the other hand, assumption (ii)
and the fact that σ has coefficients in the multiplier ideal sheaf I(h0|X0

) tell us
that e−ϕr , 1 ≤ r < m and |σ|2e−ϕ0 are locally integrable on X0. It follows that
there is a constant C1 ≥ 0 such that

∫

X0

∑
j |u

(p)
j |2

∑
ℓ |u

(p−1)
ℓ |2

e−ϕrdVω ≤ C1

for all p ≥ 1 [of course, the integral certainly involves finitely many trivializations
of the bundles involved, whereas the integrand expression is just local in each

chart]. Inductively, the L2 extension theorem produces sections ũ
(p)
j of Fp over X

such that ∫

X

∑
j |ũ

(p)
j |2

∑
ℓ |ũ

(p−1)
ℓ |2

e−ϕrdVω ≤ C2 = C0C1.

The next idea is to extract the limits of p-th roots of these sections to get a singular
hermitian metric onmKX +

∑
Lj . As the functions e−ϕr are locally bounded below

(ϕr being psh), the Hölder inequality implies that
∫

X

(∑

j

|ũ
(p)
j |2

)1/p

dVω ≤ C3.

Jensen’s inequality together with well known facts of potential theory now show
that some subsequence of the sequence of plurisubharmonic functions
1
q log

∑
j |ũ

(mq)
j |2

[
which should be thought of as weights on the Q-line bundles

1
q (A+ q(mKX +

∑
Lj))

]
converges almost everywhere to the weight ψ of a singu-

lar hermitian metric H with semi-positive curvature on mKX +
∑
Lj, in the form

of an upper regularized limit

ψ(z) = lim sup
ζ→z

lim
ν→+∞

1

qν
log

∑

j

|ũ
(mqν)
j (ζ)|2.
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On X0 we have

lim
q→+∞

1

q
log

∑

j

|u
(mq)
j |2 = lim

q→+∞

1

q
log

(
|σ|2q

∑

j

|u
(0)
j |2

)
= log |σ|2,

hence ψ(z) ≥ log |σ|2 and ‖σ‖H ≤ 1. We equip the bundle

G = (m− 1)KX +
∑

Lj

with the metric γ = H1−1/m
∏
h

1/m
j , and mKX +

∑
Lj = KX + G with the

metric ω ⊗ γ. Clearly γ has a semipositive curvature current on X and in a local
trivialization we have

‖σ‖2
ω⊗γ ≤ C|σ|2 exp

(
−

(
1 −

1

m

)
ψ +

1

m

∑
ϕj

)
≤ C

(
|σ|2

∏
e−ϕj

)1/m

on X0. Since |σ|2e−ϕ0 and e−ϕr , r > 0 are all locally integrable, we see that
‖σ‖2

ω⊗γ is also locally integrable on X0 by the Hölder inequality. A new (and
final) application of the L2 extension theorem to the hermitian line bundle (G, γ)
implies that σ can be extended to X . The theorem is proved.

The special case of the theorem obtained by taking all bundles Lj trivial tells
us in particular that any pluricanonical section σ of mKX over X0 extends to X .
By the upper semi-continuity of t 7→ h0(Xt,mKXt

), this implies

Corollary 6.3. (Siu [59]) For any projective family t 7→ Xt of algebraic varieties,
the plurigenera pm(Xt) = h0(Xt,mKXt

) do not depend on t.

At the moment, it should be observed that there are no purely algebraic proofs
of the invariance of plurigenera, though Y. Kawamata [32] has given an algebraic
proof in the case of varieties of general type.

7. References

[1] Andreotti, A., Vesentini, E., Carleman estimates for the Laplace-Beltrami equation
in complex manifolds, Publ. Math. I.H.E.S. 25 (1965) 81–130.

[2] Biswas, I., Narasimhan, M.S., Hodge classes of moduli spaces of parabolic bundles
over the general curve, J. Algebraic Geom. 6 (1997), 697–715.

[3] Bochner, S., Curvature and Betti numbers (I) and (II), Ann. of Math. 49 (1948)
379-390 ; 50 (1949) 77–93.
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[5] Boucksom, S., Demailly, J.P., Pǎun, M., Peternell, Th., The pseudo-effective cone
of a compact Kähler manifold and varieties of negative Kodaira dimension, arXiv:
math.AG/0405285.



Kähler manifolds and transcendental techniques in algebraic geometry 31

[6] Buchdahl, N., On compact Kähler surfaces, Ann. Inst. Fourier 49 (1999) 287–302.

[7] Buchdahl, N., A Nakai-Moishezon criterion for non-Kähler surfaces, Ann. Inst.
Fourier 50 (2000) 1533–1538.

[8] Campana, F., Peternell, Th., Geometric stability of the cotangent bundle and the
universal cover of a projective manifold, arXiv: math.AG/0405093.

[9] Claudon, B., Invariance for multiples of the twisted canonical bundle, Ann. Inst.
Fourier 57 (2007), 289–300.

[10] Demailly, J.-P., Estimations L
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