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Abstract. One important problem arising in algebraic geometry is the computation of effective bounds

for the degree of embeddings in a projective space of given algebraic varieties. This problem is intimately

related to the following question: Given a positive (or ample) line bundle L on a projective manifold X,

can one compute explicitly an integer m0 such that mL is very ample for m > m0 ? It turns out that

the answer is much easier to obtain in the case of adjoint line bundles 2(KX + mL), for which universal

values of m0 exist. We indicate here how such bounds can be derived by a combination of powerful

analytic methods: theory of positive currents and plurisubharmonic functions (Lelong), L2 estimates

for ∂ (Andreotti-Vesentini, Hörmander, Bombieri, Skoda), Nadel vanishing theorem, Aubin-Calabi-Yau

theorem, and holomorphic Morse inequalities.

1. Basic concepts of hermitian differential geometry

Let X be a complex manifold of dimension n and let F be a C∞ complex vector
bundle of rank r over X . A connection D on F is a linear differential operator D acting
on spaces C∞(X,Λp,qT ⋆X ⊗ F ) of F -valued differential forms, increasing the degree by 1
and satisfying Leibnitz’ rule

D(f ∧ u) = df ∧ u+ (−1)deg ff ∧Du

for all forms f ∈ C∞(X,Λa,bT ⋆X), u ∈ C∞(X,Λp,qT ⋆X ⊗ F ). As usual, we split
D = D′ +D′′ into its (1, 0) and (0, 1) parts, where

D′ +D′′ : C∞(X,Λp,qT ⋆X ⊗ F ) −→ C∞(X,Λp+1,qT ⋆X ⊗ F ) ⊕ C∞(X,Λp,q+1T ⋆X ⊗ F ).

With respect to a trivialization τ : F↾Ω
≃
−→ Ω × Cr, a connection D can be written

Du ≃τ du + Γ ∧ u, where Γ = Γ′ + Γ′′ is an arbitrary (r × r)-matrix of 1-forms and
d acts componentwise. A standard computation shows that D2u ≃τ Θ(D) ∧ u, where
Θ(D) = dΓ+Γ∧Γ is a global 2-form on X with values in Hom(F, F ). This form is called
the curvature tensor of F . In the important case of rank 1 bundles, Θ(F ) = dΓ is a
d-closed form with complex values; it is well known that the De Rham cohomology class
of θ(F ) := i

2πΘ(F ) = i
2πD

2 is the image in De Rham cohomology of the first Chern class
c1(F ) ∈ H2(M,Z). For any line bundles F1, . . . , Fp on X and any compact p-dimensional
analytic set Y in X , we set

F1 · . . . · Fp · Y =

∫

Y

c1(F1) ∧ . . . ∧ c1(Fp).
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If F is equipped with a C∞ hermitian metric h, the connection D is said to be compatible

with h if

d〈u, v〉h = 〈Du, v〉h + 〈u,Dv〉h

for all smooth sections u, v of F . This is equivalent to the antisymmetry condition
Γ⋆ = −Γ (in a unitary frame), i.e. Γ′′ = −Γ′⋆. In particular, a compatible connection
D is uniquely determined by its (0, 1)-component D′′. If F has a holomorphic structure,
we precisely have a canonical (0, 1)-connection D′′ = ∂ obtained by letting ∂ act
componentwise. Hence, there exists a unique (1, 0)-connectionD′ that makesD = D′ + ∂
compatible with the hermitian metric. This connection is called the Chern connection.
Let (eλ) be a local holomorphic frame of F↾Ω and let H = (hλµ), hλµ = 〈eλ, eµ〉 be the
hermitian matrix representing the metric. Standard computations show that the Chern
connection and curvature are given by

D′ ≃τ ∂ +H
−1
∂H ∧ • = H

−1
∂(H•), Θ(F ) = ∂(H

−1
∂H).

In the special case where F has rank 1, it is convenient to write the unique coefficient
H = h11 of the hermitian metric in the form H = e−2ϕ. The function ϕ is called the
weight of the metric in the local coordinate patch Ω. We then find Θ(F ) = 2∂∂ϕ. It is
important to observe that this formula still makes sense in the context of distribution
theory if ϕ is just an arbitrary L1

loc function. As we shall see later, the case of logarithmic
poles is very important for the applications.

(1.1) Definition. A singular hermitian metric on a line bundle F is a metric given in

any trivialization τ : F↾Ω
≃
−→ Ω × C by

‖ξ‖ = |τ(ξ)| e−ϕ(x), x ∈ Ω, ξ ∈ Fx ,

where ϕ ∈ L1
loc(Ω) is an arbitrary function. The associated curvature current is

θ(F ) =
i

π
∂∂ϕ.

The Lelong-Poincaré equation states that i
π∂∂ log |f | = [Df ], where f is a holomorphic

or meromorphic function and [Df ] is the current of integration over the divisor of f .
More generally, we have

i

π
∂∂ log ‖σ‖ = [Dσ] − θ(F )

for every section σ ∈ H0(X,F ), as follows from the equality ‖σ‖ = |f |e−ϕ, if f = τ(σ).
As a consequence, the De Rham cohomology class of [Dσ] coincides with the first Chern
class c1(F )R ∈ H2

DR(X,R).

2. Positivity and ampleness

Let (z1, . . . , zn) be holomorphic coordinates on X and let (eλ)16λ6r be an orthonor-
mal frame of F . Let the curvature tensor of F be

Θ(F ) =
∑

16j,k6n, 16λ,µ6r

cjkλµdzj ∧ dzk ⊗ e⋆λ ⊗ eµ.
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Clearly, this tensor can be identified with a hermitian form on TX ⊗ F , namely

Θ̃(F )(t) =
∑

cjkλµtjλtkµ, t =
∑

tjλ
∂

∂zj
⊗ eλ ∈ TX ⊗ F.

(2.1) Definition (Kodaira, Nakano, Griffiths). A holomorphic vector bundle F is

• positive in the sense of Nakano if Θ̃(F )(t) > 0 for all nonzero tensors t ∈ TX ⊗ F ;

• positive in the sense of Griffiths if Θ̃(F )(ξ ⊗ v) > 0 for all nonzero decomposable

tensors ξ ⊗ v ∈ TX ⊗ F .

In particular, a holomorphic line bundle F is positive if and only if its weights ϕ are

strictly plurisubharmonic (psh), i.e. if (∂2ϕ/∂zj∂zk) is positive definite.

(2.2) Example. Let D =
∑
αjDj be a divisor with coefficients αj ∈ Z and let

F = O(D) be the associated invertible sheaf of meromorphic functions u such that
div(u)+D > 0 ; the corresponding line bundle can be equipped with the singular metric
defined by ‖u‖ = |u|. If gj is a generator of the ideal of Dj on an open set Ω ⊂ X ,
then τ(u) = u

∏
g
αj

j defines a trivialization of O(D) over Ω; thus, our singular metric is
associated with the weight ϕ =

∑
αj log |gj |. By the Lelong-Poincaré equation, we find

i

π
Θ

(
O(D)

)
=

i

π
∂∂ϕ = [D] > 0,

where [D] =
∑
αj [Dj ] denotes the current of integration over D.

(2.3) Example. Assume that σ1, . . ., σN are nonzero holomorphic sections of F . Then
we can define a natural (possibly singular) hermitian metric on F by

‖ξ‖2 =
|τ(ξ)|2∑

16j6N |τ(σj(x))|2

with respect to any trivialization τ . The associated weight function is ϕ(x) =
log

(∑
|τ(σj(x))|

2
)
1/2. In this case ϕ is a psh function; thus, iΘ(F ) is a closed pos-

itive current. Let us denote by Σ the linear system defined by σ1, . . . , σN and by
BΣ =

⋂
σ−1
j (0) its base locus. Let

ΦΣ : X \BΣ → PN−1, x 7→ (σ1(x) : σ2(x) : . . . : σN (x))

be the associated map. Then θ(F ) = i
2π

log(|σ1|
2 + · · · + |σN |

2) is the pullback over
X \BΣ of the Fubini-Study metric ωFS on PN−1.

(2.4) Definition. A holomorphic line bundle F over a compact complex manifold X is

• very ample, if the map Φ|F | : X → PN−1 defined by the complete linear system

|F | = P (H0(X,F )) is a regular embedding (this means in particular that B|F | = ∅);

• ample, if mF is very ample for some positive integer m.

Here we used an additive notation for Pic(X) = H1(X,O⋆), i.e. mF = F⊗m. By
Example (2.2), every ample line bundle F has a smooth hermitian metric with positive
definite curvature form; indeed, if Φ|mF | is an embedding, then we get a positive definite
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curvature form θ(F⊗m) = Φ⋆|mF |(ωFS) and we need only extract the mth root of this
metric to get the desired smooth metric on F . The converse is also true:

(2.5) Kodaira embedding theorem (1954). A line bundle F is ample if and only if

F can be equipped with a smooth hermitian metric of positive curvature.

In this context, Fujita [Fuj87] has raised the following important conjecture.

(2.6) Conjecture (Fujita, 1987). If L is an ample line bundle on a projective n-fold X,

then KX + (n+ 1)L is globally generated and KX + (n+ 2)L is very ample.

Here KX = ΛnT ⋆X is the canonical bundle. The example of curves shows that KX is
needed to get a uniform answer (if L is a bundle of degree 1 on a curve, then in general
mL does not have any nonzero section unless m > g = genus). Also, the example of
projective spaces show that Fujita’s bounds would be optimal, because KPn = O(−n−1).

Such questions have attracted a lot of attention in recent years. First, the case
of surfaces has been completely settled by Reider; in [Rei88] he obtains a very sharp
criterion for global generation and very ampleness of line bundles in dimension 2. In
higher dimensions, let us mention [Dem90, 93, 94, 95] and the works of Fujita [Fuj87, 94],
Kollár [Kol93], Ein-Lazarsfeld [EL92, 93], Lazarsfeld [Laz93], and Siu [Siu93, 94]. Our
goal is to describe a few powerful analytic methods that are useful in this context.

3. Bochner technique and vanishing theorems

Let X be a compact complex n-fold equipped with a Kähler metric, namely a positive
(1, 1)-form ω = i

∑
ωjkdzj ∧ dzk with dω = 0. Let F be a holomorphic vector bundle on

X equipped with a hermitian metric, and let

∆′ = D′D′⋆ +D′⋆D′, ∆′′ = D′′D′′⋆ +D′′⋆D′′,

be the complex Laplace operators associated with the Chern connection D. Here
the adjoints D′⋆, D′′⋆ are the formal adjoints computed with respect to the L2 norm
‖u‖2 =

∫
X
|u(x)|2 dVω(x), where |u| is the pointwise hermitian norm and dVω = ωn/n!

is the volume form. The fundamental results of Hodge theory imply isomorphisms

Hq(X,ΩpX ⊗ F ) = Hp,q

∂
(X,F ) ≃ Hp,q(X,F )

between sheaf cohomology groups, Dolbeault ∂-cohomology groups, and the space Hp,q

of harmonic (p, q)-forms ∆′′u = 0. The next fundamental fact is an identity originally
used by Bochner to prove vanishing results for Betti numbers. Slightly later, the identity
was extended to the complex situation by Kodaira and Nakano.

(3.1) Bochner-Kodaira-Nakano formula (1954). For all u =
∑
uJ,K,λdzI∧dzJ⊗eλ

of class C∞ and type (p, q), we have

∆′′u = ∆′u+ Ap,qF,ωu,

where Ap,qF,ω is the hermitian endomorphism such that 〈Ap,qF,ωu, u〉 =

∑
cjkλµ uJ,jS,λ uJ,kS,µ +

∑
cjkλµ ukR,K,λ ujR,K,µ −

∑
cjjλµ uJ,K,λ uJ,K,µ,

and the summations are extended to all relevant indices 1 6 j, k 6 n, 1 6 λ, µ 6 r, and

all relevant multiindices |J | = p, |K| = q, |R| = p− 1, |S| = q − 1.
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As 〈∆′u, u〉 = ‖D′u‖2 + ‖D′⋆u‖2 > 0 the Bochner-Kodaira-Nakano formula implies

〈∆′′u, u〉 >

∫

X

〈Ap,qF,ωu, u〉 dVω.

If Ap,qF,ω is positive definite, every (p, q)-harmonic form has to vanish and we conclude

that Hq(X,ΩpX ⊗ F ) = 0. In the special case of rank 1 bundles, we can take at each
point x ∈ X simultaneous diagonalizations

ω(x) = i
∑

dzj ∧ dzj , Θ(F )(x) = i
∑

γj(x)dzj ∧ dzj ,

where γ1(x) 6 · · · 6 γn(x) are the curvature eigenvalues. Then cjjλµ = γj and

〈Ap,qF,ωu, u〉 =
∑

J,K

( ∑

j∈K

γj −
∑

j /∈J

γj

)
|uJK |2 > (γ1 + · · ·+ γq − γn−p+1 − · · · − γn)|u|

2.

Assume now that iΘ(F ) is positive. The choice ω = iΘ(F ) yields γj = 1 for j = 1, 2, . . . , n
and 〈Ap,qF,ωu, u〉 = (p+ q − n)|u|2. From this, we immediately infer:

(3.2) Akizuki-Kodaira-Nakano vanishing theorem (1954). If F is a positive line

bundle on a compact complex manifold X, then

Hp,q(X,F ) = Hq(X,ΩpX ⊗ F ) = 0 for p+ q > n+ 1.

The above vanishing result is optimal. Unfortunately, it cannot be extended to semipos-
itive or numerically effective line bundles of bidegrees (p, q) with p < n, as shown by a
counterexample of Ramanujam [Ram74].

4. Hörmander’s L
2 estimates and existence theorems

The basic existence theorem is the following result, which is essentially due to
Hörmander [Hö65] and, in a more geometric setting, to Andreotti-Vesentini [AV65].

(4.1) Theorem. Let (X,ω) be a complete Kähler manifold. Let F be a hermitian vector

bundle of rank r over X, and assume that A = Ap,qF,ω is positive definite everywhere on

Λp,qT ⋆X ⊗ F , q > 1. Then for any form g ∈ L2(X,Λp,qT ⋆X ⊗ F ) with

D′′g = 0 and

∫

X

〈(Ap,qF,ω)−1g, g〉 dVω < +∞,

there exists a (p, q − 1)-form f such that D′′f = g and

∫

X

|f |2 dVω 6

∫

X

〈(Ap,qF,ω)−1g, g〉 dVω.

The proof can be ultimately reduced to a simple duality argument for unbounded
operators on a Hilbert space, based on the a priori inequality

‖D′′u‖2 + ‖D′′⋆u‖2
>

∫

X

〈Ap,qF,ωu, u〉 dVω.
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The above L2 existence theorem can be applied in the fairly general context of weakly

pseudoconvex manifolds (i.e. manifolds possessing a weakly psh exhaustion function),
thanks to the fact that every weakly pseudoconvex Kähler manifold (X,ω) carries a
complete Kähler metric. In particular, the existence theorem can be applied on compact
manifolds, pseudoconvex open sets in Cn, Stein manifolds, etc. By regularization
arguments, the existence theorem also applies when F is a line bundle and the hermitian
metric is a singular metric with positive curvature in the sense of currents. In fact, the
solutions obtained with the regularized metrics have weak L2 limits satisfying the desired
estimates. Especially, we get the following more tractable version in the case p = n.

(4.2) Corollary. Let (X,ω) be a Kähler weakly pseudoconvex complex manifold of

dimension n. Let F be a holomorphic line bundle on X, equipped with a singular metric

whose local weights ϕ ∈ L1
loc satisfy iΘ(F ) = 2i∂∂ϕ > εω for some ε > 0. For every

g ∈ L2(X,Λn,qT ⋆X ⊗ F ) with D′′g = 0, there exists f ∈ L2(X,Λp,q−1T ⋆X ⊗ F ) such that

D′′f = g and ∫

X

|f |2e−2ϕ dVω 6
1

qε

∫

X

|g|2e−2ϕ dVω.

This result leads in a natural way to the concept of multiplier ideal sheaves, according
to Nadel [Nad89]. The basic idea was already implicit in the work of Bombieri [Bom70]
and Skoda [Sk72].

(4.3) Multiplier ideal sheaves. Let ϕ be a psh function on an open subset Ω ⊂ X.

We define I(ϕ) ⊂ OX to be the sheaf of germs f ∈ OΩ,x such that |f |2e−2ϕ is integrable

on a small neighborhood V of x with respect to the Lebesgue measure.

(4.4) Main property ([Nad89], [Dem93]). The ideal sheaf I(ϕ) ⊂ OX is a coherent

analytic sheaf. Its zero variety V (I(ϕ)) is the set of points in a neighborhood of which

e−2ϕ is nonintegrable.

A basic observation is that the zero variety V (I(ϕ)) is closed related to the sublevel sets
of Lelong numbers of ϕ.

(4.5) Definition. The Lelong number of a psh function ϕ at a point x ∈ X is the limit

ν(ϕ, x) := lim infz→x ϕ(z)/ log |z − x|. The function ϕ is said to have a logarithmic pole

of coefficient γ if γ = ν(ϕ, x) > 0.

(4.6) Lemma ([Sk72]). Let ϕ be psh on Ω and let x ∈ Ω.

• If ν(ϕ, x) < 1, then e−2ϕ is integrable near x ⇒ I(ϕ)x = OΩ,x.

• If ν(ϕ, x) > n+ s, s ∈ N, then e−2ϕ > C|z − x|−2n−2s near x and I(ϕ)x ⊂ ms+1
Ω,x .

(4.7) Simple algebraic case. Let ϕ =
∑
αj log |gj|, αj ∈ Q+, be associated with a

normal crossing Q-divisor D =
∑
αjDj , Dj = g−1

j (0). An easy computation gives

I(ϕ) = O(−
∑

⌊αj⌋Dj) = O(−⌊D⌋),

where ⌊αj⌋ = the integral part of αj . If the assumption on normal crossings is omitted,
a desingularization of D has to be used in combination with the following fonctoriality
property for direct images.

(4.8) Basic fonctoriality property. Let µ : X ′ → X be a modification (i.e. a proper

generically 1 : 1 holomorphic map), and let ϕ be a psh function on X. Then

µ⋆
(
O(KX′) ⊗ I(ϕ ◦ µ)

)
= O(KX) ⊗ I(ϕ).
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Let us now consider the case of general algebraic singularities

ϕ ∼
α

2
log

(
|f1|

2 + · · · + |fN |
2
)

with α ∈ Q+ and fj holomorphic on an open set Ω ⊂ X . By Hironaka’s theorem, there

exists a smooth modification µ : X̃ → X of X such that µ⋆(f1, . . . , fN) is an invertible
sheaf O(−D) associated with a normal crossing divisor D =

∑
λjDj . Then

I(ϕ) = µ⋆OX̃

( ∑
(ρj − ⌊αλj⌋)Dj

)
,

where R =
∑
ρjDj is the zero divisor of the jacobian Jµ of the blow-up map. In

this context, we get the following important vanishing theorem, which can be seen
as a generalization of the Kawamata-Viehweg vanishing theorem (see [Kaw82], [Vie82],
[EV86]).

(4.9) Nadel vanishing theorem ([Nad89], [Dem93]). Let (X,ω) be a Kähler weakly

pseudoconvex manifold, and let F be a holomorphic line bundle over X equipped with a

singular hermitian metric of weight ϕ. Assume that iΘ(F ) > εω for some continuous

positive function ε on X. Then

Hq
(
X,O(KX + F ) ⊗ I(ϕ)

)
= 0 for all q > 1.

Proof. In virtue of Hörmander’s L2 estimates applied on small balls, the ∂-complex of
L2

loc (n, q)-forms is a (fine) resolution of the sheaf O(KX + F ) ⊗ I(ϕ). The global L2

cohomology is also zero by the L2 estimates applied globally on X .

(4.10) Corollary. Let x1, . . . , xN be isolated points in the zero variety V (I(ϕ)). Then

there is a surjective map

H0(X,KX + F ) −→−→
⊕

16j6N

(
O(KX + L) ⊗OX/I(ϕ)

)
xj
.

In particular, if the weight function ϕ is such that ν(ϕ, x) > n+ s at some point x ∈ X
and ν(ϕ, y) < 1 at nearby points, then H0(X,KX + F ) generates all s-jets at x.

(4.11) Remark. It is an easy exercise (left to the reader!) to show that Corollary (4.10)
implies the Kodaira embedding theorem.

5. Numerical criteria for very ample line bundles

The simplest approach to this problem is a recent technique due to [Siu94], which
rests merely on Nadel’s vanishing theorem and the Riemann-Roch formula. We formulate
here a slightly improved version (see also [Dem94, 95]).

(5.1) Theorem. Let L be an ample line bundle on a projective n-fold X. Let xj ∈ X
and sj ∈ N be given, 1 6 j 6 N . For

m > m0 = 2 +
∑

16j6N

(
3n+ 2sj − 1

n

)
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H0(X, 2KX+mL) generates simultaneously jets of order sj at all points xj. In particular,

2KX +mL is very ample for m > 2 +
(
3n+1
n

)
.

Proof. By a result of Fujita, KX +mL is ample for m > m0 (in fact Fujita has shown
that KX + mL is nef for m > m + 1 and ample for m > n + 2). The idea is to use a
recursion procedure for the construction of psh weights (ϕν)ν>1 on KX +m0L such that

(α) the curvature of KX +m0L is positive definite: i∂∂ϕν > ενω for some εν > 0, where
ω is the Kähler metric;

(β) ν(ϕν , xj) > n+ sj for all j;

(γ) I(ϕν+1) ) I(ϕν) whenever dimV (I(ϕν)) > 0.

Indeed, Nadel’s vanishing theorem implies

Hq(X,O(2KX +mL) ⊗O/I(ϕν)) = 0 for m > m0 and q > 1.

Hence, h0 = χ is large for some m ∈ [m0, 2m0 − 1], and the existence of a section σ
vanishing at order 2(n+ sj) at all points xj follows by the Riemann-Roch formula and
an elementary count of dimensions. We then set inductively

ϕν+1 = log(eϕν + e(1−m/2m0)ψ|σ|1/2),

where ψ is a weight for a smooth metric of positive definite curvature on L. Condition
(γ) guarantees that the process stops after a finite number of steps.

One weak point of the above result is that large multiples of L are required. Instead,
we would like to find conditions on L implying that 2(KX + L) is very ample. For this,
we need a convenient measurement of how large L is.

(5.2) Definition. Let L be a numerically effective line bundle, i.e. a line bundle such

that Lp · Y > 0 for all p-dimensional subvarieties Y . For every S ⊂ X, we set

µ(L, S) = min
Y ∩S 6=∅

(Lp · Y )1/p,

where Y runs over all p-dimensional subvarieties intersecting S. The main properties of

this invariant are:

• Linearity : ∀k > 0, µ(kL, S) = k µ(L, S) ;

• Nakai-Mŏıshezon criterion: L is ample if and only if µ(L,X) > 0.

(5.3) Theorem ([Dem93]). Let s,m ∈ N, s > 1, m > 2. If L is ample and satisfies

(m− 1)µ(L,X) > 6(n+ s)n − s,

then 2KX +mL generates s-jets. Moreover, the result still holds with 6(n+ s)n replaced

by 12nn if s = 1; in particular, 2KX + 12nnL is always very ample.

Proof. By Corollary (4.10), the main point is to construct psh weights ϕ that achieve
the desired ideals I(ϕ)xj

for the jets. This is done by solving a complex Monge-Ampère
equation (

ω +
i

π
∂∂ϕ

)
= f, ω = θ(L),
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where f is a linear combination of Dirac measures δxj
and of a uniform density with

respect to ωn. The solution ϕ does exist by the Aubin-Calabi-Yau theorem, but in
general, the poles of ϕ are not isolated. Hence, the Lelong numbers have to be estimated
precisely: this is indeed possible by means of intersection inequalities for positive currents.
We refer to [Dem93, 94] for details.

6. Holomorphic Morse inequalities

The starting point is the following differential geometric asymptotic inequality, in
which X(6q, L) denotes the set of points x ∈ X at which θh(L)(x) has at most q negative
eigenvalues. The proof is obtained by a careful study of the spectrum of the complex
Laplace operator ∆′′. See [Dem85, 91] for details.

(6.1) Strong Morse inequalities ([Dem85]). Let X be a compact complex n-fold and

(L, h) a hermitian line bundle. Then, as k → +∞,

∑

06j6q

(−1)q−jhj
(
X, kL) 6

kn

n!

∫

X(6q,L)

(−1)q
(
θh(L)

)n
+ o(kn).

(6.2) Special case (algebraic version). Let L = F−G, where F and G are numerically

effective. Then for all q = 0, 1, . . . , n,

∑

06j6q

(−1)q−jhj(X, kL) 6
kn

n!

∑

06j6q

(−1)q−j
(
n

j

)
Fn−j ·Gj + o(kn).

In particular, for q = 1 we get

h0(X, kL)− h1(X, kL) >
kn

n!
(Fn − nFn−1 ·G) − o(kn).

(6.3) Corollary. If F,G are nef and Fn > 0, then k(mF −G) has sections as soon as

m > nFn−1 ·G/Fn and k ≫ 0.

(6.4) Corollary. If F,G are nef and Fn > 0, then H0(X,KX +mF −G) 6= 0 for some

m 6 nFn−1 ·G/Fn + n+ 1.

Proof. Set m0 := ⌊nFn−1 ·G/Fn⌋+ 1. By Corollary (6.3), m0F −G has a psh weight ϕ
with i∂∂ϕ≫ 0; thus, Hq(X,O(KX +mF −G)⊗ I(ϕ)) = 0 for q > 1 and m > m0. The
Hilbert polynomial is thus equal to

h0(X,O(KX +mF −G) ⊗ I(ϕ)) > 0,

and it must be nonzero for some m ∈ [m0, m0 + n] because there are at most n roots.

A similar proof yields

(6.5) Corollary. If F,G are nef with Fn > 0, and Y is a p-dimensional subvariety, then

H0(Y, ωY ⊗OY (mF −G)) 6= 0 for some m 6 pF p−1 ·G · Y/F p · Y + p+ 1, where ωY is

the L2 dualizing sheaf of Y .
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A proof by backward induction on dimY then yields the following effective version of
the big Matsusaka theorem ([Mat72], [KoM83]), improving Siu’s result [Siu93].

(6.6) Theorem ([Siu93], [Dem94, 95]) Let F and G be nef line bundles on a projective

n-fold X. Assume that F is ample and set H = λn(KX + (n + 2)F ) with λ2 = 1 and

λn =
(
3n+1
n

)
− 2n for n > 3. Then mF −G is very ample for

m > (2n)(3
n−1−1)/2 (Fn−1 · (G+H))(3

n−1+1)/2(Fn−1 ·H)3
n−2(n/2−3/4)−1/4

(Fn)3n−2(n/2−1/4)+1/4
.

In particular mF is very ample for

m > Cn (Fn)3
n−2

(
n+ 2 +

Fn−1 ·KX

Fn

)3n−2(n/2+3/4)+1/4

with Cn = (2n)(3
n−1−1)/2(λn)

3n−2(n/2+3/4)+1/4.
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