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Abstract. These notes are an expanded version of lectures delivered at the AMS
Summer School on Algebraic Geometry, held at Santa Cruz in July 1995. The
main goal of the notes is to study complex varieties (mostly compact or projective
algebraic ones), through a few geometric questions related to hyperbolicity in the
sense of Kobayashi. A convenient framework for this is the category of “directed
manifolds”, that is, the category of pairs (X, V') where X is a complex manifold and
V' a holomorphic subbundle of Tx. If X is compact, the pair (X, V') is hyperbolic
if and only if there are no nonconstant entire holomorphic curves f : C — X
tangent to V' (Brody’s criterion). We describe a construction of projectivized k-
jet bundles PV, which generalizes a construction made by Semple in 1954 and
allows to analyze hyperbolicity in terms of negativity properties of the curvature.
More precisely, 7 : PV — X is a tower of projective bundles over X and carries
a canonical line bundle Op,y(1); the hyperbolicity of X is then conjecturally
equivalent to the existence of suitable singular hermitian metrics of negative
curvature on Op, v (—1) for k large enough. The direct images (7)«Op, v (m) can
be viewed as bundles of algebraic differential operators of order k£ and degree m,
acting on germs of curves and invariant under reparametrization. Following an
approach initiated by Green and Griffiths, we establish a basic Ahlfors-Schwarz
lemma in the situation when O p, v (—1) has a (possibly singular) metric of negative
curvature, and we infer that every nonconstant entire curve f : C — V tangent to
V must be contained in the base locus of the metric. This basic result is then used
to obtain a proof of the Bloch theorem, according to which the Zariski closure of an
entire curve in a complex torus is a translate of a subtorus. Our hope, supported
by explicit Riemann-Roch calculations and other geometric considerations, is that
the Semple bundle construction should be an efficient tool to calculate the base
locus. Necessary or sufficient algebraic criteria for hyperbolicity are then obtained
in terms of inequalities relating genera of algebraic curves drawn on the variety,
and singularities of such curves. We finally describe some techniques introduced
by Siu in value distribution theory, based on a use of meromorphic connections.
These techniques have been developped later by Nadel to produce elegant examples
of hyperbolic surfaces of low degree in projective 3-space; thanks to a suitable
concept of “partial projective projection” and the associated Wronskian operators,
substantial improvements on Nadel’s degree estimate will be achieved here.
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80. Introduction

In these notes, we investigate some geometric questions related to the concept
of hyperbolic variety in the sense of Kobayashi [Kob70]. Hyperbolic algebraic
varieties have attracted considerable attention, in part because of their conjectured
diophantine properties. For instance, [Lang86] has conjectured (among other
things) that any hyperbolic complex projective variety over a number field K can
contain only finitely many rational points over K; this conjecture, which seems at
present far beyond reach, may be regarded as a higher dimensional analogue of the
Mordell conjecture. The reader can consult P. Vojta [Voj87] for aspects connected
to diophantine problems.

We will be concerned here only with the geometric aspects of the theory
which, although a priori more tractable than the diophantine aspects, are still
conjectural for a major part; in fact very few satisfactory general purpose theorems
are available. We hope that some of the ideas presented here will prove useful to
achieve substantial progress. The reader is referred to S. Lang’s survey [Lang86]
and book [Lang87] for an overview of the theory until the mid 80’s, and to
J. Noguchi-T. Ochiai [NoOc90], P.M. Wong [Wong93] and M. Zaidenberg [Zai93]
for a good exposition of more recent problems. Our goal here is not to provide
an exhaustive compilation of known results, but rather to emphasize two or three
important ideas around the concepts of jet bundles and jet metrics. Similar ideas
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have been applied successfully in a somewhat special situation in the recent work
[SiYe96a] by Siu and Yeung, where the authors prove the hyperbolicity of the
complement of an irreducible generic curve of high degree d > 10'3 in P2. Let us
fix here our terminology: the word “generic” will refer to a property which holds
true in the complement of a global algebraic or analytic subset in the parameter
space, and the expression “very generic” will be used when the exceptional set of
parameters is a countable union of algebraic or analytic subsets. As we will see in
several instances, the geometry of jets conveys many natural interesting problems
concerning the relationship between hyperbolicity and jet curvature negativity.

We now give a short outline of the contents. Recall that a complex variety is
hyperbolic in the sense of Kobayashi if the family of holomorphic maps f: A — X
from the unit disk into X is a normal family. If X is compact (e.g. projective
algebraic), it is well known that X is Kobayashi hyperbolic if and only if it is
Brody hyperbolic, that is, if there are no nonconstant entire holomorphic curve
f:C — X. In particular X has no rational or elliptic curves, and more generally
every holomorphic map f: Z — X from an abelian variety (or complex torus) to
X must be constant. Conversely, it has been suggested by Kobayashi [Kob70] and
[Lang86] that these algebraic properties could be equivalent to hyperbolicity. To
prove this, one would have to construct a torus Z and a nontrivial holomorphic map
f+Z — X whenever X is non hyperbolic. A hint that this should be true is given
by the following observation: if X is hyperbolic, there is an absolute constant € > 0
such that the genus of any compact curve of X is bounded below by € times the
degree; conversely, this property fails to be true in many examples of nonhyperbolic
projective varieties. Our belief, supported by some heuristic arguments, is that
any sequence of compact curves (Cy) with genus(Cy)/degree(Cy) — 0 should have
a cluster set swept out by the image of a map f : Z — X from a complex
torus Z, such that the limit of some subsequence of the sequence of universal
covering maps A — Cy — X (suitably reparametrized) coincides with the image
of a (non necessarily compact) straight line of Z into X. A related conjecture
of [Lang86] states that a projective variety is hyperbolic if and only if all its
irreducible algebraic varieties are of general type. The most elementary step would
be to exclude the case of manifolds with ¢; = 0 (say, Calabi-Yau manifolds and
symplectic manifolds), by showing for instance that they do admit a sequence of
compact curves (Cy) with genus(Cy)/degree(Cy) — 0.

We next introduce jet bundles and jet differentials, extending some ideas of
Green and Griffiths [GrGr80] (actually, the idea of using jet differentials can be
traced back to the work of A. Bloch [Blo26, 26'], H. Cartan [Car28|, L. Ahlfors
[Ahl41] and T. Ochiai [Och77]). The basic idea is to introduce a bundle Ej ,,, of
algebraic differential operators Q(f', f”, ..., f*)) of weighted degree m, acting on
germs of holomorphic curves (“jet differentials of order k and degree m”). When
no other restrictions are made on (), one obtains a “huge” bundle which will be
denoted E,Sgn in reference to Green-Griffiths’ work. In our case, the main goal is to
determine the conformal type of entire curves drawn on the variety. Therefore, the
way curves are parametrized is irrelevant. For this reason, one is led to introduce a
subbundle Ej ,,, C ESS of “special jet differential operators” Q(f, f”, ..., £,
namely operators which have the property of being invariant by reparametrization,
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i.e.
QUfow), (fou),....(fo)™) = ()"Qf, f" ..., f*)

for any local reparametrization ¢ : (C,0) — (C,0) of the curve. For instance,
all Wronskian determinants appearing in the wedge products f/, f' A f”,

A f"A - A fO (computed in any coordinate system), and all polynomial
combinations of these give rise to local sections of Ej ,,. The subbundle Ej .,
turns out to have better positivity properties than EGG (see section §12). The

bundles EGG and Fy, ,, have natural filtrations for Wthh the graded pieces split in
1rreduc1ble ‘tensor product representations of T% (Schur fonctor representations).
However, in the case of Ej, ,,, it seems to be a hlghly non trivial question to decide
which representations are actually involved, except for the simpler cases of jet
differentials of order k£ < 2.

A basic observation is that any entire curve f : C — X must automatically
satisfy all algebraic differential equations Q(f’, f”,...,f%*)) = 0 arising from
global jet differential operators Q € H(X, Ej , ® O(—A)) which vanish on some
ample divisor A. Our proof is based on a strong pointwise version of the Ahlfors-
Schwarz lemma (Lemma 3.2 and Theorem 7.8), and actually completes the scheme
of proof suggested in [GrGr80] in the case of invariant jet differentials; the general
pointwise case of the Ahlfors-Schwarz lemma for non necessarily invariant jet
differentials, however, seems to be still unsettled. Let us mention, although we
will not need it here, that the above vanishing theorem is still true with sections
of EGG ® O(—A) in place of Ej ,, ® O(—A) (see Remark 7.11 and [SiYe96¢]|). The
Vanlshlng theorem provides a way of investigating the hyperbolicity of X by trying
to compute the base locus of sections in H(X, Ej, ,,,®9(—A)) for large k and m (we
will call this set the “Green-Griffiths locus’ of X, although [GrGr80] deals rather
with sections of EF'C ® O(—A)). We believe that the use of Ej,,,, in place of ESS
should make easier to understand the structure of the base locus (especially in the
case of higher values of k£ and n = dim X), since the dimension of the projectivized
jet bundles under consideration is smaller and E}, ,,, is “more positive” than EESL
At least in the case of surfaces of general type, the existence of sections in Ey ,,
and E - can be obtained by Riemann-Roch computations and suitable Vanlshlng
theorems proved by Bogomolov [Bog79] (here again, the conditions involved for the
existence of sections in Ej, ,, are better than those for EGG) It is reasonable to
hope that suitable reﬁnements of these ideas could lead in the future to a complete
proof of the conjecture that every surface of general type only has finitely many
rational and elliptic curves. Such a result is indeed obtained in [Bog77] for the class
of surfaces X satisfying c1(X)? > co(X), thanks to a finiteness theorem for integral
curves of foliations on surfaces (cf. Jouanolou [Jou78]). When ¢1(X)? > 2 co(X),
Lu-Yau [LuYa90] proved the additional result that the transcendental curves are
algebraically degenerate; the argument is based on a result of Miyaoka asserting
that the base locus of the first order jet differentials in HY(X, S*T% @ O(—A)) is at
most 1-dimensional for ¢;(X)? > 2¢2(X) and k > 0. Recently, S. Lu [Lu96] also
obtained a proof for the limit case ¢1(X)? = 2¢2(X). By a different method, Lu-
Miyaoka [LuMi95] investigate the case of arbitrary surfaces of general type, and get
the desired finiteness results under suitable restrictions on the curve singularities.

In a similar manner, for varieties of general type of arbitrary dimension,
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it is conjectured that all entire curves f : C — X are contained in a proper
algebraic subset. One of the most celebrated result in this direction is the proof
of the “Bloch theorem”, i.e. the special case of the above conjecture when X
has irregularity ¢ = h°(X,Q%) > dim X ; the subject was revived by Ochiai
[0ch77], who considerably clarified the ideas introduced in [Blo26], and formulated
a technical result that would yield what he termed the “Bloch conjecture”.
The Bloch theorem was finally settled in the affirmative, by means of various
techniques, in fundamental papers by Noguchi [Nog77, 81, 84], Kawamata [Kaw80]
and Green-Griffiths [GrGr80] (to avoid the slight technical difficulty with the
proof of the Ahlfors-Schwarz lemma in [GrGr80], we will prove here Bloch’s
theorem by replacing the Green-Griffiths jet differentials E,?S1 with the invariant
jet differentials Ej ,,). A very interesting related result is the proof by Siu-Yeung
[SiYe96b] of the hyperbolicity of complements of ample divisors in abelian varieties
(see also Noguchi [Nog96a| for an extension to the semi-abelian case). In § 10, we
give a brief overview of these results, following an alternative approach suggested
by Dethloff and Lu [DLu96], which makes use of a “logarithmic version” of our
jet bundles. An earlier interesting result is the construction by Nadel [Nad89] of
explicit hyperbolic algebraic surfaces in P3. Nadel’s method is based on a use
of meromorphic connections with low pole order, according to ideas introduced
by Siu [Siu87]. In our setting, Nadel’s technique is just the very special case
when the jet differential operators under consideration are Wronskian operators
associated with a meromorphic connection. Unfortunately, the method seems to
work only for a restricted class of hypersurfaces or complete intersections defined
by polynomials with few monomials. Thanks to a new flexible concept of partial
projective connection, we have been able to improve Nadel’s bounds and show the
existence of hyperbolic algebraic surfaces in P? of any degree > 11 (the conjectured
optimal bound should be 5); see §11 and [EG96, 97], [DeEGIT]*.

Contrary to most prior methods, including J. Noguchi’s “jet projection
method” (see [NoOc90], [Nog96]), our method does not use any Nevanlinna the-
ory at all. Our approach is to construct suitable jet metrics of negative curva-
ture, following original ideas of Grauert-Reckziegel [GRec65], [Gra89], Kobayashi
[Kob75], Cowen-Griffiths [CoGr76] and Green-Griffiths [GrGr80]. In fact, the
sheaves O(Ey ) of jet differentials defined above are the direct image sheaves of
some canonical invertibles sheaves Ox, (m) defined over suitable “projectivized k-
jet bundles” Xy — X. The k-jet bundle X} is a tower of projective bundles, and
can be obtained by iterating a natural fonctorial construction (X, V) ~» (X1, V1)
in the category of “directed manifolds’. By definition, objects of this category are
pairs (X, V), where X is a complex manifold and V' a holomorphic subbundle of
T'x, and the arrows are holomorphic morphisms preserving the V' subbundles. We
show in § 6 that the bundle X}, is a canonical smooth compactification of the bundle
of “geometric” k-jets of regular curves (by “geometric jets”, we mean that one does
not pay attention to the way curves are parametrized). Such bundles X} appear
to be a natural generalization of a construction introduced by Semple [Semb4] in
1954, which has been used recently as a tool for establishing enumerative formulas
dealing with the order of contact of plane curves (see [Coll88], [ASS92], [CoKe94]).

* After these notes were completed, similar results have been announced independently in
[SiYe96¢].
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In fact, almost all concepts pertaining to hyperbolicity can be extended in
the general framework of directed manifolds (X, V'), which we may think of as a
“relative” situation (in fact, it is not necessary to assume that V' is an integrable
subbundle of T’x, but the case when V' = T'x /g is the relative tangent bundle of a
smooth map X — S is of special interest). For instance, (X, V) is said to be Brody
hyperbolic if there are no global holomorphic curve f : C — X tangent to V. In the
inductive definition of the k-jet spaces (X, V), Xk is simply the projectivization
P(Vi—1) of V1 — X1, and Ox, ,(—1) is the tautological line subbundle of the
inverse image of Vi1 over X;. Now, we say that X has k-jet negative curvature
if Ox,(—1) can be equipped with a hermitian metric (for which some type of
singularities have to be allowed), such that the (1, 1) curvature form of the metric is
negative along Vj. The negativity property of the k-jet curvature is closely related
to the existence of sections of large degree in H°(X, Ej. ), exactly in the same
way positivity and ampleness are related. A variant of the Ahlfors-Schwarz lemma
shows that the negativity of k-jet curvature implies hyperbolicity. Conversely,
Kobayashi [Kob70] and [Lang86] raised the question whether hyperbolicity is
equivalent to 1-jet negativity (in our terminology). We show that this optimistic
picture is unfortunately wrong. In fact the k-jet negativity property yields the
following necessary algebraic condition: there exists a constant € > 0 such that
every algebraic curve C' C X satisfies

29(C) =2 > edeg(C) + ) (me,_,(z) — 1),

x€Cr_1

where C is the normalization of C' and mc,_,(x) are the multiplicities of the
singular points in the (k — 1)-st jet lifting of C. Using this criterion, we construct
for every integer kg an hyperbolic algebraic surface which cannot have any k-jet
metric of negative curvature when k < kg. It is nevertheless reasonable to expect
that hyperbolicity is equivalent to the existence of a sufficiently large integer k;
such that X has k-jet negative curvature for k > k.

We want to stress that many important questions have been left out in these
notes, especially Nevanlinna theory and its applications to hyperbolicity theory
[CaGr72], [Nog83], [Siu87], [Wong89], [RuSt91l], [Nog91]. Especially noticeable
in this respect is the work of Dethloff-Wong-Schumacher [DSW92, 94] on the
hyperbolicity of complements of 3 or more generic curves in the projective plane,
and the construction by Masuda-Noguchi [MaNo093] of hyperbolic hypersurfaces of
large degree in P™. Also, in a more algebraic setting, there is an extensive literature
dealing with the question of computing genus of curves in algebraic surfaces,
bearing an intimate connection with hyperbolicity ([Bog77], [Cle86], [CKMS8S],
[LuYa90], [Lu9l], [LuMi95], [Lu96] [Xu94]). Last but not least, there are several
important questions of Number Theory which either depend on Nevanlinna theory
or suggest new tools for the study of differential geometric problems. The reader
may profitably consult McQuillan’s paper [McQu96], in which the method of Vojta-
Faltings is adapted to give a completely new proof of the Bloch theorem.

I wish to express our gratitude to the organizers of the AMS Summer Institute
held at Santa Cruz in July 1995 for giving me the opportunity of making a series
of lectures on hyperbolicity theory. I warmly thank Gerd Dethloff, Siegmund
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Kosarew, Steven Lu, Bernard Shiffman, Yum-Tong Siu and Mikhail Zaidenberg
for formal or informal discussions which got me started in the subject and helped
me to improve these notes.

81. Hyperbolicity concepts and directed manifolds

We first recall a few basic facts concerning the concept of hyperbolicity,
according to S. Kobayashi [Kob70, Kob76]. Let X be a complex n-dimensional
manifold. We denote by f : A — X an arbitrary holomorphic map from the unit
disk A C C to X. The Kobayashi-Royden infinitesimal pseudometric on X is the
Finsler pseudometric on the tangent bundle Tx defined by

kx(§) =inf {A>0;3f: A= X, f(0) ==z, Af'(0) =¢}, reX, E€Tx,

(see H. Royden [Roy71], [Roy74]). In the terminology of Kobayashi [Kob75], a
Finsler metric (resp. pseudometric) on a vector bundle E is a homogeneous positive
(resp. nonnegative) positive function N on the total space E, that is,

N(XE) = |[A| N(€) forall A\ € C and £ € E.

A Finsler (pseudo-)metric on E is thus nothing but a hermitian (semi-)norm on
the tautological line bundle Op(g)(—1) of lines of E over the projectivized bundle
Y = P(E). The Kobayashi pseudodistance dg (x,y) is the geodesic pseudodistance
obtained by integrating the Kobayashi-Royden infinitesimal metric. The manifold
X is said to be hyperbolic (in the sense of Kobayashi) if dj is actually a distance,
namely if dg (z,y) > 0 for all pairs of distinct points (x,y) in X. In this context,
we have the following well-known results of Brody [Bro78|.

1.1. Brody reparametrization lemma. Let w be a hermitian metric on X and
let f: A — X be a holomorphic map. For every e > 0, there exists a radius
R> (1—¢)||f(0)||w and a homographic transformation ¢ of the disk D(0, R) onto
(1 —¢)A such that

1

I(fod) (Ol =1, [I(fod) (Dl < T-E/Re for every t € D(0, R).

In particular, if X is compact, given any sequence of holomorphic mappings
fv + A = X such that lim || f/(0)||, = 400, one can find a sequence of homographic
transformations ¢, : D(0, R,) — (1 — 1/v)A with lim R, = +o00, such that, after
passing possibly to a subsequence, (f, o1,) converges uniformly on every compact
subset of C towards a non constant holomorphic map g : C — X with ||g’(0)]], =1
and supyec |lg' (1))l < 1.

Proof. The first assertion of Brody’s lemma is obtained by selecting t5 € A
such that (1 — [¢t]?)||f'((1 — €)t)||,, reaches its maximum for ¢ = t5. The reason
for this choice is that (1 — [¢t|?)||f'((1 — €)t)|| is the norm of the differential
f'(1—¢)t) : Ta — Tx with respect to the Poincaré metric |dt|? /(1 — [t|?)? on Th,
which is conformally invariant under Aut(A). One then adjusts R and 1 so that
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¥(0) = (1 = e)to and [/ (0)] [/ (¥(0))]lw = 1. As [¢/(0)] = 13 (1 = [to[?), the only
possible choice for R is

R=(1—-e)1 =t/ @)= (1 =) (0)]-

The inequality for (fo) follows from the fact that the Poincaré norm is maximum
at the origin, where it is equal to 1 by the choice of R. O

1.2. Corollary (Brody’s theorem). A compact complex manifold X is hyperbolic
if and only if there are no non constant entire holomorphic maps g : C — X.

Proof. The arguments are rather standard and will be developped in more detail
in the proof of Prop. 1.5 below. O

Now, more generally, let (X,V) be a complex manifold equipped with a
holomorphic subbundle V- C T'x. We will refer to such a pair as being a complex
directed manifold. A morphism ® : (X,V) — (Y, W) in the category of complex
directed manifolds is a holomorphic map such that ®,(V) C W. Our philosophy
is that directed manifolds are also useful to study the “absolute case”, i.e. the
case V = Tx, because there are fonctorial constructions which work better in the
category of directed manifolds (see e.g. §4, 5, 6). We think of directed manifolds as
a kind of “relative situation”, covering e.g. the case when V is the relative tangent
sheaf to a smooth map X — S. We want to stress here that no assumption need
be made on the Lie bracket tensor [, | : V xV — Tx/V, and the rank r = rank V'
may be an arbitrary integer in the range 1 < r < n := dim¢ X. For the sake of
generality, one might also wish to allow singularities in the subbundle V: for this,
one can take V' to be given by an arbitrary coherent subsheaf V C O(Tx) such
that O(Tx)/V has no torsion; then V is a subbundle outside an analytic subset
of codimension at least 2 (it is however somewhat safer to view V* as given by a
quotient sheaf morphism Q% — V* and let V* be the associated linear space, see
Remark 3.10 below). For the sake of simplicity, we will assume most of the time
that V is actually a subbundle of Tx. In this situation, we generalize the notion
of hyperbolicity as follows.

1.3. Definition. Let (X, V) be a complex directed manifold.

i) The Kobayashi-Royden infinitesimal metric of (X, V') is the Finsler metric on
V' defined for any x € X and £ € V,, by

kx ) (€) =inf {A>0;3f: A= X, f(0) ==z, A\f'(0) =¢, f/(A)CV}.

Here A C C is the unit disk and the map f is an arbitrary holomorphic map
which is tangent to V', i.e., such that f'(t) € Vi for all t € A. We say
that (X, V) is infinitesimally hyperbolic if k(x vy is positive definite on every
fiber V. and satisfies a uniform lower bound k(x v)(§) = €||¢|w in terms of any
smooth hermitian metric w on X, when x describes a compact subset of X.

ii) More generally, the Kobayashi-FEisenman infinitesimal pseudometric of (X, V)
is the pseudometric defined on all decomposable p-vectors & = & N ---AN§p €
APV, 1 <p<r=rankV, by

elx.1)(©) =inf {A>0;3f:B, = X, f(0) =z, \Mfx(10) =&, fu(TB,) CV}
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where By, is the unit ball in C* and 19 = 0/0t1 \---ANO/0t,, is the unit p-vector
of C? at the origin. We say that (X, V) is infinitesimally p-measure hyperbolic
if e}(QX’V) is positive definite on every fiber APV, and satisfies a locally uniform
lower bound in terms of any smooth metric.

If®:(X,V)— (Y,W) is a morphism of directed manifolds, it is immediate
to check that we have the monotonicity property

(1.4) kivw) (@) <kxv)(), VEEV,
(1.47) el (R.6) S el 1 (6),  VE=E A AE APV

The following proposition shows that virtually all reasonable definitions of the
hyperbolicity property are equivalent if X is compact (in particular, the additional
assumption that there is locally uniform lower bound for k(x v is not needed).
We merely say in that case that (X, V) is hyperbolic.

1.5. Proposition. For an arbitrary directed manifold (X,V), the Kobayashi-
Royden infinitesimal metric kK x vy is upper semicontinuous on the total space
of V. If X is compact, (X, V) is infinitesimally hyperbolic if and only if there are
no non constant entire curves g : C — X tangent to V. In that case, k(x vy is a
continuous (and positive definite) Finsler metric on V.

Proof. The proof is almost identical to the standard proof for kx, so we only
give a brief outline of the ideas. In order to prove the upper semicontinuity, let
& € Vi, and € > 0 be given. Then there is a curve f : A — X tangent to V
such that f(0) = z¢ and A f/(0) = & with 0 < A < kx (&) + . Take A =1 for
simplicity, and replace & by A71&;. We may assume that f is a proper embedding,
otherwise we replace (X, V) by (X', V') = (X x A, pr; V@& pr5Ta), f by f xIda,
& by & @ 1, and use a monotonicity argument for the projection pr; : X’ — X.
If f is an embedding, then f(A) is a Stein submanifold of X, and thus f(A) has
a Stein neighborhood . As € is Stein, there exists a section § € H°(Q, O(V))
extending f' € HO(f(A),O(V)). The map f can be viewed as the solution of
the differential equation f’ = 6(f) with initial value f(0) = x. Take a small
perturbation ¢’ = 6,(g) with initial value g(0) = z, where 6, = 6 + > 7;s;
and s1,...,sy are finitely many sections of H°(Q, O(V)) which generate V in a
neighborhood of zy. We can achieve that ¢’(0) = 6, (z) is equal to any prescribed
vector £ € V, close to & = 0(x), and the solution g exists on (1 — ¢)A if the
perturbation is small enough. We conclude that k(x v is upper semicontinuous
by considering ¢t — g((1 — €)t).

If there exists a non constant entire curve g : C — X tangent to V, it is
clear that k(x vy(g'(t)) = 0, hence (X, V) cannot be hyperbolic. Conversely, if
X is compact and if there are no non constant entire curves g : C — X tangent
to V, Brody’s lemma implies that there is an absolute bound || f/(0)||., < C for
all holomorphic maps f : A — X tangent to V; hence k(x,1(§) = C €],
and (X, V) is infinitesimally hyperbolic. By reparametrizing f with an arbitrary
automorphism of A, we find || f/(¢)|| < C/(1—]t|?). The space of maps f : A — X
tangent to V is therefore compact for the topology of uniform convergence on
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compact subsets of A, thanks to Ascoli’s theorem. We easily infer from this that
k(x,v) is lower semicontinuous on V. O

We conclude this section by showing that hyperbolicity is an open property.

1.6. Proposition. Let (X,V) — S be a holomorphic family of compact directed
manifolds (by this, we mean a proper holomorphic map X — S together with
a holomorphic subbundle V C Tx,g of the relative tangent bundle, defining a
deformation (X, Vi)ies of the fibers). Then the set of t € S such that the fiber
(X, Vi) is hyperbolic is open in S with respect to the euclidean topology.

Proof. Take a sequence of non hyperbolic fibers (X;, ,V;,) with ¢, — ¢ and fix
a hermitian metric w on X. By Brody’s lemma, there is a sequence of entire
holomorphic maps g, : C — X, tangent to V; , such that ||g,(0)||, = 1 and
llg,|| < 1. Ascoli’s theorem shows that there is a subsequence of (g,) converging
uniformly to a limit g : C — Xy, tangent to Vi, with ||¢’(0)|l, = 1. Hence (X4, V4)
is not hyperbolic, and the collection of non hyperbolic fibers is closed in S. |

§2. Hyperbolicity and bounds for the genus of curves

In the case of projective algebraic varieties, hyperbolicity is expected to be
related to other properties of a more algebraic nature. Theorem 2.1 below is a
first step in this direction.

2.1. Theorem. Let (X,V) be a compact complex directed manifold and let
Y wirdz; ® dZy be a hermitian metric on X, with associated positive (1,1)-form
w = % Y wjirdz; N\ dZy. Consider the following three properties, which may or not
be satisfied by (X,V) :

i) (X,V) is hyperbolic.

ii) There exists € > 0 such that every compact irreducible curve C C X tangent
to V satisfies B B
—X(C) =29(C) — 2 > ¢ deg,,(C)
where g(C) is the genus of the normalization C of C, x(C) its Euler charac-
teristic and deg,,(C) = fC w. (This property is of course independent of w.)

iii) There does not exist any non constant holomorphic map ® : Z — X from an
abelian variety Z to X such that ®,(Tz) C V.

Then i) = ii) = iii).

Proof. i)=-ii). If (X,V) is hyperbolic, there is a constant g > 0 such that
kx vy (&) = eol|€]|w for all £ € V. Now, let C' C X be a compact irreducible curve
tangent to V and let v : C — C be its normalization. As (X, V) is hyperbolic,
C cannot be a rational or elliptic curve, hence C admits the disk as its universal
covering p: A — C.

The Kobayashi-Royden metric ka is the Finsler metric |dz|/(1 — |2]?) as-
sociated with the Poincaré metric |dz|?/(1 — [2]*)* on A, and kg is such that
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p*kz = ka. In other words, the metric kz is induced by the unique hermitian
metric on C of constant Gaussian curvature —4. If oa = £dz A dz/(1 —|z|?)? and
o5 are the corresponding area measures, the Gauss-Bonnet formula (integral of

the curvature = 27 x(C')) yields

/6 d%:—i /6 curv(kz) :-%X@

On the other hand, if j : €' — X is the inclusion, the monotonicity property (1.4)
applied to the holomorphic map jov : C' — X shows that

k@(f) > k(X,V) ((] o) V),Jf) > 80”(] o V)*t’ Vit € Ta

w’

From this, we infer dog > §(j o v)*w, thus

—gx(ﬁ):/_d05263/_(joy)*w:63/ w.
C C c

Property ii) follows with & = 2¢3 /7.

ii) =-iii). First observe that ii) excludes the existence of elliptic and rational
curves tangent to V. Assume that there is a non constant holomorphic map
®: Z — X from an abelian variety Z to X such that ®,(7%) C V. We must have
dim ®(Z) > 2, otherwise ®(Z) would be a curve covered by images of holomorphic
maps C — ®(Z), and so ®(Z) would be elliptic or rational, contradiction. Select
a sufficiently general curve I' in Z (e.g., a curve obtained as an intersection of
very generic divisors in a given very ample linear system |L| in Z). Then all
isogenies U, : Z — Z, s— ms map ['in a 1 : 1 way to curves u,,(I') C Z, except
maybe for finitely many double points of u,,(I") (if dim Z = 2). It follows that
the normalization of w,,(I") is isomorphic to I'. If T' is general enough, similar
arguments show that the images

O = (D)) € X

are also generically 1 : 1 images of I, thus C,, ~ T and ¢(C,,) = g(T"). We would
like to show that C,, has degree > Const m?. This is indeed rather easy to check
if w is Kéahler, but the general case is slightly more involved. We write

/cm “T /F(‘I’ 0 tm)"w = /Z[FJ Ay (P*w),

where I' denotes the current of integration over I'. Let us replace I' by an arbitrary
translate I' + s, s € Z, and accordingly, replace C,,, by Cp, s = ® o u,, (I'+ s). For
s € Z in a Zariski open set, C), s is again a generically 1 : 1 image of I" + s. Let
us take the average of the last integral identity with respect to the unitary Haar
measure dy on Z. We find

/Sez (/cm w) dule) = /Z < / Tt du(s>) A (P7w).
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Now, v := [, [+ 5] du(s) is a translation invariant positive definite form of type
(p—1,p—1) on Z, where p = dim Z, and ~y represents the same cohomology class
as [[], i.e. ¥ = c¢1(L)P~L. Because of the invariance by translation, v has constant
coefficients and so (u,, )y = m?~y. Therefore we get

/ du(s)/ w= m2/ vy A P w.
se€”Z Cm,s 4

In the integral, we can exclude the algebraic set of values z such that C,, s is
not a generically 1 : 1 image of I' + s, since this set has measure zero. For each
m, our integral identity implies that there exists an element s,, € Z such that

9(Cm.s,,) = 9(T') and

deg,,(Cm.s,,) :/ w = m2/ v A PFw.
C Z

m,Sm

As | 77N ®*w > 0, the curves Cp, s, have bounded genus and their degree is
growing quadratically with m, contradiction to property ii). O

2.2. Definition. We say that a projective directed manifold (X, V') is “algebraically
hyperbolic” if it satisfies property 2.1 ii), namely, if there exists € > 0 such that
every algebraic curve C' C X tangent to V satisfies

29(C) — 2 > £ deg,, (C).

A nice feature of algebraic hyperbolicity is that it satisfies an algebraic
analogue of the openness property.

2.3. Proposition. Let (X,V) — S be an algebraic family of projective algebraic
directed manifolds (given by a projective morphism X — S). Then the set of
t € S such that the fiber (X, V;) is algebraically hyperbolic is open with respect to
the “countable Zariski topology” of S (by definition, this is the topology for which
closed sets are countable unions of algebraic sets).

Proof. After replacing S by a Zariski open subset, we may assume that the total
space X itself is quasi-projective. Let w be the Kéhler metric on X obtained by
pulling back the Fubini-Study metric via an embedding in a projective space.
If integers d > 0, g > 0 are fixed, the set Ay, of ¢ € S such that X,
contains an algebraic 1-cycle C' = Y m;C; tangent to V; with deg,(C) = d and
g(C) = >-m;g(C;) < g is a closed algebraic subset of S (this follows from the
existence of a relative cycle space of curves of given degree, and from the fact
that the geometric genus is Zariski lower semicontinuous). Now, the set of non
algebraically hyperbolic fibers is by definition

ﬂ U Ad,g-

k>0 2g—2<d/k

This concludes the proof (of course, one has to know that the countable Zariski
topology is actually a topology, namely that the class of countable unions of
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algebraic sets is stable under arbitrary intersections; this can be easily checked
by an induction on dimension). O

2.4. Remark. More explicit versions of the openness property have been dealt
with in the literature. H. Clemens ([Cle86] and [CKL88]) has shown that on a
very generic surface of degree d > 5 in P3, the curves of type (d, k) are of genus
g > kd(d — 5)/2 (recall that a very generic surface X C P3 of degree > 4 has
Picard group generated by Ox (1) thanks to the Noether-Lefschetz theorem, thus
any curve on the surface is a complete intersection with another hypersurface of
degree k; such a curve is said to be of type (d, k) ; genericity is taken here in the
sense of the countable Zariski topology). Improving on this result of Clemens,
Geng Xu [Xu94] has shown that every curve contained in a very generic surface of
degree d > 5 satisfies the sharp bound g > d(d—3)/2—2. This actually shows that
a very generic surface of degree d > 6 is algebraically hyperbolic. Although a very
generic quintic surface has no rational or elliptic curves, it seems to be unknown
whether a (very) generic quintic surface is algebraically hyperbolic in the sense of
Definition 2.2.

2.5. Remark. It would be interesting to know whether algebraic hyperbolicity
is open with respect to the euclidean topology; still more interesting would
be to know whether Kobayashi hyperbolicity is open for the countable Zariski
topology (of course, both properties would follow immediately if one knew that
Zariski and Kobayashi hyperbolicity coincide, but they seem otherwise highly
non trivial to establish). The latter openness property has raised an important
amount of work around the following more particular question: is a (very) generic
hypersurface X C Pt of degree d large enough (say d > 2n + 1) Kobayashi
hyperbolic ? Again, “very generic” is to be taken here in the sense of the countable
Zariski topology. Brody-Green [BrGr77] and Nadel [Nad89] produced examples of
hyperbolic surfaces in P? for all degrees d > 50, and Masuda-Noguchi [MaNo93]
recently gave examples of such hypersurfaces in P" for arbitrary n > 2, of
degree d > dy(n) large enough. The question of studying the hyperbolicity of
complements P ~ D of generic divisors is in principle closely related to this; in
fact if D = {P(z0,...,2,) = 0} is a smooth generic divisor of degree d, one may
look at the hypersurface

X ={z11="P20,....2,)} CP"H!

which is a cyclic d: 1 covering of P”. Since any holomorphic map f: C — P*~ D
can be lifted to X, it is clear that the hyperbolicity of X would imply the
hyperbolicity of P ~. D. The hyperbolicity of complements of divisors in P" has
been investigated by many authors. M. Green [Green77] proved the hyperbolicity
of the complement of (2n+1) generic hyperplanes in P". Zaidenberg [Zai89] showed
the existence of curves with hyperbolic complement for every degree d > 5. In
response to a conjecture of [Zai89], [DSW92, 94] showed that the complement of
the union of at least 3 generic curves is hyperbolic, when the sum of degrees is at
least 5. More recently, Siu and Yeung [SiYe96a] proved the harder fact that the
complement of a generic irreducible curve of high degree in P? is hyperbolic. Their
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approach uses jet bundle techniques, and it is one of our goals to explain some of
the underlying geometric ideas. O

In the “absolute case” V' = T, it seems reasonable to expect that all three
properties 2.1 i), ii), iii) are equivalent, in particular that Kobayashi and algebraic
hyperbolicity coincide. In fact, S. Lang made the following conjecture.

2.6. Conjecture ([Lang 86, 87]). A compact complex manifold X is hyperbolic if
and only if there are no nontrivial holomorphic maps Z — X where Z = C? /A is
a compact complex torus.

The “only if” part of the conjecture is of course clearly true. On the other
hand, if X is projective algebraic, every holomorphic map Z — X of a compact
complex torus Z to X admits a factorization Z — Z’ — X where Z’ is an abelian
variety (see e.g. A. Weil [We57]). Thus, for X projective algebraic and V = T,
a positive solution to Conjecture 2.5 would imply the equivalence of properties i),
ii), iii) in Theorem 2.1.

2.7. Hint of heuristic proof of Lang’s conjecture. Although Lang’s conjecture
seems at present far beyond reach, we would like to present here a heuristic
argument showing how things could possibly work. These ideas arose through
discussions with S. Kosarew. Let Bx be the space of all Brody curves, that is,
the set of all entire holomorphic curves f: C — X with || f’|l, < 1 for some given
hermitian metric w on X. For each ¢ > 0, we define a distance 6. on Bx by
putting
0:(f, 9) = sup du(f(t), g(t))e ="
teC

where d,, is the geodesic distance on X. For all ¢ > 0, d. defines the topology
of uniform convergence of compact sets, whilst dy is the topology of uniform
convergence up to infinity. Hence (Bx,d.) is a compact metric space for ¢ > 0.
Assume that this is still true for ¢ = 0 and assume moreover that X is not
hyperbolic, i.e. Bx # 0. We then consider the compact topological group G's
of isometries of (Bx,dp) and look at the group homomorphism

U:(C,+) = (Gg,o), a— f, where f,(t) = f(t —a).
We claim that Gg should be a finite dimensional Lie group and Z = ¥(C) C G¢ a
compact commutative complex subgroup, thus a complex torus. In fact, a compact
Banach Lie group is finite dimensional, and the “Lie algebra” of G seems to be
interpretable as a closed subspace of the Banach space of bounded holomorphic
sections in HY(Bx x C,ev*Tx) where ev : Bx x C — X is the evaluation map
(f,t) = f(t). The complex structure on Z should arise from the complex structure
on that Banach space. Now, we obtain a non trivial holomorphic map ¢ : 7 — X
by selecting an f € Bx which is not a fixed point of Z and putting ®(v) = v(f)(0),
vy EZ. O

In the general context of directed manifolds, algebraic hyperbolicity can be
strictly weaker than Kobayashi hyperbolicity. The simplest example is provided
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by a 2-dimensional abelian variety X = C 2 /A equipped with a constant subbundle
V C Tx given by a complex line Vi C C? such that V5 N A = {0}. Then all leaves
of V' are isomorphic to complex lines, in particular there are no compact curves
tangent to V, and thus 2.1 ii) and 2.1 iii) are satisfied (as void conditions). This
pathology can somehow be corrected by observing that the hyperbolicity of (X, V)
implies a statement analogue to 2.1 ii) but substantially stronger, namely a lower
bound of —x(C) for curves C' which are almost tangent to V, in the sense that
their “deviation with respect to V7 is small.

2.8. Definition. Let X be equipped with a hermitian (1,1)-form w, and let C C X
be a compact curve in X. We define the L?-deviation of C with respect to V by

dev (C/V) = /C Wy

where w = wy @ wy 1 is the orthogonal decomposition of w on V @ VL. Similarly,
if v: C — X is the normalization map and C % P!, we define the L -deviation
(resp. the LP-deviation) to be

. v wVL(t) .
dev (C/V) = jECpT(t) = jgg”” ()

destov) = [ [ (e o) = [, o]

where do is the normalized Poincaré metric on C (hermitian metric of constant
curvature with [5do = 1), and V' (t)* is the projection of the tangent vector v'(t)
on VL. If C ~ P!, we set instead

[
awVJ_

V*ij_(t)
de c/v inf sup —————=
Vo (C/V) = YEPGL,(C) tecp ~v*do(t)
2/p
dev® (C/V inf P dy*o(t)| .
eiey= it [ et avao

2.9. Proposition. Let (X,V) be a compact directed manifold equipped with a
hermitian metric w. If (X, V') is hyperbolic, there exists a constant € > 0 such that

max ( — x(C), devf)o(C’/V)) > edeg,,(C),
for every compact curve C' C X.

Proof. Otherwise, there would exist a sequence of curves (Cy) and a sequence of
positive numbers €y converging to 0, such that

—x(Cy) < epdeg,(Cy), dev’ (Cg/V)) eedeg,, (Cy).

First assume that all curves Cy have geometric genus g(Ug) >2 Letvy,:Cp— X
be the normalization map of Cy, and let do, be the area measure associated with
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the Poincaré metric on Cp and do, = )\Zldag the normalized Poincaré metric with
s

= f@ doy = 5(—x(Cy)). Select a point x, € Cy where the ratio vjw/doy is

maximum. Since f@ vyw = deg,,(Cy), we have

* = VW
2. viw(ee) Jo,viw _ deg,(Cr) > 2 e
dO‘g(:L’g) féz dag )\g TTEY

R

Let py: A — C; be the universal covering map of C, chosen such that pe(0) = xy.
We get a holomorphic map f; = vy0pp : A — X such that || f;(0)|l. = Re — +00.
By Brody’s reparametrization lemma, we can reparametrize f; as ge(t) = fo(t/Ry)
so that some subsequence of (gy) converges uniformly on every compact set to a
limit g : C — X with ||¢’(0)]|l, = 1. We claim that g must be tangent to V.
In fact, by definition of the L> deviation, we get vjwy 1 < g deg,,(Cy)do,, thus
frwyr = pj(vjwy L) and gjwy o satisfy

1 |dt|?
* < — R
frwyr < )\685 deg,,(Cy) A=
—2| 7412 2
dt
gzwvl < degw<C€) RZ | | < ‘dt‘

g L€ .
e (- [tP/R2? (- [t2/R2)?

From this we conclude that g*wy 1 = 0, hence g is tangent to V', contradiction. If
the curves Cy are of genus 0 or 1, the arguments are similar and will be left to the
reader. |

83. The Ahlfors-Schwarz lemma for metrics of negative
curvature

One of the most basic ideas is that hyperbolicity should somehow be related
with suitable negativity properties of the curvature. For instance, it is a standard
fact already observed in Kobayashi [Kob70] that the negativity of T'x (or the
ampleness of T%) implies the hyperbolicity of X. There are many ways of
improving or generalizing this result. We present here a few simple examples
of such generalizations. If (V,h) is a holomorphic vector bundle equipped with
a smooth hermitian metric, we denote by V; = V} + V) the associated Chern
connection and by ©,,(V) = 5= V7 its Chern curvature tensor.

3.1. Proposition. Let (X, V') be a compact directed manifold. Assume that V* is
ample. Then (X, V) is hyperbolic.

Proof (from an original idea of [Kob75]). Recall that a vector bundle E is said to
be ample if S FE has enough global sections o1, ...,0x5 so as to generate 1-jets of
sections at any point, when m is large. One obtains a Finsler metric N on E* by
putting
1/2m
NE = (Y loy@) ) ge B
1<G<N

and N is then a strictly plurisubharmonic function on the total space of E* minus
the zero section (in other words, the line bundle Op(g+)(1) has a metric of positive
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curvature). By the ampleness assumption on V*, we thus have a Finsler metric
N on V which is strictly plurisubharmonic outside the zero section. By Brody’s
lemma, if (X, V') is not hyperbolic, there is a non constant entire curve g : C — X
tangent to V' such that sup¢ [|¢’||, < 1 for some given hermitian metric w on X.
Then N(g’) is a bounded subharmonic function on C which is strictly subharmonic
on {g’ # 0}. This is a contradiction, for any bounded subharmonic function on C
must be constant. O

This result can be generalized a little bit further by means of the Ahlfors-
Schwarz lemma (see e.g. [Lang87]).

3.2. Ahlfors-Schwarz lemma. Let y(t) = vo(t)idt A dt be a hermitian metric
on Agr where logo is a subharmonic function such that i 99log~yo(t) = A~(t) in
the sense of currents, for some positive constant A. Then v can be compared with
the Poincaré metric of Ag as follows:

2 R72|dt]?
V() < 5 2/p2)2"
A (1 —[t]?/R?)

More generally, let v =i v;,dt; Adly be an almost everywhere positive hermitian
form on the ball B(0,R) C CP?, such that — Ricci(y) := i00logdety > Ay in
the sense of currents, for some constant A > 0 (this means in particular that
det v = det(v;x) is such that logdety is plurisubharmonic). Then

det(y) < (p+1)p( !

AR? 1 —|t]2/R2)p+1"
Proof. 1t is of course sufficient to deal with the more general case of a ball in
CP. First assume that 7 is smooth and positive definite on B(0, R). Take a point

to € B(0,R) at which (1 — |¢|*/R?)P*! det(v(t)) is maximum. The logarithmic
1 00-derivative of this function at ty must be < 0, hence

i 900 logdet y(t)i=¢, — (p+1)i90log(1 — |t|2/RQ)t_:1t0 < 0.
The hypothesis on the Ricci curvature implies
AP ~(to)P < (i 091og det v(t)t:to)p < (p+1)P (1 091og(1 — |t|2/R2)t_:1t0)p.

An easy computation shows that the determinant of i 9 1og(1— [t|?/R?)~! is equal
to R72P(1 — [t|2/R?)~P~L. From this, we conclude that

1
(1 — |t|2/R2>p+1 det’y(t) < (1 - |t0|2/R2>p—|—1 det’y(t()) < (p + )P‘

AR?

If v is not smooth, we use a regularization argument. Namely, we shrink R a little
bit and look at the maximum of the function

u(t) = (1 — [t/ B2+ exp (pe * log det /(1))
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where (p.) is a family of regularizing kernels. The argument goes through because
i00(p. xlogdety) = Ap. v

and log det(p. *v) = pe * logdet vy by concavity of the log det function. O

3.3. Proposition. Let (X,V) be a compact directed manifold. Assume that V*
1s “very big” in the following sense: there exists an ample line bundle L and a
sufficiently large integer m such that the global sections in H°(X,S™V* @ L1)
generate all fibers over X \'Y, for some analytic subset Y C X. Then all entire
curves f : C — X tangent to V satisfy f(C) C Y [under our assumptions, X is a
projective algebraic manifold and'Y is an algebraic subvariety, thus it is legitimate
to say that the entire curves are “algebraically degenerate”).

Proof. Let o1,...,on € H%(X,S™V* ® L~!) be a basis of sections generating
SmV*® L' over X \Y. If f: C — X is tangent to V, we define a semipositive
hermitian form ~(t) = yo(t) |dt|* on C by putting

Yolt) = D oy (F&) - /(&)™ [172

where || ||z denotes a hermitian metric with positive curvature on L. If f(C) ¢ Y,
the form v is not identically 0 and we then find

2

i00logyo = — f*O(L)
m

where ©(L) is the curvature form. The positivity assumption combined with an
obvious homogeneity argument yield

2EWJ”*@(L) > el f @I 1t > &' y(2)

for any given hermitian metric w on X. Now, for any to with ~o(t9) > 0, the
Ahlfors-Schwarz lemma shows that f can only exist on a disk D(¢g, R) such that
Yo(to) < ZR™2, contradiction. O

There are similar results for p-measure hyperbolicity, e.g.

3.4. Proposition. Let (X, V') be a compact directed manifold. Assume that APV*
is ample. Then (X,V) is infinitesimally p-measure hyperbolic. More generally,
assume that APV* is very big with base locus contained in' Y C X (see 3.3). Then
el is non degenerate over X \Y.

Proof. By the ampleness assumption, there is a smooth Finsler metric N on
APV which is strictly plurisubharmonic outside the zero section. We select also
a hermitian metric w on X. For any holomorphic map f : B, — X we define a
semipositive hermitian metric 7 on B, by putting ¥ = f*w. Since w need not have
any good curvature estimate, we introduce the function §(¢) = Ny (AP f'(t) - 7o),
where 9 = 0/0t1 A --- A 0/0tp, and select a metric v = Ay conformal to 75
such that dety = 0. Then M is equal to the ratio N/APw on the element
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AP f'(t) - 1o € APVj(y. Since X is compact, it is clear that the conformal factor
A is bounded by an absolute constant independent of f. From the curvature
assumption we then get

i00logdety =i00logé = (f,APf)*(100log N) > ef*w > €.

By the Ahlfors-Schwarz lemma we infer that det v(0) < C for some constant C| i.e.,
Ny (AP f7(0) - 79) < C’. This means that the Kobayashi-Eisenman pseudometric
e}g X,V) is positive definite everywhere and uniformly bounded from below. In the
case APV™* is very big with base locus Y, we use essentially the same arguments,
but we then only have N being positive definite on X \Y. O

3.5. Corollary ([Gri7l], KobOT71)). If X is a projective variety of general type,
the Kobayashi-Eisenmann volume form €™, n = dim X, can degenerate only along
a proper algebraic set’Y C X.

The converse of Corollary 3.5 is expected to be true, namely, the generic non
degeneracy of e™ should imply that X is of general type, but this is only known
for surfaces (see [GrGr80] and [MoMu82]):

3.6. Conjecture (Green-Griffiths [GrGr80]). A projective algebraic variety X
is almost measure hyperbolic (i.e. €" degenerates only along a proper algebraic
subvariety) if and only if X is of general type.

In the same vein, Green-Griffiths and Lang proposed the following conjectures.

3.7. Conjecture (Green-Griffiths [GrGr80]). If X is a variety of general type,
there exists a proper algebraic set’Y C X such that every entire holomorphic curve
f:C — X is contained in Y.

The most outstanding result in the direction of Conjecture 3.7 is the proof
of the Bloch theorem, as proposed by Bloch [Blo26] and Ochiai [Och77]. The
Bloch theorem is the special case of 3.7 when the irregularity of X satisfies
q = h°(X,Q%) > dim X. Various solutions have then been obtained in funda-
mental papers of Noguchi [Nog77, 81, 84], Kawamata [Kaw80] and Green-Griffiths
[GrGr80], by means of different techniques. See section §9 for a proof based on
jet bundle techniques.

3.8. Conjecture ([Lang86, 87]). A projective algebraic variety X is hyperbolic if
and only if all its algebraic subvarieties (including X itself) are of general type.

An essential step in the proof of the necessity of having general type subva-
rieties would be to show that manifolds of Kodaira dimension 0 (say, Calabi-Yau
manifolds and symplectic manifolds, all of which have ¢;(X) = 0) are not hyper-
bolic, e.g. by exhibiting a sequence of curves Cy such that (2¢(Cy) —2)/ deg(Cy) —
0. In fact, it is even expected that there are covering families of such curves,
whereby proving that such manifolds are not measure hyperbolic. An analogous
conjecture in the relative situation might stand as follows.
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3.9. Conjecture. Let (X,V) be a projective directed manifold. Assume that
det V* is big and that V is semistable in some sense (e.g. with respect to det V*, if
det V* is ample). Then there is a proper algebraic subset Y C X such that every
entire curve f: C — X tangent to V satisfies f(C) C Y.

Recall that a line bundle L is said to be big if it has maximal Kodaira
dimension, in other words, if H%(X, L®™) > ¢m¥™X for some constant ¢ > 0,
when m > my is sufficiently large. Some sort of semistability condition is clearly
required, otherwise one might take X to be an abelian variety of dimension > 3 and
V =L+ L' where L C T is a constant line subbundle with dense trajectories,
and L' C Tx a “generic” sufficiently negative line bundle (also take a blow-up
X — X to resolve the singularities of V, so as to obtain a subbundle V C T¥ X).
In the absolute case V' = Tx, the semistability condition is probably not needed
since Tx tends to be always semistable in some sense (if Kx is ample, there is
always a Ké&hler-Einstein metric, hence Tx is K x-semistable).

3.10. Remark. One should take care of the fact that Propositions 3.1, 3.3 and 3.4
cannot be extended without modifications to the case when V' admits singularities.
For instance, take X = P" and let £ = P! C X be a line. Take a section of
Ty ®0¢(d) ~ O¢(d+2) admitting only one zero zy of multiplicity d+ 2, and extend
it as a section o of Tpn ® O(d) admitting only isolated zeroes (this is always possible
for arbitrary d > 0). Then o defines a sheaf injection o : O(—d) — O(1pn)
with V = o0(0(—d)) ~ O(—d) negative, nevertheless V admits a complex line
¢~ {20} ~ C as one of its integral curves. The correct assumption guaranteeing
the hyperbolicity of (X, V) is that W = Im(Q% — V*) should be ample.

84. Projectivization of a directed manifold

The basic idea is to introduce a fonctorial process which produces a new
complex directed manifold (X, V') from a given one (X,V). The new structure
(X, V) plays the role of a space of 1-jets over X. We let

X = P(V), V CTx

be the projectivized bundle of lines of V', together with a subbundle V of T¥ defined
as follows: for every point (x, [v]) € X associated with a vector v € V,, \ {0},

(4.1) ‘7(307[1,]) = {f ETX, (z,[0]); T+§ € CU}, CvcCV, CTxy,

where 7 : X = PLV) — X is the natural projection and m, : Tx — w*Tx is its
differential. On X = P(V) we have a tautological line bundle Ox(—1) C m*V
such that OX(—1),w) = Cv. The bundle V' is characterized by the two exact
sequences

(4.2) 0— Tx/x — V 75 0%(-1) — 0,
(4.2") 0— O0x —1mV®e0ox(l) —Tx,x — 0,

where Tx ,x denotes the relative tangent bundle of the fibration 7 : X — X. The
first sequence is a direct consequence of the definition of V whereas the second is
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a relative version of the Euler exact sequence describing the tangent bundle of the
fibers P(V,). From these exact sequences we infer

(4.3) dimX =n+7r—1, rank V = rank V = r,
and by taking determinants we find det(Tx,x) = 7*det V ® Ox(r), thus
(4.4) detV = 7 det V @ O (r — 1).

By definition, 7 : (X,V) — (X, V) is a morphism of complex directed mani-
folds. Clearly, our construction is fonctorial, i.e., for every morphism of directed
manifolds @ : (X, V) — (Y, W), there is a commutative diagram

(4.5) B l@

where the left vertical arrow is the meromorphic map P(V') ---» P(W) induced by
the differential ®, : V' — ®*W (P is actually holomorphic if &, : V' — &*W is
injective).

Now, suppose that we are given a holomorphic curve f : Agr — X parametrized
by the disk Ag of centre 0 and radius R in the complex plane, and that f is a
tangent trajectory of the directed manifold, i.e., f'(t) € Vy( for every t € Ag. If
f is non constant, there is a well defined and unique tangent line [f/(¢)] for every ¢,
even at stationary points, and the map

(4.6) Fidr—=X,  te J6):=(f0), /(D)

is holomorphic (at a stationary point ¢y, we just write f'(t) = (¢t — to)*u(t) with
s € N* and u(tyg) # 0, and we define the tangent line at ¢y to be [u(tp)], hence
F(t) = (f(t), [u(t)]) near to; even for t = to, we still denote [f'(to)] = [u(to)] for
simplicity of notation). By definition f’(t) € Ox(—1)7+ = C u(t), hence the
derivative f’ defines a section

(4.7) FiTa, = fFOx(=1).
Moreover 7 o f: f, therefore

m () = f'(t) € Cult) = () € V) = Vi

and we see that~fis a tangent trajectory of ()z, ‘7) We say that fis the canonical
lifting of f to X. Conversely, if g : Ag — X is a tangent trajectory of (X,V),
then by definition of V' we see that f = 7o g is a tangent trajectory of (X,V)
and that g = f (unless g is contained in a vertical fiber P(V,), in which case f is
constant).
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For any point 2y € X, there are local coordinates (z1, ..., z,) on a neighbor-
hood Q of x( such that the fibers (V,),cq can be defined by linear equations

(4.8) Vz:{fz Z Q%;ﬁj: Z a;i(2)Ek forj:r-l—l,...,n},
j

1<jsn 1<ksr

where (a;i) is a holomorphic (n —r) x r matrix. It follows that a vector £ € V, is
completely determined by its first » components (&1, ...,&,), and the affine chart
£ # 0 of P(V)q can be described by the coordinate system

& §—1 &1 &
(49) (21,...,Zn,§j,..., fj N gj ,...,gj).

Let f ~ (f1,..., fn) be the components of f in the coordinates (z1,...,z,) (we
suppose here R so small that f(Ag) C §2). It should be observed that f is uniquely
determined by its initial value = and by the first  components (f1, ..., f.). Indeed,
as f'(t) € Vi), we can recover the other components by integrating the system
of ordinary differential equations

(4.10) f@) = > ap(FOVE), >

1<k<r

on a neighborhood of 0, with initial data f(0) = z. We denote by m = m(f,t)
the multiplicity of f at any point ty € Ag, that is, m(f,to) is the smallest integer
m € N* such that f;m) (to) # 0 for some j. By (4.10), we can always suppose
j e {1,...,r}, for example f{™(to) # 0. Then f/(t) = (t — to)™ ‘u(t) with
ur(tp) # 0, and the lifting f is described in the coordinates of the affine chart
fr 7& 0 of P(V)FQ by

(4.11) f: (fl,...,fn;;—i,..., 7}?)

We end this section with a few curvature computations. Assume that V' is equipped
with a smooth hermitian metric h. Denote by V; = V) + V) the associated

Chern connection and by 6 (V) = 5=V3 its Chern curvature tensor. For every

point zy € X, there exists a “normalized” holomorphic frame (e))1<a<r On a
neighborhood of z(, such that

(4.12) {ex,eu)h = Oap — Z cimnziZn + O(|2]%),
1<j,k<n
with respect to any holomorphic coordinate system (z1,...,z2,) centered at zg.

A computation of d'(ex, e, )n = (Vyex, e )n and Viey = d”"V) e, then gives
hex=— ) cirauzndz; @ e, + O(|2]%),
Jk.p

¢ *
(4.13) @h<v)w0 = % Z CjkAude NdZp @ ey Xey,.
j7k7A7u
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The above curvature tensor can also be viewed as a hermitian form on Tx ® V. In
fact, one associates with O (V') the hermitian form (0(V)) on Tx ® V defined
for all ((,v) € Tx xx V by

(4.14) OrV)H(K®v) = Yo GGG,
1<y, ksn, 1A, usr
Let h; be the hermitian metric on the tautological line bundle Opy)(—1) C
7V induced by the metric h of V. We compute the curvature (1,1)-form
O, (Op(vy(—1)) at an arbitrary point (zo, [vg]) € P(V), in terms of O (V). For
simplicity, we suppose that the frame (ey)i<a<r has been chosen in such a way
that [e,(z0)] = [vo] € P(V) and |vg|p, = 1. We get holomorphic local coordinates
(z1,-+-y2n; &1,y .-+, &—1) on a neighborhood of (zg, [vp]) in P(V) by assigning
(215 es2n; &1,y 1) ¥ (2, [Gre1(2) + -+ &—1ep1(2) + e(2)]) € P(V).
Then the function
n(z,§) = &ie1(z) + -+ + &rer-1(2) + er(2)
defines a holomorphic section of Op(y)(—1) in a neighborhood of (xo, [vo]). By
using the expansion (4.12) for h, we find

iz, =k =147 = > cirrrziZ+ O((l2] + 1€)?),
1<j,k<n

i
@h1 (OP(V)(_:l))(:Co,[Uo]) - _%d/d// log |77|i1
) - _
(4.15) =5 (X ez ndmn— Y dendg).
1<j,k<n 1<ALr—1
Now, the connection Vj, on V' defines on X = P(V) a C* decomposition
Tx ="z @ 'Tx, T o) = Txer TR (o)) = TPV, 0]

in horizontal and vertical components. With respect to this decomposition, (4.15)
can be rewritten as

(4.16) (O, (O (= 1)) o, 00 (T) = (On(V))ao (T @ v0) — [V7[fig

where | |ps is the Fubini-Study metric along the fibers Tp(y,). By definition of
V', we have V 1,y C Vi @ Tp(v,),[s) With respect to the decomposition. By this
observation, if we equip P(V') with the Fubini-Study metric rescaled by p* > 0,
the metric h on V' induces a canonical hermitian metric h, on V such that

w2 =1l +p* [l for w € Vi o))

where fw € Cvyg C V,,, and Vw € Tp(VmO)’[UO] is viewed as an element of vy C V.
A computation (left to the reader) gives the formula

(O%, (V) (o, w0 (T @ w) = (OK(V))a, (Pr @ w0) (IPwl3 — p*|"w]7)
+ pHOR(V))a (' © V)
(4.17) + o2 (107 Ywyn |+ V7[R wli) = VL] Pl
+ O(p)|T|i|w|%p, reTs, wevV,

where |7|2 is computed from a fixed hermitian metric w on Tx.
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85. Jets of curves and Semple jet bundles

Let X be a complex n-dimensional manifold. Following ideas of Green-Griffiths
[GrGr80], we let J, — X be the bundle of k-jets of germs of parametrized
curves in X, that is, the set of equivalence classes of holomorphic maps f :
(C,0) = (X, z), with the equivalence relation f ~ g if and only if all derivatives
f9)(0) = g (0) coincide for 0 < j < k, when computed in some local coordinate
system of X near z. The projection map J, — X is simply f — f(0). If
(#1,...,2n) are local holomorphic coordinates on an open set 2 C X, the elements
f of any fiber Jj 5, x € Q, can be seen as C"-valued maps

f=01,.sfn):(C,0)>QcCcC",

and they are completetely determined by their Taylor expansion of order k at t =0

k

In these coordinates, the fiber Jj, , can thus be identified with the set of k-tuples
of vectors (f/(0),..., f#)(0)) € (C™)*. It follows that J is a holomorphic fiber
bundle with typical fiber (C™)* over X (however, J; is not a vector bundle for
k > 2, because of the nonlinearity of coordinate changes; see formula (6.2) in §6).

According to the philosophy developed throughout this paper, we describe the
concept of jet bundle in the general situation of complex directed manifolds. If
X is equipped with a holomorphic subbundle V' C Tx, we associate to V' a k-jet
bundle J,V as follows.

5.1. Definition. Let (X, V') be a complex directed manifold. We define J,V — X
to be the bundle of k-jets of curves f:(C,0) — X which are tangent to V, i.e.,
such that f'(t) € Vi for allt in a neighborhood of 0, together with the projection
map [+ f(0) onto X.

It is easy to check that JiV is actually a subbundle of Jg. In fact, by using
(4.8) and (4.10), we see that the fibers J;V, are parametrized by

((F10), -+, 100D (F1(O), -, £7(0))s -5 (£7(0), -, [1(0)) € (€7
for all z € €, hence J;V is a locally trivial (C")¥-subbundle of Jj. O

We now describe a convenient process for constructing “projectivized jet
bundles”, which will later appear as natural quotients of our jet bundles J;V
(or rather, as suitable desingularized compactifications of the quotients). Such
spaces have already been considered since a long time, at least in the special case
X =P2 V = Tp> (see Gherardelli [Ghe41], Semple [Sem54]), and they have been
mostly used as a tool for establishing enumerative formulas dealing with the order
of contact of plane curves (see [Coll88], [CoKe94]); the article [ASS92] is also
concerned with such generalizations of jet bundles*.

* Very recently, a preprint [LaTh96] by Laksov and Thorup has also appeared, dealing in
depth with algebraic-theoretic properties of jet differentials. The formalism of “higher order”
differentials has been part of the mathematical folklore during the 18th and 19th centuries
(without too much concern, in those times, on the existence of precise definitions!). During
the 20th century, this formalism almost disappeared, before getting revived in several ways. See
e.g. the interesting article by P.A. Meyer [Mey89], which was originally motivated by applications
to probability theory.



85. Jets of curves and Semple jet bundles 25

We define inductively the projectivized k-jet bundle P,V = X}, (or Semple k-jet
bundle) and the associated subbundle V}, C T'x, by

(5.2) (Xo, Vo) = (X, V), (X, Vi) = (X i1, Vi1).

In other words, (PyV, Vi) = (Xk, Vi) is obtained from (X, V') by iterating k-times
the lifting construction (X, V') — (X, V) described in §4. By (4.2-4.7), we find

(5.3) dim P,V =n+ k(r — 1), rank V;, = r,
together with exact sequences

(ﬂk)*

(5.4) 0— TPkV/Pk—lv — Vk Opkv(—1> — 0,

(5.47) 0— Op,yv — Vi1 ®0p,v(1) — Tp,v/p,_,v — 0.

where 7 is the natural projection 7y : PrV — Pr_1V and (my), its differential.
Formula (4.4) yields

(5.5) det Vi = mjdet Vi1 @ Op v (r — 1).

Every non constant tangent trajectory f: Ar — X of (X, V) lifts to a well defined
and unique tangent trajectory fi : Ar — PiV of (P,V,Vy). Moreover, the
derivative f[/k—l] gives rise to a section

(56) f[/k—l] : TAR — fﬁg]OPkV(_1>

In coordinates, one can compute fj) in terms of its components in the various
affine charts (4.9) occurring at each step: we get inductively

/ /

F81 Sr—1
(57) f[k]:(FlavFN)a f[k+1]:(F17"'7FN7F—/7"'7 Jo )

where N = n+ k(r — 1) and {s1,...,s.} C {1,...,N}. If k > 1, {s1,...,8.}
contains the last r — 1 indices of {1,...,N} corresponding to the “vertical”
components of the projection P,V — P_1V, and in general, s, is an index such
that m(Fs,,0) = m(fx),0), that is, F,_ has the smallest vanishing order among
all components F; (s, may be vertical or not, and the choice of {sq,...,s,} need
not be unique).

By definition, there is a canonical injection Op, v (—1) — 7;Vi—1, and a
composition with the projection (mx_1), (analogue for order k—1 of the arrow (7).
in sequence (5.4)) yields for all k£ > 2 a canonical line bundle morphism

(ﬂ—k)*(ﬂ—k—l)*

(58) Opkv(—:l) — W;Vk_l W;Opkilv(—:l),

which admits precisely Dy = P(Tp, ,v/p, ,v) C P(Vk—1) = P,V as its zero divi-
sor (clearly, Dy is a hyperplane subbundle of P;V'). Hence we find

(5.9) Op,v(1) = m;0p,_,v(1) ® O(Dy).
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Now, we consider the composition of projections
(5.10) Tjk = Tj41 0+ 0Ty 0Ty : PV — P;V.

Then 7o, : P,V — X = BV is a locally trivial holomorphic fiber bundle over X,
and the fibers PV, = 7, (z) are k-stage towers of P"~!-bundles. Since we have
(in both directions) morphisms (C”,Tcr) < (X, V) of directed manifolds which
are bijective on the level of bundle morphisms, the fibers are all isomorphic to a
“universal” nonsingular projective algebraic variety of dimension k(r — 1) which
we will denote by R, ;; it is not hard to see that R, ; is rational (as will indeed
follow from the proof of Theorem 6.8 below). The following Proposition will help
us to understand a little bit more about the geometric structure of P,V. As usual,
we define the multiplicity m(f,ty) of a curve f : Arp — X at a point ¢t € Apg to
be the smallest integer s € N* such that f(*)(¢y) # 0, i.e., the largest s such that
I(f(t), f(to)) = O(|t — to]*) for any hermitian or riemannian geodesic distance ¢
on X. As fi_1) = Tk o fix, it is clear that the sequence m(fiz),t) is non increasing
with k.

5.11. Proposition. Let f: (C,0) — X be a non constant germ of curve tangent
to V. Then for all j > 2 we have m(fj_a,0) = m(fij—11,0) and the inequality is
strict if and only if fi;(0) € D;. Conversely, if w € P,V is an arbitrary element
and mg = mq = --- =2 mg_1 = 1 is a sequence of integers with the property that

Vie{2,...,k}, mj_g >m;_1 if and only if 7; (w) € Dj,

there exists a germ of curve f : (C,0) — X tangent to V such that fj(0) = w
and m(fi;),0) =my; for all j € {0,..., k—1}.

Proof. i) Suppose first that f is given and put m; = m(f};),0). By definition, we
have fi;) = (f(j—1, [uj—1]) where f/j_l](t) ="ty (t) € Vo, uj—1(0) # 0.
By composing with the differentia{ of the projection m;_; : P;_1V — P;_5V, we
find f['j_Q](t) = ™17 (m;_1)wuj—1(t). Therefore

mj—g = mj1 + ordi=o(mj—1)xu;j-1(1),

and so mj_o > mj_; if and only if (m;_1),u;—1(0) = 0, that is, if and only if
u;—1(0) € Tp,_,v/p,_,v, or equivalently fi;(0) = (f(;—1](0), [u;-1(0)]) € D;.

ii) Suppose now that w € P,V and my,...,mi_1 are given. We denote by
wiy1 = (wy,[n;]), w; € PjV, n; € Vj, the projection of w to Pj4+1V. Fix
coordinates (z1,...,2,) on X centered at wy such that the r-th component 7,

of mg is non zero. We prove the existence of the germ f by induction on k, in the
form of a Taylor expansion

ft) =ao+ta; + -+ tag + O™, dpy =mo+my o mp.

If k=1 and w = (wo, [n0]) € P1 Vs, we simply take f(t) = wq +t™0ny + O(t™o+1).
In general, the induction hypothesis applied to P,V = Py_1(V1) over X3 = P,V
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yields a curve g : (C,0) — X, such that gj_1; = w and m(g;],0) = m;4 for
0<j<k-—2 Ifwy¢ Dy, then [gfl](O)] = [m] is not vertical, thus f = 7 0g
satisfies m(f,0) = m(g,0) = m1 = mo and we are done.

If wy € Dy, we express ¢ = (G1,...,Gn;Gni1,--.,Gryr—1) as a Taylor
expansion of order mq+- - -+my_1 in the coordinates (4.9) of the affine chart £, # 0.
As gy = limy ¢ ¢/(t)/t™ 1 is vertical, we must have m(Gy, 0) > my for 1 < j < n.
It follows from (5.7) that G1,..., G, are never involved in the calculation of the
liftings g(;). We can therefore replace g by f ~ (f1,..., fn) where f,.(t) = t"° and
fi,.-., fr—1 are obtained by integrating the equations fi(t)/f.(t) = Gny;(t), i-e.,
fi@t) = mot™ ~1G,,4;(t), while f,i1,..., f, are obtained by integrating (4.10).
We then get the desired Taylor expansion of order dj for f. O

Since we can always take my_; = 1 without restriction, we get in particular:

5.12. Corollary. Let w € P,V be an arbitrary element. Then there is a germ of
curve f : (C,0) — X such that fi;;(0) = w and f[’k_1 (0) # 0 (thus the liftings
fik—1) and fi) are reqular germs of curve). Moreover, if wyg € P,V and w is taken
in a sufficiently small neighborhood of wg, then the germ f = f,, can be taken to
depend holomorphically on w.

Proof. Only the holomorphic dependence of f,, with respect to w has to be
guaranteed. If f,, is a solution for w = wy, we observe that (fwo)’[k] is a non
vanishing section of V; along the regular curve defined by (fuw, ) in P.V. We can
thus find a non vanishing section ¢ of Vi on a neighborhood of wqy in PV such
that § = (fu, )] along that curve. We define ¢ — F,(t) to be the trajectory of §
with initial point w, and we put f,, = m o Fy,. Then f,, is the required family
of germs. O

Now, we can take f : (C,0) — X to be regular at the origin (by this, we
mean f’(0) # 0) if and only if mg = m; = -+ = my_1 = 1, which is possible
by Proposition 5.11 if and only if w € P,V is such that 7, x(w) ¢ D; for all
j €{2,...,k}. For this reason, we define

PVee = ﬂ m PV N D),
2<j<k
kasing = U W;;(D]) = ka N kareg,

2<j<k

(5.13)

in other words, P V' is the set of values fi;(0) reached by all regular germs of
curves f. One should take care however that there are singular germs which reach
the same points f3)(0) € PyV', e.g., any s-sheeted covering ¢ — f(¢*). On the
other hand, if w € P,V®"8 we can reach w by a germ f with mo = m(f,0) as
large as we want.

5.14. Corollary. Let w € P, V58 be given, and let mg € N be an arbitrary integer
larger than the number of components D; such that m;(w) € D;j. Then there is
a germ of curve f : (C,0) = X with multiplicity m(f,0) = mg at the origin, such
that f11(0) = w and f[’k_l](()) # 0.
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§6. Jet differentials

Following Green-Griffiths [GrGr80], we now introduce the concept of jet differ-
ential. This concept gives an intrinsic way of describing holomorphic differential
equations that a germ of curve f : (C,0) — X may satisfy. In the sequel, we fix
a directed manifold (X, V) and suppose implicitly that all germs f are tangent
to V.

Let Gy be the group of germs of k-jets of biholomorphisms of (C,0), that is,
the group of germs of biholomorphic maps

t o(t) = art + agt® + - + axth, a1 €C* a;€C, j>2,

in which the composition law is taken modulo terms ¢/ of degree j > k. Then Gy,
is a k-dimensional nilpotent complex Lie group, which admits a natural fiberwise
right action on JiV. The action consists of reparametrizing k-jets of maps
f : (C,0) - X by a biholomorphic change of parameter ¢ : (C,0) — (C,0),
that is, (f, ) — f o . There is an exact sequence of groups

156G, =G, —>C*—1

where G — C* is the obvious morphism ¢ +— ¢'(0), and G}, = [Gy, Gg] is the
group of k-jets of biholomorphisms tangent to the identity. Moreover, the subgroup
H ~ C* of homotheties p(t) = At is a (non normal) subgroup of G, and we have
a semidirect decomposition G, = G x H. The corresponding action on k-jets is
described in coordinates by

)\.(f/7f//7"'7f(k)):()\f/7)\2 //7"'7Akf(k))'

Following [GrGr80], we introduce the vector bundle Eggv* — X whose

fibers are complex valued polynomials Q(f', f”,..., f*)) on the fibers of J,V,
of weighted degree m with respect to the C* action defined by H, that is, such
that

(6.1) QN N N RN = amQ(f f . )

for all A € C* and (f', f",...,f®) € J,V. Here we view (f, f",...,f®) as

indeterminates with components

(L L Y e (PP, £ 9)) € (TR

Notice that the concept of polynomial on the fibers of JipV makes sense, for
all coordinate changes z — w = W¥(z) on X induce polynomial transition
automorphisms on the fibers of J; V', given by a formula

(6.2) (To )W) =W'(f)-fD+) S g YO (O, £

5=2 ji+jattie=j
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with suitable integer constants c;, .. ;. (this is easily checked by induction on s). In
the “absolute case” V = T'x, we simply write ES%T)*( = E,SS1 ftvcwcTx
are holomorphic subbundles, there are natural inclusions

LV C LW C Jg, PV Cc PbW C P.
The restriction morphisms induce surjective arrows
ESS — EgSw* — EZGV™,

in particular EE%V* can be seen as a quotient of EE% (The notation V* is used
here to make the contravariance property implicit from the notation).

If Q e EggV* is decomposed into multihomogeneous components of multi-

degree (£1,0o,...,0) in f/, f",..., f*) (the decomposition is of course coordinate
dependent), these multidegrees must satisfy the relation

b1 +200 + -+ kb, =m.

The bundle E,Sgiv* will be called the bundle of jet differentials of order k and
weighted degree’ m. It is clear from (6.2) that a coordinate change f — W o f
transforms every monomial (f(*)¢ = (f)(f")%--- (f*)% of partial weighted
degree |l|s := 01 + 205 + --- + sls, 1 < s < k, into a polynomial ((¥ o f)('))z
in (f',f"”,...,f®) which has the same partial weighted degree of order s if
ley1 = -+ = fr = 0, and a larger or equal partial degree of order s otherwise.
Hence, for each s = 1,...,k, we get a well defined (i.e., coordinate invariant)
decreasing filtration F? on EE%V* as follows:

QU f" ..., f®) e EE%V* involving

6.3) FP(EGLV*) =
(6:3)  F(EimV™) {only monomials (f(®)¢ with (| > p

}, Vp € N.

The graded terms Gr},_, (B V*) associated with the filtration F},_, (EF'SV*) are

precisely the homogeneous polynomials Q(f/, ..., f*)) whose monomials (f*)* all
have partial weighted degree |¢|,_; = p (hence their degree ¢; in f*) is such
that m — p = kfj, and Gri_l(E,S%V*) = 0 unless k|m — p). The transition
automorphisms of the graded bundle are induced by coordinate changes f — Wo f,
and they are described by substituting the arguments of Q(f, ..., f*)) according
to formula (6.2), namely fU) — (Vo f)10) for j < k, and f*¥) s ¥/ (f) o f¥) for
j =k (when j = k, the other terms fall in the next stage F, lffll of the filtration).
Therefore f(*) behaves as an element of V' C Tx under coordinate changes. We
thus find

(6.4) G;ﬂ_—lkfk(Eggv*) = EJC e V@ SV

Combining all filtrations F? together, we find inductively a filtration F'* on EE%V*
such that the graded terms are

(6.5) GrY(EFSV*) =S"V*@S8°V*®---@S%V*,  teNF |f,=m.



30 J.-P. Demailly, Kobayashi hyperbolic projective varieties and jet differentials

The bundles EE%V* have other interesting properties. In fact,

E]?GV* . @ E,Z?G V*

m=0

is in a natural way a bundle of graded algebras (the product is obtained
simply by taking the product of polynomials). There are natural inclusions
E,S?V* C E,?fl’,v* of algebras, hence ESGV* = Urso E,S?V* is also an alge-
bra. Moreover, the sheaf of holomorphic sections (‘)(ESO?.V*) admits a canonical
derivation V given by a collection of C-linear maps

(6.6) V:O(EZGV*) = O(EZS V),

constructed in the following way. A holomorphic section of EZS V* on a coordinate

open set {2 C X can be seen as a differential operator on the space of germs
f:(C,0) — Q of the form

Q(f) = > Aoy (F) ()21 ()2 - (FB) ™

|ar|+2|az|++k|ag|=m

in which the coefficients aq,. o, are holomorphic functions on 2. Then V(@
is given by the formal derivative (VQ)(f)(t) = d(Q(f))/dt with respect to
the 1-dimensional parameter ¢ in f(t). For example, in dimension 2, if Q) €
H(Q,0(EFT)) is the section of weighted degree 4

Q(f) = al(f1, f2) [ 15+ b(f1, f2) f17

we find that VQ € H°(Q, O(E:?g)) is given by

VN = L) 145+ 21 £+ ) 17
+§—:2(f17f2)f2 /'2+a(f1,f2) (BFRFFL + FRFY) + b(fr, f2) 267 1

Associated with the graded algebra bundle E,?EV*, we have an analytic fiber
bundle Proj(ESSV*) = J,V7¢/C* over X, which has weighted projective spaces
P(r,...,7; 1,2, . ,k) as fibers (these weighted projective spaces are singular for
k > 1, but they only have quotient singularities, see [Dol81]; here J, V"¢ denotes
the set of non constant jets of order k; we refer e.g. to Hartshorne’s book [Har77]
for a definition of the Proj fonctor). However, we are not really interested in the
bundles J,V"¢/C* themselves, but rather on their quotients JV"¢/Gy, (would
such nice complex space quotients exist!). We will see that the Semple bundle

P,V constructed in §5 plays the role of such a quotient. First we introduce a
canonical bundle subalgebra of E,?’E;V*.

6.7. Definition. We introduce a subbundle Ey, ,,V* C EGG V>, called the bundle
of invariant jet differentials of order k and degree m, deﬁned as follows: By, ,,V* is
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the set of polynomial differential operators Q(f', ", ..., f¥)) which are invariant
under arbitrary changes of parametrization, i.e., for every ¢ € Gy,

QU(fo),(fop) ... (fo) )= (O)™QUf, f",.... f*)).

Alternatively, Ey V> = (E,?S%V*)G;c is the set of invariants of E,S”SnV* un-
der the action of Gj,. Clearly, Eoo,.V* = U0 Do Er,m V™ is a subalgebra
of ESGV* = Urs0 Dm0 Eggv* (observe however that the algebra Eo oV*
is not invariant under the derivation V, since e.g. f;' = V/f; is not an in-
variant polynomial). In addition to this, there are natural induced filtrations
FP(EmV*) = EpmV* N EFP(ESCV*) (all locally trivial over X ). These induced
filtrations will play an importanf role in Section 12.

6.8. Theorem. Suppose that V' has rank r > 2. Let moy : P,V — X be the
Semple jet bundles constructed in section 5, and let J, V™% be the bundle of reqular
k-jets of maps f : (C,0) — X, that is, jets f such that f'(0) # 0.

i) The quotient J V™8 /Gy has the structure of a locally trivial bundle over X,
and there is a holomorphic embedding J,V*™8 /Gy — P,V over X, which
identifies J, V'8 /Gy, with P,V™8 (thus P,V is a relative compactification of
Ji Ve |Gy over X).

ii) The direct image sheaf
(7T07k)*0pkv(m> ~ O(Ek7mv*>

can be identified with the sheaf of holomorphic sections of Ey ,,V*.

iii) For every m > 0, the relative base locus of the linear system |Op,v(m)| is
equal to the set P, V18 of singular k-jets. Moreover, Op,v (1) is relatively big
over X.

Proof. i) For f € J V'8, the lifting f is obtained by taking the derivative (LD
without any cancellation of zeroes in f’, hence we get a uniquely defined (k—1)-jet
f:(C,0) — X. Inductively, we get a well defined (k — j)-jet fi;; in P;V, and
the value fj)(0) is independent of the choice of the representative f for the k-jet.
As the lifting process commutes with reparametrization, i.e., (f o)~ = fop
and more generally (f o )i = fix] © @, we conclude that there is a well defined
set-theoretic map

J V' /Gy — P V™8, frmod Gk = fir(0).

This map is better understood in coordinates as follows. Fix coordinates
(21,...,2,) near a point g € X, such that V., = Vect(9/0z1,...,0/0z.). Let
f=1(f1,..., fn) be aregular k-jet tangent to V. Then there exists i € {1,2,...,r}
such that f/(0) # 0, and there is a unique reparametrization ¢ = ¢(7) such that
foo=9=1(91,92,---,9n) with g;(1) = 7 (we just express the curve as a graph over
the z;-axis, by means of a change of parameter 7 = f;(1), i.e. t = (1) = f; ' (7)).
Suppose ¢ = r for the simplicity of notation. The space P,V is a k-stage tower of
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P"~!-bundles. In the corresponding inhomogeneous coordinates on these P"~!’s,
the point fj;(0) is given by the collection of derivatives

((91(0), - gh_1(0)); (47(0), - gl _1(0));- 5 (9(0), ..., gt¥, (0))).

[Recall that the other components (g,41, ..., gn) can be recovered from (g1, ..., g,)
by integrating the differential system (4.10)]. Thus the map J V™8 /Gy — P,V
is a bijection onto PV, and the fibers of these isomorphic bundles can be
seen as unions of r affine charts ~ (C" 1), associated with each choice of the
axis z; used to describe the curve as a graph. The change of parameter formula

% = f,l(t) % expresses all derivatives gi(j )

£ = & fidtd

i S
(g sgrm) = (T 2 ):

(1) = d? g;/d7? in terms of the derivatives

R
69) (ot = (REZBI | SRR,
6, g) = ( S 0 R Y +f’”f;_1) + (order < ).
Also, it is easy to check that f;%_lg,gk) is an invariant polynomial in f/, f”,..., f(¥)

of total degree 2k — 1, i.e., a section of Ej o1,—1V*.

ii) Since the bundles P,V and Ej, ,,,V* are both locally trivial over X, it is sufficient
to identify sections o of Op,v(m) over a fiber PV, = 7r0_,1€(x) with the fiber
Ey V7, at any point x € X. Let f € JiV}°® be a regular k-jet at x. By (5.6), the
derivative ff; ,,(0) defines an element of the fiber of Op,v(—1) at fj1)(0) € PV
Hence we get a well defined complex valued operator

(6.10) QU 1, F¥) = a(fig (0)) - (fx_yy(0)™.

Clearly, @ is holomorphic on JiV}® (by the holomorphicity of o), and the
Gp-invariance condition of Def. 6.7 is satisfied since fi;(0) does not depend
on reparametrization and (f o ¢)j,_;1(0) = ff,_1)(0)¢'(0). Now, JyV;® is the
complement of a linear subspace of codimension n in JiV,, hence @) extends
holomorphically to all of J;V, ~ (C")* by Riemann’s extension theorem (here
we use the hypothesis r > 2; if r = 1, the situation is anyway not interesting since
P,V = X for all k). Thus @ admits an everywhere convergent power series

Q(f/7f//7~"7f(k)) = Z Qo ..o (f/)a1<f//)a2"'(f(k))ak'

aq,09,...,a ENT

The Gp-invariance (6.7) implies in particular that ¢ must be multihomogeneous
in the sense of (6.1), and thus @ must be a polynomial. We conclude that
Q € Ey V), as desired.

Conversely, Corollary 5.12 implies that there is a holomorphic family of germs
fw : (C,0) = X such that (fu))(0) = w and (fu)p_1;(0) # 0, for all w in a
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neighborhood of any given point wy € P,V,. Then every Q € Ej V. yields a
holomorphic section o of Op,y(m) over the fiber PV, by putting

(6.11) o(w) = Q(fu, fir -+ FINO) ((fu) iy (0))

iii) By what we saw in i-ii), every section o of Op v (m) over the fiber PV, is
given by a polynomial ) € Ej, ,,,V,*, and this polynomial can be expressed on the
Zariski open chart f] # 0 of P,V'°8 as

(6'12) Q(f/7 fll, A f(k)) = f;mQ\(g/?g//? R 7g(k))7
where @ is a polynomial and g is the reparametrization of f such that g,.(7) = 7.

In fact @ is obtained from @ by substituting f; = 1 and fﬁj ) =0 for j =2, and
conversely ) can be recovered easily from @ by using the substitutions (6.9).

In this context, the jet differentials f — f{,...,f — fl/ can be viewed as
sections of Op, v (1) on a neighborhood of the fiber P,V,. Since these sections
vanish exactly on P, V®8 the relative base locus of Op, v (m) is contained in
P,Vs8 for every m > 0. We see that Op_ /(1) is big by considering the sections
of Op,v(2k — 1) associated with the polynomials Q(f’,..., f(*¥)) = f;%_lgi(‘j),
1<i<r—1,1<j < k; indeed, these sections separate all points in the open
chart f] # 0 of PV} 8.

Now, we check that every section o of Op,y(m) over PV, must vanish
on P,VSns  Pick an arbitrary element w € P,V®"8 and a germ of curve
f+(C,0) = X such that fj)(0) = w, f,_1;(0) # 0 and s = m(f,0) > 0 (such an
[ exists by Corollary 5.14). There are local coordinates (21, ..., 2,) on X such that
f@)=(f1(t),..., fu(t)) where f.(t) =t°. Let @, @ be the polynomials associated
with o in these coordinates and let (f/)®1(f")®2---(f*))* be a monomial occur-
ring in @, with o; € N, || = 45, €1 + 205 + - - - + kl, = m. Putting 7 = t°, the
curve t — f(t) becomes a Puiseux expansion 7 — ¢(7) = (¢1(7),..., gr—1(7), T)
in which g; is a power series in 7!/%, starting with exponents of 7 at least equal
to 1. The derivative ¢¥)(7) may involve negative powers of 7, but the exponent is
always > 1+ 1 —j if j > 2. Hence the Puiseux expansion of Q(g', ¢, . .. ,g®)) can
only involve powers of 7 of exponent > —max;((1 — 2)la + -+ (k — 1 — 1)¢;).
Finally f/(t) = st>~! = s7'~1/% thus the lowest exponent of 7 in Q(f’, ..., f*¥))
is at least equal to

(-2 mps (1= s (=12

>Hl£in(1—%)€1+(1—%)52“‘""{‘(1—%)&@

where the minimum is taken over all monomials (f/)* (") --- (f&))or |ay| = ¢;,
occurring in ). Choosing s > k, we already find that the minimal exponent is

positive, hence Q(f’,..., f#))(0) = 0 and o(w) = 0 by (6.11). O
Theorem (6.8 iii) shows that Op (1) is never relatively ample over X for
k > 2. In order to overcome this difficulty, we define for every a = (ay, ..., ax) € Z*

a line bundle Op,v(a) on P,V such that
(6.13) Op,v(a) =77 ,0p,v(a1) ® 73 ,0p,v(a2) ® -+ ® Op,v(a).
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By (59), we have W;}kOpjv(l) = Opkv(l) X OPkV(_W;-H,ij-i-l — = Dk), thus
by putting D} = 7r]*-+17ij+1 for 1 <j<k—1and D; =0, we find an identity

(614) Opkv(a,) = OPkV(bk) (%9 Opkv(—b . D*>, where
b= (b,...,bx) €Z", bj=a1+ - +aj

b-D* = Z bj 7T;_|_17ij_|_1.

1<j<k—1
In particular, if b € N* ie., a1 +---+ aj = 0, we get a morphism

(615) Opkv(a) = OPkV(bk) (059 Opkv(—b . D*) — OPkV(bk)

6.16. Proposition. Let a = (ay,...,a;) € ZF andm=a; + -+ ak.
i)  We have the direct image formula
(Wo,k)*Opkv(a) ~ O(FaEk’mV*) - O(Ek,mV*)

where FaEk,mV* is the subbundle of polynomials Q(f', f",..., f*)) € By, V*
involving only monomials (f(*)¢ such that

£s+1+2£s—|—2+"'+(k_8)£k<as—|—1+"'+ak

foralls=0,...,k—1.

i) If a1 > 3ag,...,ax—2 = 3ax_1 and ap_1 = 2a, = 0, the line bundle Op,v(a)
15 relatively nef over X.

iii) If a1 > 3ag,...,ax—2 = 3ax_1 and ax_1 > 2a, > 0, the line bundle Op,v(a)
15 relatively ample over X.

Proof. 1) By (6.15), we find a sheaf injection

(m0,6)+Op,v (@) = (m0,1)+Op, v (m) = O(Eg,m V™).

Given a section o of Op,v(a) over a fiber P,V,, the associated polynomial
QUf', f",..., f®) € B,V is given by the identity

QU s s F¥) = a (g (0)) - (F/(0)* - (ffyy(0)%2 -+ (Ffi_1)(0)) "

Indeed, we see this from (6.10) and from the fact that f[’k_l](O) is mapped to
f['j_l](()) by the projection morphism

(mj—1,6-1)% : Op,v(=1) = 75, O0p,v(—1)

(cf. (5.8)), which is dual to the corresponding morphism (6.15). Now, we prove
the inclusion (7o )«Op,v(a) C O(F" Ey,,V*) by induction on k. For s = 0, the
desired inequality comes from the weighted homogeneity condition, hence we may
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assume s > 1. Let f run over all regular germs having their first derivative f’(0)
fixed. This means that o is viewed as a section of 75 ,Op,v(a2) ® --- ® Op, v (ay)
on the fibers of the projection P,V = P, Vi — Xl = PV. Then we get a
polynomial Q1 € Er_1 m—q, V{" such that

Ql(f[ll]’f[/{]’ e '7f[(11§_1)> = Q(flvfllv .- 7f(k))

In the affine chart f/ # 0, the map f};) is defined in coordinates by fj; =~
(f1y-o s Sfns JU/TL oo i1/ fL). Tts derivative f[/1] € Vi can thus be described

by f[/1] ~ ((F1/10), - (fi_1/fD), f}), by taking r — 1 vertical components and
a horizontal one. All this becomes much simpler if we replace f by g = fo f1,
since g, (t) =t and g/.(t) = 1. Then we get

k k
(2" 0" = (g1 g 1) (g 001, 0), s (91, 0, 0)),

k k k
(gf1]7gﬁ]77g[(1])) = ((gilw"79;/—171)7(91//7"~7g;’//—170)7'~'7(g§ )7797(1_)170))

in the corresponding charts of JpV and Jx_1V;. The inequality (6.161) for the
monomials (¢(*)¢ of Q(¢’,g",...,9"*) follows clearly from the corresponding
inequality on the monomials (g[(l']))é of Q1, when (k, s) is replaced by (k—1,s—1).
Now, thanks to (6.9), we get Q(f', f",..., f*) = (f)™Q(¢', ¢", ..., 9"*®), and the
desired inequality (6.161) for the monomials (f(*))¢ follows easily. In the opposite
direction, if we are given a section Q(f’, f,...,f®) e O(FaEk,mV*), we see by
induction on k that @) defines a section of

Op,v(ar) ® (m1,k)« (75 . Op,v (a2) ® -+ @ Op, v (ag))

on PV, and we conclude that we get a section of (7 x).Op,v(a) by taking the
direct image by (71 ).

such that Op,v (1) ® 7} Li_1 is relatively nef; by definition, this is equivalent to
saying that the vector bundle V;* | ® Lj_; is relatively nef (for the notion of a nef
vector bundle, see e.g. [DPS94]). Since Op,v (1) is relatively ample, we can start
with Ly = Ox. Suppose that L;_; has been constructed. The dual of (5.4) yields
an exact sequence

As an extension of nef vector bundles is nef, it is enough to select Ly in such a
way that

(6.17) Op,v(l)® Ly and Tpy p, v ®Lg are relatively nef.
By taking the second wedge power of the central term in (5.4"), we get an injection

0— TPkV/Pk—lv — A2 (W;Vk_l & Opkv(l)).
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By dualizing and twisting with Op, ,v(2) ® 75 LY? |, we find a surjection

TN (Vi ® Ly—1) — TJ*D,CV/Pk,lv ® 0p,v(2) ® WI:L§E1 — 0.

As V¥ | ® Ly is relatively nef by the induction hypothesis, we obtain that its
quotient T% v/ p, v ® Op,v(2) @ mrLY? | is also relatively nef. Hence Condition
(6.17) is achieved if we take Ly > mfLi—1 and Ly > Op,v(2) @ mfLY?, (the
ordering relation > is the one given by the cone of relatively nef line bundles). We
need only define Lj inductively by

Ly = 0p,v(2) @ Ti L2,

The relative ampleness of Ly, is then clear by induction, since Op,v (1) ® 75 Li—1
is relatively nef over X and relatively ample over P;_1V. The resulting formula
for Ly is

L =0pv((2-3F12.3572...06,2)).

By definition, we then find
Op,v(l) @7 Li—1 = Op,v ((2 .3k=2 9.3k=3 6,2, 1)) relatively nef.
These properties imply ii) and iii) by taking suitable convex combinations. O

6.18. Remark. As in Green-Griffiths [GrGr80], Riemann’s extension theorem
shows that for every meromorphic map ® : X ---» Y there are well-defined pullback
morphisms

o* - HY(Y,EgG) — HY(X,EPD), @ HYY, Epm) = H(X, Exm).

In particular the dimensions h°(X, E,S;Sn) and h°(X, Egﬁ) are bimeromorphic
invariants of X. The same is true for spaces of sections of any subbundle of

E,?ffl or Ej, ., constructed by means of the canonical filtrations Fy.

87. k-jet metrics with negative curvature

The goal of this section is to show that hyperbolicity is closely related to
the existence of k-jet metrics with suitable negativity properties of the curvature.
The connection between these properties is in fact a simple consequence of the
Ahlfors-Schwarz lemma. Such ideas have been already developed long ago by
Grauert-Reckziegel [GRec65], Kobayashi [Kob75] for 1-jet metrics (i.e., Finsler
metrics on Tx) and by Cowen-Griffiths [CoGr76], Green-Griffiths [GrGr80] and
Grauert [Gra89] for higher order jet metrics. However, even in the standard case
V = Tx, the definition given below differs from that of [GrGr80], in which the
k-jet metrics are not supposed to be Gj-invariant. We prefer to deal here with
G/ -invariant objects, because they reflect better the intrinsic geometry. Grauert
[Gra89] actually deals with G} -invariant metrics, but he apparently does not take
care of the way the quotient space J,"*V/Gy, can be compactified; also, his metrics
are always induced by the Poincaré metric, and it is not at all clear whether
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these metrics have the expected curvature properties (see 7.14 below). In the
present situation, it is important to allow also hermitian metrics possessing some
singularities (“singular hermitian metrics” in the sense of [Dem90)).

7.1. Definition. Let L. — X be a holomorphic line bundle over a complex
manifold X. We say that h is a singular metric on L if for any trivialization

Ly ~ U x C of L, the metric is given by |£]2 = |£|?e™% for some real valued
weight function ¢ € Li, (U). The curvature current of L is then defined to be the

closed (1,1)-current ©,(L) = 5=00¢, computed in the sense of distributions. We
say that h admits a closed subset > C X as its degeneration set if ¢ is locally
bounded on X ~\ X and is unbounded on a neighborhood of any point of 3.

An especially useful situation is the case when the curvature of h is positive
definite. By this, we mean that there exists a smooth positive definite hermitian
metric w and a continuous positive function € on X such that ©5(L) > cw in the
sense of currents, and we write in this case O, (L) > 0. We need the following basic
fact (quite standard when X is projective algebraic; however we want to avoid any
algebraicity assumption here, so as to be able the case of general complex tori in

§9).

7.2. Proposition. Let L be a holomorphic line bundle on a compact complex
manifold X .

i) L admits a singular hermitian metric h with positive definite curvature current
On(L) > 0 if and only if L is big.

Now, define B, to be the base locus of the linear system |H°(X, L®™)| and let
®,, : X \ B, = PV

be the corresponding meromorphic map. Let X, be the closed analytic set equal
to the union of By, and of the set of points v € X ~\ B, such that the fiber
o, L(®,, (1)) is positive dimensional.

i) If¥,, # X and G is any line bundle, the base locus of L®* @ G~! is contained
in X, for k large. As a consequence, L admits a singular hermitian metric h
with degeneration set ¥, and with ©y(L) positive definite on X .

iii) Conversely, if L admits a hermitian metric h with degeneration set ¥ and
positive definite curvature current O (L), there exists an integer m > 0 such
that the base locus B,, is contained in ¥ and ®,, : X ~ X — P, is an
embedding.

iv) Assume that L admits a singular hermitian metric h with positive definite
curvature current, such that the degeneration set 3 is an analytic subset of X.
Assume moreover that for each irreducible component 3; of 3, Lis, admits
a singular hermitian metric h; with positive definite curvature current on 3;
and degeneration set X C X;. Then L admits a singular hermitian metric

R of positive curvature current on X, with degeneration set S = U“C 2 ke
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Proof. 1) is proved e.g. in [Dem90, 92], so we will only briefly sketch the details.
If L is big, then X is Moishezon and we can even assume that X is projective
algebraic after taking a suitable modification X (apply Hironaka [Hir64]; observe
moreover that the direct image of a strictly positive current is strictly positive).
So, assume that X is projective algebraic. Then it is well-known that some large
multiple of L can be written as L®™ = O x (D + A) with divisors D, A such that D
is effective and A ample. The invertible sheaf O x (D) can be viewed as a subsheaf
of the sheaf of meromorphic functions. We get a singular metric |s|? on sections of
Ox (D) by just taking the square of the modulus of s viewed as a complex valued
(meromorphic) function. By the Lelong-Poincaré equation, the curvature current
of that metric is equal to the current of integration [D] > 0 over the divisor D.
We thus get O(L) = L ([D] + ©(A)) = LO(A4) > 0 for a suitable choice of the
metric on Ox(A). In the other direction, if ©; (L) is positive, one can construct
a “lot of” sections in HY(X, L®™), m > 0, by using Héormander’s L? estimates;
the Hormander-Bombieri-Skoda technique implies that these sections can be taken
to have arbitrary jets at all points in a given finite subset of X ~\ X, if ¥ is the
degeneration set of h. This also proves property iii).

ii) The assumption X, # X shows that there is a generically finite meromorphic
map from X to an algebraic variety, and this implies again that X is Moishezon.
By blowing-up the ideal

Jm =Im (H°(X,L¥") ® Ox(L®™™) = Ox) C Ox

and resolving the singularities, we obtain a smooth modification fx : X » X
and a line bundle L = p*(L¥™) ® O%(—F) (where E is a p-exceptional divisor

with support in u=*(%,,), such that L is base point free; after possibly blowing-
up again, we may assume furthermore that X is projective algebraic. Clearly,
it is enough to prove the result for L, and we are thus reduced to the case
when L is base point free and X is projective algebraic. We may finally assume
that G is very ample (other we add a large ample divisor to G to make it very
ample). In this situation, we have a holomorphic map ®,, : X — P such that
Le™ = &_-1(0(1)), and P, is finite-to-one outside ¥,,. Hence, if x € X \ %,,,
the set @, 1(®,,(z)) is finite, and we can take a smooth divisor D € |G| such that
DN® P, (z)) = 0. Thus ®,,(D) # om(x) in PV, Tt follows that there exists
a hypersurface H = o=1(0) € |Op~ (k)| of sufficiently large degree k, such that H
contains ®,, (D) but does not pass through ®,,,(x). Then ®} o can be viewed as a
section of ®% Opn (k)RO x(—D) = L&*m@G~1, and ®* 0 does not vanish at z. By
the Noetherian property, there exists ko such that the base locus of L®*™ @ G~1
is contained in 3, for k > kg large. Claim ii) follows.

iv) is obtained by extending the metric h; to a metric Ej on a neighborhood of 3J;

(it is maybe necessary to modify ﬁj slightly by adding some “transversally convex
terms” in the weight, so as to obtain positive curvature in all directions of T'x, on
a suitable neighborhood of 3;), and then taking h = min(h,ch;) with ¢ > 0 small
enough. O

We now come to the main definitions. By (5.6), every regular k-jet f € J,V
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gives rise to an element f[/k_1](0) € Op,v(—1). Thus, measuring the “norm of
k-jets” is the same as taking a hermitian metric on Op, v (—1).

7.3. Definition. A smooth, (resp. continuous, resp. singular) k-jet metric on
a complez directed manifold (X,V') is a hermitian metric hy on the line bundle
Op,v(—1) over P,V (i.e. a Finsler metric on the vector bundle Vj,_1 over Py_1V),
such that the weight functions ¢ representing the metric are smooth (resp. conti-
nuous, Li ). Welet Xy, C PiV be the singularity set of the metric, i.e., the closed

subset of points in a neighborhood of which the weight ¢ is not locally bounded.

We will always assume here that the weight function ¢ is quasi psh. Recall that
a function ¢ is said to be quasi psh if ¢ is locally the sum of a plurisubharmonic
function and of a smooth function (so that in particular ¢ € L{ ). Then the
curvature current

7 —
e)h;l(OPkV(l)) = %86(p

is well defined as a current and is locally bounded from below by a negative (1,1)-
form with constant coefficients.

7.4. Definition. Let hy, be a k-jet metric on (X, V). We say that hy has negative
jet curvature (resp. megative total jet curvature) if ©p, (Op,v(—1)) is negative
definite along the subbundle Vi, C Tp.v (resp. on all of Tp,v), i.e., if there is
e > 0 and a smooth hermitian metric wy, on Tp, v such that

<@h;1((9pkv(1))>(f) = €‘f|3,k, VéE eV, C Tpkv (T@Sp. VE € Tpkv).

(If the metric hy is not smooth, we suppose that its weights ¢ are quasi psh, and
the curvature inequality is taken in the sense of distributions.)

It is important to observe that for £ > 2 there cannot exist any smooth
hermitian metric hy on Op,y (1) with positive definite curvature along T, /x,
since Op,y (1) is not relatively ample over X. However, it is relatively big, and
Prop. 7.2 i) shows that Op, v (—1) admits a singular hermitian metric with negative
total jet curvature (whatever the singularities of the metric are) if and only if
Op,v (1) is big over P, V. It is therefore crucial to allow singularities in the metrics
in Def. 7.4.

7.5. Special case of 1-jet metrics. A 1-jet metric by on Op,y(—1) is the same as
a Finsler metric N = v/h; on V C Tx. Assume until the end of this paragraph that
hy is smooth. By the well known Kodaira embedding theorem, the existence of a
smooth metric hy such that @hfl (Op,v (1)) is positive on all of T, is equivalent

to Op,v (1) being ample, that is, V* ample. In the absolute case V = T, there
are only few examples of varieties X such that 7% is ample, mainly quotients of
the ball B, € C" by a discrete cocompact group of automorphisms. The 1-jet
negativity condition considered in Definition 7.4 is much weaker. For example, if
the hermitian metric hy comes from a (smooth) hermitian metric A on V, then
formula (4.16) implies that h; has negative total jet curvature (i.e. @hl—l (Op,v(1))

is positive) if and only if (O4(V))(( ®v) < 0 for all ¢ € Tx ~ {0}, v € V ~ {0},
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that is, if (V, h) is negative in the sense of Griffiths. On the other hand, Vi C Tp,v
consists by definition of tangent vectors 7 € T'p, v, (,[,]) Whose horizontal projection
Hr is proportional to v, thus O, (0Op,1-(—1)) is negative definite on V; if and
only if ©,,(V) satisfies the much weaker condition that the holomorphic sectional

curvature (O (V))(v ® v) is negative on every complex line. O

We now come back to the general situation of jets of arbitrary order k. Our
first observation is the fact that the k-jet negativity property of the curvature
becomes actually weaker and weaker as k increases.

7.6. Lemma. Let (X,V) be a compact complex directed manifold. If (X,V) has
a (k — 1)-jet metric hx_1 with negative jet curvature, then there is a k-jet metric
hi, with negative jet curvature such that Xy, C 7rk_1(2hk71) UDyg. (The same holds
true for negative total jet curvature).

Proof. Let wy_1, wi be given smooth hermitian metrics on T, v and T’p, . The
hypothesis implies

(©-1 (Op,_,v(W)©O) > <léf, . VE€Vin

for some constant € > 0. On the other hand, as Op, v (Dy,) is relatively ample over

Pi_1V (Dy is a hyperplane section bundle), there exists a smooth metric h on
Opkv(Dk) such that

(O7(Opv(D))E) = 8IEL, — Clm)lll, . VEE€Thy

for some constants 0, C' > 0. Combining both inequalities (the second one being
applied to £ € Vi, and the first one to (7g)§ € Vi—1), we get

(O (s )i (MkOP_1 v (P) ® Op v (D)) (E) >
> 0E2, + (pe — O)(mn)<&l2, ., VEE VL

Hence, for p large enough, (W]:hk_l)_pﬁ has positive definite curvature along V.
Now, by (5.9), there is a sheaf injection

Op,v(—p) = 10p,_,v(—p) @ Op,v (—pDi) = (730p,_,v(p) ® (‘)J!Dk\/(l7k))_1

obtained by twisting with Op, v ((p—1)Dy). Therefore hy, := ((W,:hk_l)_p%)_l/p =
(mrhr_1)h~Y/? induces a singular metric on Op,(1) in which an additional

degeneration divisor p~!(p — 1) Dy appears. Hence we get ¥j,, = 7rk_12h,€71 U Dy
and

1 p—1
0, Onv() =00+ 1D
is positive definite along Vj. The same proof works in the case of negative total
jet curvature. O

One of the main motivations for the introduction of k-jets metrics is the
following list of algebraic sufficient conditions.
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7.7. Algebraic sufficient conditions. We suppose here that X is projective
algebraic, and we make one of the additional assumptions i), ii) or iii) below.

i) Assume that there exist integers k,m > 0 and b € N* such that the line bundle
Op,v(m)®0p,v(—b-D*) is ample over P,V. Set A= Op,yv(m)R0p,v(—b-D*).
Then there is a smooth hermitian metric h4 on A with positive definite curvature
on P;V. By means of the morphism p : Op v (—m) — A1, we get an induced
metric hy = (u*h;')/™ on Op,v(—1) which is degenerate on the support of the
zero divisor div(u) = b- D*. Hence X}, = Supp(b- D*) C P,V and

1 1 1
O (Or,(1)) = 61, (A) + —[b- D*] > — 0y, (4) >0,

In particular hy has negative total jet curvature.

ii) Assume more generally that there exist integers k,m > 0 and an ample line
bundle L on X such that H°(P,V,0p,v(m) ® W(’;’kL_l) has non zero sections
01,...,0n. Let Z C P,V be the base locus of these sections; necessarily
Z D P,V*"8 by 6.8 iii). By taking a smooth metric hy, with positive curvature on
L, we get a singular metric b}, on Op,v(—1) such that

/m
M@= X loyw)-eR) " weRV, £€0nv(-Du

1<G<N

Then ¥, = Z, and by computing s=001og hj,(§) we obtain

O 1 (0Opv (1) = —m5,O(L).

By (6.15) and 6.16 iii), there exists b € Q¥ such that Op,v (1) ® Op,v(—b- D*) is
relatively ample over X. Hence A = Op,v (1) @ Op,v(—b- D*) @ 7} , L®P is ample
on X for p > 0. The arguments used in i) show that there is a k—je’t metric b} on
Op,v(—1) with Xj, = Supp(b- D*) = P, Ve and

Oy -1(0p,v(1)) = O(A) + [b- D] — pm 1 O(L),

where ©(A) is positive definite on PyV. The metric hy = (h),"Phy)/ (mP+1) then
satisfies Y5, = Xy, = Z and

1
mp+ 1

01 (Orv (1)) > ———O(4) > 0.

iii) If Fy ., V* is ample, there is an ample line bundle L and a sufficiently high
symmetric power such that SP(Ej ., V*) ® L™! is generated by sections. These
sections can be viewed as sections of Op,y(mp) ® Wa’kL_l over PV, and their
base locus is exactly Z = P, V18 by 6.8 iii). Hence the k-jet metric hj constructed
in ii) has negative total jet curvature and satisfies ¥, = P, Vs"e, O
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An important fact, first observed by [GRe65] for 1-jet metrics and by [GrGr80)]
in the higher order case, is that k-jet negativity implies hyperbolicity. In particular,
the existence of enough global jet differentials implies hyperbolicity.

7.8. Theorem. Let (X, V) be a compact complex directed manifold. If (X, V') has
a k-jet metric hy with negative jet curvature, then every entire curve f : C — X
tangent to V is such that fi,)(C) C Xp,. In particular, if Xy, C PLVsn8  then
(X, V) is hyperbolic.

Proof. The main idea is to use the Ahlfors-Schwarz lemma, following the approach
of [GrGr80]. However we will give here all necessary details because our setting
is slightly different. Assume that there is a k-jet metric hi as in the hypotheses
of Theorem 7.8. Let wy be a smooth hermitian metric on Tp . By hypothesis,
there exists € > 0 such that

(0,1 (Onv ()(E) > elel?, VeV

Moreover, by (5.4), (m;)« maps Vi continuously to Op, v (—1) and the weight e¥
of hy is locally bounded from above. Hence there is a constant C' > 0 such that

((m1)Eln, < CIELZ.,  VEE VL

Combining these inequalities, we find

(03,1 (Opv (W) > Gl VE € i

Now, let f : Agp — X be a non constant holomorphic map tangent to V' on the
disk Ag. We use the line bundle morphism (5.6)

F=fly: Tar = [inOpv(=1)
to obtain a pullback metric
vy ="0(t)dt @dt = F*hy ~ on Ta,.

If fi)(AR) C Xp, then v = 0. Otherwise, F'(t) has isolated zeroes at all singular
points of fi_1) and so () vanishes only at these points and at points of the
degeneration set (fix))~*(3h,) which is a polar set in Ag. At other points, the
Gaussian curvature of v satisfies

(i (8))

k

= - >
MO Frhy ey @

)

i00logo(t)  —27 (fir)*On, (Opv(—1)) (O, (Opv (1))
|

Qlo

)

since fi _1)(t) = (7k)«f{};(¢). The Ahlfors-Schwarz lemma 3.2 implies that v can
be compared with the Poincaré metric as follows:

< 2 I = ok, <
[ O <
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If f:C — X is an entire curve tangent to V' such that fj;;(C) ¢ X, , the above
estimate implie?s as R — +oo that fj,_;) must be a constant, hence also f. Now,
if ¥p,, C PV, the inclusion fj,)(C) C Xy, implies f'(t) = 0 at every point,
hence f is a constant and (X, V) is hyperbolic. O

Combining Theorem 7.8 with 7.7 ii) and iii), we get the following consequences.

7.9. Corollary. Assume that there exist integers k,m > 0 and an ample line
bundle L on X such that HY(PyV,0p v (m)@ns L) ~ HO(X, Exm(V*)Q L)
has non zero sections o1,...,0n. Let Z C P,V be the base locus of these sections.
Then every entire curve f : C — X tangent to V is such that f1;(C) C Z. In
other words, for every global Gy-invariant polynomial differential operator P with

values in L™, every entire curve f must satisfy the algebraic differential equation
P(f)=0. O

7.10. Corollary. Let (X,V) be a compact complex directed manifold. If Ey ,,V*
is ample for some positive integers k,m, then (X, V') is hyperbolic. O

7.11. Remark. Green and Griffiths [GrGr80] stated that Corollary 7.9 is even
true with sections o; € H°(X, EGS (V*) ® L™'), in the special case V = T’x they
consider. We refer to the recent preprint [SiYe96¢] by Siu and Yeung for a detailed
proof of this fact, based on a use of the well-known logarithmic derivative lemma
in Nevanlinna theory (the original proof given in [GrGr80] does not seem to be
complete, as it relies on an unsettled pointwise version of the Ahlfors-Schwarz
lemma for general jet differentials); other proofs seem to have been circulating in
the literature in the last years. We give here a very short proof for the case when
f is supposed to have a bounded derivative (thanks to Brody’s theorem, this is
enough if one is merely interested in proving hyperbolicity, thus Corollary 7.10 will
be valid with E]STSLV* in place of Ey ,,,V*). In fact, if f’ is bounded, one can apply
the Cauchy inequalities to all components f; of f with respect to a finite collection
of coordinate patches covering X. As f’ is bounded, we can do this on sufficiently
small discs D(t,0) C C of constant radius § > 0. Therefore all derivatives f’, f”,
... f*®) are bounded. From this we conclude that o;(f) is a bounded section of
f*L7Y Tts norm |oj(f)|-1 (with respect to any positively curved metric | |z on
L) is a bounded subharmonic function, which is moreover strictly subharmonic at
all points where f’ # 0 and o;(f) # 0. This is a contradiction unless f is constant
or g;j(f)=0. O

The above results justify the following definition and problems.

7.12. Definition. We say that X, resp. (X, V'), has non degenerate negative k-jet
curvature if there exists a k-jet metric hy, on Op,v(—1) with negative jet curvature
such that X, C PpV®™"e.

7.13. Conjecture. Let (X,V) be a compact directed manifold. Then (X,V) is
hyperbolic if and only if (X,V') has nondegenerate negative k-jet curvature for k
large enough.
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This is probably a hard problem. In fact, we will see in the next section
that the smallest admissible integer k£ must depend on the geometry of X and
need not be uniformly bounded as soon as dimX > 2 (even in the absolute
case V. = Tx). On the other hand, if (X,V) is hyperbolic, we get for each
integer £ > 1 a generalized Kobayashi-Royden metric k(p, vy, ,) on Vi_1 (see
Definition 1.3), which can be also viewed as a k-jet metric hy on Op v (—1); we
will call it the Grauert k-jet metric of (X, V), although it formally differs from the
jet metric considered in [Gra89] (see also [DGr91]). By looking at the projection
7k (PeV, Vi) = (Pr—1V, Vk—1), we see that the sequence hy is monotonic, namely
mihi < hgyq for every k. If (X, V) is hyperbolic, then h; is nondegenerate and
therefore by monotonicity ¥, C P,Vs18 for k > 1. Conversely, if the Grauert
metric satisfies ¥, C P,V it is easy to see that (X, V) is hyperbolic. The
following problem is thus especially meaningful.

7.14. Problem. Estimate the k-jet curvature ©,-1(Op,v (1)) of the Grauert
k
metric hy, on (PyV, Vi) as k tends to 4+o0.

88. Algebraic criterion for the negativity of jet curvature

Our goal is to show that the negativity of k-jet curvature implies strong
restrictions of an algebraic nature, similar to property 2.1 ii). Using this we give
examples, for any prescribed integer k, of hyperbolic projective surfaces which do
not admit any k-jet metric of negative jet curvature.

8.1. Theorem. Let (X,V) be a compact complex directed manifold and let w be
a hermitian metric on X. If (X,V) has negative k-jet curvature, there exists
a constant € > 0 such that every closed irreducible curve C' C X tangent to V
satisfies

—x(C) =2¢(C) -2 > ¢ deg,(C) + Z(mk_l(t) —1)>0
teC
where g(C) is the genus of the normalization v : C — C C X, and my(t) is the
multiplicity at point t of the k-th lifting vy : C — P,V ofv.

Proof. By (5.6), we get a lifting vj) : C — PV of the normalization map v, and
there is a canonical map

Vi—1) : Te = VOpv (=1).

Let t; € C be the singular points of Vik—1], and let m; = my_1(t;) be the
corresponding multiplicity. Then uf vanishes at order m; — 1 at t; and thus

k—1]
we find

Te ~ viyOpv(-1)® (96< = (my - 1)Pj>-

Taking any k-jet metric hy, with negative jet curvature on Op, v (—1), the Gauss-
Bonnet formula yields

29(C) —2 = /6@(%) = Z(mj —1) +/6y@]@hk1(opkv(1)).
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Now, the curvature hypothesis implies
(0,1 (Op v (W))(E) > 1€, > "|(mos)éls  VEE Vi,

for some ¢, ¢” > 0 and some smooth hermitian metric wy on P,V. As
7o,k © V[k] = V¥, we infer from this V[*k]@ha((‘)pkv(l)) > v*w, hence
k

7

* € *x
Lviu©nv) = 5 [ v =< de(0)

with € = €” /2w, Theorem 8.1 follows. O

8.2. Theorem. Let k > 1 be any positive integer. Then there is a nonsingular
algebraic surface X (depending on k) which is hyperbolic, but does not carry any
nondegenerate k-jet metric with negative jet curvature. In fact, given any two
curves I',TV of genus at least 2, the surface X may be constructed as a fibration
X — T in which one of the fibers Cy is singular and has T as its normalization.

Proof. The idea is to construct X in such a way that the singular fiber C' which
is normalized by T" violates the inequality obtained in Theorem 8.1. For this we
need only having a singular point ty such that my_1(¢g) — 1 > 2¢(C) — 2, i.e.,
my—1(to) = 2¢g(I"). Moreover, as I' is hyperbolic, X will be hyperbolic if and only

if all fibers of X — I" have geometric genus at least 2.

We first construct from I a singular curve I with normalization ' =r,
simply by modifying the structure sheaf Op: at one given point wg € I”. Let ¢ be
a holomorphic coordinate on I at wg. We replace Ors o, = C{t} by Opr 4, =
C {t*,t*}, where a < b are relatively prime integers. The corresponding singularity
is described by the germ of embedding ¢t — f(t) = (t*,t*) in (C?,0). Now,
f/(t) = (at*=1,btP1), thus [f/(t)] € P! ~ C U {oo} is given by [f/(t)] = 2¢b-.
By induction, we see that the singularity of the j-th lifting f[; is described by the
embedding

s (1780 ert™ L et € CIT, cj=a’blb—a)---(b—(j—1)a)

if b > ja. Then we have m(f};),0) = min(a,b — ja). If we take for instance
a = 2g(I'") and b = ka+1, then m(fjr—1],0) = a. We embed I'"" in some projective
space P" and let C = p(I'”") to be a generic projection to a plane P2 C P" in
such a way that C has only xg = p(wy) and some nodes (ordinary double points)
as its singular points. By construction, the Zariski tangent space to I'" at wq is
2-dimensional, so we may assume that p projects that plane injectively into Tp2.
Then we get a curve C C P? with C' = I, such that m(vy,_1), wo) = a = 2¢(C), if
v : C — P? is the normalization.
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Figure 1. Construction of the surface X

Let Py(20, 21, 22) = 0 be an equation of C in P2. Since C' has geometric genus
at least 2, we have d = deg Py > 4. We complete Py into a basis (Fp,..., Py)
of the space of homogeneous polynomials of degree d, and consider the universal
family

F={([20: 21 : 22, [Nos M1, -, An]) € P2 x PV Z)\ij(z) =0} CcP? x PV

of curves Cy = {>_\;Pj(z) = 0} of degree d in P?. As is well known, the set Z
of points A € PV such that C) is a singular curve is an algebraic hypersurface,
and the set Z' C Z of points A such that C) has not just a node in its singularity
set satisfies codim Z/ > 2. The curve C = Cj itself corresponds to the point
0=[1:0:---:0] € Z'. Since codim Z’ > 2, we can embed I' in PV in such a
way that I'N Z’ = {0}. We then take X — T to be the family of curves (Cy)xer.
If X is singular, we move I' by a generic automorphism of PV leaving 0 fixed.
Then, since F is smooth (it is a smooth PN¥~! subbundle of P? x PV over P?),
Bertini’s theorem implies that X ~ Cp will become nonsingular. That X will be
also nonsingular near Cy depends only on the following first order condition: if
[1:aX): - :a)Xy], a € C, is the tangent line to T" at 0, then dis1 M) P;(z) does
not vanish at any of the singular points of Cy. Now, all nonsingular fibers C'y of
the fibration X — T" have genus (d — 1)(d — 2)/2 > 3, and the singular ones other
than Cp only have one node, so their genus is (d —1)(d —2)/2 -1 > 2. O

If we make an assumption on the total jet curvature (as is the case with the
algebraic sufficient conditions 7.7), Theorem 8.1 can be strengthened to curves
which are not necessarily tangent to V, again by introducing the concept of
deviation. We start with a general purpose statement.
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8.3. Proposition. Let (X, V) be a compact complez directed manifold and let L
be a holomorphic line bundle over X. Assume that L is equipped with a singular
hermitian metric h of degeneration set Xy, such that the curvature (computed in
the sense of distributions) satisfies

where § is a positive constant, w a smooth hermitian metric and « is a continuous
real (1,1)-form on X. Then for every compact irreducible curve C C X not
contained in X, there exists a constant € > 0 such that the following a priori
inequality holds

max (L - C,dev2(C/V)) > e deg, (O).

Proof. By the continuity of a and the compactness of X, our assumption oy > dw
implies that there is a constant M > 0 such that

€1
a+ MY > -w

N |

(to get this, one merely needs to apply the Cauchy-Schwarz inequality to mixed
terms V* ® (V4)* in a hermitian form on V). In particular, we find

[« %)

On(L) +Muw" >2

N}

This inequality gives rise to a corresponding numerical inequality on every ir-
reducible curve C' ¢ X5, for the difference has a well defined and nonnegative
restriction to C' (we use here the fact that the weight of h is quasi-psh and locally
bounded at some point of C, hence locally integrable along C'). From this we infer

L-C+ Mdev:(C/V)> g deg ,(C),

and the left hand side is at most equal to (M + 1) max (L - C, devi(C’/V)). O

8.4. Proposition. Let (X,V) be a compact complex directed manifold. Assume
that there are integers k,m > 0 and b € N¥ such that Op_v(m)® Op,v(—b- D*) is
an ample line bundle over P,V . Then (X,V) is hyperbolic and there exists € > 0
such that every closed curve C' C X satisfies

max (= x(C) =Y (me_1(t) — 1),devy¥ (C/V)) > e deg,(C).

teC

Proposition 8.4 is likely to be true also if we assume more generally that
(X, V) has non degenerate total k-jet curvature but, in this case, some technical
difficulties appear in the construction of the required singular hermitian metric hy
on Op, 7, (1) (see the proof below).
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Proof. The hyperbolicity of (X, V) follows from 7.7 i) and Theorem 7.8. Now,
the identity map defines a natural monomorphism (X, V) — (X, Tx) of directed
manifolds and therefore induces an embedding P,V — P,Tx for each k. With
respect to this embedding, we have

Op,1x (1) 1p,v = Op,v (1),
Op,rx (M) ® Op,1y (b D*)1pv = Op,v(m) @ Op,v(—b- D¥)

By our assumptions, Op, 7, (m) ® Op, 1, (—b- D*) is ample over P,V and over the
fibers of the projection P,Tx — X. Hence, we can find a smooth hermitian metric
hiem.p o1 Op, 7y (M) ® Op, 7 (—b - D*) such that the curvature form is positive
definite on a neighborhood U of P,V and satisfies

O(0p, 1y (M) @ Op,1y (=b- D)) = —Crj gw

for some Kéhler metric w over X. This metric hg p,p gives rise to a hermitian

metric hg, on Op, 7, (1) with singularity set ¥, C P,:ingTX and similar curvature
properties, that is

{ On, (Op, 1 (1)) = —Crm yw on P.Tx,
=

)

(8.5) owy, = 'mp gqw  on U D PV,

@hk (OPkTX (1))

where wy, is a hermitian metric on P,Tx and 6, ¢’ > 0. Now, assume that the
conclusion of Prop. 8.4 is wrong. Then there would exist a sequence of curves (Cy)
and a sequence of positive numbers ¢y converging to 0, such that

Op, 7y (1) - Coi < ¢ deg,,(Ch), deVZZO(Cg/V)) < egpdeg,(Cy)

where Cj i is the lifting of C; to PyTx [indeed, we have Op 1y (1) - Copy =
—x(C¢) — S>(mp_1(t) — 1)]. Let v, : Cy — X be the normalization map. As
devy(Cy/V)) = supv}(wys)/do where do is the Poincaré metric and do the
associated normalized metric, the second condition means

vi(wy) < & deg, (Ce) _ c Jegviv
do = féé do ¢ f5€ do -’

sup || pry-. vg[5 ., = sup

In addition to this, we have

fée vyjw
fepdo

and R = sup Ry < 400, otherwise the proof of Prop. 2.9 would produce a non
constant entire curve g : C — X tangent to V, contradicting the hyperbolicity of
(X, V). An application of the Cauchy inequalities to the components of pry, . on
sufficiently small disks in the universal covering of C; and in suitable trivializations
of T'x /V shows that there is a constant M} > 0 such that

< R = sup [[vgl7.

) — VW
sup || pry . V(])| i’w < My sup || pry. vy i’w < Mgy f(;_g j .
1<j<k foe g
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As [z, Ivi

—2 %, [ :
cViw = |5, do, we infer

92
Ha,w * < *
vow < Mpeg | vjw.
CY

(
SUPq <. Tyvo UV
(8.6) / Pigjigk | pry. v,

a 12117

Since U is a neighborhood of PV, there exists a constant n > 0 such that

supy<j<r | pry s v (02,0
PAGIER

<n — V&[k](t) eU

for any ¢t € C,. By the integral estimate (8.6), the set S, of “bad points” t € C,
at which the left hand inequality does not hold has area < Mye, deg,,(Cy)/n with
respect to v;w. By (8.5), we then get

Opyrx (1) - Copy = /6 vy 19©(0p,1x (1)) +/ vy i ©(0p, 1y (1))

AN Sy

25'/_ l/Zw—C'/ Vjw
TS, S

n

= (8'(1 = Myer/n) — CMyee/n) deg,, (Co).

This contradicts our initial hypothesis that Op, 7, (1) - Cy, i < €¢ deg,,(C¢) when
¢ is small enough. O

The above results lead in a natural way to the following questions, dealing with
the “directed manifold case” of Kleiman’s criterion (Kleiman’s criterion states
that a line bundle L on X is ample if and only if there exists ¢ > 0 such that
L-C > edeg, C for every curve C C X).

8.7. Questions. Let (X,V) be a compact directed manifold and let L be a line
bundle over X. Fizp € [2,+00].

i) Assume that
max (L - C,devl (C/V)) = edeg,(C)

for every algebraic curve C C X (and some € > 0). Does L admit a smooth
hermitian metric h with ©y,(L) v positive definite ¢

ii) Assume more generally that there is an analytic subset Y 2 X such that i)
holds for all curves C ¢ Y. Does L admit a singular hermitian metric h with
On(L)v positive definite, and with degeneration set ¥, CY ¢

iii) Assume that there exists € > 0 such that every closed curve C C X salisfies
max (= x(C) = Y _(mx_1(t) — 1),dev’(C/V)) > € deg,,(C).
teC

Does it follow that (X,V) admits non degenerate negative k-jet (total)
curvature ¢
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The answer to 8.7 i) is positive if V' is the vertical tangent sheaf of a smooth
map X — S5, and in that case one can even restrict oneself to curves that are
tangent to V' (i.e. vertical curves): this is just the relative version of Kleiman’s
criterion. However, in general, it is not sufficient to deal only with curves tangent
to V' (if X is an abelian variety and V' is a constant line subbundle of T'x with non
closed leaves, the condition required for algebraic curves C' is void, hence L can
be taken negative on X ; then, of course, the curvature cannot be made positive
along V.)

89. Proof of the Bloch theorem

The core of the result can be expressed as a characterization of the Zariski
closure of an entire curve drawn on a complex torus. The proof will be obtained as a
simple consequence of the Ahlfors-Schwarz lemma (more specifically Theorem 7.8),
combined with a jet bundle argument. Our argument works in fact without any
algebraicity assumption on the complex tori under consideration (only the case of
abelian or semi-abelian varieties seems to have been treated earlier).

9.1. Theorem. Let Z be a complex torus and let f : C — Z be a holomorphic
map. Then the (analytic) Zariski closure f(C)%* is a translate of a subtorus, i.e.
of the form a+ Z', a € Z, where Z' C Z is a subtorus.

The converse is of course also true: for any subtorus Z’ C Z, we can choose
a dense line L C 7', and the corresponding map f : C ~ a + L < Z has Zariski

closure f(C)% =q+ 7'

Proof (based on the ideas of [GrGr80]). Let f: C — Z be an entire curve and let
X be the Zariski closure of f(C). We denote by Z, = Py(Tz) the k-jet bundle
of Z and by Xj, the closure of X;*® = Pj(T'xrez) in Z. As Ty is trivial, we
have Z, = Z x R, where R,, ; is the rational variety introduced in §5. By
Proposition 6.16 iii), there is a weight a € N* such that Oz, (a) is relatively very
ample. This means that there is a very ample line bundle Og, , (a) over R,, j such
that Oz, (a) = pr; Or, ,(a). Consider the map ®; : X; — R, which is the
restriction to X}, of the second projection Z;, — R, ;. By fonctoriality, we have
Ox, (a') = q’ZORn,k (a')

Define By C X to be the set of points x € X such that the fiber of &
through x is positive dimensional. Assume that By # X. By Proposition 7.2 ii),
Ox, (a) carries a hermitian metric with degeneration set Bj and with strictly
positive definite curvature on Xy, (if necessary, blow-up X} along the singularities
and push the metric forward). Theorem 7.8 shows that f;)(C) C By, and this is
of course also true if By = X;. The inclusion f[k]((C) C By means that through
every point fi(to) there is a germ of positive dimensional variety in the fiber
<I>,;1(<I>k(f[k](t0))), say a germ of curve ¢ — u(t') = (2(¥'),jx) € Xk C Z x Ry 1,
with w(0) = fi(to) = (20,Jx) and 2o = f(to). Then (z(t'),jx) is the image of
fi#1(to) by the k-th lifting of the translation 7 : 2z — z+s defined by s = 2(t') — 2.
Now, we have f(C) ¢ X518 since X is the Zariski closure of f(C), and we may
therefore choose tg so that f(tp) € X" and f(to) is a regular point. Let us define

Ap(f)={s€Z : fu(to) € Pu(X)N Pr(7_s(X))}.



§10. Logarithmic jet bundles and a conjecture of Lang 51

Clearly Ay (f) is an analytic subset of Z containing the curve t’ — s(t') = z(t') — 29
through 0. Since

Ai(f) D A(f) DD A()D -+,

the Noetherian property shows that the sequence stabilizes at some Ag(f).
Therefore, there is a curve D(0,7) — Z, t' + s(t') such that the infinite jet joo
defined by f at tg is s(t')-translation invariant for all . By uniqueness of analytic
continuation, we conclude that s(t') + f(t) € X for allt € C and t' € D(0,r). As
X is the Zariski closure of f(C), we must have s(t') + X C X for all ¢’ € D(0,7);
also, X is irreducible, thus we have in fact s(¢') + X = X. Define

W:{SEZ; s—l—X:X}.

Then W is a closed positive dimensional subgroup of Z. Let p: Z — Z/W be the
quotient map. As Z/W is a complex torus with dim Z/W < dim Z, we conclude by
induction on dimension that the curve f = pof: C — Z/W has its Zariski closure

X = f(@ )23 = p(X) equal to a translate 5+7 of some subtorus T C Z/W. Since
X is W-invariant, we get X = s+p~ (1), where p~1(T) is a closed subgroup of Z.
This implies that X is a translate of a subtorus, as expected. O

We now state two simple corollaries, and then the “Bloch theorem” itself (see
also [Och77], [Nog77, 81, 84], [Kaw80] for other approaches in the algebraic case).

9.2. Corollary. Let X be a complex analytic subvariety in a complex torus Z.
Then X s hyperbolic if and only if X does not contain any translate of a subtorus.

9.3. Corollary. Let X be a complex analytic subvariety of a complex torus Z.
Assume that X is not a translate of a subtorus. Then every entire curve drawn in
X s analytically degenerate.

9.4. Bloch theorem. Let X be a compact complexr Kahler variety such that the
irregqularity q = h°(X, Q%) is larger than the dimension n = dim X. Then every
entire curve drawn in X s analytically degenerate.

Here X may be singular and Q% can be defined in any reasonable way (direct

image of the QL of a desingularization X or direct image of Qf, where U is the
set of regular points in the normalization of X).

Proof. By blowing-up, we may assume that X is smooth. Then the Albanese
map « : X — Alb(X) sends X onto a proper subvariety ¥ C Alb(X) (as
dimY < dim X < dimAlb(X)), and Y is not a translate of a subtorus by the
universal property of the Albanese map. Hence, for every entire curve f: C — X
we infer that ao f : C — Y is analytically degenerate; it follows that f itself is
analytically degenerate. O

§10. Logarithmic jet bundles and a conjecture of Lang

We want to report here briefly about an important question raised by S. Lang,
namely whether the complement of an ample divisor in an Abelian variety is
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Kobayashi hyperbolic? This statement has been first settled in the affirmative by
Siu and Yeung [SiYe96b], using an extension of some of the methods used to prove
Bloch’s theorem. We will adopt here a slightly different approach of G. Dethloff
and S. Lu [DLu96], who followed a suggestion made during our Santa Cruz lectures
in July 1995. Namely, there should exist a theory of logarithmic jet bundles
extending Semple’s construction, which would allow to study the hyperbolicity
properties of open varieties of the form X ~ D (D being a divisor in a projective
variety X). We give here a short account of Dethloff and Lu’s technique, referring
to [DLu96] for details, and to [SiYe96b], [Nog96a] for alternative approaches.

Let (X,V) be a compact directed manifold and D a reduced divisor in X.
Recall that the sheaf Q% (D) of holomorphic 1-forms with logarithmic poles along
D is defined to be the coherent sheaf generated by Q% and ds;/s;, where s; = 0
are local equations for the irreducible components of D. It is locally free as soon as
D is a normal crossing divisor (we may always suppose that this is the case after
blowing up X along smooth centers contained in D). Similarly, one introduces the
sheaf O(V*(D)) to be the sheaf of holomorphic 1-forms along V' with logarithmic
poles along D (this is just the quotient of Q% (D) by the conormal sheaf V° C V*
of V). It is locally free as soon as D has normal crossings and its components Dy
are everywhere tranversal to V' (by this we mean that TD(j) +V = Tx along D(j)).
Under this assumption, we consider the dual (locally free) sheaves

(10.1) O(Tx (D)) := (Qx (D))",  O(V(D)):= (V*(D))".

One easily checks that O(T'x (D)) (resp. O(V(D))) is the sheaf of germs of vector
fields in O(T’x) (resp. O(V')) which are tangent to each component of D. Now, one
defines a sequence

(10.2) (X, D, Vi)

of logarithmic k-jet bundles exactly in the same way as we proceeded in section § 4
and §5: if Xg = X, Dy = D and V) = V(D), one sets inductively X = P(Vj_1),
Dy, = (m,0)"H(D), and Vj is the set of tangent vectors in T, (D) which project
into the line defined by the tautological line bundle Ox, (=1) C 7 Vi—1. In this
case, the direct image formula given in Theorem 6.8 reads

(10.3) (7r,0)x O, (M) = O(E,m V™ (D)),

where O(Ey ., V*(D)) is the sheaf generated by all polynomial differential operators
in the derivatives of order 1,2,...,k of the components fi,..., f,, together with
the extra function log s;(f) along the j-th component of D.

Just as before, a logarithmic k-jet metric is just a singular hermitian metric
on Ox, (—1). Dethloff and Lu [DLu96] state the following results 10.4-10.9, which
extend our results of sections §7 and §9 (most of these results can already be
derived from [SiYe96b] as well).

10.4. Theorem. Let (X,D,V) be as above. Let ¥y, be the union of the base
locus of Ox, (m) and of the positive dimensional fibers of the canonical map defined
by the corresponding linear system. Then



§10. Logarithmic jet bundles and a conjecture of Lang 53

1) If Xk.m # Xk, there exists a logarithmic k-jet metric hy, with strictly negative
jet curvature and Xy, = Xk .

ii) For every entire map f: C — X \ D tangent to V, one has fji)(C) C g .

iii) For every holomorphic map f : A* — X \ D tangent to V (where A* is the
punctured disk), one has: either f extends to a holomorphic map f: A — X
or fik] (A%) C L.

Consider now a semi-abelian variety Z (that is, a commutative algebraic group
C"™/T), and let D C Z be a reduced algebraic divisor.

10.5. Theorem. Let (Z, D) be as above.

i) For every entire curve f : C — Z, the Zariski closure f(C)
of an algebraic subgroup of Z.

Zar 4o o translate

ii) For every entire curve f : C — Z ~ D, we have f(C)%* N D = ().

10.6. Corollary. If D has non empty intersection with any translate of an
algebraic subgroup of Z of positive dimension, then Z ~. D is Brody hyperbolic.
This is true e.q. if Z is abelian and D is ample.

10.7. Remark. Theorem 10.5 and its corollary have been obtained indepen-
dently by Noguchi [Nog96a], and also by Siu-Yeung [SiYe96b] in the case of
abelian varieties. Both of their proofs use value distribution theory, whilst the
present approach uses only negative curvature arguments. It is likely that The-

orem 10.5 can be extended to arbitrary commutative (non necessarily algebraic)
Lie groups C"/T.

10.8. Theorem. The following properties hold true.

A) Let f: A* — Z be a holomorphic map. Then either it extends to a holomorphic
map [ : A — Z or there exists a mazimal algebraic subgroup Z' of Z of positive
dimension such that f(A*)%2* is foliated by translates of Z'.

B) Let f: A* — Z ~ D be a holomorphic map. Then one of the following holds:

i) f extends to a holomorphic map f: A — Z.

ii) f(A*)Zr N D = (.

iii) There exists an algebraic subgroup Z" of Z' of positive dimension such
that f(A*)2% N D is foliated by translates of Z".

C) Assume here that Z is an abelian variety and let f : A* — Z ~ D be a
holomorphic map. Then one of the following holds:

i) f extends to a holomorphic map f: A — Z.

ii) There exists an algebraic subgroup Z" of Z' of positive dimension such
that D is foliated by translates of Z".
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Part A) of Theorem 10.8 is due to Noguchi [Nog96a] (again with a proof based
on Nevanlinna theory).

10.9. Corollary. If Z is abelian and D 1is ample, then every holomorphic map
f A" — Z~ D extends to a holomorphic map f: A — Z.

811. Projective meromorphic connections and Wronskians

We describe here an important method introduced by Siu [Siu87] and later
developped by Nadel [Nad89], which is powerful enough to provide explicit
examples of algebraic hyperbolic surfaces. It yields likewise interesting results
about the algebraic degeneration of entire curves in higher dimensions. The main
idea is to use meromorphic connections with low pole orders, and the associated
Wronskian operators. In this way, Nadel produced examples of hyperbolic surfaces
in P? for any degree of the form p = 6k 4+ 3 > 21. We present here a variation of
Nadel’s method, based on the more general concept of partial projective connection,
which allows us to extend his result to all degrees p > 11. This approach is inspired
from a recent work of J. El Goul [EG96], and is in some sense a formalization of
his strategy.

Let X be a complex n-dimensional manifold. A meromorphic connection V
on Tx is a C-linear sheaf morphism

MU, Tx) — MU, Qx @ Tx)

(where M(U, o) stands for meromorphic sections over U), satisfying the Leibnitz
rule

V(fs)=df ® s+ fVs

whenever f € M(U) (resp. s € M(U, Tx)) is a meromorphic function (resp. section
of Tx). Let (21,...,2,) be holomorphic local coordinates on an open set U C X.
The Christoffel symbols of V with respect to these coordinates are the coefficients
F;‘u such that

Z F ,,dzj = A-th component of V( 0 )
0z,
1<j<n
The associated connection form on U is the tensor
0
F= ) Tj,dz;®ds® 5.0 € MU, T} @ T @ Tx).
14, usn X

Then, for all local sections v =3, \,, U)\%, W= en wA% of M(U, Tx),
we get

Vv = Z (dv,\+ Z FAUH>8;;—CZU—|—F v,

1<ALn 1<usn

0 0
Vv = Z ( 62‘—1— Z F w]vu>a—z>\:dwv+F-(w,v).

1<), <n 1<u<n
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The connection V is said to be symmetric if it satisfies V,w — Vv = [v,w], or
equivalently, if the Christoffel symbols F;‘u = Fﬁj are symmetric in j, p.

We now turn ourselves to the important concept of Wronskian operator. Let B
be the divisor of poles of V, that is, the divisor of the least common multiple of all
denominators occuring in the meromorphic functions F;‘u. If 3 € H'(X,0(B))
is the canonical section of divisor B, then the operator SV has holomorphic
coefficients. Given a holomorphic curve f : D(0,7) — X whose image does not
lie in the support |B| of B, one can define inductively a sequence of covariant
derivatives

Flo =V, ., fETY v (f),

These derivatives are given in local coordinates by the explicit inductive formula

(11.1) E = LB+ Y (o 1) 1 D),

dt
1<pgn

Therefore, if Im f ¢ |B|, one can define the Wronskian of f relative to V as
(11.2) We(f) =1 NFGA- NI,

Clearly, Wy (f) is a meromorphic section of f*(A"Tx). By induction B(f)*~! (vk)
is holomorphic for all k& > 1. We infer that 8(f)™(»~1/2Wy (f) is holomorphic and
can be seen as a holomorphic section of the line bundle f*(A"Tx ®Ox (3n(n—1)B).
From (11.1) and (11.2) we see that P = g"(»~D/21Jy is a global holomorphic
polynomial operator f — P(f', f",..., ™) of order n and total degree n(n+1)/2,
with values in A"Tx ® Ox (3n(n — 1)B). Moreover, if we take a biholomorphic
reparametrization ¢, we get inductively

(fo cp)(vk) = (gp’)kf(vk) o ¢ + linear combination of fg) op, j<k.

Therefore
Wy (f o) = (¢ )" Wy(f)

and B"("~1D/2g can be viewed as a section

(11.3) Brn=DRWG € HO(X, Ep pnsny2T% @ LY,

where L is the line bundle
1
L=Kx ®ox(— Snln— 1)B>.

From this, we get the following theorem, which is essentially due to [Siu87] (with a
more involved proof based on suitable generalizations of Nevanlinna’s second main
theorem).

11.4. Theorem (Y.T. Siu). Let X be a compact complex manifold equipped with a

meromorphic connection V of pole divisor B. If Kx @ Ox(— %n(n —1)B) is ample,
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then for every non constant entire curve f : C — X, one has either f(C) C |B]|
or Wy (f)=0.

Proof. By Corollary 7.9 applied with P = " D/2I/g, we conclude that
r=0/2( /YWy (f) = 0, whence the result. O

11.5. Basic observation. It is not necessary to know all Christoffel coefficients of
the meromorphic connection V in order to be able to compute its Wronskian Wy .
In fact, assume that V is another connection such that there are meromorphic
1-forms «, § with

V=V+4a®ldr +(B®dr, )r,, e,
Vot = Vv 4 a(w)v + Bv)w

where 712 means transposition of first and second arguments in the tensors of
T ®T5% @Tx. Then Wy = Wg. Indeed, the defining formula f (k+1) _ Ve (fe (k))

implies that f(kH) (f(k)) + alf’ )f(k) + B( (k))f’ and an easy induction

then shows that the V derlvatlves can be expressed as linear combinations with
meromorphic coefficients

O =150+ > v ). O

1<j<k

The essential consequence of Remark 11.5 is that we need only have a “partial
projective connection” V on X, in the following sense.

11.6. Definition. A (meromorphic) partial projective connection V on X is
a section of the quotient sheaf of meromorphic connections modulo addition of
meromorphic tensors in (Q% @ Idr, ) ® (O @ Id7y )ry,- In other words, it can be
defined as a collection of meromorphic connections V; relative to an open covering
(U;) of X, satisfying the compatibility conditions

Vi —V, =a,r ®ldr, +(Bjr @ Idry )y,
for suitable meromorphic 1-forms o, Bjr on U; N Uy,.

If we have similar more restrictive compatibility relations with 3, = 0, the
connection form T is just defined modulo Q% ® Idy, and can thus be seen as a
1-form with values in the Lie algebra pgl(n,C) = sl(n, C) rather than in gl(n,C).
Such objects are sometimes referred to as “projective connections”, although this
terminology has been also employed in a completely different meaning. In any
event, Proposition 11.4 extends (with a completely identical proof) to the more
general case where V is just a partial projective connection. Accordingly, the pole
divisor B can be taken to be the pole divisor of the trace free part

=T mod (Q}( ® Idr, ) ® (Qk ® Idry )7y, -
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Such partial projective connections occur in a natural way when one considers
quotient varieties under the action of a Lie group. Indeed, let W be a complex
manifold in which a connected complex Lie group G acts freely and properly (on
the left, say), and let X = W/G be the quotient complex manifold. We denote
by m : W — X the projection. Given a connection V on W and a local section
o :U — W of m, one gets an induced connection on T'x |y by putting

(11.7) V=m0 (c*V),

where 0*V is the induced connection on o*Ti w and w, : Ty — @w*Tx is the
projection. Of course, the connection V may depend on the choice of o, but we
nevertheless have the following simple criterion ensuring that it yields an intrinsic
partial projective connection.

11.8. Lemma. Let V=d+T bea meromorphic connection on W. Assume that
V satisfies the following conditions:

i) V is G-invariant;

ii) there are meromorphic 1-forms a, 8 € M(W, Ty, x) along the relative tangent
bundle of X — W, such that for all G-invariant holomorphic vector fields v,
7 on W (possibly only defined locally over X) such that T is tangent to the
G-orbits, the vector fields

Vv —a(r)v, Vot — B(1)v

are again tangent to the G-orbits (o and B are thus necessarily G-invariant,
and o = B if V is symmetric).

Then Formula (11.7) yields a partial projective connection ¥V which is globally
defined on X and independent of the choice of the local sections o.

Proof. Since the expected conclusions are local with respect to X, it is enough
to treat the case when W = X x G and G acts on the left on the second factor.
Then W/G ~ X and 7 : W — X is the first projecti