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Abstract. Let (X,ω) be a compact Kähler manifold. We obtain uniform Hölder regularity
for solutions to the complex Monge-Ampère equation on X with Lp right hand side, p > 1.
The same regularity is furthermore proved on the ample locus in any big cohomology class.
We also study the range MAH(X,ω) of the complex Monge-Ampère operator acting on ω-
plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpen-
ing Ko lodziej’s result that measures with Lp-density belong to MAH(X,ω) and proving that
MAH(X,ω) has the “Lp-property”, p > 1. We also describe accurately the symmetric measures
it contains.

1. introduction

Let (X,ω) be a compact n-dimensional Kähler manifold. Let also Θ = {θ} ∈ H1,1(X,R) be
a given cohomology class on X . In the note we consider two different cases of interest:

(1) Θ is a Kähler class, i.e. there exists a Kähler form which represents Θ. In this case we
assume without loss of generality that ω ∈ Θ;

(2) Θ is a big cohomology class, which means that there exists a (possibly singular) closed
(1, 1) current T representing Θ such that T is strictly positive i.e. T ≥ ε0ω for some
constant ε0 > 0.

The study of complex Monge-Ampère equations on compact Kähler manifolds with a Kähler
background metric has a long history and many spectacular results have appeared during the
years. The big cohomology class setting, on the other hand, was initiated recently in [BEGZ].
This is the most general setting where a meaningful (and nontrivial) theory can be developed.
Of course it covers the Kähler class setting as a particular case, but since the latter is more
classical and certain technicalities can be avoided we have decided to treat both cases separately.

We deal with the Kähler setting first. We study the range of the (normalized) complex
Monge-Ampère operator

MA(u) :=
1

Vω
(ω + ddcu)n, Vω := V olω(X) =

∫

X

ωn,

acting on ω-plurisubharmonic (ω-psh for short) Hölder-continuous functions u. Here, as usual
d = ∂ + ∂ and dc := 1

2iπ
(∂ − ∂), and Vω denotes the volume of the cohomology class {ω}, so

that MA(u) is a probability measure.
This problem is motivated by the study of canonical metrics on mildly singular varieties:

their potentials are solutions to degenerate complex Monge-Ampère equations for which Hölder
continuity is the best global regularity one can expect. Furthermore even such weak regularity
does imply estimates for the “metric” ω + ddcu which might be relevant for the study of the
limiting behavior of the Kähler-Ricci flow. We refer the reader to [ST1, ST2, ST3, SW, EGZ1,
GKZ, K3, KT, BCHM, BEGZ, To, TZ, SW] for further geometrical motivations and references.
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We let PSH(X,ω) denote the set of ω-psh functions: these are defined as being locally equal
to the sum of a plurisubharmonic and a smooth function and any such function u additionally
satisfies the inequality ω + ddcu ≥ 0 in the weak sense of currents.

We let Hölder(X,R) denote the set of real valued Hölder-continuous functions on X . Our
goal is thus to understand the range

MAH(X,ω) := MA(PSH(X,ω) ∩ Hölder(X,R)).

A result of fifth named author [K3] (see [EGZ1] and [Di] for refinements in particular cases)
asserts that a probability measure µ = fωn which is absolutely continuous with respect to the
Lebesgue measure belongs to MAH(X,ω) if it has density f ∈ Lp for some p > 1. Note that a
Monge-Ampère potential u ∈ PSH(X,ω) such that MA(u) = µ is unique, up to an additive
constant.

The proof in [K3] does not give any information on the Hölder exponent of the Monge-Ampère
potential. We combine here the methods of [K3] and the regularization techniques of the first
named author [D1, D4] to establish the following result:

Theorem A. Let µ = fωn = MA(u) be a probability measure absolutely continuous with respect
to Lebesgue measure, with density f ∈ Lp, p > 1. Then u is Hölder-continuous with exponent
α arbitrarily close to 2/(1 + nq), where q denotes the conjugate exponent of p.

It is a slightly better exponent than the one obtained in some special cases in [EGZ1] and
[Di]. It is also asymptotically optimal (see [Pl] and [GKZ] for some local counterexamples which
are easily adjustable to the compact setting). The proof uses a subtle regularization result of
[D1, D4], as in [Di] and [BD]. The extra tool that allows us to remove symmetry/curvature
constraints is the Kiselman minimum principle coupled with Demailly’s method of attenuating
singularities (the Kiselman-Legendre transform) from [D4].

By keeping track of the Hölder constant together with the exponent one can in fact obtain
uniform estimates provided suitable control on the global geometry is assumed. More precisely
if we assume uniformly bounded geometry (this notion will be explained in the Preliminaries)
the following holds:

Theorem A*. Let (Xs, ωs) be a family of compact Kähler manifolds with uniformly bounded
geometry. Consider the Monge-Ampère equations

(ωs + ddcus)
n = fsω

n
s , sup

Xs

us = 0.

If ‖f‖Lp(ωns ) ≤ C are uniformly bounded then the solutions us are uniformly Hölder continuous
for any exponent α < 2/(nq + 1) and the Hölder constant is uniformly controlled by C and the
constants from the definition of the uniformly bounded geometry.

We furthermore believe that additional technical improvements of our arguments may lead
to analogous statements in the case of classes which are merely semi-positive and big (see [BGZ]
for a definition and further developments).

A satisfactory description of MAH(X,ω) is yet to be found. We nevertheless establish a
technically involved characterization (Theorem 4.3) that allows us to derive several useful con-
sequences, for example we show:

Theorem B. The set MAH(X,ω) has the Lp-property: if µ ∈ MAH(X,ω) and 0 ≤ f ∈ Lp(µ)
with p > 1 and

∫

X
fdµ = 1, then fµ ∈ MAH(X,ω).

In particular the set MAH(X,ω) is convex.

It has been recently proved by Dinh-Nguyen-Sibony [DNS] (see also [Ber] for recent devel-
opments) that measures in MAH(X,ω) have the following strong integrability property: if
µ ∈ MAH(X,ω), then

(†) exp(−εPSH(X,ω)) ⊂ L1(µ), for some ε > 0.
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This is a useful generalization of Skoda’s celebrated integrability theorem (see [Sk, Ze]).
It is natural to wonder whether condition (†) characterizes MAH(X,ω). This is the case

when n = 1 (see [DS] and Subsection 4.1). In this note we show that such a characterization
still holds in higher dimensions provided the measures under consideration have symmetries:

Theorem C. Let µ be a probability measure with finitely many isolated singularities of radial
or toric type. Then µ belongs to MAH(X,ω) if and only if (†) is satisfied.

Next we turn our attention to the general big cohomology class setting. To this end we
choose a smooth (1, 1)-form θ representing Θ. Observe that in general one cannot have θ ≥ 0.
Analogously to the Kähler setting we can nevertheless define PSH(X, θ) as the set of functions
which are defined again as being locally equal to sum of a plurisubharmonic and a smooth
function and any such function ϕ should satisfy θ + ddcϕ ≥ 0. Observe that by assumption
such functions exist, although they all may be singular.

It follows from the regularization theorem of the first author [D4] that we can find a strictly
positive closed (1, 1) current T+ = θ+ ddcϕ+ which represents Θ and has analytic singularities,
that is there exists c > 0 such that locally on X we have

ϕ+ = c log

N
∑

j=1

|fj|2 mod C∞

where f1, ..., fN are local holomorphic functions. Such a current T+ is then smooth on a Zariski
open subset Ω, and the ample locus Amp(Θ) of Θ is defined as the largest such Zariski open
subset (which exists by the Noetherian property of closed analytic subsets). Therefore any
θ-psh function ψ with minimal singularities is locally bounded on the ample locus. Here having
minimal singularity means that given any other θ-psh function ϕ one has the inequality

ϕ ≤ ψ +O(1).

According to [BEGZ] we can then define the (non-pluripolar) product 〈(θ + ddcϕ)n〉, and in
case ϕ has minimal singularities, the total mass of this measure is independent of ϕ and equals

∫

X

〈(θ + ddcϕ)n〉 =: V ol(Θ) > 0.

It is therefore meaningful to study the (normalized) Monge-Ampère equation

MA(ϕ) :=
1

V ol(Θ)
(θ + ddcϕ)n = µ,

for a given probability measure µ vanishing on pluripolar sets.
When µ = fdV is absolutely continuous with respect to Lebesgue measure with density

f ∈ Lp(X), p > 1, there is a unique solution modulo additive constant which turns out to have
minimal singularities [BEGZ]. The solution is known to be globally continuous on X when the
cohomology class Θ is moreover semi-positive ([EGZ3]).

In this context we prove the following analogue of Theorem A:

Theorem D. Let µ be a probability measure absolutely continuous with respect to a fixed smooth
volume form, with density f ∈ Lp(X), p > 1. Let ϕ be a weak solution of the Monge-Ampère
equation MA(ϕ) = µ. Then for any 0 < α < 2/(1 +nq), ϕ is Hölder-continuous of exponent α
locally in the ample locus Amp(Θ) of Θ (here q denotes the conjugate exponent of p).

The note is organized as follows. In Section 2 we recall all the basic facts and introduce
the necessary definitions. Theorems A and A* are proved in Section 3. After recalling the
one dimensional theory in Subsection 4.1, we establish the characterization of MAH(X,ω) in
Subsection 4.2. This allows us to prove Theorem B (in Subsection 4.3) and derive further inter-
esting consequences. The case of measures with symmetries is handled in Section 5. Theorem
D is proved in Section 6. In the Appendix we briefly explain how bounds on the curvature



4 J.-P. DEMAILLY, S. DINEW, V. GUEDJ, H. H. PHAM, S. KO LODZIEJ, A. ZERIAHI

allow to control the differential of the exponential mapping, a technical information needed in
the proof of Theorem A*.

2. preliminaries

2.1. Curvature and regularization. Let X be a compact Kähler manifold equipped with a
fundamental Kähler form ω given in local coordinates by

ω =
i

2

∑

k,j

gkj̄dz
k ∧ dz̄j .

Its bisectional curvature tensor in those local coordinates is defined by

Rij̄kl̄ := − ∂2gkl̄
∂zi∂z̄j

+

n
∑

p,q=1

gpq̄
∂gpl̄
∂z̄j

∂gkq̄
∂zi

,

with gpq̄ denoting the inverse transposed matrix of gpq̄ i.e.,
∑n

q=1 g
pq̄gsq̄ = δps. It is a classical

fact that in the Kähler case the bisectional curvature tensor coincides with the Levi-Civita
curvature tensor. We say that the bisectional curvature is bounded by A > 0 if for any z ∈ X
and any vectors Z, Y ∈ TzX, Z, Y 6= 0 we have the inequality

∣

∣

∣

n
∑

i,j,k,l

Rij̄kl̄(z)ZiZ̄jYkȲl

∣

∣

∣
≤ A‖Z‖2ω‖Y ‖2ω.

Analogously the bisectional curvature is bounded from below (resp. from above) by A if
n

∑

i,j,k,l

Rij̄kl̄(z)ZiZ̄jYkȲl ≥ A‖Z‖2ω‖Y ‖2ω, (resp. ≤ )

respectively. It is easy to check that the existence of such bounds is independent of the choice
of local coordinates.

Recall that if u is a psh function in a domain in Cn then a convolution with a radial smoothing
kernel preserves positivity of ddcu. For non-flat metrics, this may not be the case any longer.
However, an approximation technique due to the first author allows to control “the negative
part” of the smooth form. It is described in detail in [D1] and [D4]. Here we shall briefly
highlight its main features.

Consider the exponential mapping from the tangent space of a given point z ∈ X

expz : TzX ∋ ζ 7→ expz(ζ) ∈ X,

which is defined by expz(ζ) = γ(1) with γ being the geodesic starting from z with initial velocity
γ′(0) = ζ . Given any function u ∈ L1(X), we define its δ-regularization ρδu to be

(2.1) ρδu(z) =
1

δ2n

∫

ζ∈TzX
u(expz(ζ))ρ

( |ζ |2ω
δ2

)

dVω(ζ), δ > 0

according to [D1]. Here ρ is a smoothing kernel, |ζ |2ω stands for
∑n

i,j=1 gij̄(z)ζiζ̄j, and dVω(ζ)

is the induced measure 1
2nn!

(ddc|ζ |2ω)n. This may be formally extended as a function on X × C

by putting U(z, w) := ρδu(z) for w ∈ C, |w| = δ. The introduction of the variable w is
convenient for an application of Kiselman minimum principle [Ki1, Ki2] to that function. It
should be noticed that in [D4] the riemannian exponential map “exp” has been replaced by
a “holomorphic counterpart” exph, which is defined as the holomorphic part of the Taylor
expansion of ζ 7→ expz(ζ) (the reason is that the calculations then become somewhat simpler,
especially in the non Kähler case, but this is not technically necessary; thanks to a well known
theorem of E. Borel, such a formal expansion can always be achieved by a smooth function exph :
TX → X). The function exph is however not uniquely defined, and this weakens the intrinsic
character of the estimates. Therefore, we stick here to the more usual riemannian exp function.
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The estimates obtained in [D1] show that all results of [D4] and [BD] are still valid with the
unmodified definition of ρδu, at least when (X,ω) is Kähler. By Lemma 8.2 of [D1], the
exponential function

exp : TX → X, TX ∋ (z, ζ) 7→ expz(ζ) ∈ X, ζ ∈ TzX

satisfies the following properties:

(1) exp is a C∞ smooth mapping;
(2) ∀z ∈ X, expz(0) = z and dζ exp(0) = IdTzX ;
(3) ∀z ∈ X the map ζ → expz ζ has a third order Taylor expansion at ζ = 0 of the form

(2.2)

∣

∣

∣

∣

∣

expz(ζ)m − zm − ζm − 1

2

∑

j,k,l

Rjk̄lm̄

(

z̄k + 1
3
ζ̄k
)

ζjζl

∣

∣

∣

∣

∣

≤ C(|ζ |2(|z| + |ζ |)2), |ζ | < r,

for small enough r > 0. The expansion is valid in holomorphic normal coordinates with
respect to the Kähler metric.

It is convenient to select a particular smoothing kernel, namely ρ : R+ → R+ by setting

ρ(t) =

{

η
(1−t)2 exp( 1

t−1
) if 0 ≤ t ≤ 1,

0 if t > 1

with a suitable constant η, such that

(2.3)

∫

Cn

ρ(‖z‖2) dV (z) = 1

(dV denotes the Lebesgue measure in Cn).
The crucial estimate of the Hessian of U(z, w) given in [D4], Proposition 3.8 (see also [D1],

Proposition 8.5), coupled with Kiselman’s theorem provide a lemma stated in this form in [BD,
Lemma 1.12]:

Lemma 2.1. Fix any bounded ω-psh function u on a compact Kähler manifold (X,ω). Let
U(z, w) be its regularization as defined above. Define the Kiselman-Legendre transform with
level c by

(2.4) uc,δ := inf
0≤t≤δ

[

U(z, t) +Kt2 −Kδ2 − c log
( t

δ

)]

.

Then for some positive constant K depending on the curvature, the function U(z, t) +Kt2 is
increasing in t and one has the following estimate for the complex Hessian:

(2.5) ω + ddcuc,δ ≥ −(Amin{c, λ(z, δ)} +Kδ2)ω,

where A is a lower bound of the negative part of the bisectional curvature of ω, while

λ(z, t) :=
∂

∂ log t
(U(z, t) +Kt2).

2.2. Jensen formula and uniformly bounded geometry. The classical Jensen formula
(see, for example [BT1]) for a C2 function u defined in a ball B(z, 2δ) in C

n says that

(2.6) (ǔδ − u)(z) =
2n

δ2nσ2n−1

∫ δ

0

r2n−1

∫ r

0

t1−2n

∫

|ζ|≤t
∆u(z + ζ) dV (ζ) dt dr,

where ǔδ is the average of u over B(z, δ) and σ2n−1 denotes the total surface measure of the
unit sphere. Now, if u is defined in a large set, then the integration of the above formula in
z provides an estimate of the integral of δ−2(ǔδ − u) in terms of the integral of the Laplacian
of u. We need such an estimate on compact Kähler manifolds which is uniform as long as the
geometry of manifolds is bounded in a certain sense.
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Definition 2.2. Consider a family (Xs, ωs) of compact Kähler manifolds. We shall say that it
has uniformly bounded geometry if

1) the diameter diam(Xs, ωs) is uniformly bounded,
2) their bisectional curvatures are uniformly bounded,
3) the injectivity radius is uniformly bounded from below.

By well-known estimates [HK], it then follows that the total volumes Volωs(Xs) :=
∫

Xs
ωns

are uniformly bounded above and below by constants C and C−1 independent of s.
It turns out that such bounds are enough to ensure various interesting geometric and analytic

bounds. Note in particular that they imply lower bounds on the Tian α invariants for the classes
of ωs-psh functions which does not depend on s (see [BEGZ]). In potential applications X will
usually stay fixed, while the Kähler forms may vary. Note that all conditions are obviously
satisfied if the forms ωs are bounded in C∞ topology and uniformly positive; this can be
achieved by selecting appropriate representatives when the cohomology classes [ωs] are given
and contained in a fixed relatively compact region of the Kähler cone of X . Thus an interesting
case to treat would be when the classes [ωs] approach the boundary of this cone. Unfortunately
this may in general lead to a blow-up of the curvature and for this reason our argument cannot
be applied to study the limiting behavior. On the other hand the method works if the forms
ωs approximate a C1,1 form ω in a fixed cohomology class provided that the curvatures of ωs
stay bounded.

We can now state a lemma to be used in the next section.

Lemma 2.3. Assume (Xs, ωs) is a family of compact Kähler manifolds with uniformly bounded
geometry. Let us be continuous ωs-psh functions normalized by minXs us = 1, maxXs us ≤ B
for some fixed constant B. If ρδus is the regularization of us defined as in (2.1) then for δ small
enough we have

∫

Xs

ρδus − us
δ2

ωns ≤ C0,

where C0 only depends on B and the constants involved in the uniform bounds on the geometry.

Proof. Let us fix s and omit it in the notation for simplicity. By definition

ρδu(z) =

∫

ζ∈TzX
u(expz ζ)ρ

( |ζ |2ω
δ2

)dVω(ζ)

δ2n
=

∫

x∈X
u(x)ρ

( | logz x|2ω
δ2

) dVω(logz x)

δ2n

=

∫

x∈X
u(x)Kδ(z, x)

where x 7→ ζ = logz x is the inverse of ζ 7→ x = expz(ζ). The map (z, x) 7→ (z, logz x) defines
a diffeomorphism from a neighborhood of the diagonal in X ×X onto a neighborhood of the
zero section of TX by the implicit function theorem. Here

Kδ(z, x) =
1

δ2n
ρ
( | logz x|2ω

δ2

)

dVω(logz x)

is the semipositive (n, n) form on X ×X defined as the pull-back of ρ(|ζ |2ω/δ2) dVω(ζ)/δ2n by
(z, x) 7→ ζ = logz x; it can be viewed as a kernel with compact support in a neighborhood of
the diagonal of X ×X . By definition, we have

∫

x∈X Kδ(z, x) = 1 (as is clear by taking u ≡ 1),
thus

u(z) =

∫

x∈X
u(z)Kδ(z, x).
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Therefore
∫

X

(

ρδu(z) − u(z)
)

dVω(z) =

∫

(x,z)∈X×X

(

u(x) − u(z)
)

Kδ(z, x) ∧ dVω(z)

=

∫

(x,z)∈X×X
u(x)

(

Kδ(z, x) ∧ dVω(z) −Kδ(x, z) ∧ dVω(x)
)

thanks to a change of variable (z, x) 7→ (x, z). In order to finish the proof we need the following
lemma which establishes a pointwise bound for the kernel:

Lemma 2.4. If dω(z, x) ≤ δ, then

| (Kδ(z, x) ∧ dVω(z) −Kδ(x, z) ∧ dVω(x)) | ≤ Cδ2−2ndVω(z) ∧ dVω(x),

for some uniform constant C which only depends on the curvature of ω. If dω(z, x) > δ, then
Kδ(z, x) ∧ dVω(z) = Kδ(x, z) ∧ dVω(x) = 0.

Proof. Given the symmetry of | logz(x)|ω = | logx(z)|ω = dω(z, x), it is enough to bound the
(2n, 2n)-form dVω(logz x) ∧ dVω(z) − dVω(logx z) ∧ dVω(x). The last assertion follows from the

fact that ρ
(

| logz x|2ω
δ2

)

= ρ
(

| logx z|2ω
δ2

)

= 0 if dω(z, x) > δ.

We now establish the first part of the lemma. Set ζ = logz x (i.e. x = expz(ζ)) and y =
expz(

ζ
2
) = expz(

1
2

logz(x)) (the mid-point of the geodesic joining z and x). Observe that from the
expansion (2.2) applied at y (which is identified with zero in this system of normal coordinates)
we have

(2.7) ζm = logz(x)m = xm−zm− 1

2

∑

j,k,l

Rjk̄lm̄

(

z̄k+
1

3
(xk−zk)

)

(xj−zj)(xl−zl)+O(‖z−x‖4).

Now (2.7) yields

dζm = d(logz x)m = dxm − dzm +O(‖z − x‖2)(dx, dz),

with an O(...) term depending only on the curvature. By the choice of the center y we have
zj = 1

2
(zj−xj)+O(‖z−x‖2), where the O(...) term again only depends on the curvature. Thus

the expansion

dVω(ζ) =
ω(z)n

n!
(ζ) =

(

1 −
∑

j,k,l

Rjk̄ll̄zj z̄k +O(‖z‖3)
) i

2
dζ1 ∧ dζ1 ∧ . . . ∧

i

2
dζn ∧ dζn

at any given point z yields

dVω(logz x) =

n
∧

j=1

i

2
(dxj − dzj) ∧ (dxj − dzj) +O(‖z − x‖2).

Thus, by taking the product with dVω(z), exchanging x and z, and then subtracting and dividing
by δ2n, we obtain the desired bound

dVω(logz x) ∧ dVω(z) − dVω(logx z) ∧ dVω(x)

δ2n
=
O(‖z − x‖2)

δ2n
dVω(z) ∧ dVω(x).

The appendix implies that O(...) depends only on global bounds for the geometry. �
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We can now use Fubini’s theorem and the estimates on the kernel to obtain
∫

(x,z)∈X×X
u(x)

(

Kδ(z, x) ∧ dVω(z) −Kδ(x, z) ∧ dVω(x)
)

=

∫

x∈X

∫

z∈B(x,δ)

u(x)
(

Kδ(z, x) ∧ dVω(z) −Kδ(x, z) ∧ dVω(x)
)

≤
∫

x∈X

∫

z∈B(x,δ)

|u(x)|Cδ2−2ndVω(z) ∧ dVω(x)

≤
∫

x∈X
BCδ2dVω(x) ≤ C0δ

2,

as claimed. �

2.3. The H(α) condition and measures uniformly dominated by capacity. A funda-
mental tool in the study of ω-psh functions is the relative capacity modelled on the Bedford-
Taylor relative capacity ([BT2]).

Definition 2.5. Let (X,ω) be a compact Kähler manifold. Given a Borel subset K of X, we
define its relative capacity with respect to ω by

Capω(K) := sup
{

∫

K

(ω + ddcρ)n| ρ ∈ PSH(X,ω), 0 6 ρ 6 1
}

.

The following classes have been considered in [EGZ1]:

Definition 2.6. Let µ be a probability measure on a compact Kähler manifold (X,ω). We say
that µ belongs to the class H(α), α > 0 (alternatively, that µ statisfies the H(α) property), if
there exists Cα > 0 such that for any compact K ⊂ X,

µ(K) ≤ Cα Capω(K)1+α

If this holds for any α > 0, we say that µ satisfies H(∞).

It was proved in [K1, K3] that measures of the type µ = fωn with a density f in Lp for some
p > 1 do satisfy H(∞) (see also [Ze]). A slightly stronger notion was introduced in [DZ]:

Definition 2.7. We say that a probability measure µ is dominated by capacity for Lp functions
if there exists constants α > 0 and β > 0, such that for any compact K ⊂ X and non-negative
f ∈ Lp(µ) with p > 1, one has for some constant C independent of K that

µ(K) 6 C · Capω(K)1+α and

∫

K

fµ 6 C · Capω(K)1+β.

Both notions are variations on the condition (A) introduced by fith named author in [K1].
These conditions, which are actually stronger than condition (A), ensure the existence of
bounded solutions u to

MA(u) = fµ,

as long as
∫

X
fdµ = 1.

Note that the condition H(∞) is equivalent to domination by capacity for L∞ functions by
a simple application of the Hölder inequality.

2.4. Big cohomology classes. Let X be a compact Kähler manifold of dimension n, and
Θ = {θ} ∈ H1,1(X,C) ∩H2(X,R) a big cohomology class with a smooth representative θ.

We introduce the extremal function Vθ defined by

(2.8) Vθ(x) := sup{ϕ(x) |ϕ ∈ PSH(X, θ), sup
X
ϕ ≤ 0},

where PSH(X, θ) is the set of all θ-plurisubharmonic functions on X . The function Vθ is a
θ-psh function with minimal singularities.
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Similarly to the Kähler case we define the relative capacity:

Definition 2.8. Let X be a compact Kähler manifold. Given a Borel subset K of X, we define
its relative capacity with respect to θ by

Capθ(K) := sup
{

∫

K

(θ + ddcρ)n | ρ ∈ PSH(X, θ), Vθ(x) − 1 6 ρ 6 Vθ(x)
}

.

Observe that contrary to the Kähler case competitors to maximize the right hand side have
minimal singularities but are in general unbounded. The Monge-Ampère measures in the def-
inition are only considered outside the polar locus {x ∈ X | Vθ(x) = −∞}. Observe that the
latter depends on the cohomology class {θ} but not on the choice of its representative θ.

Most definitions from the Kähler setting have their big counterparts, we refer the readers to
[BEGZ] for details and more background regarding big cohomology classes. In particular we can
apply the same convolution procedure to any θ-psh function, as well as the Kiselman-Legendre
transform.

In order to prove Theorem D we shall need a stability estimate proved in [GZ2]:

Proposition 2.9. Assume that µ is a probability measure absolutely continous with respect
to a smooth volume form dV , dµ = fdV , where f ∈ Lp(X) with p > 1. Let ϕ, ψ be θ-
plurisubharmonic functions such that MA(ϕ) = µ, −M0 + Vθ ≤ ϕ ≤ Vθ and ψ ≤ Vθ on X, for
some positive constant M0 > 0. Then for any exponent 0 < γ < 1

nq+1
, there exists a constant

B0 = B0(p, γ,M0) > 0 such that

sup
X

(ψ − ϕ)+ ≤ B0‖(ψ − ϕ)+‖γL1(X).

3. Proof of Theorems A and A*

Proof of Theorem A. Fix u ∈ PSH(X,ω) such that MA(u) = µ. Denote by A − 1 = A′ > 0
a bound for the curvature of (X,ω). By [K1] u is continuous, so assume that minX u = 1 and
denote by B := maxX u the maximum of u. Consider ρδu- the regularization of the ω-psh
function u defined in (2.1).

Let us set for δ > 0 and α > 0,

(3.1) E(δ, α) := {(ρδu− u)(z) > δα}
Let 0 < α1 <

2
qn+1

. Choose ε > 0, α, α0 such that

α1 < α < α0 < 2 − α0q(n+ ε).

Set θ := e−3AB. Recall (Lemma 2.1) that there exists a constant K which only depends on the
curvature such that the functions ρδu+Kδ2 are increasing in δ. Note that for δ small enough
θα1δα1 ≥ δα0 +Kδ2(1 − θ2). Altogether this implies that E(δ, α0) ⊃ E(θδ, α1).

We want to show that E(θδ, α1) is empty. Recall the definition of the Kiselman-Legendre
transform at level δα (see Lemma 2.1)

Uδ = inf
t∈[0,δ]

(ρtu+Kt2 − δα log
t

δ
−Kδ2),

where K is chosen as in the formula (2.4). It follows from [D1] that the same K can be
chosen for a family of manifolds with uniformly bounded geometry. In what follows δ0 and
δj , cj, j = 1, 2, 3; denote constants which are uniform if the geometry is uniformly bounded and
‖f‖p stays bounded.

By Lemma 2.1

ω + ddcUδ ≥ −[(A− 1)δα +Kδ2]ω > −Aδαω + 2δα0ω
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for 0 < δ < δ0, where δ0 > 0 is small enough. Therefore

uδ :=
1

1 + Aδα
Uδ

is ω-psh on X and satisfies
ω + ddcuδ ≥ δα0ω,

provided Aδα < 1, which we can safely assume. From Lemma 2.3 we have

(3.2)

∫

X

|ρδu− u|ωn ≤ c1δ
2,

for 0 < δ < δ0. Therefore for E0 = E(δ, α0) = {(ρδu− u)(z) > δα0} we have
∫

E0

ωn ≤ c1δ
2−α0 ,

and, by Hölder inequality,
∫

E0

fωn ≤ c2δ
(2−α0)/q.

Let us modify f setting g = 0 on E0 and g = cf elsewhere, with c such that total integrals of
f and g are equal. Solve for continuous ω-psh function v (comp. [K2])

(ω + ddcv)n = gωn, max(u− v) = max(v − u).

Observe that ‖f − g‖L1(X) = 2
∫

E0
fωn ≤ 2c2δ

(2−α0)/q. Then by [DZ] there exists c3 (c3 depends

additionally on ε > 0) such that

(3.3) ‖u− v‖L∞ ≤ c3δ
2−α0
q(n+ε) .

We claim that there exist small enough constants δ1 > δ2 > δ3 > 0 such that for any
0 < δ < δ3 there is a set inclusion

(3.4) E(θδ, α1) ⊂ {uδ − v > δα} ⊂ E(δ, α0).

Indeed, take z in E(θδ, α1). By Lemma 2.1, the function ρtu+Kt2 is increasing in t ∈ [0, δ].
Thus for t ∈ [θδ, δ],

ρtu(z) − u(z) = ρtu(z) − ρθδu+ ρθδu− u(z) ≥ K(θδ)2 −Kt2 + (θδ)α1 ≥ (θδ)α1 −Kδ2,

and for t < θδ, since θ = e−3AB, we have

−δα log(t/δ) ≥ 3ABδα.

Therefore
(Uδ − u)(z) ≥ min((e−3ABδ)α1 −Kδ2, 3ABδα) = 3ABδα

for 0 < δ < δ1, where δ1 > 0 is small enough (we can safely assume that δ1 < δ0). Hence, by
(3.3)

(Uδ − v)(z) ≥ 3ABδα − c3δ
2−α0
q(n+ε) > 2ABδα,

for δ < δ2, where 0 < δ2 < δ1 is small enough. Observe that

Uδ − uδ ≤ ABδα.

Since AB ≥ 1, it follows that uδ(z) − v(z) > ABδα > δα for δ < δ2, which proves the first
inclusion E(θδ, α1) ⊂ {uδ − v > δα} in (3.4).

To prove the second inclusion, take z /∈ E(δ, α0). Since, under our assumptions

uδ < Uδ ≤ ρδu,

we get, applying (3.3)

(uδ − v)(z) ≤ (ρδu− u)(z) + c3δ
2−α0
q(n+ε) ≤ δα0 + c3δ

2−α0
q(n+ε) < δα,
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for 0 < δ < δ3, where 0 < δ3 < δ2 is small enough. This proves our second inclusion

{uδ − v > δα} ⊂ E(δ, α0)

for 0 < δ < δ3 and completes the proof of (3.4).
Now we want to apply the comparison principle do deduce from (3.4) that the set E(θδ, α1)

is empty for δ > 0 small enough. Let us fix 0 < δ < δ3 and recall that E0 = E(δ, α0). From
(3.4) and the comparison principle [K2], if follows that

∫

{uδ>v+δα}
(ddcuδ + ω)n ≤

∫

{uδ>v+δα}
(ddcv + ω)n ≤

∫

E0

(ddcv + ω)n =

∫

E0

gωn = 0.

Since uδ is ω-psh and (ω+ddcuδ)
n ≥ δnα0ωn, it follows that the volume of the set {uδ > v+ δα}

is zero. Hence it is empty, since uδ and v are ω−psh functions. Therefore from (3.4), it follows
that the set E(θδ, α1) is also empty. Setting η = θδ = δe−3AB, we obtain

ρηu− u ≤ e3α1AB ηα1,

for 0 < η < η0 = e−3αABδ3.
Note that the above inequality means that locally [”words permutation”] the η- convolution

of u is no more than u plus some constant of order ηα1. Thus repeating the local argument
from [GKZ] one obtains that the supremum of u in a coordinate ball of radius η and center z
is also controlled by u(z) and a constant of order ηα1 . This proves that u is Hölder continuous
with exponent α1. �

Note that in the proof above we could choose the same δ1, δ2 and δ3 for uniform αj , cj. Thus,
following the lines of this proof, one can obtain an analogous result for families of manifolds
with uniformly bounded geometry.

Theorem 3.1 (Theorem A*). Let (Xs, ωs) be a family of n-dimensional compact Kähler man-
ifolds with uniformly bounded geometry. Consider the Monge-Ampère equations

(ωs + ddcus)
n = fsω

n
s , sup

Xs

us = 0,

where
∫

Xs
fsω

n
s =

∫

Xs
ωns .

If ‖f‖Lp(ωns ) ≤ C are uniformly bounded then the solutions us are uniformly Hölder continuous
for any exponent α < 2/(nq + 1) and the Hölder constant is uniformly controlled by C and the
constants from the definition of the uniformly bounded geometry.

As a direct application of Theorem A* one has the following corollary:

Corollary 3.2. Suppose X is a compact Kähler manifold and ω is a C1,1 smooth closed positive
form on X. Suppose moreover that ω can be approximated in C1,1- norm by smooth closed forms
with curvatures bounded by a fixed constant. Let also f be any nonnegative function such that
f ∈ Lp(ωn) and

∫

X
fωn =

∫

X
ωn. Then the Monge-Ampère equation

(ω + ddcu)n = fωn, supXu = 0

has an α-Hölder continuous solution u for any α < 2/(nq + 1), where q is the conjugate to p.

Finally we remark that in [DZ] the stability result holds not only for measures absolutely
continuous with respect to the Lebesgue measure, but also for any measure dominated by
capacity for Lp functions. Observe that in the proof the sole place where we used the assumption
that µ is a measure with density was the application of the Jensen formula in (3.2). Therefore
by repeating the above proof one can get the following generalization:

Proposition 3.3. Let u ∈ PSH(X,ω) solve the equation MA(u) = µ for µ a probability
measure on a compact Kähler manifold (X,ω). Assume that µ satisfies the following additional
assumptions:
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i) µ satisfies H(∞);
ii) ‖ρδφ− φ‖L1(µ) = O(δb) for some b > 0.

Then u is Hölder continuous with the exponent depending only on n and b.

Examples of such singular measures have been considered in [Hi].

4. Some properties of MAH(X,ω)

4.1. The one dimensional case. In this section we recall for reader’s convenience the classical
one dimensional theory of Hölder continuous potentials. We refer to [DS] for more details. It
is worthwhile to recall that the problem on Riemann surfaces is linear and hence much easier:
analogous statements in the case of planar domains are classical in potential theory.

Proposition 4.1. Let (X,ω) be a compact Riemann surface. Let also µ = ω + ddcφ be a
probability measure on X, where φ ∈ PSH(X,ω) and B(a, r) be the ball (with respect to the
metric induced by ω) centered at point a with radius r. The following properties are equivalent:

i) the function φ is Hölder continuous ;
ii) there exists constants α,C > 0 such that µ(B(a, r)) ≤ Crα, for all a ∈ X and 0 < r < 1;
iii) there exists ε > 0 such that exp (−εPSH(X,ω)) ⊂ L1(µ).

Remark 4.2. As the Laplacian is a linear operator, Proposition 4.1 is actually a local result.
It further holds for higher dimensional subharmonic functions. We let the reader check that if
u is a subharmonic function in some domain Ω ⊂ Rn which contains the origin, and 0 < α < 1,
then the following are equivalent:

(1) supB(δ) u− u(0) ≤ C1δ
α, for some C1 > 0 and 0 < δ << 1;

(2) 1
vol(B(δ))

∫

B(δ)
u(z) dV (z) − u(0) ≤ C1δ

α, where C1 > 0, 0 < δ << 1;

(3)
∫

B(δ)
∆u ≤ C3δ

α+n−2, for some C3 > 0 and 0 < δ << 1.

It classically follows from this observation that any subharmonic function is α-Hölder contin-
uous (respectively C1,α) outside a set of arbitrarily small (n − 2 + α)-Hausdorff (respectively
(n− 1 + α)-Hausdorff) content.

4.2. Characterization of MAH(X,ω). Let Ω be a bounded domain in Cn. Analogously to
the formula (2.6) for each u ∈ PSH(Ω) and δ > 0 we set

ǔδ(z) =
1

v2nδ2n

∫

Bδ

u(z + w)dV (w) and uδ(z) = sup
w∈Bδ

u(z + w),

for z ∈ Ωδ = {z ∈ Ω : d(z, ∂Ω) > δ}. Here

Bδ = {z ∈ C
n : ‖z‖ = (|z1|2 + ...+ |zn|2)

1
2 < δ}

and v2n is the volume of the unit ball B1.

Theorem 4.3. Let (X,ω) be a compact Kähler manifold, µ a positive Borel measure on X so
that µ(X) =

∫

X
ωn. The following are equivalent:

i) There exists a Hölder continuous ω-psh ϕ such that µ = (ω + ddcϕ)n.

ii) For every z ∈ X, there exists a neighborhood D of z and a Hölder continuous psh v on
D such that µ|D ≤ (ddcv)n.

iii) µ ∈ H(∞) and there exists C, α > 0 such that
∫

K
[ǔδ − u]dµ ≤ C

∫

D̄
∆u δα, for all

u ∈ PSH ∩ L∞(Ω), K ⊂⊂ D ⊂⊂ Ω, where Ω is a local chart.

A positive measure µ thus belongs to MAH(X,ω) if and only if it is locally the Monge-
Ampère measure of a Hölder-continuous psh function.
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Proof. The implication i) ⇒ ii) is immediate. The implication iii) ⇒ i) was observed to hold
in Proposition 3.3.

We now consider the implication ii) ⇒ iii). It is enough to prove the inequality

∫

K

[ǔδ − u](ddv)n ≤ C

∫

D

∆uδα,

for all u ∈ PSH∩L∞(Ω), K ⊂⊂ D ⊂⊂ Ω and for any local chart Ω.
We can assume without loss of generality that K = B1 is the unit ball in Cn, D = B2 and

−2 ≤ v ≤ −1, |v(z)−v(w)| ≤ ‖z−w‖s for all z, w ∈ B2. This implies that h(z) := ‖z‖2−4 < v
on B1, while v < h on B2\Br0 for some 1 < r0 < 2.

Replacing v by max(v, h) we can assume that v = h on B2\Br0 . Fix ρ ∈ C∞
0 (Cn) such that

ρ ≥ 0, ρ(z) = ρ(‖z‖), suppρ ⊂ B1 and
∫

Cn
ρ(z) dV (z) = 1. Set

v̂δ(z) =

∫

B1

v(z − δw)ρ(w) dV (w) =
1

δ2n

∫

B(z,δ)

v(w)ρ
(z − w

δ

)

dV (w).

Observe that

(1) v̂δ(z) − v(z) =

∫

B1

[v(z − δw) − v(z)]ρ(w) dV (w) ≤ δs

and

(2)

∣

∣

∣

∣

∂2v̂δ
∂zj∂zk

(z)

∣

∣

∣

∣

≤ C‖v‖L∞(Ω)

δ2
, (ddcv̂δ)

n ≤ C dV

δ2n
.

Choose now φ ∈ C∞
0 (Cn) such that 0 ≤ φ ≤ 1, φ = 1 on Br1 and suppφ ⊂ Br2 , where

r0 < r1 < r2 < 2. Set

vδ(z) =

∫

B1

v
(

z − δφ(z)w
)

ρ(w) dV (w).

Observe that

(3) vδ(z) − v(z) =

∫

B1

[v
(

z − δφ(z)w
)

− v(z)]ρ(w) dV (w) ≤ δs

and

(4) vδ(z) = v̂δ(z) on Br1 , vδ(z) = v(z) on B2\Br2 .

Fix now any z ∈ B2\Br0. Since v = h there, we have for any δ < δ0,

∂2vδ
∂zj∂zk

(z) =

∫

B1

[
∂2h

∂zj∂zk

(

z − δφ(z)w
)

+ δO(1)]ρ(w) dV (w)

=

∫

B1

[δjk + δO(1)]ρ(w) dV (w)

= δjk + δO(1).

Therefore vδ ∈ PSH(B2\Br0), ∀δ < δ0, hence vδ is actually plurisubharmonic in all of B2 (if
δ is small enough), as follows from (4). Set

T :=

n−1
∑

j=0

(ddcv)j ∧ (ddcvδε)
n−1−j .
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¿From (3), (4) and Stokes fomula we get
∫

K

[ǔδ − u](ddcv)n ≤
∫

B2

[ǔδ − u](ddcv)n

=

∫

B2

[ǔδ − u][(ddcv)n − (ddcv̄δε)
n] +

∫

B2

[ǔδ − u](ddcv̄δε)
n

≤
∫

B2

[ǔδ − u]ddc(v − v̄δε) ∧ T +
C

δ2nε

∫

B2

[ǔδ − u] dV

≤
∫

B2

[v̄δε − v]ddc(u− ǔδ) ∧ T +
C
∫

B2
∆uδ2

δ2nε

≤
∫

B2

[v̄δε − v]ddcu ∧ T + C

∫

B2

∆uδ2(1−nε)

≤ δεs
∫

Br2

ddcu ∧ T + Cδ2(1−nε)
∫

B2

∆u

≤ C[δεs‖v‖n−1
L∞(Ω)

∫

B2

∆u+ δ2(1−nε)
∫

B2

∆u]

≤ C

∫

B2

∆u δα,

where ε = 2
s+2n

, α = 2s
s+2n

. �

4.3. Proof of Theorem B. Below we derive several simple consequences of this characteriza-
tion. First, the range of the complex Monge-Ampère operator has the “Lp-property”:

Corollary 4.4. Let ψ ∈ PSH(X,ω) be a Hölder continuous function. Consider a density
0 ≤ f ∈ Lp((ω + ddcψ)n) with p > 1 and

∫

X
f(ω + ddcψ)n =

∫

X
ωn. Then there exists a Hölder

continuous ω-plurisubharmonic function ϕ such that

(ω + ddcϕ)n = f(ω + ddcψ)n.

In particular MAH(X,ω) is a convex set.

Proof. By Hölder inequality we have
∫

K

fωnψ ≤ ‖f‖Lp(ωnψ)[ω
n
ψ(K)]1−

1
p ,

for any Borel subset K of X . This implies that fωnψ ∈ H(∞). On the other hand, by Hölder
inequality we have

∫

K

[ǔδ − u]fωnψ ≤ ‖f‖Lp(ωn
ψ
)[

∫

K

[ǔδ − u]ωnψ]1−
1
p ≤ Cδα,

for all u ∈ PSH ∩ L∞(Ω), K ⊂⊂ D ⊂⊂ Ω and local chart Ω. Therefore using Theorem 2.1
there exists a Hölder continuous ω-psh function ϕ such that ωnϕ = fωnψ.

Fix µ1 = MA(φ1), µ2 = MA(φ2) ∈ MAH(X,ω) and set µ = (µ1 + µ2)/2. Observe that
ψ := (φ1 + φ2)/2 ∈ PSH(X,ω) ∩ Hölder(X,ω) satisfies

(ω + ddcψ)n ≥ 1

2n
(µ1 + µ2)

hence µ = f(ω+ ddcψ)n with bounded density 0 ≤ f ≤ 2n−1. It therefore follows from the first
part of the corollary that µ also belongs to MAH(X,ω), hence the latter is convex. �

We also note that the range of the complex Monge-Ampère operator has the product property.



HÖLDER CONTINUOUS SOLUTIONS TO MONGE-AMPÈRE EQUATIONS 15

Corollary 4.5. Let (X1, ω1), (X2, ω2) be two compact Kähler manifolds of dimension n1, n2,
normalized so that

∫

X1
ωn1
1 =

∫

X2
ωn2
2 = 1. Fix µ1, µ2 two probability measures on X1, X2. The

following are equivalent:

i) µ1 ∈ MAH(X1, ω1) and µ2 ∈ MAH(X2, ω2).

ii) µ = µ1 × µ2 ∈ MAH(X1 ×X2, ω), where

ω =

(

n1 + n2

n1

)−1/(n1+n2)

[ω1 + ω2].

Here µ = µ1×µ2 denotes the product (probability) measure on X1×X2, and we still denote
by ω1, ω2 the semi-positive forms on X1 ×X2 obtained by pulling-back ω1, ω2 on each factor.

Proof. i) ⇒ ii) Assume that µ1 = (ω1 + ddcu1)
n1 and µ2 = (ω2 + ddcu2)

n2 where u1, u2 are
Hölder continuous ωi-psh functions on X1, X2. Pulling back these forms and functions on
X = X1 ×X2 and observing that (ωi + ddcui)

1+ni ≡ 0, one obtains

µ = µ1 × µ2 = (ω + ddcu)n1+n2 with u =
[u1 + u2]

(

n1 + n2

n1

)1/(n1+n2)

so that µ ∈ MAH(X,ω).
ii) ⇒ i) Since µ satisfies iii) in Theorem 4.3 we infer that µ1, µ2 satisfy the same property.

Using Theorem 4.3 again thus yields µ1 ∈ MAH(X1, ω1), µ2 ∈ MAH(X2, ω2). �

5. Measures with symmetries

Generalizing Skoda’s celebrated result [Sk], Dinh-Nguyen-Sibony have observed recently
[DNS] that if µ is the Monge-Ampère measure of a Hölder-continuous quasi-psh function, then

exp(−εPSH(X,ω)) ⊂ L1(µ)

for ε > 0 small enough. We show here that the converse holds when µ moreover has radial or
toric singularities. The general case is open, see however [Hi] for some partial results.

5.1. Exponential integrability, Lelong numbers and symmetries- basic results. Note
for later use that if exp(−εPSH(X,ω)) ⊂ L1(µ), then for all x ∈ X and 0 < r << 1,

µ(B(x, r)) ≤ Crε

and µ(K) ≤ CT (K)ε for all Borel sets K, where T denote the Alexander-Taylor capacity (see
[GZ1]). This implies that for all A > 1, there exists CA > 0 such that

µ(K) ≤ CA Capω(K)A, for all Borel set K,

where Capω denotes the Monge-Ampère capacity. In other words, µ is very well dominated by
the Monge-Ampère capacity (it satisfies the condition H(∞)).

Let u be a psh function defined near the origin in Cn, with a radial singularity, i.e. such that
u(z) = u(‖z‖) for all z. It is then standard that u can be written as u(z) = χ ◦ L(z) where
L(z) = log ‖z‖ and χ is a convex increasing function defined in a neighborhood of −∞. Note
that

– the function u is bounded if and only χ(−∞) > −∞;
– the Lelong number ν(u, 0) is non zero if and only if χ(t) ∼ ν(u, 0)t near −∞,

which is the maximal growth that χ can have at −∞. Alternatively, ν(u, 0) = 0 if and only if
χ′(−∞) = 0. The following elementary computation is left to the reader:
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Lemma 5.1. Let u = χ ◦ L be a radial plurisubharmonic function defined in a ball B ∋ 0.
Assume that χ is C2 smooth. Then u belongs to the domain of definition of the Monge-Ampère
operator and

(ddcu)n = ν(u, 0)nδ0 + cn(χ′ ◦ L)n−1χ′′ ◦ L dV

‖z‖2n .

Here δ0 denotes the Dirac mass at the origin. Note in particular that when ν(u, 0) = 0 then
the Monge-Ampère measure (ddcu)n is absolutely continuous with respect to Lebesgue measure.

A similar formula can be derived for Monge-Ampère measures with toric symmetries, but we
will not use it: we will handle the toric case by using Theorem 4.3, whereas the radial case will
be treated directly, using Lemma 5.1 (the direct method yields better exponents).

5.2. The radial case. We obtain here a complete description of those radial measures which
belong to MAH(X,ω).

Proposition 5.2. Let µ be a probability measure on X which is smooth but at finitely many
points where it has a radial singularity. The following are equivalent:

i) exp(−εPSH(X,ω)) ⊂ L1(µ) for all 0 < ε < ε0;
ii) ‖z − a‖−ε ∈ L1(µ) for all 0 < ε < ε0 and a ∈ X;
iii) µ(B(a, r)) ≤ Crε for all 0 < ε < ε0 and a ∈ X;
iv) µ = (ω + ddcφ)n, where φ ∈ PSH(X,ω) is Hölder continuous with exponent α arbitrarily

close to ε0/n.

Proof. The implication i) ⇒ ii) is obvious. The equivalence ii) ⇔ iii) is immediate. The
implication iv) ⇒ iii) is classical (successive integration by parts against a cut-off function with
support in a corona of radii jr, (j + 1)r) and holds for general (non radial) measures. The
implication iv) ⇒ i) was obtained in [DNS], also for general measures. In the sequel we thus
focus on the remaining implication ii) ⇒ iv).

Let a ∈ X be one of the finitely many singular points. We fix a local chart near a such
that a = 0 is the origin and locally µ = (ddcu)n with u = χ ◦ L, L(z) = log ‖z‖ and χ convex
increasing. Observe that u is bounded and χ′(−∞) = 0. By Theorem 4.3 it is enough to check
that u is Hölder continuous at point a, which is equivalent to showing that

0 ≤ χ(t) − χ(−∞) ≤ C exp(δt) as t→ −∞,

for some positive constants C, δ > 0.
By assumption there exists ε > 0 such that ‖z‖−ε ∈ L1(µ). We infer from Lemma 5.1 that

∫

0

1

‖z‖εdµ = c

∫

0

(χ′ ◦ L)n−1χ′′ ◦ L dV (z)

‖z‖2n+ε

= c′
∫

−∞
(χ′(t))n−1χ′′(t)e−εtdt < +∞.

We now integrate by parts, in finite time, to obtain

ε

∫

−A
(χ′)n exp(−εt)dt = (χ′)n(−A) exp(+εA) +O(1).

We claim that
∫

−∞(χ′)n exp(−εt)dt is finite. So is the limsup on the right hand side, hence
χ′(t) ≤ C exp(εt/n), which yields

χ(t) − χ(−∞) ≤ C ′ exp(εt/n).

Therefore u(z) − u(0) ≤ C ′‖z‖ε/n, i.e. u is Hölder continuous.
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It remains to prove the claim. If
∫

−∞(χ′)n exp(−εt)dt = +∞, then

(χ′)n(−A) exp(+εA) → +∞ as A→ +∞. Set

h(t) = (χ′)n(t) exp(−εt) and H(x) =

∫ 0

x

h(t)dt.

Thus H(x) → +∞ as x→ −∞ and

εH(x) = H ′(x) +O(1).

We let the reader check that this implies H(x) = λ exp(−εx) +O(1) for some constant λ ≥ 0.
Now χ′(t) → 0 as t → −∞ so h(t) = o(exp(−εt)) and H(t) = o(exp(−εt)). This forces λ = 0,
hence H(t) = O(1). �

5.3. The toric case. We now consider the case of probability measures µ which are smooth
but at finitely many points where they have “toric singularities” the origin 0 ∈ Cn is called a
toric singularity for the measure µ = (ddcu)n, u psh and bounded, if u is (S1)n-invariant, i.e.

u(z1, . . . , zn) = u(|z1|, . . . , |zn|), ∀z = (z1, . . . , zn) ∈ ∆n.

We will call these measures toric measures for short.

Proposition 5.3. Let µ be a toric measure in the unit polydisk ∆n ⊂ Cn. Assume that for all

0 < r < 1
2
and j = 1, ..., n,

µ(∆ × ...× ∆j(r) × ..× ∆) ≤ Crα, where C, α > 0.

Then
∫

∆n(t)

[ǔδ(z) − u(z)]dµ ≤ C(t)δβ,

for all 0 < t < 1 and u ∈ PSH∩L∞(∆n) with 0 ≤ u ≤ 1.

Proof. Set Tu(z) = 1
(2π)n

∫

[0,2π]n
u(eiθ1|z1|, ..., eiθn|zn|)dθ1...dθn. Note that

Tu(z) = Tu(|z1|, ..., |zn|) is increasing and logarithmically convex. This implies that

Tu(|z1| + δ1, ..., |zn| + δn) − Tu(|z1|, ..., |zn|)| ≤ C
n

∑

j=1

log

(

1 +
δj
|zj |

)

,

for all z ∈ ∆n(1/2). It follows from Fubini theorem that

T ǔδ(z) =
1

(2π)n

∫

[0,2π]n

ǔδ(e
iθ1 |z1|, ..., eiθn|zn|)dθ1...dθn

=
1

(2π)n

∫

[0,2π]n

1

cnδn

∫

Bδ

u(eiθ1|z1| + w1, ..., e
iθn |zn| + wn) dV (w)dθ1...dθn

=
1

(2π)n

∫

[0,2π]n

1

cnδn

∫

Bδ(|z1|,...,|zn|)

u(eiθ1ξ1, ..., e
iθnξn) dV (ξ)dθ1...dθn

=
1

cnδn

∫

Bδ(|z1|,...,|zn|)

Tu(ξ) dV (ξ)

≤ Tu(|z1| + δ, ..., |zn| + δ).

Since µ is toric,
∫

∆n(1/2)

[ǔδ(z) − u(z)]dµ =

∫

∆n(1/2)

[T ǔδ(z) − Tu(z)]dµ,
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thus
∫

∆n(1/2)

[ǔδ(z) − u(z)]dµ ≤ C
n

∑

j=1

∫

∆n(1/2)

log

(

1 +
δ

|zj |

)

dµ

≤ nC

∫ 1/2

0

δtα

t2 + δt
dt

≤ C ′δβ

with β = α/(α+ 2), as can be checked by cutting the integral into two pieces
∫ δγ

0
+
∫ 1/2

δγ
, where

γ = 1/(α+ 2). �

Corollary 5.4. A toric probability measure µ belongs to MAH(X,ω) if and only if
exp(−εPSH(X,ω)) ⊂ L1(µ) for some ε > 0.

Proof. If µ belongs to MAH(X,ω), then exp(−εPSH(X,ω)) ⊂ L1(µ) for some ε > 0, as follows
from [DNS]. Assume now that exp(−εPSH(X,ω)) ⊂ L1(µ) for some ε > 0. As explained
earlier, this implies that µ is very well dominated by the Monge-Ampère capacity, in particular
µ ∈ H(∞). The previous proposition shows that item (iii) of Theorem 4.3 applies, hence
µ ∈ MAH(X,ω). �

In view of the above proofs, one may wonder whether all probability measures satisfying
condition H(∞) belong to MAH(X,ω). The following example shows this is far from being the
case.

Example 5.5. We assume here (X,ω) = (P1, ωFS) is the Riemann sphere equipped with the
Fubini-Study form. We let φ ∈ PSH(X,ω) be a function that is smooth in P1 but at one point
which we choose as the origin 0 in some affine chart C and so that

φ(z) = exp
(

−
√

− log |z|
)

− 1

2
log[1 + |z|2]

near the origin. The reader will easily check, following the arguments in Example 4.2 in [BGZ],
that µ = ω + ddcφ is very well dominated by the logarithmic capacity , in particular satisfies
H(∞), although φ is not Hölder continuous.

6. The case of big cohomology classes

Proof of Theorem D. In order to deal with the general case of big cohomology classes, we use
again the regularization techniques of the first author, coupled now with Proposition 2.9.

We let ϕ be a θ-psh function solution of (θ + ddcϕ)n = µ, where the density f ≥ 0 of µ with
respect to a smooth volume form belongs to Lp for some p > 1. The solution is unique up to
an additive constant, it is θ-psh with minimal singularities (see [BEGZ]). We can thus assume,
without loss of generality, that −C0 + Vθ ≤ ϕ ≤ Vθ. We let

ϕ 7→ ρδϕ

again denote the regularization operator defined in (2.1). As in the Kähler case t 7→ ρtϕ+Kt2

is increasing for 0 ≤ t ≤ δ0 and some constant K.
We consider the Kiselman-Legendre transform,

ψc,δ(z) := inf
t∈]0,δ]

{

ρtϕ(z) +Kt2 − c log(t/δ)
}

,

where 0 ≤ δ ≤ δ0 and c > 0 will be carefully chosen below. Observe that

ϕ ≤ ψc,δ ≤ ρδϕ+Kδ2.

The fundamental curvature estimate is now

θ + ddcψc,δ ≥ −(Ac +Kδ2)ω
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for some constant A > 0. Since the coholomogy class Θ = {θ} is big, there exists a θ-psh
function ψ0 on X such that θ + ddcψ0 ≥ ε0ω, for some small constant ε0 > 0. Subtracting a
large constant, we can always assume that ψ0 ≤ 0 hence ψ0 ≤ Vθ.

It follows that the function

ϕc,δ :=
Ac+Kδ2

ε0
ψ0 +

(

1 − Ac+Kδ2

ε0

)

ψc,δ

is θ-plurisubharmonic on X . Fix 0 < δ < δ0 and choose c > 0 such that

Ac+Kδ2 = ε0δ
α, where α := 2γ,

and observe that c = ε0A
−1δα −KA−1δ2 = O(δα). In the sequel we set

ϕδ := ϕc,δ.

Since ψ0 ≤ Vθ ≤ ϕ+ C0, we see from the definition that on the ample locus,

ϕδ − ϕ = δα(ψ0 − ϕ) + (1 − δα)(ψc,δ − ϕ)

≤ C0δ
α + (1 − δα)(ρδϕ− ϕ+Kδ2).

Furthermore, since ϕ ≤ Vθ ≤ 0, we get ̺δϕ ≤ 0, thus ψc,δ ≤ Kδ2 ≤ C0δ
α if δ ≤ δ0 small enough,

and so ϕδ ≤ C0δ
α. This implies ψ := ϕδ − C0δ

α ≤ Vθ. By Proposition 2.9, it follows that

sup
X

(ϕδ − ϕ) ≤ B0‖max(ϕδ − ϕ− C0δ
α, 0)‖γL1(X) + C0δ

α

≤ B0‖ρδϕ+Kδ2 − ϕ‖γL1(X) + C0δ
α

for some constant B0 > 0 which depends only on γ and the uniform norm of ϕ− Vθ.
Applying Lemma 2.3, the last estimate yields

sup
X

(ϕδ − ϕ) ≤ C1δ
α,

where C1 := B0Cω +Kγ + C0 and Cω is the constant in Lemma 2.3.
This inequality ϕδ ≤ ϕ+C1δ

α yields a uniform lower bound on the parameter t = t(z) which
realizes the infimum in the definition of ϕδ(z) for a fixed z ∈ Ω. Namely the last inequality
gives

ϕδ(z) − ϕ(z) = δα(ψ0(z)−ϕ(z)) + (1−δα) (ρtϕ(z)+Kt2−ϕ(z)−c log(t/δ))

≤ C1δ
α.

Since Vθ − ϕ ≥ 0 and ρtϕ(z) +Kt2 − ϕ(z) ≥ 0, it follows that

c(1 − δα) log[t(z)/δ] ≥ δα(ψ0(z) − Vθ(z) − C1).

Since c = ε0A
−1δα−KA−1δ2, the choice δ ≤ δ1 := min{δ0, (ε0/2K)1/(2−α)} yields c ≥ 1

2
ε0A

−1δα

and therefore
t(z) ≥ δκ(z),

where

(6.1) κ(z) := exp (C2(ψ0(z) − Vθ(z) − C1) ,

(6.2) C2 :=
2A

ε0(1 − δα0 )
.

We are now in position to conclude. Fix z ∈ Amp(Θ). Since t(z) ≥ κ(z)δ and t 7→ ρtϕ+Kt2

is increasing, we get

ρκ(z)δϕ(z) − ϕ(z) ≤ ρt(z)ϕ(z) +Kt(z)2 − ϕ(z)

= ψc,δ(z) − ϕ(z) =
1

1 − δα
(ϕδ(z) − δαψ0(z)),
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and by the above and the assumption ϕ ≤ Vθ ≤ 0 we find

ϕδ − δαψ0 ≤ ϕ+ C1δ
α − δαψ0 ≤ C1δ

α + δα(Vθ − ψ0),

ρκ(z)δϕ(z) − ϕ(z) ≤ (1 − δα0 )−1)δα(C1 + Vθ(z) − ψ0(z)).

Replacing δ by κ(z)−1δ and using (6.1), we obtain for δ ≤ δ0κ(z),

ρδϕ(z) − ϕ(z) ≤ (1 − δα0 )−1δα(C1 + Vθ(z) − ψ0(z)) · exp (αC2(C1 + Vθ(z) − ψ0(z)))

≤ C3 exp (2αC2(C1 + Vθ(z) − ψ0(z))) ,(6.3)

where

(6.4) C3 := (αC2)
−1(1 − δα0 )−1.

This finishes the proof of Theorem D, since ψ0(z) − Vθ(z) is locally bounded from below on
Amp(Θ) as well as κ(z) given by (6.1). �

Appendix

We briefly explain below how bounds on the curvature may be used to control the differential
of the exponential mapping. This is essentially a variation on the theme of Jacobi vector fields.

Estimates for the differential of the exponential. For accurate computations with the ex-
ponential we need to control its differential in terms of the curvature. To this end we determine
the Jacobi equations which calculate the variation of geodesics.

Let namely u → u+ v be a small perturbation of the geodesic t→ u(t) with initial velocity
ζ . Its linearization satisfies

(6.5)
d2vm
dt2

=
∑

j,k,l

Rjk̄lm̄v̄k
duj
dt

dul
dt

+O(|u(t)|).

Moreover if D denotes the Levi-Civita connection with respect to ω then along the geodesic
u(t) one can compute

(6.6)
(Dζ

dt

)

m
=
dζm
dt

−
∑

j,k,l

Rjk̄lm̄

duj
dt
ζl +O(|u(t)|2)ζ

(6.7)
(D2ζ(t)

dt2

)

m
=
d2ζm
dt2

−
∑

j,k,l

Rjk̄lm̄

dūk
dt

duj
dt
ζl +O(|u(t)|)ζ.

Let us now put ζ = v. Then the Jacobi equation takes the intrinsic form

(D2v(t)

dt2

)

m
=

∑

j,k,l

Rjk̄lm̄v̄k
duj
dt

dul
dt

−
∑

j,k,l

Rjk̄lm̄

dūk
dt

duj
dt
vl.

In particular the formula holds at ζ := u′(0). Thus if the curvature is bounded by the
constant R2

0 (the square being taken for the ease of notation), then

|(Dv(t)Dv(t))| ≤ 2R2
0|ζ |2|v|.

This is a vector analogue of the scalar equation y′′ = 2py. By Gronwall’s lemma the solution
to the corresponding Cauchy problem with data v(0) = v0, Dv(0) = v1 is estimated by

|v(t)| ≤ |v0| cosh(
√

2R0|ζ |t) +
|v1|√
2R0|ζ |

sinh(
√

2R0|ζ |t).



HÖLDER CONTINUOUS SOLUTIONS TO MONGE-AMPÈRE EQUATIONS 21

Let us denote by τz,ζ(t) : TZX → Texpz(tζ)X the parallel translation along the geodesic.
Let also ṽ(t) := τz,ζ(t)

−1v(t) ∈ TzX . Then ṽ satisfies the analogous equation with curvature
transported back to TzX . Thus

(6.8) |ṽ(t) − v0 − v1t| ≤ |v0| cosh(
√

2R0|ζ |t) +
|v1|√
2R0|ζ |

sinh(
√

2R0|ζ |t) − |v0| − |v1|t.

The differential of the ordinary exponential mapping evaluated at (h, η) ∈ T (TX)(z,ξ) ≃
TzX ⊗TzX is precisely v(1) for the solution of the Cauchy problem v(0) = h,Dv(0) = η. Thus
(6.8) gives us the bound

|τz,ζ(1)−1d expz(ζ)(h, η) − (h+ η)| ≤ h cosh(
√

2R0|ζ |) +
η√

2R0|ζ |
sinh(

√
2R0|ζ |) − h− η.

If |ζ | is small (|ζ | ≤ ε
2R0

, say), then elementary Taylor expansion gives us the bound

|τz,ζ(1)−1d expz(ζ)(h, η) − (h+ η)| ≤ (1 +O(ε))(c1ε
2|h| + c2ε

2|η|).
Thus there exists some uniform ε0 such that in the balls |ζ | ≤ ε√

2R0
for any ε ≤ ε0 the

differential is a diffeomorphism and is even O(ε2) close to the identity.

Remark 6.1. Similar estimates can be obtained in the Hermitian case either, geodesics being
defined by the Chern connection rather than the Levi-Civita connection. One then has to assume
additionally a uniform bound on |∂ω|ω and |D(∂ω)|ω to accommodate the presence of torsion.
However, replacing exp by exph as was done in [D4] and [BD] would be a challenge, because we
would then need an “effective” version of E. Borel’s theorem to show that exph can be chosen
to satisfy the same estimates as exp, and this is certainly non trivial.
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[Di] S. Dinew, Hölder continuous potentials on manifolds with partially positive curvature, J. Inst. Math.

Jussieu 9 (2010), 705-718.
[DZ] S. Dinew and Z. Zhang, On stability and continuity of bounded solutions of degenerate complex Monge-

Ampère equations over compact Kähler manifolds, Adv. Math. 225 (2010), 367-388.
[EGZ1] P. Eyssidieux, V. Guedj and A. Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22

(2009), 607-639.
[EGZ2] P. Eyssidieux, V. Guedj and A. Zeriahi, A priori L∞ -estimates for degenerate complex Monge-Ampère

equations, Int. Math. Res. Not. (2008), ID rnn070.
[EGZ3] P. Eyssidieux, V. Guedj and A. Zeriahi, Viscosity solutions to degenerate complex Monge-Ampère

equations, Comm. Pure Appl. Math. 64 (2011), 1059-1094.
[GT] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Grundl. der Math.

Wiss. Springer Verlag, 244 (1983).
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