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Abstract. — Let X be a projective algebraic manifold of dimension n and let L
be an ample line bundle over X. We give a numerical criterion ensuring that the
adjoint bundle Kx + L is very ample. The sufficient conditions are expressed in
terms of lower bounds for the intersection numbers LP-Y over subvarieties Y of X .
In the case of surfaces, our criterion gives universal bounds and is only slightly
weaker than I. Reider’s criterion. When dim X > 3 and codimY > 2, the lower
bounds for LP - Y involve a numerical constant which depends on the geometry
of X. By means of an iteration process, it is finally shown that 2K x +mL is very
ample for m > 12n™. Our approach is mostly analytic and based on a combination
of Hérmander’s L? estimates for the operator 0, Lelong number theory and the
Aubin-Calabi-Yau theorem.
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1. Introduction

Let L be a holomorphic line bundle over a projective algebraic manifold X of
dimension n. We denote the canonical line bundle of X by Kx and use an additive
notation for the group Pic(X) = H(X, 0*). The original motivation of this work
was to study the following tantalizing conjecture of Fujita [Fu 88]: if L € Pic(X)
is ample, then Kx + (n + 2)L is very ample; the constant n + 2 would then be
optimal since Kx +(n+1)L = Ox is not very ample when X = IP" and L = O(1).
Although such a sharp result seems at present out of reach, a consequence of our
results will be that 2K x + mL is always very ample for L ample and m larger
than some universal constant depending only on n.

Questions of this sort play a very important role in the classification theory
of projective varieties. In his pioneering work [Bo 73], Bombieri proved the
existence of pluricanonical embeddings of low degree for surfaces of general type.
More recently, for an ample line bundle L over an algebraic surface S, I. Reider
[Rei 88] obtained a sharp numerical criterion ensuring that the adjoint line bundle
Kg + L is spanned or very ample; in particular, Kg + 3L is always spanned
and Kg + 4L very ample. Reider’s method was further developed by Catanese
[Ca 88], Sakai [Sa 88] and Beltrametti-Francia-Sommese [BFS 89], who studied
the existence of higher order embeddings via s-jets. Reider’s approach is based on
the construction of rank two vector bundles associated to some O-cycles in special
position with respect to the linear system |Kg + L| and a use of Bogomolov’s
inequality for stable vector bundles. Unfortunately, these methods do not apply
in dimension > 3 and no similar general result was available. In a somewhat
different context, Fujita [Fu 87] proved that Kx + (n+ 2)L is always ample. This
result is obtained via Mori’s theory of extremal rays [Mo 82] and the cone theorem
of Kawamata (cf. [Ka 84], [KMM 87]), but the arguments are purely numerical
and give apparently no insight on the very ample property.

Our purpose here is to explain a completely different analytic approach
which is applicable in arbitrary dimension. Let us first recall a few usual notations
that will be used constantly in the sequel:

(11) Ll"-Lp'YZ/Cl(Ll)/\.../\Cl(Lp)

Y
denotes the intersection product of p line bundles L1, ..., L, over a p-dimensional
subvariety Y C X. In case Ly = ... = L, we write instead L? - Y and in case

Y = X we omit Y in the notation. Similar notations will be used for divisors.
Recall that a line bundle (or a IR-divisor) L over X is said to be numerically
effective, nef for short, if L -C > 0 for every curve C' C X ; in this case L is said
to be big if L™ > 0. More generally, a vector bundle F is said to be nef if the
associated line bundle Og(1) is nef over P(E*) = projective space of hyperplanes
in F; any vector bundle E such that some symmetric power S™F is spanned by
its global sections is nef. In this context, we shall prove:
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MAIN THEOREM. — Let X be a projective n-fold and let L be a big nef
line bundle over X. Suppose that there is a number a > 0 such that TX ® O(aL)
is nef. Then Kx + L is spanned at each point of a given subset = of X (resp.
separates all points in Z, resp. generates s-jets at any point of Z) provided that
L™ > g with o9 = n" (resp. o9 = 2n", resp. o9 = (n+s)™ ), and that there exists
a sequence 0 = (31 < ... < B, <1 such that any subvariety Y C X of codimension
p=1,2,...,n—1 intersecting = satisfies

LY > (B = ) (B = )0 Y SE(B)aay

0<j<p—-1

with S§(3) = 1, S§(08) = elementary symmetric function of degree j in f1,..., B
and

Op = (1 - (1 - ﬂ)]D/H>L", op € loop/n, ool -

The expression “separation of points” used here includes infinitesimal
separation, that is, generation of 1-jets at each point (the constant og = (n + 1)"
corresponding to s = 1 can therefore be replaced by the smaller value 2n™). In fact,
our proof also gives sufficient conditions for the generation of jets corresponding
to arbitrary O-dimensional subschemes (2, Oz=) of X, simply by changing the value
of ¢ ; for example, if (2, Oz) is a local complete intersection, the constant oy can
be taken equal to n™ h°(Z, Oz); unfortunately, this value is in general far from
being optimal. Notice that the number a involved in the hypothesis on T'X need
not be an integer nor even a rational number: the hypothesis then simply means

that any real divisor associated to Orx (1) + a7*L is nef over P(T*X).

As the notation is rather complicated, it is certainly worth examining the
particular case of surfaces and 3-folds. If X is a surface, we have g = 4 (resp.
oo = 8, resp. 09 = (2 + 5)?), and we take 3; = 0, fo = 1. This gives only two
conditions, namely

(12) L2>0'0, L-C>o

for every curve C intersecting =. In that case, the proof shows that the assumption
on the existence of a is unnecessary. These bounds are not very far from those
obtained with Reider’s method, although they are not exactly as sharp. If X is
a 3-fold, we have oq = 27 (resp. o9 = b4, resp. o9 = (3 + 5)3), and we take
81 =0< P2 =B < 5 = 1. Therefore our condition is that there exists 5 € ]0,1]
such that

(1.3) >0y, L[*S>pto, L-C>(1-p)" o2+ Baoy)
for every curve C or surface S intersecting =.

In general, we measure the “amount of ampleness” of a nef line bundle L
on a subset = C X by the number

1.4 =(L) = mi i P . y)l/p
(1.4) pe(l) = min = omin L, LY
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where Y runs over all p-dimensional subvarieties of X intersecting =. The Nakai-
Moishezon criterion tells us that L is ample if and only if ux (L) > 0. An effective
version of this criterion can be easily deduced from the Main Theorem: in fact, a
suitable choice of the constants §, in terms of a, op and pu=z(L) yields:

COROLLARY 1. — Let L be a big nef line bundle over X such that
TX ® O(alL) is nef for some a > 0, and let = be an arbitrary subset of X. Then
the line bundle K x +mL spans (resp. separates points, resp. generates s-jets) on
= as soon as

1 1 k(14 1 1

m > max{BnUO7 (BnUO) n—k (GME(L)) n—Fk (n—l +n—2+ e +k+l )}
p=(L)

with og = n™ (resp. o9 = 2n", resp. o9 = (n+s)") and with a constant B,, < 2.005

depending only on n (table (11.11) contains the first values of By,).

1<k<n—2

When L is ample, the number a always exists and we have uz(L) > 1 for
any choice of Z. We thus get an explicit lower bound mg depending only on n,a
such that Kx + mL is spanned or very ample for m > mg. Unfortunately, these
lower bounds are rather far from Fujita’s expected conditions m > n + 1 and
m > n+ 2 respectively. Observe however that the lower bound for L™ in the Main
Theorem is optimal: if X =P" and L = O(1), then Kx = O(—n—1) so Kx +nL
is not spanned, although (nL)™ = n™ = (. Similarly Kx + (n + s)L does not
generate s-jets, although ((n + s)L)n = (n+8)" = 0. When X C PP"*! is the
n-dimensional quadric and L = Ox (1), then Kx + nL = Ox is not very ample,
although (nL)™ = 2n™ = oy.

Another unsatisfactory feature is that our bounds depend on the geometry
of X through the number a, while the case of curves or surfaces suggests that they
should not. In fact, our proof uses a rather delicate self-intersection inequality for
closed positive currents, and this inequality (which is essentially optimal) depends
in a crucial way on a bound for the “negative part” of TX. It follows that new
ideas of a different nature are certainly necessary to get universal bounds for
the very ampleness of Kx + L. However, an elementary argument shows that
TX ® O(Kx + nF) is always nef when F is very ample (see lemma 12.1). This
observation combined with an iteration of the Main Theorem finally leads to a
universal result. Corollary 2 below extends in particular Bombieri’s result on
pluricanonical embeddings of surfaces of general type to arbitrary dimensions (at
least when Kx is supposed to be ample, see 12.10 and 12.11), and can be seen as
an effective version of Matsusaka’s theorem ([Ma 72], [KoM 83]):

COROLLARY 2. — If L is an ample line bundle over X, then 2K x + mL
is very ample, resp. generates s-jets, when (m — 1)ux (L) + s > 2C,00 with a
constant C,, < 3 depending only on n (see table (12.3)). In particular, 2K x +mL
is very ample for m > 4C,,n™ and generates higher s-jets for m > 2C,,0¢.

Our approach is based on three rather powerful analytic tools. First, we
use Hérmander’s L? estimates for the operator d with singular plurisubharmonic
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weights to prove a general abstract existence theorem for sections of Kx + L
with prescribed jets at finitely many points; the idea is similar to that of the
Hormander-Bombieri-Skoda theorem, but following an idea of A. Nadel [Na 89],
we consider plurisubharmonic functions with logarithmic poles associated to an
arbitrary ideal in Ox , (see Corollary 4.6). We refer to [De 90] for further results
relating ample or nef line bundles to singular hermitian metrics. The second tool
is the Aubin-Calabi-Yau theorem. This fundamental result allows us to solve the
Monge-Ampere equation (w++08y)™ = f where w = 5=c(L) is the curvature form
of L, and the right hand side f is an arbitrary positive (n,n)-form with [ f = L.
We let f converge to a linear combination of Dirac measures and show that the
solution v produces in the limit a singular weight on L with logarithmic poles. In
order to control the poles and singularities, we use in an essential way a convexity
inequality due to Hovanski [Hov 79] and Teissier [Te 79,82], which can be seen as a
generalized version of the Hodge index theorem for surfaces. Finally we invoke in
several occasions the theory of closed positive currents and Lelong numbers (see
[Le 57,69]). In particular, the generalized Lelong numbers introduced in [De 87]
are used as a substitute of the intersection theory of algebraic cycles in our analytic
context. The self-intersection inequality 10.7 can be seen as a generalization to
currents (and in any dimension) of the classical upper bound d(d — 1)/2 for the
number of multiple points of a plane curve of degree d. It actually gives a bound
for the sum of degrees of the irreducible components in the sublevel sets of Lelong
numbers of a closed positive (1,1)-current T with integral cohomology class {T'},
in terms of an explicit polynomial in {T'}.

A major part of this work has been done during the fall 1989, while
the author was visiting Bayreuth University under the support of the DFG-
Forschungsschwerpunktprogramm “Komplexe Mannigfaltigkeiten”. The author
expresses special thanks to Michael Schneider and Thomas Peternell for very
stimulating discussions.

2. Singular hermitian metrics on holomorphic line bundles

Let L be a holomorphic line bundle over a projective algebraic manifold
X and n = dimX. If L is equipped with a hermitian metric, we denote

by ¢(L) = 5=V? the Chern curvature form, which is a closed real (1,1)-form
representing the first Chern class ¢1(L) € H?(X,Z). It is well known that L is
ample if and only if L has a smooth hermitian metric such that ¢(L) is positive

definite at every point.

However, we are also interested in singular metrics, because they often give
additional information about the existence of sections of high multiples mL. By
definition, a singular metric on L is a metric which is given in any trivialization
7:Lyg — Qx C by
(2.1) €l = @)l *®,  zeQ, teL,
where ¢ € L _(Q) is a weight function. Then the curvature of L is given by
the (1,1)-current ¢(L) = 209y on 2. For example, to any divisor D = Y \;D;

o
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with coefficients \; € Z is associated the invertible sheaf O(D) of meromorphic
functions f such that div(f) + D > 0; the corresponding line bundle can be
equipped with the singular metric defined by ||f|| = |f|- If g; is a generator of the

ideal of D; on an open set Q C X, then 7(f) = f]] g;\j defines a trivialization of
O(D) over Q, thus our singular metric is associated to the weight ¢ = >~ A, log |g;|.
By the Lelong-Poincaré equation, we find

7 —
(22) (0(D)) = Lo = D),
where [D] = > A\;[D;] denotes the current of integration over D.

In the sequel, all singular metrics are supposed to have positive curvature
in the sense of currents (cf. [Le 57)); i.e., the weight functions ¢ are supposed
to be plurisubharmonic. Let us recall some results of [De 90]: consider the real
Neron-Severi space NSgr(X) = (H*(X,Z)NH"'(X))®IR of algebraic cohomology
classes of degree 2, and let 'y C NSR(X) (resp. I'q C I'y), be the closed convex
cone generated by cohomology classes of effective (resp. ample) divisors D ; denote
by I'S. (resp. I'y) the interior of I'y. (resp. T'y). Then, if w is a Kahler metric on
X and € > 0, we have the following equivalent properties:

(2.3)c1(L) € I'y <= L has a singular metric with ¢(L) > 0;

(2.4) c1(L) € 'S <= Fe, L has a singular metric with ¢(L) > ew <= k(L) = n;
(2.5) c1(L) € Ty < Ve, L has a smooth metric with ¢(L) > —ew <= L is nef;
(2.6) c1(L) € T’y <= Je, L has a smooth metric with ¢(L) > ew <= L is ample.

The notation k(L) stands for the Kodaira dimension of L, that is by definition, the
supremum of the generic rank of the rational maps to projective space defined by
the non zero sections in H°(X, mL) for m > 1 (if any), and x(L) = —oo otherwise;
alternatively, x(L) is the smallest constant such that h°(X,mL) < O(m*"). The
only thing that will be needed here is the fact that a big nef line bundle satisfies the
equivalent properties in (2.4); we shall briefly sketch the proof of this. If L is nef,
the Hilbert polynomial of x(X,mL) has leading coefficient L™ /n! > 0, and it is
well known that h/ (X, mL) = O(m™~1), thus h°(X,mL) = L™ /n!m" + O(m"~1).
Hence L is big if and only if x(L) = n. Let A be an ample divisor. Then
H°(X,mL — A) is the kernel of H°(X,mL) — H°(A,mL;,), and the target has
dimension < Cm™~!. When (L) = n we get H*(X,mL — A) # 0 for m large,
so there is an effective divisor E such that mL ~ A + E. Now, pL + A is ample
for every p > 0, so pL + A has a smooth metric with ¢(pL + A) > ¢,w, and the

isomorphism (m + p)L ~ pL + A + E gives a metric on L such that
(2.7) o(L) = (m+p) " (c(pL + A) + [E]) > (m +p) ey w.

Observe that the singular part (m + p)~![E] can be chosen as small as desired by
taking p large.

3. Basic results on Lelong numbers

These results will be needed in the sequel as an analytic analogue of some
standard facts in the intersection theory of algebraic cycles. They are developed
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in more details in [De 82a,85,87] (cf. Lelong [Le 57,69] for an earlier presentation).
We first recall a few definitions. Let T be a closed positive current of bidimension
(p,p), that is, of bidegree (n — p,n — p), on an open set Q@ C C". The Lelong
number of T" at a point z € § is defined by v(T, z) = lim,_,o, v(T, x,r) where

1 o
e / RCICER

measures the ratio of the mass of T in the ball B(z,r) to the area of the ball
of radius r in CP; this ratio is an increasing function of r (cf. [Le 69]), and the
limit v(T,x) does not depend on the choice of coordinates. In the case where T
is a current of integration [A] over an analytic subvariety A, the Lelong number
v([A], z) coincides with the multiplicity of A at x (Thie’s theorem [Th 67]).

(3.1) v(T,z,r) =

More generally, let ¢ be a continuous plurisubharmonic function with an
isolated —oo pole at z, e.g. a function of the form ¢(z) = log >, <y 9;(2)[",
v; > 0, where (g1,...,gn) is an ideal of germs of holomorphic functions in O,
with g71(0) = {z}. According to [De 87], the generalized Lelong number v(T), ¢)
of T with respect to the weight ¢ is the limit when ¢ tends to —oo of
(3.2) v(T, p,t) = / T A (18&0)1).

p(z)<t

s

Because of the logarithmic singularity of ¢, the integral is not well defined a priori.
In fact, we can use Bedford and Taylor’s definition of the Monge-Ampere operator
for locally bounded plurisubharmonic functions (see § 10) and set

(3.3) /( )<tT A (i00p)P = / T(2) A (i00max(p(z),8))",  s<t;

p(z)<t
observe that the right hand side is independent of s by Stokes’ formula. The
relation with ordinary Lelong numbers comes from the equality
(3.4) v(T,z,r) =v(T,p,logr), ¢(z)=log|z— x|,

in particular v(7T, z) = v(T,log|e — x|). This equality is in turn a consequence of
the following general formula, applied to x(t) = €?* and t = logr:

(3.5) / T A (i0dx o )" = X'(t — 0)1’/ T A (i00¢)?,
p(z)<t p(z)<t

where x is an arbitrary convex increasing function. To prove the formula, we use
a regularization and thus suppose that 7', ¢ and x are smooth, and that ¢ is a non
critical value of ¢. Then Stokes’ formula shows that the integrals on the left and
on the right of (3.5) are equal respectively to

/ T A (i00x 0 )"~ Aid(x 0 ), / T A (i000)" ™" A D,
p(z)=t p(z)=t

and the differential form of bidegree (p — 1,p) appearing in the integrand of the
first integral is equal to (X’ o ¢)? (i00p)P~1 A idp. The expected formula follows.

It is shown in [De 87] that v(T, ¢) depends only on the asympotic behaviour
of ¢ near the pole x, namely the Lelong number remains unchanged for a weight
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¥ such that lim,_,, ¥(z)/¢(z) = 1. More generally, if limsup,_,, ¥(z)/¢(z) = A,
then

(3.6) VT, ) < N u(T, ).
Finally, let F' is a proper holomorphic map from a neighborhood of z onto a
neighborhood of y in €C", and let ¥ be a continuous plurisubharmonic function

with an isolated pole at y. The definition of the direct image F,T by adjunction
of F* easily shows that for ¢ < ¢ sufficiently small

(3.7) V(B T, 0, t) =v(T,vo F,t), v(F.T,¢%)=v(T,oF).

For any closed positive current T of bidimension (p,p) on a complex
manifold X and any positive number ¢, we let E.(T) be the set of points z € X
where v(T,z) > c¢. By a theorem of [Siu 74|, all sublevel sets E.(T) are closed
analytic subsets of X of dimension at most p. Moreover T can be written as a
convergent series of closed positive currents

+oo
(3.8) T = Z M. [Zk] + R,
k=1

where [Z}] is a current of integration over an irreducible analytic set of dimension p,
and R is a residual current with the property that dim E.(R) < p for every
¢ > 0. This decomposition is locally and globally unique: the sets Zj are
precisely the p-dimensional components occurring in the sublevel sets E.(T'), and
Ar = mingez, v(T, z) is the generic Lelong number of T" along Z.

The Lelong number of a plurisubharmonic function w on X can also be
defined by

(3.9) v(w,x) = lim inf _wlz) ,
z—z log|z — x|

where z = (z1,..., 2z,) are local coordinates near x, and | | denotes an arbitrary

norm on C". Tt is well known that v(w,z) is equal to the Lelong number

v(T,z) of the associated positive (1,1)-current 7' = £90w. Accordingly, we set

E.(w) = E.(T).
4. I? estimates and existence of holomorphic sections

We first state the basic existence theorem of Hérmander for solutions of &
equations, in the form that is most convenient to us.

ProproSITION 4.1. — Suppose that X is a Stein or compact projective
manifold equipped with a Kéhler metric w. Let L be a line bundle with a
hermitian metric associated to singular plurisubharmonic weight functions ¢ such
that ¢(L) > ew for some ¢ > 0. For every ¢ > 1 and every (n,q) form v with
values in L such that v = 0 and [ [v|]*e"2¥dV,, < 400, there is a (n,q — 1)-form
w with values in L such that Ou = v and

1
/|u|26_2dew§2—/ [v|e2¥dV,,.
X TqE Jx
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Here dV,, stands for the Kéhler volume element w™ /n!, and |u|?e~2¥ denotes
somewhat abusively the pointwise norm of u(z) at each point z € X, although ¢
is only defined on an open set in X. The operator 0 is taken in the sense of
distribution theory.

Proof. — The result is standard when X is Stein and L is the trivial bundle
(see [AV 65] and [H6 66]). In general, there exists a hypersurface H C X such
that X \ H is Stein and L is trivial over X \ H. We then solve the equation du = v
over X \ H and observe that the solution extends to X thanks to the L? estimate
(cf. [De 82b], lemma 6.9). O

We will also use the concept of multiplier ideal sheaf introduced by A. Nadel
[Na 89]. The main idea actually goes back to the fundamental works of Bombieri
[Bo 70] and H. Skoda [Sk 72a]. Let ¢ be a plurisubharmonic function on X ; to
 is associated the ideal subsheaf Z(¢) C Ox of germs of holomorphic functions
[ € Ox, such that |f|?e~2¢ is integrable with respect to the Lebesgue measure
in some local coordinates near x. The zero variety VZ (i) is thus the set of points
in a neighborhood of which e~2¥ is non integrable. This zero variety is closely
related to the Lelong sublevel sets E.(p). Indeed, if v(p,x) = 7, the convexity
properties of plurisubharmonic functions show that

o(z) < loglz — 2| + O(1) at =,
hence there exists a constant C' > 0 such that e 2#(*) > C|z — 2|72 in a
neighborhood of x. We easily infer that

s+1
(4.2) vip,z) >n+s=I(p). C MXTI,

where Mx , is the maximal ideal of Ox ;. In the opposite direction, it is well
known that v(p,z) < 1 implies the integrability of e=2¢ in a neighborhood of x
(cf. Skoda [Sk 72a]), that is, Z(¢), = Ox 5. In particular, the zero variety V()
of Z(p) satisfies

(4.3) En(p) CVI(p) C Ei(p).

LEMMA 4.4 ([Na 89]). — For any plurisubharmonic function ¢ on X, the
sheaf I(¢p) is a coherent sheaf of ideals over X.

Proof. — Since the result is local, we may assume that X is the unit
ball in C". Let E be the set of all holomorphic functions f on X such that
Jx |fI2e72# dX\ < 400. By the strong noetherian property of coherent sheaves, the
set E generates a coherent ideal sheaf J C Ox. It is clear that J C Z(p); in
order to prove the equality, we need only check that J, +Z(¢). N ML = Z(p).
for every integer s, in view of the Krull lemma. Let f € Z(p), be defined in a
neighborhood V of z and 6 be a cut-off function with support in V' such that
6 = 1 in a neighborhood of x. We solve the equation du = 9(ff) by means of
Hormander’s L? estimates 4.1, with L equal to the trivial line bundle and with

the strictly plurisubharmonic weight
U(2) = @(2) + (n+ s)log |z — x| + [2[*.
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We get a solution u such that [ [u[?e=2?|z — 2| 72("*9)d) < oo, thus F = 60f —u
is holomorphic, F € FE and f, — F, = u, € Z(p), N M?; This proves our
contention. O

Now, suppose that X is a projective n-fold equipped with a Kéhler metric w.
Let L be a line bundle over X with a singular metric of curvature T'= ¢(L) > 0. All
sublevel sets E.(T) are algebraic subsets of X, and if ¢ is the weight representing
the metric in an open set  C X, then E.(¢) = E.(T) N Q. The ideal sheaf Z(p)
is independent of the choice of the trivialization and so it is the restriction to §2 of
a global coherent sheaf on X which we shall still call Z(¢) by abuse of notation.
In this context, we have the following interesting vanishing theorem, which can
be seen as a generalization of the Kawamata-Viehweg vanishing theorem [Ka 82],
[Vi 82].

THEOREM 4.5 ([Na 89]). — Let L be a line bundle over X with k(L) = n.
Assume that L is equipped with a singular metric of weight ¢ such that ¢(L) > cw
for some € > 0. Then HY(X,O(Kx + L) ® Z(¢)) = 0 for all ¢ > 1.

Proof. — Let F? be the sheaf of germs of (n,¢)-forms u with values in
L and with measurable coefficients, such that both |u|?e=2% and |Ju|?e~2¢ are
locally integrable. The O operator defines a complex of sheaves (F*,d) which is
a resolution of the sheaf O(Kx + L) ® Z(i): indeed, the kernel of 0 in degree 0
consists of all germs of holomorphic n-forms with values in L which satisfy the
integrability condition; hence the coefficient function lies in Z(p); the exactness in
degree ¢ > 1 follows from proposition 4.1 applied on arbitrary small balls. Each
sheaf F? is a C°>°-module, so F* is a fine resolution. Moreover, H? (I‘(X, _7-")) =0

for ¢ > 1 by proposition 4.1 applied globally on X. The theorem follows. O

COROLLARY 4.6. — Let L be a big nef line bundle over X. Assume that
L is equipped with a singular metric of weight ¢ such that ¢(L) > 0 and let
Z1,...,2N be isolated points in the zero variety VZI(y). Then for every ¢ > 0,

there is a surjective map

HX,KEx+L)— P OEx+L), @ (0x/I((1-e)p))
1<j<N

zj

Proof. — This result can be seen as a generalization of the Hormander-
Bombieri-Skoda theorem ([Bo 70], [Sk 72a,75]); it could be proved directly by
using Hormander’s L? estimates and cut-off functions. If ¢(L) > dw for some
§ > 0, we apply theorem 4.5 to obtain the vanishing of the first H' group in the
long exact sequence of cohomology associated to

0—Z(p) — Ox — Ox/Z(p) — 0,

twisted by O(Kx + L). The asserted surjectivity property follows immediately;
as Z(¢) C Z((1 — €)yp), we see in that case that we can even take ¢ = 0 and drop
the nef assumption on L. If ¢(L) > 0 merely, we try to modify the metric so as to
obtain a positive lower bound for the curvature. By (2.7) there is a singular metric
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on L associated to a weight ¢ with %85@/} > dw, 6 > 0, and with a singularity of
1 so small that e=2¥ € L] .. Replace the metric on L by the metric associated to
the weight ¢, = (1 — &) + 1. Then e~ = (e=2¢)17¢(e~2¥)% is integrable on
any open set where e~2% is integrable, so VZ(¢.) C VZI(y) and the points x; are
still isolated in VZ(.). Moreover Z(ip.) C Z((1 —€)¢), for ¢ is locally bounded
above, and ¢(L). = £0dp. > edw. We are thus reduced to the first case. O

Example 4.7. — Suppose that v(p,z) > n + s and that z is an isolated
point in Eq(¢). Then Z((1 —&)p). C J\/lf;;ri for € small enough, and z is isolated
in VZ(p) by (4.2), (4.3). We infer that H*(X,Kx + L) —» J3(Kx + L) is
surjective onto s-jets of sections at x.

Example 4.8. — Suppose that (z1,...,z,) are local coordinates centered
at x and that
p(2) <ylog(lza| + ... + |zn—a] +]2a*) + O1), 7 >n.
Then Z((1 — €)¢) C (21, .,2n-1,22) for € small. To check this, observe that for
any > 0 the Parseval-Bessel formula gives
/ |3 anz]” dA(2) B / Y laa?z2PdA(z)
si<s (21l + o lmaal + 2l Jij<s (2l 4o lanaa ]+ [2af?)?

the integral is divergent unless the coefficients ag and a(q,... o,1) vanish. Indeed,

using polar coordinates z, = re’® and setting 2’ = (21,...,2,_1), we get
2d)\ 6/2 Sd
[ BEOG)_y [  [
1z1<s (|21 + .+ [zno1] + [20]?) |2/ |<6/2 o (#]+71?)
d\(2'
>C % = +oo0.
|2'|<5/2 |2']

Thus, if x is isolated in Ej(p), we are able to prescribe the value of the section
at x and its derivative 9/9z,, along the direction 2z’ = 0.

Remark 4.9. — More generally, it is interesting to consider logarithmic
poles of the form

o(z) =71og (2 lgi(2)l) +0(1),

1<j<N

where J = (¢1,...,98) C Mx  is an arbitrary ideal with isolated zero {z}.
However, in this case, we do not know what is the general rule relating the ideal
Z(yloglg|)s to the ideal J. Observe that Z(ylog |g|). only depends on the integral
closure J = {germs f such that |f| < C>" |g;|}. It is almost obvious by definition
that Z(yp) itself is always integrally closed. Let J = (G1,---59n) C J be the
ideal generated by n generic linear combinations g of g1,...,gx. Then J and J
have the same integral closure and we have Y [gx| > C' > |g;| with some C’ > 0;
indeed these ideals have the same multiplicity by a result of Serre [Se 57], and this
implies the equality of their integral closures thanks to a result of D. Rees [Ree 61].
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The ideal Z(vlog|j|). associated to J thus coincides with Z(ylog|g|)e. We see
that there is no loss of generality considering only ideals generated by exactly n
generators (as we shall do in §§ 6,7). Finally, the proof of the Briangon-Skoda
theorem [BSk 74] shows that

(4.10) Z(yloglg))e = Z(ylog|gl)e € T €T  when 7> n.
In fact, (4.10) is a straightforward consequence of Skoda’s division theorem
[Sk 72b], applied to the elements of Z(vylog|g]).

5. Aubin-Calabi-Yau theorem and convexity inequalities

The above results can be applied to construct sections of a given line bundle,
provided we are able to produce singular metrics with logarithmic poles . For this,
we use in several essential ways the well-known theorem of Aubin-Yau on the
Calabi conjecture. What we need is the following existence result about solutions
of Monge-Ampere equations.

LEMMA 5.1 [Yau 78], see also [Au 78]). — Let X be a compact complex
n-dimensional manifold with a smooth Ké&hler metric w. Then for any smooth
volume form f > 0 with fX f= fX w™, there exists a K&hler metric @ in the same
Kabhler class as w such that w"™ = f. O

The method for constructing singular metrics from the Aubin-Calabi-Yau
theorem will be explained in detail in § 6. Before, we need a useful convexity
inequality due to Hovanski [Hov 79] and Teissier [Te 79,82], which is a natural
generalization of the usual Hodge index theorem for surfaces. This inequality
is reproved along similar lines in [BBS 89|, where it is applied to the study of
projective n-folds of log-general type. For the sake of completeness, we include
here a different and slightly simpler proof, based on Yau’s theorem 5.1 instead of
the Hodge index theorem. Our proof also has the (relatively minor) advantage of
working over arbitrary Kéahler manifolds.

PROPOSITION 5.2. — In any dimension n :
a) ifaq,...,q, are semipositive (1,1)-forms on C", then
(a) beoos p : ;
g Aas A Aay > (@)Y (@)L (o),
(b) if uy,...,u, are semipositive cohomology classes of type (1,1) on a Kahler

manifold X of dimension n, then
Up - U+ Uy > (u’f)l/"(ug)l/" . (uﬁ)l/".

By a semipositive cohomology class of type (1,1), we mean a class in the
closed convex cone of H1(X,IR) generated by Kihler classes. For instance,
inequality (b) can be applied to u; = ¢1(L;) when L1, ..., L,, are nef line bundles
over a projective manifold.

Proof. — Observe that (a) is a pointwise inequality between (n,n)-forms
whereas (b) is an inequality of a global nature for the cup product intersection
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form. We first show that (a) holds when only two of the forms o are distinct,
namely that
aP A BTP > (am)P/m (B )/

for all o, 8 > 0. By a density argument, we may suppose «, 3 > 0. Then there is
a simultaneous orthogonal basis in which

a=1 Z Ajdzj A dz;, B=i Z dzj N dz;

1<j<n 1<j<n

with A\; > 0, and (a) is equivalent to

plin—p)! 3" Ny, = al ()P

1< <Jp

As both sides are homogeneous of degree p in ();), we may assume A; ...\, = 1.
Then our inequality follows from the inequality between the arithmetic and
geometric means of the numbers A;, ... \; . Next, we show that statements (a)
and (b) are equivalent in any dimension n.

(a) = (b). By density, we may suppose that wui,...,u, are Kéhler classes. Fix
a positive (n,n) form f such that [ +f =1. Then lemma 5.1 implies that there is
a Kéhler metric a; representing u; such that o} = u f. Inequality (a) combined
with an integration over X yields

u1~-~un:/041/\.../\(1"2(u?)l/"...(u::)l/"/ I
X X

(b) = (a). The forms aq,...,a, can be considered as constant (1,1)-forms on
any complex torus X = C"/T. Inequality (b) applied to the associated cohomology
classes u; € HY1(X,IR) is then equivalent to (a).

Finally we prove (a) by induction on n, assuming the result already
proved in dimension n» — 1. We may suppose that «, is positive definite, say
an =1y.,dz; ANdZ; in a suitable basis. Denote by w1,...,u, the associated
cohomology classes on the abelian variety X = C"/Z[i]™. Then u, has integral
periods, so some multiple of u,, is the first Chern class of a very ample line bundle
O(D) where D is a smooth irreducible divisor in X. Without loss of generality,
we may suppose u, = ¢1(O(D)). Thus

ul .. .un71 . un — uer .. .unier
and by the induction hypothesis we get

U Uy > (u?rfDl)l/(nfl) o (uzjm)l/(nfl)_

However u;TDl = u}“l “Up, > (U?)("fl)/"(uﬁ)l/”, since (a) and (b) are equivalent
and (a) is already proved in the case of two forms. (b) follows in dimension n, and
therefore (a) holds in C". O

Remark 5.3. — In case «; (resp. u,;) are positive definite, the equality
holds in 5.2 (a,b) if and only if a1,...,q, (resp. wui,...,u,) are proportional.
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In our inductive proof, the restriction morphism H>*(X,IR) — H“'(D,IR) is
injective for n > 3 by the hard Lefschetz theorem, hence it is enough to consider
the case of a? A "7P. The equality between arithmetic and geometric means
occurs only when all numbers Aj, ... \;, are equal, so all A\; must be equal and
a = A1, as desired. More generally, there is an inequality

041/\.../\Oép/\ﬁ1/\.../\ﬁn_p2
(5.4) > (Y ABLA oA Bap) P (@B ABLA A Brp) P

for all (1,1)-forms a;, Br > 0. Once again, inequality (5.4) is easier to be proved
with cohomology classes rather than forms. By a density argument, we may
suppose that all forms §; are positive definite and have coefficients in Q[i]. Let
u1,...,up be the cohomology classes of type (1,1) associated to ai,...,q, on
X = C"/Z[i]™. The cohomology class of (; is a rational multiple of the first
Chern class of a very ample line bundle O(Y7), where Y7 is a smooth irreducible
divisor in X, that of f,)y, is a multiple of such a divisor Y3 in Y7, and by induction
the cohomology class of 81 A ... A B,—p is equal to a multiple of the cohomology
class of a connected p-dimensional submanifold Y C X. Then (5.4) is equivalent
to the already known inequality

Wty tyy > (W )P @l )P O

6. Mass concentration in the Monge-Ampeére equation

In this crucial section, we show how the Aubin-Calabi-Yau theorem can be
applied to construct singular metrics on ample (or more generally big and nef)
line bundles. We first suppose that L is an ample line bundle over a projective
n-fold X and that L is equipped with a smooth metric of positive curvature. We

consider the Kihler metric w = s-c(L). Any form @ in the Kihler class of w can

T 27
be written as W = w+ £JIY, i.e. is the curvature form of L after multiplication of

the original metric by a smooth weight function e~%. By lemma 5.1, the Monge-
Ampere equation

(6.1) (w + ia&p) — 7

T
can be solved for ¢, whenever f is a smooth (n,n)-form with f > 0 and [ f = L™
In order to produce logarithmic poles at given points zi,...,xxy € X, the main

idea is to let f converge to a Dirac measure at «; ; then @ will be shown to converge
to a closed positive (1,1)-current with non zero Lelong number at ;.

Let (z1,...,2n) be local coordinates centered at z;, defined on some
neighborhood V; ~ {|z] < R;}. Let g; = (gj1,---,9jn) be arbitrary holomorphic
functions on V; such that g;l(O) = {x;}, and let

/
(62) tog lgs| = log (3 lassl?)

1<k<n
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Then log |g;| has an isolated logarithmic pole at z; and (£89log|g;|)" = p; 0z,
where p; is the degree of the covering map g; : (C",z;) — (C",0). Indeed
ddlog |g;| = 9;8510g|z| has rank (n — 1) on V; \ {z;}, and formula (3.5) with
x(t) = €2t gives

P n 1 _
Lodtos o) = e | ilioBul)”
/gj<z>|<r(7f J) @mr)™ S i<r

_ P / (285|’LU|2)" .
= =p
2mr3)™ Jiw)<r !
for every r > 0 small enough. Now, let x : IR — IR be a smooth convex increasing
function such that x(¢t) =t for ¢t > 0 and x(¢t) = —1/2 for t < —1. We set

(6.3) aje = %35(x(10g l9l/¢))-

Then a;. is a smooth positive (1,1)-form, and a;. = £9dlog|g;| over the set of
points z € V; such that |g;(2)| > €. It follows that . has support in the compact
set |g;j(2)] < e, and Stokes’ formula gives

no_ Lo N =,
(6.4) /Vjaj,g—/vj(wt?@loglgjl) Pj-

Hence o} . converges weakly to the Dirac measure p;d,; as € tends to 0. For all
positive numbers 7; > 0 such that o = > p;T; < L™, lemma 5.1 gives a solution

of the Monge-Ampere equation

(6.5) wl = Z Tl + (1 - %)w" with w. =w+ 185@/18,
1<5<N T

since the right-hand side of the first equation is > 0 and has the correct integral
value L™ over X. The solution . is merely determined up to a constant. If
v is an arbitrary Kéahler metric on X, we can normalize ¢, in such a way that

fX%W":O-

LEMMA 6.6. — There is a sequence €,, converging to zero such that 1., has
a limit v in L'(X) and such that the sequence of (1, 1)-forms w., converges weakly
towards a closed positive current T of type (1,1). Moreover, the cohomology class
of T is equal to c1(L) and T = w + L00v.
Proof. — The integral [, we Ay"~! = L-{y}""! remains bounded, so we
can find a sequence ¢, converging to zero such that the subsequence w,, converges
weakly towards a closed positive current T of bidegree (1,1). The cohomology
class of a current is continuous with respect to the weak topology (this can be
seen by Poincaré duality). The cohomology class of T' is thus equal to ¢;(L). The
function 1. satisfies the equation %Ad)a = tr,(w: — w) where A is the Laplace
operator associated to y. Our normalization of . implies

Ye = T Gtry(we — w),
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where G is the Green operator of A. As G is a compact operator from the Banach
space of bounded Borel measures into L!(X), we infer that some subsequence
(the,) of our initial subsequence converges to a limit ¢ in L'(X). By the weak
continuity of 89, we get T = lim(w + £90v.,) = w + L9. O

Let © C X be an open coordinate patch such that L is trivial on a
neighborhood of Q, and let e=" be the weight representing the initial hermitian
metric on L. Then %8@1 = wand %83%—!—1/15) = we, so the function p. = h+1).
defines a plurisubharmonic weight on L}, as well as its limit ¢ = h + 1. By the
continuity of G, we also infer from the proof of lemma 6.6 that the family ()
is bounded in L!'(X). The usual properties of subharmonic functions then show
that there is a uniform constant C such that ¢. < C on Q. We use this and
equation (6.5) to prove that the limit ¢ has logarithmic poles at all points x; € €,
thanks to Bedford and Taylor’s maximum principle for solutions of Monge-Ampere
equations [BT 76]:

LEMMA 6.7. — Let u,v be smooth (or continuous) plurisubharmonic
functions on €), where ) is a bounded open set in C". If

Upgn = Vigo and (i00u)™ < (i00v)" on €,
then v > v on ). O

In the application of lemma 6.7, we suppose that 2 is a neighborhood of z;
and take

U =Tj (X(log lg;l/e) + logs) +C, v=¢,,
where C is a large constant. Then for € > 0 small enough

Urgqa = Tj log |gj| +Ch, Uron <,
i gm \" n n _n T \"
(;881}) =w! 271/, = (;Bau) on .
For C; sufficiently large, we infer u > v on 2, hence

- < 1;log(lg;| +¢)+Cy on Q.

COROLLARY 6.8. —  The plurisubharmonic weight ¢ = h + 1 on Lyq
associated to the limit function ¢ = lim e, satisfies ~00p = T. Moreover, ¢ has
logarithmic poles at all points x; € Q) and

p(2) < 7jloglg;(2)| + O(1)  at z;. O

Case of a big nef line bundle. All our arguments were developed under
the assumption that L is ample, but if L is only nef and big, we can proceed in
the following way. Let A be a fixed ample line bundle with smooth curvature form
v=c(A) >0. As mL + A is ample for any m > 1, by 5.1 there exists a smooth

hermitian metric on L depending on m, such that wy, = ¢(L)m + =c(A) > 0 and
L+ LA
(6.9) wp = Lt 5" A’Z ) "
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However, a priori we cannot control the asymptotic behaviour of w,, when m
tends to infinity, so we introduce the sequence of non necessarily positive (1,1)-
forms w/,, = ¢(L)1 + =c(A) € {wm}, which is uniformly bounded in C*°(X) and
converges to ¢(L);. Then we solve the Monge-Ampere equation

o
(6.10) wpe= 3 oo+ (1o —T——)ui
e (L+ --A)
with wpe = wl, + %831/)%5 and some smooth function ,,. such that

S x Ymey" = 0; this is again possible by Yau’s theorem 5.1. The numerical con-
dition needed on o to solve (6.10) is obviously satisfied for all m if we suppose

U:ijT;-l <L"< (L-l—%A)n.

The same arguments as before show that there exist a convergent subsequence
lim, — 4 00 ¥m, ., = ¥ in L'(X) and a closed positive (1, 1)-current 7' = lim wyy, .,
= ¢(L)1 + £89¢ € c1(L) such that Corollary 6.8 is still valid; in this case, h is
taken to be the weight function corresponding to ¢(L);. Everything thus works as
in the ample case.

7. Choice of the logarithmic singularities

Let us assume (with the notation of § 6) that each point x; is isolated in
E1(¢). Then we conclude by (4.3) and Corollary 4.6 that there is a surjective map

(1) H(X,Kx+L)— @ O(Kx + L), ® (0Ox/I((1-<)p)), -
1<j<N

However, finding sufficient conditions ensuring that x; is isolated in F1 () = E1(T)
is a harder question. Therefore, we postpone this task to the next section and
explain instead how to choose the logarithmic poles log |g;| and the constants 7;
to obtain specified ideals and jets of sections at each point x;.

Suppose that an ideal J; C Mx ., is given at x;, in other words, that
we are given a 0-dimensional subscheme (Z,0z) with £ = {z1,...,2n5} and
Oz 4, = Ox /J;. We want to find sufficient conditions for the surjectivity of the
restriction map

HO(X,K)(—I—L)—>HO(E,OE(K)(+L)): @ O(Kx+L)xj®OX71j/Ij.

1<G<N

By (7.1), we need only find a germ of map g; : (X,z;) — (C",0) and a constant
75,0 such that Z(7;0loglg;|) C J;. For 7; > 7j0 and € small enough, corollary 6.8
then implies 7 ((1 — E)go) C J;. Thus we have to choose o slightly larger than
o0 =, p;jTjlo where p; is the degree of the covering map g; ; this is possible only
if L™ > 0g. Let us discuss some specific cases.

Spannedness. To obtain that Kx + L spans at x € X, we consider a
single point 1 = x and take Ji = Mx 4, ¢1(2) = (21,...,2n), 710 = n and
o9 =71’ = n". Then Z(71log|g1]) C Mx ., as desired.
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Separation of points. To obtain the separation of two points z1 # xo
in X by sections of Kx + L, we make the same choices as above at x1,z2 and

get o9 = 7'y + 759 = 2n". If 1,22 are “infinitely near” in some direction
¢ € TX, we choose coordinates (z1,...,2,) centered at * = x1 = x2 so that
0/0z, = &, and we set Ji = (21,...,2n_1,22). By example 4.8, we can choose
g1(2) = (21,...,2n-1,22) and 710 = n. Then the degree of g1 is p1 = 2 and we

find again o9 = p177’y = 2n".

Generation of s-jets. Instead of just considering jets at one point, we
wish to look at several points simultaneously which may come into coincidence.
Such a concern appears also in the work of Beltrametti-Sommese [BSo 90], where
an extensive study of the surface case is made. The relevant definition is as follows.

DEFINITION 7.2. — We say that L generates s-jets on a given subset
EC X if HY(X,L) — @ J;? L is onto for any choice of points z1,...,zy € E
and integers si1,...,sn with Y (s; +1) = s+ 1. We say that L is s-jet ample if
the above property holds for = = X.

With this terminology, L is 0-jet ample if and only if L is spanned and 1-jet
ample if and only if L is very ample. In order that Kx + L generates s-jets on =,
we take z1,...,xn € Z arbitrary, g;(z) = (21,...,2n) at each z; and 7,0 = n+s;.
Therefore 0g = max ) _(n + s;)" over all decompositions s +1 = > (s; +1). In
fact, if we set ¢; = s; + 1, the following lemma gives o9 = (n + s)™, that is, the
maximum is reached when only one point occurs. [

LEMMA 7.3. — Let t1,...,tn € [1,+00[. Then
S -1t < (n-1+ Y b))
1<j<N 1<j<N
Proof. — The right hand side is a polynomial with nonnegative coefficients

and the coefficient of a monomial té? involving exactly one variable is the same as
in the left hand side (however, the constant term is smaller). Thus the difference
is increasing in all variables and we need only consider the case t; = ... =ty = 1.
This case follows from the obvious inequality

n

’ﬂN: n
n n—i—(l

)n"—l(N— H<(n+N-1)" O

COROLLARY 7.4. — Let L be a big nef line bundle. A sufficient condition
for spannedness (resp. separation of points, s-jet ampleness) of Kx + L on a given
set = is L™ > og with

oo =n", resp. op =2n", resp. op=(n+s)",
provided that the solution w. of (6.5) (resp. the solution wy, . = w}, + %651/17”75 of

(6.10)), always has a subsequence converging to a current T for which all points
x € ENE1(T) are isolated in FE1(T).
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Case of an arbitrary 0-dimensional subscheme. Let J; = (hjr)i<k<n
be an arbitrary ideal in Ox ,; with V.J; = {z;}. By remark 4.9, we can take
9; = (gj1,---,9jn) to be n generic elements of Z; and 7; o = n. Indeed, property
(4.10) then shows that Z(ylog|g;|) C J; for v > n. In this case, we find
oo =n" ) pj. Unfortunately, this value is in general very far from being optimal:
for instance, we would get g = n"(s+ 1)™ instead of (n+ s)™ in the case of s-jets.
If (2, O=) is a local complete intersection, that is, if each J; has N = n generators,
we simply take g; = (hj1,...,h;n). Thus we obtain p; = dim Ox ., /J; and
(75) gy = ’anhO(E, O:)

8. Upper bound for the 1-codimensional polar components

The goal of this section is to give a rather simple derivation of numerical
conditions ensuring that codim(E; (T'), ) > 2 at a given point x. In particular, we
will obtain a criterion for very ample line bundles over surfaces. Although these
results are only formal consequences of those obtained in the next two sections,
we feel preferable to indicate first the basic ideas in a simple case.

Let L again denote an ample line bundle over a projective algebraic
manifold X and keep the same notation as in § 6. Siu’s decomposition formula
(3.8) applied to T' = limw,, gives

+oo
(8.1) T = Z)\k [Hx] + R,
k=1

where [Hy]| is the current of integration over an irreducible hypersurface Hy and
codim E.(R) > 2 for every ¢ > 0. As we would like F4(T") to have isolated points
at x;, a difficulty may come from the singular points of high multiplicities in the
hypersurfaces H. We thus need to find upper bounds for the coefficients A\;. The
convexity inequality 5.2 can be used for this purpose to obtain a lower bound of
the mass of R :

PrRoOPOSITION 8.2. — We have
+oo
Z)‘k L' Hy<oy=(1—(1-o/L")"™)L"
k=1

Proof. — As [ TAw" ' =L"and [([Hy] Aw"™t = L™ Hy, we need
only prove that

(8.3) / RAW > (1 —o/LMY"L".
X

Let 6 be a smooth function on X such that 0 < 8 <1, § =1 in a neighborhood of
Ui<p<n Hr and [ fw™ < o, where g9 > 0 is an arbitrarily small number. This

19



is possible because |J; <<y Hi is a closed set of zero Lebesgue measure in X.
Then o

/(1—9)T/\w"71zliminf/(l—G)ws/\wnfl
p'e p'e

e—0

> hInlIlf/ (1 _ 0) (w;z)l/n(wn)lfl/n
X

e—0

> (=o/tyn [ )er

X

by the convexity inequality and equation (6.5). By our choice of § we have
(1=60)T <Y on e [Hi] + R, s0

/X ( S A [Hi] + R) A"t > (1= o /LML — &),

k>N
Since N and &¢ were arbitrary, we get the expected inequality (8.3). O

If L is big and nef, the same result can be obtained by replacing w with wg,
and w. with wg . in the above inequalities (¢ — 0, k — 400) and by letting ko
tend to +oo at the end. Now suppose that for any hypersurface H in X passing
through a given point x we have

(8.4) L" ' H> (1-(1—a/L™Y™)L"

We can choose 0 = 0( + ¢ such that inequality (8.4) is still valid with o instead
of 09, and then all hypersurfaces Hy passing through = have coefficients A\ < 1 in
(8.1). Thus

Ey(T) C Eyx(R)U|JHysing U JHe NVH) U | (HeNErox (R) U | Hi,
k k£l AR<1 Ap>1

because the contribution of [Hy| to the Lelong number of T is equal to 1 at a
regular point. As all terms in the union have codimension > 2 except the last
ones which do not contain z, condition (8.4) ensures that codim (E1(T),z) > 2.
In the case of surfaces, we can therefore apply corollary 7.4 to obtain:

COROLLARY 8.5. — Let X be a smooth algebraic surface, and let L be a
big nef line bundle over X. Then on a given subset = C X

Kx+L is spanned | separates points | generates s-jets
L* > 4 8 | 9 | 12 (2+5)?
when
vC, L-C> 2 6 5 | 4 2+ 3s + 52

for all curves C C X intersecting =. In particular, if L is ample, Kx + mL is
always globally spanned for m > 3 and very ample for m > 5.

Proof. — TFor s-jets, we have o9 = (2 + s)?, so we find the condition

2> @48 L-O>(1-(1-(@2+9° /L)) L
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The last constant decreases with L? and is thus at most equal to the value obtained
when L2 = (2 + s)? + 1; its integral part is precisely 2 + 3s + s2. O

The above lower bounds on L? are sharp but not those for L - C. Reider’s
method shows in fact that Kx + mL is very ample as soon as m > 4. In the
higher dimensional case, a major difficulty is to ensure that the germs (Ey(T), z;)
do not contain any analytic set of dimension 1,2,...,n — 2. This cannot be done
without considering “self-intersections” of T and prescribing suitable bounds for
all intermediate intersection numbers L? - Y.

9. Approximation of closed positive (1,1)-currents by divisors

Let L be a line bundle with ¢;(L) € T'y and let T = ¢(L) > 0 be the
curvature current of some singular metric on L. Our goal is to approximate T in the
weak topology by divisors which have roughly the same Lelong numbers as T'. The
existence of weak approximations by divisors has already been proved in [Le 72]
for currents defined on a pseudoconvex open set 2 C €™ with H2(Q,R) = 0, and
in [De 82¢] in the situation considered here. However, the result of [De 82¢] is less
precise than what we actually need and moreover the proof contains a small gap;
a complete proof will therefore be included here.

PROPOSITION 9.1. — For any T = ¢(L) > 0 and any ample line bundle
F, there is a sequence of non zero sections hs € H°(X,psF + qsL) with ps, qs > 0,
limgs = +o0 and limps/qs = 0, such that the divisors Ds = qisdiv(hs) satisfy
T = lim D; in the weak topology and sup,¢ x |V(Ds,z) —v(T,z)] — 0 as s — +o0.

Remark 9.2. — The proof will actually show, with very slight modifica-
tions, that Prop. 9.1 also holds when X is a Stein manifold and L is an arbitrary
holomorphic line bundle. The last assertion concerning Lelong numbers implies
that there is a sequence £, > 0 converging to 0 such that E.(T) = (> Ee—c, (Ds)-
When D is an effective divisor, given locally as the divisor of a holomorphic func-
tion h, then E,(D) is the set of points # € X such that the derivatives h(®)(z) = 0
for all multi-indices o with || < ¢. This gives a new proof of Siu’s result
[Siu 74] that E.(T) is an analytic set, at least in the case of bidegree (1, 1)-currents
(in fact the case of an arbitrary bidegree is easily reduced to the (1,1) case by a
standard argument due to P. Lelong). Proposition 9.1 is therefore already non
trivial locally.

Proof. — We first use Hérmander’s L? estimates to construct a suitable
family of holomorphic sections and combine this with some ideas of [Le 72] in
a second step. Select a smooth metric with positive curvature on F', choose
w = c(F) > 0 as a Kéhler metric on X and fix some large integer m (how large m
must be will be specified later). For all s > 1 we define

1
ws(z) = sup —log||f;(2)]l:
1<j<N $§
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where (f1,..., fn) is an orthonormal basis of the space of sections of O(mF + sL)
with finite global L? norm [y ||f[|?dV,. Let ep and ey be non vanishing
holomorphic sections of F' and L on a trivializing open set €2, and let =% = ||er||,
e ¥ = ||ler|| be the corresponding weights. If f is a section of O(mF + sL)
and if we still denote by f the associated complex valued function on 2 with
respect to the holomorphic frame e @ e5 , we have || f(2)]| = |f(z)|e"m¥ (=) =50 () ;
here ¢ is plurisubharmonic, ¥ is smooth and strictly plurisubharmonic, and
T=190p, w= %851/1. In Q, we can write

T

1 m
ws(z) = sup —log|f;(2)| — ¢(2) — —¥(2).

1<j<N § s
In particular T := %8511)5 + T + 7w is a closed positive current belonging to the
cohomology class ¢1(L) + Zcy (F).

Step 1. We check that T, converges to T as s tends to 400 and that T
satisfies the inequalities

v(T, z) — g <v(Ts,z) <v(T,x)

at every point x € X. Note that T is defined on 2 by Ts = %831)519 with

1 omp—

vanle) = sw SloglfE) [ IR, <1,
1<j<N 8 Q

We suppose here that ) is a coordinate open set with analytic coordinates

(215, 2n). Take z € ' CC Q and r < o = 3d(V,09). By the L? estimate and

the mean value inequality for subharmonic functions, we obtain

Gy

C
G < o F(QPAAC) < =2 sup e2¢(©)

[¢—z|<r r [C—z|<r

with constants C, Co independent of s and r (the smooth function v is bounded
on any compact subset of ). Hence we infer

1 Cs
(9.3) vs,0(2) < sup @(Q) + 5-log —--.
s [¢—z|<r 2s T2n
If we choose for example r = 1/s and use the upper semi-continuity of ¢,
we infer limsup, ., vso < ¢. Moreover, if v = v(p,z) = v(T,z), then

©(€) < ~vlog|¢ — x| + O(1) near z. By taking r = |z — 2| in (9.3), we find

n n
vsa(2) £ sup @(¢) = “logr+0(1) < (v - =) log|z — o] + O(1),
[¢—z|<2r s s
n n
v(Ts,z) = vvs,,x) > (7 - —) >v(T,z)— —.

s/+ s
In the opposite direction, the inequalities require deeper arguments since we
actually have to construct sections in H°(X, mF + sL). Assume that €2 is chosen
isomorphic to a bounded pseudoconvex open set in C". By the Ohsawa-Takegoshi

22



L? extension theorem [Oh 88], for every point z € 2, there is a holomorphic
function g on Q such that g(z) = ¢*#(*) and

[l ar) < 6,
Q

where C5 depends only on n and diam (2). For z € €, set
o(z) =0(]z — z|/r) g(z) er(2)™ @ er(2)®, r=min(1,27"d(Y,09)),

where 6 : IR — [0,1] is a cut-off function such that 6(t) = 1 for ¢ < 1/2 and
6(t) = 0 for t > 1. We solve the global equation Ou = v on X with v = Jo, after
multiplication of the metric of mF + sL with the weight

672npz(2), px(2) :9(|z—x|/r) log |z — 2| <0.

The (0, 1)-form v can be considered as a (n, 1)-form with values in the line bundle
O(—Kx +mF + sL) and the resulting curvature form of this bundle is

Ricci(w) + mw + sT + niagpm.
7T

Here the first two summands are smooth, i99p,, is smooth on X \ {z} and > 0 on
B(z,7/2), and T is a positive current. Hence by choosing m large enough, we can
suppose that this curvature form is > w, uniformly for x € 2’. By proposition 4.1,
we get a solution u on X such that

/ ||u||2e—2npdew < 04/ |g|26—2mw—2s<p—2npzde < 05;
X r/2<|z—z|<r

to get the estimate, we observe that v has support in the corona r/2 < |z —z| <7
and that p, is bounded there. Thanks to the logarithmic pole of p,, we infer that
u(z) = 0. Moreover

/ llo][2V,, < / lgl2e=2mo =250 qy, < ¢,
Q Q' +B(0,r/2)

hence f =0 —u € HY(X,mF + sL) satisfies [ ||f]|?dV., < C7 and

1@l = llo (@)l = lg@)|l ler @)™l (@)I]* = ller(@)|™ = e,

In our orthonormal basis (f;), we can write f = Y \;f; with > |\;[*? < Cr.
Therefore

e = | f(@)]] <Y gl supllfi(@)] < /OrN e,

wy(z) >~ 1og(CrN) 2| (@] >~ (1oa(CrN)' 2 + mv(a) )

where N = dim H°(X,mF + sL) = O(s"). By adding ¢ + 21, we get
vso > ¢ — Cgsllogs. Thus lims oo vs.0 = ¢ everywhere, Ts = %8505,9
converges weakly to T = %853@, and

v(Ts,x) = v(vs,q,2) <vip,x) =v(T,x).
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Note that v(vs,q,2) = 1 minord,(f;) where ord,(f;) is the vanishing order of f;

at z, so our initial lower bound for v(Ts, ) combined with the last inequality gives
1
(9.4) v(T,z) — L minord,(f;) < v(T,z).
s 7 s

Step 2: Construction of the divisors Dsy.

Select sections (g1,...,9n) € H°(X,moF) with mg so large that mgoF is
very ample, and set

his = flgi+ ...+ fogn € HY(X, (mo + km)F + ksL).
For almost every N-tuple (¢1,...,9n), lemma 9.5 below and the weak continuity

of 90 show that L )
1 o5 .
Dk,s = E;5310g|hk75| = k_s le(hk75)

converges weakly to Ts = ;iagv&g as k tends to +o0o, and that

1 1
< — < —.
v(Ts,z) < V(ksDk’S’x) <v(T,z)+ e

This, together with the first step, implies the proposition for some subsequence
Ds = Dys),s- We even obtain the more explicit inequality

1 1
v(T,x) — g < V(ED;M,J:) <v(T,z)+ T O

LEMMA 9.5. — Let Q be an open subset in C" and let fi,...,fny €
H%(Q,0q) be non zero functions. Let G C H°(Q,0q) be a finite dimensional
subspace whose elements generate all 1-jets at any point of Q. Finally, set
v = suplog|f;| and

hi = ffg1+...+ fan.  g; € G {0}

Then for all (g1,...,g9n) in (G \{0})N except a set of measure 0, the sequence
1 log |hi| converges to v in L () and

1 1
viv,z) < U(E10g|hk|> <v(v,z)+ o Vee X, Vk>1.

Proof. — The sequence %log |hi| is locally uniformly bounded above and

we have 1
lim —log|h =
i 1ot =09

at every point z where all absolute values |f;(z)| are distinct and all g;(z) are
nonzero. This is a set of full measure in 2 because the sets {|f;|? = |f1|?, j # [} and
{g; = 0} are real analytic and thus of zero measure (without loss of generality, we
may assume that 2 is connected and that the f;’s are not pairwise proportional).
The well-known uniform integrability properties of plurisubharmonic functions
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then show that 1 log|hx| converges to v in L{ (). It is easy to see that v(v, )

is the minimum of the vanishing orders ord,(f;), hence
v(log |hk|,z) = ords(hi) > kv (v, x).
In the opposite direction, consider the set & of all (N + 1)-tuples
(z,g1,...,98) € A x GN

for which v(log |hg|,z) > kv(v,x) + 2. Then & is a constructible set in Q x GV:
it has a locally finite stratification by analytic sets, since

a=U( U (oD@ 20k x6")n 1 {(e.): D'hu(x) =0},

520 j,|a|=s |1B1<ks+1

The fiber &N ({2} x GY) over a point x € Q where v(v, z) = minord,(f;) = s is the
vector space of N-tuples (g;) € GV satisfying the equations Dﬁ(z f]’-“gj(:z:)) =0,
|8] < ks + 1. However, if ord,(f;) = s, the linear map

,...,0,g4,0,...,0) — (Dﬁ(ffgj(ac)))wSkSJrl

has rank n + 1, because it factorizes into an injective map Jlg; — Jhstl (f]kgj). It
follows that the fiber & N ({z} x GV) has codimension at least n + 1. Therefore

dim &, < dim(Q x GN) — (n+1) =dimGN -1

and the projection of £, on GV has measure zero by Sard’s theorem. By definition
of &, any choice of (g1,...,g9n) € GN \U,~, pr(€x) produces functions hy such
that v(log |hg|,z) < kv(v,z) +1on Q. O

10. Self-intersection inequality for closed positive currents

Let L be a nef line bundle over a projective algebraic manifold X and let
T = ¢(L) > 0 be the curvature current of any singular metric on L. We want to
derive a bound for the codimension p components in the sublevel sets E.(T) in
terms of the p-th power {T'}? of the cohomology class of T. The difficulty is that,
in general, TP does not make sense as a current. However, products of currents
can be defined in some special circumstances. Let M be an arbitrary complex
manifold and n = dimg X. Suppose given a closed positive current of bidegree
(p,p) on M and a locally bounded plurisubharmonic function ¥ on M. According
to Bedford-Taylor [BT 82], the product © A 99 can then be defined by

(10.1) O NiddY = i00 (Y ©).

Here © is a differential form with measure coefficients, so its product by the locally
bounded Borel function v is a well defined current of order 0, and the derivative 60
can be taken in the sense of distribution theory. The resulting current © A 109y
is again positive, as is easily seen by taking the weak limit with a sequence of
smooth approximations of ¢. More generally, if i1, ..., 1, are locally bounded
plurisubharmonic functions, the product © Aiddyn A. .. ANiDO,, is well defined by
induction on m. Various examples (cf. [Ki 84]) show that such products cannot be
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defined in a reasonable way for arbitrary plurisubharmonic functions ;. However,
functions with —oo poles can be admitted if the polar set is sufficiently small.

PropoSITION 10.2. — Let ¥ be a plurisubharmonic function on M such
that 1 is locally bounded on M \ A, where A is an analytic subset of M of
codimension > p + 1 at each point. Then © A i00y can be defined in such a
way that © A i00y = lim, .o © A 900y, in the weak topology of currents, for
any decreasing sequence (1,,),>1 of plurisubharmonic functions converging to .
Moreover, at every point x € X we have

V(@ A %65’(/1,,@) >v(0,z) vy, x).

Proof. — When ¢ is locally bounded everywhere, we have lim¢, © =9 ©
by the monotone convergence theorem and we can apply the continuity of 90 with
respect to the weak topology to conclude that © A 100y = lim,_, o, © Ai0IY,,.

First assume that A is discrete. Since our results are local, we may suppose
that M is a ball B(0,R) C €C" and that A = {0}. For every s < 0, the function
=% = max(¢, s) is locally bounded on M, so the product © A i99¢=*° is well
defined. For |s| large, the function =* differs from 1 only in a small neighborhood
of the origin, at which ¢ may have a —oco pole. Let v be a (n—p—1,n—p—1)-form
with constant coefficients and set s(r) = liminf,|_,,_¢%(z). By Stokes’ formula,
we see that

(10.3) / O N idIP=5 Ay
B(0,r)

does not depend on s when s < s(r), for the difference of two such integrals involves
the 90 of a current with compact support in B(0,r). Taking v = (i99|z|*)" P71,
we see that the current © A9y has finite mass on B(0,7)\{0} and we can define
(1401 (© A i00Y), ) to be the limit of the integrals (10.3) as r tends to zero and
s < s(r). In this case, the weak convergence statement is easily deduced from the
locally bounded case discussed above.

In the case where codim A > p+ 1, we use a slicing technique to reduce the
situation to the discrete case. Set ¢ = n — p — 1. There are linear coordinates
(#1,...,2n) centered at any singular point of A, such that 0 is an isolated point of
AN ({0} x €”*1). Then there are small balls B’ = B(0,7’) in €%, B” = B(0,r")
in €7 such that AN (B’ x 9B”) =, and the projection map

T:C" —C 2= (z1,...,20) — 2 = (21,...,2¢)

defines a finite proper mapping A N (B’ x B”) — B’. These properties are
preserved if we slightly change the direction of projection. Take sufficiently many
projections 7, associated to coordinate systems (z{",...,z0"), 1 < m < N, such
that the family of (g, ¢)-forms

idz{”/\d%in/\.../\idz;”/\dzgn
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defines a basis of the space of (g, q)-forms. Expressing any compactly supported
smooth (g, ¢)-form in such a basis, we see that we need only define

(10.4) / O NI A f(2,2")ider NdZL A ... Nidzg NdZ, =
B’'x B’

/ { f(2,0)O(2,¢) NiOOY(Z, .)}idzl ANdZ1 A ... Nidzg A dZ,
’ B//

where f is a test function with compact support in B’ x B”, and ©(z’, ) denotes
the slice of © on the fiber {2’} x B” of the projection 7w : C" — C7 (see e.g. Federer
[Fe 69]). Here O(z',e) is defined for almost every z/ € B’ and is again a closed
positive current of bidegree (p, p) on B”. The right hand side of (10.4) makes sense
since all fibers ({z'} x B”) N A are discrete and the double integral is convergent
(this will be explained in a moment). The weak convergence statement can be
derived from the discrete case by (10.4) and the bounded convergence theorem.
Indeed, the boundedness condition is checked as follows: observe that the functions
Y1 > ... >, > 1 are uniformly bounded below on some cylinder

K5 = B((1 - o) x (B") \B(( - 2)))

disjoint from A, with e < § < 1 so small that Supp f C B((1—6)r")xB((1—¢)r");
for all 2/ € B((1 — 6)r’), the Chern-Levine-Nirenberg inequality [CLN 69] shows
that

/ O(2, o) NiODY, (2, 0) < Cemax (17, |s]) / O(7', ) NidD|2"|?

B((1—e)r") Ks,e B((1—&/2)r")

[Proof: introduce a cut-off function y.(z”) equal to 1 near B((1 — &)r”) with
support in B((1 —&/2)r"), integrate by parts and write [i00x.| < C.id9|z|*]; for
s sufficiently large (independent of v), the left hand integral does not depend on
s and is equal by definition to the corresponding integral involving 1, ; the right
hand side, of course, has a bounded integral over B((1—4§)r’) because we integrate
O against a smooth form. The same argument with ¢ instead of 1, shows that
the right hand side of (10.4) is convergent.

It only remains to prove the final statement concerning Lelong numbers.
Assume that M = B(0,r) and « = 0. By definition

1/(6 A 185¢,x) = lim OAN 38% A (iﬁglog |z|)n7p7
e r—0 |z|<r e s
Set v = v(¢, z) and
by (2) = max (d(2), (v — €) log|2| — )
with 0 < & < 7 (if ¥ = 0, there is nothing to prove). Then v, decreases to ¢ and
;o y n—p—1 y ;o n—p—1
/ @Aiaam(iaalog |z|) s limsup/ @/\1881/1,,/\(18810g |z|) 3
lz|l<r T ™ v—+too Jiz|<r T ™

by the weak convergence of © A i9d, ; here (£ddlog |z|)" P~ is not smooth on
B(0,7), but the integrals remain unchanged if we replace log|z| by x(log|z|/r)
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with a smooth convex function x such that x(¢t) = ¢ for ¢ > —1 and x(¢) = 0
for t < —2. Now, we have ¥(z) < vlog|z| + C near 0, so ¥, (z) coincides with
(v —¢e)log|z| — v on a small ball B(0,r,) C B(0,r) and we infer

- - n—p-1
/ O A LaBy, A (—8810g|z|> > (7_5)/
|z|<r i ™

[z|<ry

oA (%8310g|z|)n_p

2 (v —ev(0,).
As r €]0,R[ and € € ]0,~[ were arbitrary, the desired inequality follows. O

COROLLARY 10.5. — For1 < j < p, let T; = %ngj be closed positive
(1,1)-currents on a complex manifold M. Suppose that there are analytic sets
Ay D ... D Ay in M with codim A; > j at every point such that each v;, j > 2,
is locally bounded on M \ A;. Let {Ap r}r>1 be the irreducible components of A,
of codimension p exactly and let vj = mingea, , v(Tj,x) be the generic Lelong
number of T; (or v;) along Ap . Then Ty A ... AT, is well-defined and

—+oo
TN NT, > ZVL/C"'VPJC [Ap,k]-
k=1

Proof. — By induction on p, Proposition 10.2 shows that 771 A ... AT}, is
well defined. Moreover, we get

V(iAo ATy x) > v(Th,z) . v(Tp, @) > 1 k. Vpk

at every point x € A,i. The desired inequality is a consequence of Siu’s
decomposition theorem (3.8). O

Now, let X be a projective n-fold and let T be a closed positive (1, 1)-current
on X. By the Lebesgue decomposition theorem, we can write T" = Thane + Tsing
where T,p. has absolutely continuous coefficients with respect to the Lebesgue
measure and the coefficients of Tii,e are singular measures. In general, Ty
and Tgng are positive but non closed. We fix an arbitrary set = C X and for
p=12....n,n+1 we set

(10.6) by = by(T,Z) = inf {c¢ > 0; codim (E.(T),z) > p, Vo € Z},

with the convention that a germ has codimension > n if and only if it is empty.
Then 0 = by < by < ... < b, < bypgr with by = maxgezv(T,2) < 400, and
for ¢ € |bp, bpt1], Ec(T) has codimension > p at every point of Z and has at least
one component of codimension p exactly which intersects =. We call by,bo,...
the jumping values of the Lelong numbers of T over =. Our goal is to prove the
following fundamental inequality for the Lelong sublevel sets E.(T), when T is
the curvature current ¢(L) of a line bundle (this restriction is unnecessary but the
general case is more involved, see [De 92] for a general proof).

THEOREM 10.7. — Suppose that there is a semipositive line bundle G
over X and a constant a > 0 such that Orx (1) + a7*G is nef; set u=ac(G) >0
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with any smooth semipositive metric on G. Let T = ¢(L) > 0 be the curvature
current of a nef line bundle L, let = C X be an arbitrary subset and b, = b,(T, Z).
Denote by {Z, i }k>1 the irreducible components of codimension p in Uc>bp E.(T)
which intersect = and let vy € |bp,bpy1] be the generic Lelong number of T
along Z, . Then the De Rham cohomology class ({T} + bi{u})--- ({T} + bp{u})

can be represented by a closed positive current ©,, of bidegree (p, p) such that

Op = > (Wpk —b1) - (Upk — bp) [Zpk] + (Tabe + bru) Ao A (Tape + byu).
E>1

The same is true for = = X if we only suppose ¢;(L) € T';. instead of L nef.

Here A(Tabc + bju) is computed pointwise as a (p,p)-form. It follows in
particular from our inequality that 7%, _has locally integrable coefficients for all p.
Let w be a Kéhler metric on X. If we take the wedge product of the fundamental
inequality 10.7 by w™ P, integrate over X and neglect T,y in the right hand side,
we get:

COROLLARY 10.8. — With the notation of theorem 10.7, the degrees with
respect to w of the p-codimensional components Z,, j, of Uc>bp E.(T) intersecting
= satisfy

—+oo

Z(VPJC —b1) .. (Ve — bp)/ (Zp ] Nw™ P
k=1 X
< ({7} +bu{u}) - ({T} + bp{u}) - {w}" 7. O

In particular, if D is a nef divisor and if L = O(D) is equipped with the
singular metric such that T' = ¢(L) = [D], we get a bound for the degrees of the
p-codimensional singular strata of D in terms of a polynomial of degree p in the
cohomology class {D}. The case X = IP" is of course especially simple: Since
TTP" is ample, we can take u = 0, and then the bound is simply {D}? - {w}"?;
the same is true more generally as soon as TX is nef. It is natural to try to
find an interpretation of the (p,p)-form involving Type in the general inequality.
Unfortunately this (p,p)-form is not closed and so it does not correspond to
an intrinsic cohomology class that would have a simple counterpart in algebraic
geometry. Nevertheless, the additional Monge-Ampere mass provided by Tupe is
absolutely crucial for the purely algebraic application which we shall make in the
next section. Our intuition is that the additional (p, p)-form must be understood
as an excess of self-intersection, measuring asymptotically the amount of freedom
a divisor in the linear system H°(X, sL) can keep while being moved through the
fixed singular strata prescribed by sT', when s tends to infinity.

Proof of Theorem 10.7. — By the first step of the proof of theorem 9.1 and
by (9.4), there is a positive line bundle F' with the following property: for every
s > 0 there exist sections f; € H*(X, F + sL), 1 <1i < N(s), with

1
v(T,x) — g < B minord, (f;) <v(T,z), Vze X.
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The main idea is to decrease the Lelong numbers by replacing each section f; by
some of its high order derivatives, or rather by some jet section. In this way,
the polar components with low generic Lelong number disappear, and we can
decrease the dimension so as to be able to take intersections of currents (thanks
to proposition 10.2 or corollary 10.5). Of course, introducing jet sections also
introduces symmetric powers of the cotangent bundle; this is the reason why the
curvature of TX plays an important role in the inequality.

First step: killing Lelong numbers in the singular metric of L.

Consider the m-jet section J" f; with values in the vector bundle E,, =
J™O(F+sL) of m-jets. First suppose that a is rational. There are exact sequences

00— S"T*"X®O(F+sL)— E,, — Ep_1 — 0,
and S™TX ® O(maG) is nef by our assumptions. By induction on m we easily

infer that
Er, ® O2F + sL 4+ maG)

is ample (in an exact sequence of vector bundles with ample extreme terms, so is
the middle term). Hence there is a symmetric power of order ¢ with ga € IN such
that

SI1EY, @ O(2¢F + qsL 4 qmaG)

is generated by holomorphic sections g;. We use the pairing of SYE,, and SYE},
to get sections

S4(JT™f:).9; € H° (X, 0(2¢F + gsL + gmaQ)).
By means of these sections, for each pair (s,m) we define a new singular metric
[| ||s,m on L such that

€]
|1€]ls,m = , §el,
S IS fi). g |[M e
where || || denotes the original singular metric on L as well as the induced metric

on O(2¢F +qsL+gmaG); here the metric of F' (resp. G) is smooth and has positive
(resp. semipositive) curvature. Denote by ¢ the weight of the original metric on
L, by ¢s.m the new one, and by ¢r, ¢ the weights of F, G on some trivializing
open set 2 C X. Then

1 2 m
10.9 o = —1og 3 |SUT™ f).g5| = Zr — Zave,
( ) Ps, g5 Ogij| ( f)gg| 81/1F SC“/)G

because e~¥ appears in the numerator and exp(—2qy¥r — gsp — qmawg)ﬁ in
the denominator of ||€||sm. As ¥p, ¥g are smooth and the g;’s do not vanish
simultaneously, we get
1 . 1, .
V(psm,x) = —minord, (J™" f;) = —(m_ln ord, (f;) — m)+.
S 1 S [
Hence we have the inequality
(10.10) (v(12) - mrn

m

)+ < V(@smy ) < (V(T’ ) — _)+;

S S
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that is, we have been able to construct a new curvature current %65905,,” on L in
which all the Lelong numbers that were < m/s have been killed. Unfortunately
the curvature is no longer > 0, but by (10.9) we have

(10.11) 185<p51m > —gc(F) I c(G) = —gw - Tu,
7r s s s s

where w = ¢(F) > 0. Only the term %w can be made arbitrarily small. Now, for

each s, select an integer m such that b, < m/s < b,+ 1. By (10.9) and (10.10), we
see that ¢g m, is locally bounded on X \ £, /(T), and the definition of b, implies
that E,,,,(T) has codimension > p in a neighborhood of =.

Second step: Construction of the p-th intersection current ©,.

By induction on p, we suppose that ©,_; has already been constructed
(©1 = T satisfies the requirements for p = 1). By proposition 10.2, the wedge
product O,_1 A ;ia&os,m is well defined in a neighborhood of =. However, this
is not satisfactory when = # X, because we need a current defined everywhere
on X. This is the reason why we have to assume L nef when E # X. Under this
assumption, there is for each s a smooth metric on L, associated to some weight p;
on the trivializing open set €2, such that %85;)5 > —%w. We introduce the weight

VYs,m,A,B = Sup (907 Ps,m — A, ps — B)7

where A, B > 0 are large constants. This weight corresponds to the singular metric
on L given by

1€lls,m.a,5 = inf (I[Ell, e[[€llsm , €% 1I€]lp.)-

Clearly 1sm 4,5 converges to ¢ as A, B tend to +o0o, and s, 4,5 is locally
bounded; therefore the curvature current T, 4,8 = +00%sm a,B converges
weakly to T' = %8590 as A, B tend to +o0o. Moreover, the assumed lower bound
on ~ddp, combined with (10.11) implies

2 m
Ts,m,A,B > ——w— —Uujg
s s
this is easily seen by adding %1/1 F + Zag to each term in the supremum formula
defining ¥s 4, 5. Now, the positive (p, p)-current

2 m
@p,s,m,A,B = 610*1 A (Ts,m,A,B + gu} =+ ;’UJ)

is well defined over X since s, 4, p is locally bounded. Its cohomology class is
independent of A, B and converges to {c1(L)} - (c1(L) + byu) when s tends to +oo
(by the choice of m made at the end of the first step, we have limm/s = b,). Hence
the family (0, m.4,5) is weakly compact. First extract a weak limit Op ¢ m 4
by taking some subsequence B, — +oo. By proposition 10.2 we see that in a
neighborhood of =

. 2 m
Gp,s,m,A = lim 6p,s,7n,A,B = 6p—l A (Ts,m,A + —w+ —’U,),
B—+o00 S §
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where

7 —
Ts,m,A - ;331/15,771,14 3 1/}s,m,A == sup((p, Psm — A)

Indeed the codimension of the set of poles of 1 ., 4 is at least p in a neighborhood
of E. Now, by (10.10), we have

m—l—n)
R

V(sm, A, x) > min (V(gp,x), V((psﬁm,x)) > (V(T, x) — .

Proposition 10.2 shows that

m+4+n
V(Op.s.m,a, %) > v(Op_1,) (U(T, x) —

) near =.
S +

By induction on p, we conclude that the generic Lelong number of O, 5 ., 4 along
Zpk is at least equal to

(Vpe = b1) - (Vp = by-1) (VT ) —

In fact, Z, ; meets = at some point x, and therefore the inequality holds at least
on a neighborhood of x in Z, . Siu’s decomposition formula (3.8) yields

), 120

Now, extract a weak limit ©, 5 ,, for some subsequence A, — +oo and then a
weak limit ©,, for some subsequence m, /s, — b, with s, — +00. We obtain a
current ©, such that {0,} = {0,_1} - (c1(L) + bp{u}) and

Op = (Wpk = b1) - (p,k — bp) [Zp,]-
It only remains to show by induction on p that

ep,abc > (Tabc + bl’u) AN (Tabc + bpu)

m—l—n)
S +

m-4+n

Opsma> Wpr—b1)... (Vpr — bp_l)(u(T, x) —

S

As the coefficients of [Z), ] are singular with respect to the Lebesgue measure, 0,
will actually be larger than the sum. By construction, there exists a subsequence
(sy, my, A,, By) such that

o ) )
O = m €1 A (=000s, a5, + —w + —Lu),
™

Sy Sy
1/15,,,m,,,A,/,BV = sup (907 Psy,m, — A, Ps, — Bv)-

The desired lower bound follows from lemma 10.12 below. At the beginning of the
proof, a was supposed to be rational, but this extra assumption can be removed as
above by extracting a weak limit ©, ,, — O, with a sequence of rational numbers
decreasing to a € IR. If = = X, everything works even if we omit the term py, — B
in the definition of ¥y . 4,5 : Wwe can start directly with i, a4 because its polar
set has codimension > p on the whole space X. Hence the nef assumption on L is
not necessary. O

LEMMA 10.12. — Let Q C C" be an open subset and let ¢ be an arbitrary
plurisubharmonic function on €. Set ¢, = max(p,1,) where v, is a decreasing
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sequence of plurisubharmonic functions converging to —oo, each 1, being locally
bounded in Q (or perhaps only in the complement of an analytic subset of
codimension > p). Let © be a closed positive current of bidegree (p — 1,p — 1).
If © A iddy, converges to a weak limit ©, then

ngc > Oabe A (iagsp)abc-

Proof. — Let (p:) (resp. (p:)) be a family of regularizing kernels on C"
(resp. on IR?), and let max,.(z,y) = (max*p.)(x,y) be a regularized max function.
For € > 0 small enough, the function

Pre = maXs(‘P * Pey Py x Ps)

is plurisubharmonic and well defined on any preassigned open set Q' CC . As
¢u,e decreases to ¢, when € decreases to 0, proposition 10.2 shows that

HI% OA i(’“)gcp,,,8 =0OA i(’“)gcp,j

in the weak topology. Let (/3;) be a sequence of test forms which is dense in the
space of test forms of bidegree (n — p,n — p) and contains strongly positive forms
with arbitrary large compact support in €. Select €, > 0 so small that

_ _ 1
(O Ni0dpy,.e, — O ANidDp, , B;) < > for j <uw.

Then the sequence @/\i@&pu)au is locally uniformly bounded in mass and converges
weakly to the same limit ©’ as © A 100y, . Moreover, at every point = € € such
that ¢(x) > —oo, we have ¢, ., () > @(z) > ¢, * pe, (z) + 1 for v large, because
lim, , o ¥, = —o0 locally uniformly. Hence ¢, ., = ¢ * p., on a neighborhood
of z (which may depend on v) and i0dy, ., (x) = (i0dp) * p., (z) for v > v(z).
By the Lebesgue density theorem, if 1 is a measure of absolutely continuous part
Labe, the sequence pxpe, (x) converges to piape(x) at almost every point. Therefore
lim i00¢p, ¢, () = (i100p)abe () almost everywhere For any strongly positive test
form o = i1 A@1 A ... Aiy—p AQp—p of bidegree (n — p,n — p) on £, we get

/G’Aa: lim /6/\1’85@,,@,/\04
Q Q

v—+00

> liminf [ Oape A i(’“)gcpu)au Ao > Oube A 100@abe A .
v—too Jg Q

Indeed, the first inequality holds because i@&omu is smooth, and the last one
results from Fatou’s lemma. This implies ©/, . > ©abcA(1009)abe and lemma 10.12
follows. O

11. Proof of the criterion in arbitrary dimension
We return here to the point where we arrived at the end of § 6, and apply
our self-intersection inequality 10.7 to complete the proof of the Main Theorem.

First suppose, with the notation of § 6, that L is an ample line bundle over X.
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The idea is to apply inequality 10.7 to the (1,1)-current T = limw,, produced
by equation (6.5), and to integrate the inequality with respect to the Kéhler form
w = ¢(L). Before doing this, we need to estimate the excess of intersection in
terms of T} .

PROPOSITION 11.1. — The absolutely continuous part Type of T satisfies
he = (1 - %)w” a.e. on X.

Proof. — The result is local, so we can work in an open set 2 which is
relatively compact in a coordinate patch of X. Let ps be a family of smoothing
kernels. By a well known lemma (see e.g. [BT 76], proposition 5.1), the operator
A+ (det A)Y/™ is concave on the cone of nonnegative hermitian n x n matrices,
hence we get

(e s()) " 2 @) 5 psta) 2 (1 -2) " @) ¢ o),

thanks to equation (6.5). As ¢, tends to 0, w., x ps converges to T x ps in the
strong topology of C'*°(Q2), thus

(T ps))" = (1= 75)

Now, take the limit as § goes to 0. By the Lebesgue density theorem T * ps(x)
converges almost everywhere to Tape(z) on Q, so we are done. O

1/n
(W)™ % ps  on Q.

According to the notation used in § 10, we consider an arbitrary subset

Z C X and introduce the jumping values
by = inf{c > 0; codim (EC(T),I) >p, Vr € E}

By proposition 11.1 and inequality 5.2(a), we have

. o \i/n
AW > (1——) "

w > n w

Now, suppose that Orx (1) + a7*L is nef for some constant a > 0. We can then
apply theorem 10.7 with v = aw and {©,} = (1+b1a)--- (1+bya){wP} ; by taking
the wedge product of ©, with w" ™7, we get

(1+ba)...(1 —|—bpa)/Xw" > (Wpk —b1) - (vpk _bp)/x[zp,k] Aw™P

k>1

(11.2) T’

abc

+ / (Tabe + braw) A ... A (Tape + bpaw) Aw" P,
X

Combining this inequality with (11.2) for T% 7 yields

abc
(1+b1a)...(1+bpa) L™ = (vpk — b1) ... (vpe — bp) L" P+ Zyi
k>1
. o (p—3)/n n
) Sf(b)aﬂ(l—ﬁ) L,
0<j<p
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where Sf (b), 1 < j < p, denotes the elementary symmetric function of degree j in
bi,...,bp and S§(b) = 1. As [[(1 4 bja) = > S¥(b)a’, we get

Z(’/p,k —b1) . (k= bp) L"P - Zp e <

k>1 —j)/n
(1L3) > stwel(1-(1- %)(p J)/ )L

0<j<p

If L is only supposed to be big and nef, we follow essentially the same arguments
and replace w in all our inequalities by wy, = ¢(L)y + =c(A) with A ample
(see section 6). Note that all (n,n)-forms w? were defined to be proportional to
¥" = ¢(A)", so inequality 11.1 becomes in the limit

n n
ez (1) o = (1~ ) et
LrJ An L) (L + —-A)
The intersection inequality (11.3) is the expected generalization of proposition 8.2
in arbitrary codimension. In this inequality, v, 1, is the generic Lelong number of T’
along Z, 1, and Z, ; runs over all p-codimensional components Y of Uc>bp E.(T)
intersecting =; by definition of b; we have maxy v, 1. = bp4+1. Hence we obtain:

THEOREM 11.4. — Let L be a big nef line bundle such that T X ® O(aL) is
nef, and let T € ¢1(L) be the positive curvature current obtained by concentrating
the Monge-Ampére mass L™ into a finite sum of Dirac measures with total mass o,
plus some smooth positive density spread over X (equations (6.5) and (6.10)).
Then the jumping values b, of the Lelong number of T' over an arbitrary subset
= C X satisfy the inductive inequalities

(115)  (bpr = br)- - (b = by) € —

miny L™ P-Y

Z Sf(b) ajapfj )

0<j<p-1

where o = (1 -(1- o/L”)j/")L”, and where Y runs over all p-codimensional
subvarieties of X intersecting =.

Observe that o; is increasing in j; in particular o; < o, = o for
7 < n — 1. Moreover, the convexity of the exponential function shows that
t— %(1 -(1- U/L”)t)L" is decreasing, thus o; > 0,j/p for j < p; in particular
gj > oj/n for j <n—1. We are now in a position to prove the following general
result, which contains the Main Theorem as a special case:

THEOREM 11.6. — On a projective n-fold X, let g; : (X, z;) — (C",0) be
germs of finite holomorphic maps with covering degree p;. Let J1 C Ox 4, - -,
JIN C Ox.ay be the associated ideals T (7;0log|g;]), and let

0= e op=(1=(1—oo/L")/")L", 1<p<n-1,

where L is a big nef line bundle such that L™ > o(. Suppose that Op X (1)+an*L
is nef over P(T*X) and that there is a sequence 0 = 31 < ... < (3, <1 with

L™ P.Y > (Bpt1 — Bt (Bp+1 — 610)71 Z S;D(ﬂ) ajap,j

0<j<p-—1
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for every subvariety Y C X of codimension p = 1,2,...,n—1 passing through one
of the points x;. Then there is a surjective map

HY X, Kx +L) — @ OKx +L)a, ® (Ox.,/ ;).
1<j<N
Proof. — Select 7; > 7j so that L"™P - Y still satisfies the above lower

bound with the corresponding value ¢ > o0¢. Then apply theorem 11.4 with
= = {x1,...,2zn5}. Inequality (11.5) shows inductively that b, < B, for p > 2,
s0 b, < 1 and we get codim (E1(T),z;) = n at each point z;. Thanks to (4.3),
corollaries 4.6 and 6.8 imply the desired surjectivity property. O

Proof of Corollary 1. — This is only a matter of straightforward calcula-
tions, but adjusting the constants 3, to get optimal exponents for o¢, a and p=(L)
in the lower bound of m requires some care. By the convexity argument already
explained, we have o,_; < (p — j)o1 < p(1 —1/p)ioy1. As B =0, we find

S e zm ¥ S0

0<j<p—1 0<j<p—-1
-1 -1
:pal(l—l—ﬁgp a)...(l—l—ﬁpp a).

When we replace L by mL, the constant a is replaced by a/m, and by definition of
p = puz=(L) we have (mL)* - Y > (mu)¥. Hence theorem 11.6 yields the sufficient
condition

17 )7 = [[ s = 8) o (1 B2 ) (145,222

J<p mn pom

with 0 = 8 < ... < B, < 1. When p = 1 we get (mu)"~' > f;5 01, and when
p = n — 1 the inequality implies my > (n — 1)o1 > (1 — 1/n)og. We suppose in
fact mpu > Aog where A > 1 — 1/n is a constant which will be adjusted later to
an optimal value; in particular mu > An™. We will choose 3;/8;+1 so small that
[1<,(Bpt1 — B5) > U, By, with a constant U, slightly larger than 1. We are

< P
thus led to define 3, inductively by the formula

po1 —1la la
08 B = (1482 ) (122l 1y
and m has to be taken so large that OBrn < 1; suppose that this is the case. The
first step is to determine admissible constants 1<U; <...<Uy_;. For j <p,
(11.8) implies
. 1 .
. -1 -1 ) — oy _n=j
(T e L (L < (L) (A
j—1\mpu p—1\mpu n—1
by taking p = n in the first inequality. In general, for j < p we get
(@)P—l J—l(ﬂg) J—1(1—1)j—1(mm—(p—3)(1+jff)
Bp - 1 “p—1\n-1

1
@S (3—1)

)T 1)

(11.9) —— (mp

1
e 0
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with

= (A1) = DG = )

n—1
The sequence (v,) is strictly increasing and satisfies v;/vj+1 < 1/n. Thus we can
take
Up = H (1 - 7j/7p+1)
2<j<p

Let k be the largest integer in {1,...,n — 1} such that fGra/m < 1 and let
t = max (Bra/m, ie/Ve+1) € [/ Ve+1,1]. Inequality (11.9) implies

-1
(1+ %t) for 2<j <k,
] >
p.m (p—+7k )ﬂji for k+1<75<np.
p i m
The product of all factors (...t*!) over j = 2,...,p is a polynomial with positive

coefficients in IR[t, '], hence is a convex function of ¢. Therefore, the product is
at most equal to the maximum of its values for ¢t = 1 or t = i /Vkt1:

M%H@ﬂ:gIIgi&y

2<j<k Pk e S P g
—1 —1
IR (p_+M)}
2<j<k Pkl i<t P i

We have (p—1)/p+vk/v; <1—1/p+1/n <1 for j > k, moreover the sequence

v;i/vi+1 is increasing. If we introduce the increasing sequence
1 s
Vp = H (1 + p_ﬁ)
2<5<p L

it is then easy to check that the above maximum is bounded by V,, for p > k.
Therefore (11.8) gives

a\P—Fk
ﬁp+l<UVW6k+1”'ﬁp(E) for ka
As UpyV,p <W,, =U,—1V,—1(n — 1), by induction these inequalities yield
W,o 1/k _|_ L+ 1
ﬁp_;,_l S (W) (G//,L) k+1 fOI' P Z k,

where the exponent of ap is understood to be 0 if p = k. Finally, we have
(mL)" > (mp)™ > (Aog)™ by definition of p and by our initial hypothesis
mu > Ao, hence gg/(mL)" < )\_"05_" < A=) Tt follows again from a
convexity argument that

01/00 (1 — (1 I —n(n 1))1/71))\71”71(77,—1) =T,.
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Hence Wy, 01 < By with B, = W, T,, = (n—1)U,,—1V;,—1T,,. Therefore, sufficient
conditions in order that 3, < 1 are:

(11.10) mu > Bpoy  for k=n—1,
1 4 1 1
(11.10%) (mu)"~* > Bhoo (au)k("—l M= k+1)
for k € {1,...,n — 2}. These conditions are equivalent to the inequality stated in

corollary 1. Observe that our constant B,, depends on A. The initial hypothesis
mup > Aog will be automatically satisfied if we adjust A so that B,(\) = X
this is always possible because By, () is decreasing in A and B,(\) > 1 — 1/n.
With this choice, a numerical calculation shows that B, < 2.005 for all n and
lim,,—, 4 oo B,, = 2. For small values of n, we find (with rounding by above):

n 2 3 4 ) 6 7 8 9 10 | 11 | 12 ‘

(11.11)
B, [0.625(1.019(1.309|1.485|1.603|1.687|1.748|1.794/1.830|1.858 1.879‘

and B,, < 2 for n < 46.
12. Universal bounds for very ample line bundles

Let X be an ample line bundle over a projective n-fold X. In order to
find universal conditions for Kx + L to be very ample, our main theorem would
require a universal value a depending only on n = dimg X such that TX ® O(aL)
is always nef. However, this is clearly impossible as the example of curves already
show: if X is a curve of genus g and L has degree 1, then TX ® O(alL) is nef if
and only if a > 2g — 2. In general, it is an interesting unsolved question to know
whether such a value a can be found explicitly in terms of geometric invariants
of X (Chern classes, ...). Here, these difficulties can be avoided by means of the
following simple lemma.

LEMMA 12.1. — Let F be a very ample line bundle over X. Then the
vector bundle TX ® O(Kx + nF) is nef and generated by global sections.

Proof. — By the very ample assumption, the 1-jet bundle J' F is generated
by its sections. Consider the exact sequence

0—T"XQF —J'F—F—0

where rank(J'F) = n + 1 and det(J'F) = Kx + (n + 1)F. The n-th exterior
power \"(J1F) is also generated by sections and there is a surjective morphism

N'(J'F) = (J'F)*®@det(J'F) — (TX @ F*)@det(J'F) = TX @ O(Kx +nF).
Hence TX ® O(Kx + nF) is generated by sections and, in particular, it is nef. O

The next idea consists in the following iteration trick: lemma 12.1 suggests
that a universal lower bound for the nefness of TX ® O(aL’) can be achieved with
L' = Kx + L if L is sufficiently ample. Then it follows from the Main Theorem

38



that Ky + L' = 2Kx + L is very ample under suitable numerical conditions.
Lemma 12.1 applied with F' = 2K x + L shows that TX ® (9((2n +1)Kx+ nL) is
nef, and thus 7X ® O((2n+ 1)L") is nef with L = Kx + 1L < L'. Hence we see
that the Main Theorem can be iterated. The special value a = 2n 4+ 1 will play an
important role.

LEMMA 12.2. — Let L' be an ample line bundle over X. Suppose that
TX @ O((2n+1)L") is nef. Then Kx + L’ is very ample, resp. generates s-jets,
as soon as ux (L") > Cpoo with the corresponding value of oy and with a constant
C,, < 3 depending only on n.

Proof. — 1If p = px(L'), a=2n+1 and og = 2n" (resp. oo = (n+ s)"),
then the first arguments in the proof of corollary 1 give the sufficient condition

ptr > H (Bpy1 — B;) " 'pon (1 +

2<j<p

p ; L s, (2n + 1)) . (1 + 7%5p(2n+ 1))

with 0 =1 < ... < B, = 1. We suppose p > Ao (in particular x4 > 2An™) and
choose . .
ﬁp — (an—p+l(2nn)n—p) /(p— )7 2 < p <n-— 1

with suitable constants A, a to be determined later. In analogy with the proof of
corollary 1, we introduce the constants

Bi \7! p—1
Ul — (1—_3) LV = (1+—5- 2n+1),
Y 2<H< Bp+1 ? 2<1_-[< p i )
SISPp <j<p
T, = (1= (1= A" @n") =) )2t
We have 01 < T 0y and our conditions become

pU VT, a2 (2n™)" P~ 1oy for p < n—2,

n—p ! AP ’ ’_
WP > U, B, 101,00V, = { (n— 1)U _ V' _ Ty forp=n—1.

As 09 > 2n", a sufficient condition is
p>max {(n — VU, _ Vo 1T, , a(pUyVyT)V P} oo
We adjust A and « so that

_ 1/(n—p) _
(n— 1)U,/171V,;71T7/L = a1§r;127§_2(pU;VP/Tfll) /(n—p) _ A,

and we take this common value to be our constant C,,. A numerical calculation
gives C,, < 3 for all n and lim,,—, 4, Cp, = 3. The first values are given by

n 2 3 4 ) 6 7 8 9 10 | 11 | 12
C, [0.563|0.737(0.995|1.201{1.370|1.510{1.629|1.730{1.817|1.893|1.959

(12.3)

Hence Lemma 12.2 is proved. O
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LEMMA 12.4. — Let F' be a line bundle which generates s-jets at every
point. Then FP .Y > sP for every p-dimensional subvariety Y C X.

Proof. — Fix an arbitrary point « € Y. Then consider the singular metric
on F' given by
el = =,
> luy (=)
where (u1, ..., uy) is a basis of H*(X, F® M3). By our assumption, these sections

have an isolated common zero of order s at . Hence F possesses a singular metric
such that the weight ¢ = $log>" |u;|? is plurisubharmonic and has an isolated
logarithmic pole of Lelong number s at . By the comparison inequality (3.6) with
Y(z) =log|z — x|, we get

FP.Y > / Y] A (%&a)p > sPu([Y],¢) = sPv(Y,z) > sP. O
B(x,¢) m

Proof of Corollary 2. — As L is ample, there exists an integer ¢ (possibly
very large) such that

Kx +qL is ample,
(12.5) TX ®O((2n+1)(Kx +4¢L)) is nef,
/Lx(KX + qL) > C,09.

By lemma 12.2 applied to L' = Kx + gL, we find that ' = Ky + L' = 2Kx +qL
is very ample and generates s-jets. In particular Kx 4 ZL is an ample Q-divisor,
and for any p-dimensional subvariety ¥ C X we have

(Kx +(g—1)L)"-Y = (%F +(q/2 - 1)L)p Y
3 (i) 2k=P(q/2 — 1)FFP=k . [k .y,
0<k<p
By the convexity inequality 5.2 (b) and lemma 12.4 we get

FP=k. Lk y > (FP.Y)\kp(pr . y)k/e > o=k (,UX(L))k-
Hence (Kx + (¢ —1)L)" Y > ((g/2 — px(L) + s/2)" and

1
px (Kx +(q—1)L) > 5(@ —2)ux (L) + s).
Moreover, lemma 12.1 applied to F' shows that
TX®O(Kx +nF)=TX®0O((2n+1)Kx +nqL)

is nef. As ng/(2n+1) < ¢/2 < q—1 for ¢ > 2, we find that all properties (12.5)
except perhaps the last one remain valid with ¢ — 1 in place of ¢:

Kx+(¢—1)L is ample,
(12.6) TX ®0(2n+1)(Kx + (¢ 1)L)) is nef,
px (Kx +(¢—1)L) > 3((¢ — 2)ux (L) + s).
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By induction we conclude that (12.6) is still true for the smallest integer g—1 = m
such that
(¢—2)ux(L)+s=(m—1Dux(L)+ s > 2C,00.

For this value of m lemma 12.2 implies that 2K x + mL is very ample, resp.
generates s-jets. [

Remark 12.7. — 1If GG is a nef line bundle, the proof of corollary 2 can be
applied without modification to show that 2K x + mL 4+ G is very ample, resp.
generates s-jets, for (m—1)ux(L)+s > 2C, 00 : indeed, adding G can only increase
the numbers px (Kx + ¢L + G) occurring in the induction.

Remark 12.8. — The condition (m —1)ux(L)+s > Cy,o0 is never satisfied
for m = 1. However, it is still possible to obtain a sufficient condition in order that
2K x+L generates s-jets. Indeed, the last step of the iteration shows that 2K x+2L
generates s’-jets and that pux(Kx + L) > /2 if ux(L) + s > 2C,(n + s")™.
Choose s' > 2C,(n+ s)™. Then ux(Kx + L) > Cp(n+ s)™ and we can perform
another iteration to conclude that 2Kx + L generates s-jets. Of course, the
corresponding lower bound for px (L) is extremely large, of the order of magnitude
of (2C,)"(n + s)"".

Remark 12.9. — A numerical computation of 4C,n™ in corollary 2 gives
the following bounds for 2K x + mL to be very ample when L is ample:
w2034 | 5 [ 6 |

m > |10|80|1019| 15010 255537‘

We now list a few immediate consequences of our results, in connection with
some classical questions of algebraic geometry.

COROLLARY 12.10. — Let X be a projective n-fold of general type with
Kx ample. Then mKx is very ample for m > 12n™.

COROLLARY 12.11. — Let X be a Fano n-fold, that is, a n-fold such that
—Kx is ample. Then —mK x is very ample for m > 12n".

Corollaries 12.10 and 12.11 follow easily from corollary 2 applied to
L = +Kx : then we obtain that 2K x + mL is very ample for m > 4C,n", and
a numerical check shows that 4C,n"™ + 2 < 12n" for all n. Hence we get pluri-
canonical embeddings ® : X — IPY such that ®*O(1) = £mKy with m = 12n".
The image Y = ®(X) has degree

deg(Y):/Ycl((?(l))nz/Xcl(:I:mKX)nzm"|K}’(|.

It can be easily reproved from this that there are only finitely many deformation
types of Fano n-folds, as well as of n-folds of general type with Kx ample,
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corresponding to a given discriminant |K%|; such results were already known by
the fundamental finiteness theorem of [Ma 72] and [KoM 72]. In the Fano case, it
is conjectured that there is a universal bound (—Kx)™ < A,, : if such a universal
bound could be proved, it would become possible to obtain an explicit upper bound
for the number of deformation types of Fano n-folds in any dimension n.(*) O

Finally, let L be an ample line bundle over an arbitrary projective n-fold X.
It follows from Mori’s theory that Kx + (n + 1)L is always nef (see [Fu 87]). If
Kx + tL is nef for some integer ¢ > 0, Fujita conjectures that m(Kx + tL) is
spanned for every positive integer m > n 4+ 1 —t. Although such a sharp result
seems very hard to prove, our results allow us to prove that some explicit multiple
of Kx + (t+¢)L is very ample for every € > 0 rational.

COROLLARY 12.12. — If L is an ample line bundle such that Kx + tL is
nef for some integer t > 0, the line bundle m(Kx + (t +¢)L) is very ample for
every € > 0 and every integer m > 0 such that me € IN and me > 8Cp,n™ — 2t — 1.

Proof. — First suppose that m = 2p is even. Then either pe or pe — 1/2 is
an integer. Apply corollary 2 to the ample line bundle

L'=(p—1)(Kx +tL) + (pe +t)L, resp.

L'=(p-1)(Kx +tL) + (pe +t—1/2)L.
In the first case, we find pux (L") > (pe + t)ux (L) > pe + t, hence 2Kx + 2L =
2p(Kx + (t +€)L) is very ample when px(L') + 1 > pe +t+1 > 4C,n™; in the
second case, we get the condition pe +t+1/2 > 4C,n™ and we apply remark 12.7

to conclude that 2K x + 2L’ + L is very ample. When m = 2p+1 is odd, we argue
in the same way with

L'=(p—1)(Kx +tL)+ (2p+1)e/2+t)L, resp.
L'=(p-1)(Kx +tL)+ (2p+1)e/2+t—1/2)L,

and conclude that 2K x + 2L" + (KX + tL) or 2Kx + 2L + (KX + (t+ 1)L) is
very ample when (2p+ 1)e/2 4+t +1/2 > 4C,n". O

(*) Added after proof: such bounds have been obtained recently by J. Kollar-
Y. Miyaoka-S. Mori and independently by F. Campana.
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