

Holomorphic Morse inequalities, old and new

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes & Académie des Sciences de Paris

35th Annual Geometry Festival Stony Brook University April 23 – 25, 2021

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021

Holomorphic Morse inequalities, old and new

1/24

Introduction and goals

Let X be a compact complex manifold, and $L \to X$ a holomorphic line bundle. Assume L equipped with a Hermitian metric h, written locally as $h = e^{-\varphi}$ in a trivialization. The curvature form of (L, h) is

$$\theta = \Theta_{L,h} = -\frac{i}{2\pi} \partial \overline{\partial} \log h = \frac{i}{2\pi} \partial \overline{\partial} \varphi.$$

Important problems in algebraic or analytic geometry

- Find upper and lower bounds for the dimensions of cohomology groups $h^q(X, L^{\otimes m} \otimes \mathcal{F})$ where \mathcal{F} is a coherent sheaf, asymptotically as $m \to +\infty$, e.g. in terms of $\theta = \Theta_{L,h}$.
- (Harder question ?) In case q=0 and ${\mathcal F}$ is invertible (say), try to analyze the base locus of $H^0(X, L^{\otimes m} \otimes \mathcal{F})$, i.e. the set of common zeroes of all holomorphic sections.

Holomorphic Morse inequalities (D-, 1985) provide workable answers in terms of the q-index sets of the curvature form.

Holomorphic Morse inequalities: main statement

The *q*-index set of a real (1,1)-form θ is defined to be

$$X(\theta, q) = \{x \in X \mid \theta(x) \text{ has signature } (n - q, q)\}$$

(exactly q negative eigenvalues and n-q positive ones)

Set also
$$X(\theta, \leq q) = \bigcup_{0 \leq j \leq q} X(\theta, j)$$
.

 $X(\theta, q)$ and $X(\theta, \leq q)$ are open sets.

$$sign(\theta^n) = (-1)^q \text{ on } X(\theta, q).$$

Theorem (D-, 1985)

Let
$$\theta = \Theta_{L,h}$$
 and $r = \operatorname{rank} \mathcal{F}$. Then, as $m \to +\infty$

$$\sum_{j=0}^{q} (-1)^{q-j} h^j(X, L^{\otimes m} \otimes \mathcal{F}) \leq r \frac{m^n}{n!} \int_{X(\theta, \leq q)} (-1)^q \theta^n + o(m^n).$$

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021 Holomorphic Morse inequalities, old and new

3/24

Strategy of proof and consequences

The proof proceeds by considering the $\overline{\partial}$ -complex and looking at the spectral theory of $\overline{\square} = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$ acting on sections of $L^{\otimes m} \otimes \mathcal{F}$. The curvature form of $L^{\otimes m}$ is

$$m\theta = im \sum_{j,k} \theta_{jk} dz_j \wedge d\overline{z}_k = i \sum_{j,k} \theta_{jk} d\zeta_j \wedge d\overline{\zeta}_k$$

in rescaled coordinates $\zeta_i = \sqrt{m} z_i$. The "wavelength" of eigenfunctions is $\sim 1/\sqrt{m}$ and the estimates localize at this scale.

Various formulations of holomorphic Morse inequalities

•
$$h^q(X, L^{\otimes m} \otimes \mathcal{F}) \leq r \frac{m^n}{n!} \int_{X(\theta,q)} (-1)^q \theta^n + o(m^n).$$

•
$$h^q(X, L^{\otimes m} \otimes \mathcal{F}) \geq r \frac{m^n}{n!} \int_{\bigcup_{q-1 < j < q+1} X(\theta, j)} (-1)^q \theta^n - o(m^n).$$

• For
$$q=0$$
, $h^0(X,L^{\otimes m}\otimes \mathcal{F})\geq r\,\frac{m^n}{n!}\int_{X(\theta,\leq 1)}\theta^n-o(m^n).$

Singular version of holomorphic Morse inequalities

We assume here that L is equipped with a possibly singular metric $h=e^{-\varphi}$ were φ is quasi-psh with analytic singularities, i.e. locally

$$\varphi(z) = c \log \sum_{j} |g_{j}(z)|^{2} + u(z), \quad g_{j} \text{ holomorphic, } u \in C^{\infty}, c > 0.$$

Then L^2 estimates involve multiplier ideal sheaves $\mathcal{I}(m\varphi) \subset \mathcal{O}_X$

$$\mathcal{I}(m\varphi)_{x}=\big\{f\in\mathcal{O}_{X,x}\,;\;\exists U\ni x\;\mathrm{s.t.}\;\int_{U}|f|^{2}e^{-m\varphi}dV<+\infty\big\}.$$

Theorem (L. Bonavero 1996 – proof based on blowing up)

The same estimates as above are still valid, when one considers instead the twisted cohomology groups

$$H^q(X, L^{\otimes m} \otimes \mathcal{I}(m\varphi) \otimes \mathcal{F})$$

and Morse integrals in the complement of $\Sigma=arphi^{-1}(-\infty)=$ singular set of $\theta = \Theta_{L,h}$: $\int_{X(\theta,q)\times\Sigma} (-1)^q \theta^n.$

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021 Holomorphic Morse inequalities, old and new

5/24

Algebraic versions of Morse inequalities

Assume here that X is projective algebraic $/ \mathbb{C}$, and that $L = \mathcal{O}_X(A - B)$ where A and B are ample (or nef) \mathbb{Q} -divisors (such that A - B is integral).

Observation (D-, 1996)

In the above situation, the holomorphic Morse inequalities hold after replacing the q-index Morse integral by the intersection number $\binom{n}{q}A^{n-q}\cdot B^q$, and in particular (S. Trapani, 1995)

$$h^0(X, L^{\otimes m} \otimes \mathcal{F}) \geq r \frac{m^n}{n!} (A^n - nA^{n-1} \cdot B) - o(m^n).$$

Proof. For (1,1)-forms $\alpha, \beta \geq 0$, elementary symmetric functions arguments yield

 $\mathbb{1}_{X(\alpha-\beta,\leq q)}(-1)^q(\alpha-\beta)^n \leq \sum_{j=0}^q (-1)^{q-j} \binom{n}{j} \alpha^{n-j} \wedge \beta^j.$

Algebraic proof by F. Angelini (1996), via exact sequence arguments.

Algebraic Morse inequalities of Benoît Cadorel

Definition of adapted stratifications (projective case)

- An "adapted stratification" for L over X is a collection of non singular projective schemes $S = (S_i)$, dim $S_i = j$, $S_n = X$, together with proper birational morphisms ψ_i of S_i onto the support $|D_j| = \psi_j(S_j)$ of a divisor D_j of S_{j+1} , such that, when putting $\Phi_j = \psi_{n-1} \circ \cdots \circ \psi_j : S_j \to X$, the pull-back $\Phi_i^* L$ satisfies $\Phi_j^* L \simeq \mathcal{O}_{S_j}(D_{j-1}) = \mathcal{O}_{S_i}(D_{j-1}^+ - D_{j-1}^-).$
- The "truncated powers of the Chern class" $c_1(L,S)_{[a]}^k$ are codim k cycles supported on S_{n-k} (= 0 if $q \notin [0, k]$), defined inductively by $c_1(L,S)_{[0]}^0 = [X], c_1(L,S)_{[a]}^0 = 0 \text{ for } q \neq 0, \text{ and}$ $c_1(L,S)_{[q]}^k = \psi_{n-k}^* \left(c_1(L,S)_{[q]}^{k-1} \cdot D_{n-k}^+ - c_1(L,S)_{[q-1]}^{k-1} \cdot D_{n-k}^- \right).$

Theorem (Cadorel, December 2019)

$$\sum_{0 \le j \le q} (-1)^{q-j} h^j(X, L^{\otimes m} \otimes \mathcal{F}) \le \frac{(-1)^q r \, m^n}{n!} \deg c_1(L, S)_{[\le q]}^n + O(m^{n-1}).$$

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021 Holomorphic Morse inequalities, old and new

7/24

Considerations and questions about base loci

Let (L, h) be a hermitian line bundle over X. If we assume that $\theta = \Theta_{L,h}$ satisfies $\int_{X(\theta,<1)} \theta^n > 0$, then we know that L is big, i.e. that $h^0(X, L^{\otimes m}) \geq c m^n$, for $m \geq m_0$ and c > 0, but this does not tell us anything about the base locus $Bs(L) = \bigcap_{\sigma \in H^0(X, L^{\otimes m})} \sigma^{-1}(0)$.

Definition

The "iterated base locus" Bs(L) is obtained by picking inductively $Z_0=X$ and $Z_k=$ zero divisor of a section σ_k of $L^{\otimes m_k}$ over the normalization of Z_{k-1} , and taking $\bigcap_{k,m_1,\ldots,m_k,\sigma_1,\ldots,\sigma_k} Z_k$.

Unsolved problem

Find a condition, e.g. in the form of Morse integrals (or analogs) for $\theta = \Theta_{L,h}$, ensuring for instance that $\operatorname{codim} \operatorname{IBs}(L) > p$.

We would need for instance to be able to check the positivity of Morse integrals $\int_{Z(\theta|_{Z},\leq 1)} \theta^{n-p}$ for Z irreducible, $\operatorname{codim} Z = p$.

Transcendental holomorphic Morse inequalities

Morse inequalities were initially found as a strengthening of Siu's solution of the Grauert-Riemenschneider conjecture characterizing Moishezon manifolds among compact complex manifolds.

In this general setting, we raised 25-30 years ago the following

Conjecture

Let X be a compact complex manifold and $\alpha \in H^{1,1}_{BC}(X,\mathbb{R})$ a Bott-Chern class, represented by closed real (1,1)-forms modulo $\partial \overline{\partial}$ exact forms. Assume α pseudoeffective, and set

$$\operatorname{Vol}(\alpha) = \sup_{T=\alpha+i\partial\overline{\partial}\varphi\geq 0} \int_X T_{ac}^n$$
, $T\geq 0$ current, $n=\dim X$.
$$\operatorname{Vol}(\alpha) \geq \sup_{\theta\in\{\alpha\},\ \theta\in C^\infty} \int_{X(\theta,\leq 1)} \theta^n$$

where

Then

 $X(\theta, q) = q$ -index set of $\theta = \{x \in X; \theta(x) \text{ has signature } (n - q, q)\}.$

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021 Holomorphic Morse inequalities, old and new

9/24

Conjecture on volumes of (1,1)-classes

Conjectural corollary (transcendental volume estimate)

Let X be compact Kähler, dim X = n, and $\alpha, \beta \in H^{1,1}(X, \mathbb{R})$ be nef classes. Then $\operatorname{Vol}(\alpha - \beta) \ge \alpha^n - n\alpha^{n-1} \cdot \beta$.

By BDPP 2004, this conjecture yields a characterization of the dual of the pseudoeffective cone on arbitrary compact Kähler manifolds.

Observation (BDPP, 2004)

The volume estimate holds if X has deformation approximations by projective manifolds X_{ν} of maximal Picard number $\rho(X_{\nu}) = h^{1,1}$.

Theorem 1 (Xiao 2015, Popovici 2016)

If $\alpha^n - n\alpha^{n-1} \cdot \beta > 0$, then $\alpha - \beta$ is a big class, i.e. $Vol(\alpha - \beta) > 0$.

Theorem 2 (Witt-Nyström & Boucksom 2019)

The transcendental volume estimate holds if X is projective.

Entire curves in projective varieties and hyperbolicity

- The goal is to study (nonconstant) entire curves $f: \mathbb{C} \to X$ drawn in a projective variety/ \mathbb{C} . The variety X is said to be Brody (\Leftrightarrow Kobayashi) hyperbolic if there are no such curves.
- More generally, if $\Delta = \sum \Delta_i$ is a reduced normal crossing divisor in X, we want to study entire curves $f:\mathbb{C}\to X\smallsetminus \Delta$ drawn in the complement of Δ .

If there are none, the log pair (X, Δ) is said Brody hyperbolic.

• The strategy is to show that under suitable conditions, such entire curves must satisfy algebraic differential equations.

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021 Holomorphic Morse inequalities, old and new

11/24

k-jets of curves and k-jet bundles

Let X be a nonsingular n-dimensional projective variety over \mathbb{C} .

Definition of k-jets

For $k \in \mathbb{N}^*$, a k-jet of curve $f_{[k]}: (\mathbb{C},0)_k \to X$ is an equivalence class of germs of holomorphic curves $f:(\mathbb{C},0)\to X$, written $f=(f_1,\ldots,f_n)$ in local coordinates (z_1, \ldots, z_n) on an open subset $U \subset X$, where two germs are declared to be equivalent if they have the same Taylor expansion of order k at 0:

$$f(t)=x+t\xi_1+t^2\xi_2+\cdots+t^k\xi_k+O(t^{k+1}),\quad t\in D(0,arepsilon)\subset \mathbb{C},$$
 and $x=f(0)\in U,\, \xi_s\in \mathbb{C}^n,\, 1\leq s\leq k.$

Notation

Let $J^k X$ be the bundle of k-jets of curves, and $\pi_k : J^k X \to X$ the natural projection, where the fiber $(J^k X)_x = \pi_k^{-1}(x)$ consists of k-jets of curves $f_{[k]}$ such that f(0) = x.

Algebraic differential operators

Let $t \mapsto z = f(t)$ be a germ of curve, $f_{[k]} = (f', f'', \dots, f^{(k)})$ its k-jet at any point t=0. Look at the \mathbb{C}^* -action induced by dilations $\lambda \cdot f(t) := f(\lambda t), \ \lambda \in \mathbb{C}^*, \ \text{for} \ f_{[k]} \in J^k X.$

Taking a (local) connection ∇ on T_X and putting $\xi_s = f^{(s)}(0) = \nabla^s f(0)$, we get a trivialization $J^kX\simeq (T_X)^{\oplus k}$ and the \mathbb{C}^* action is given by

(*)
$$\lambda \cdot (\xi_1, \xi_2, \dots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \dots, \lambda^k \xi_k).$$

We consider the Green-Griffiths sheaf $E_{k,m}(X)$ of homogeneous polynomials of weighted degree m on J^kX defined by

$$P(x; \xi_1, \ldots, \xi_k) = \sum a_{\alpha_1 \alpha_2 \ldots \alpha_k}(x) \, \xi_1^{\alpha_1} \ldots \xi_k^{\alpha_k}, \quad \sum_{s=1}^k s |\alpha_s| = m.$$

Here, we assume the coefficients $a_{\alpha_1\alpha_2...\alpha_k}(x)$ to be holomorphic in x, and view P as a differential operator $P(f) = P(f; f', f'', \dots, f^{(k)})$,

$$P(f)(t) = \sum a_{\alpha_1\alpha_2...\alpha_k}(f(t)) f'(t)^{\alpha_1} f''(t)^{\alpha_2} \dots f^{(k)}(t)^{\alpha_k}.$$

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021

Holomorphic Morse inequalities, old and new

13/24

Graded algebra of algebraic differential operators

In this way, we get a graded algebra $\bigoplus_m E_{k,m}(X)$ of differential operators. As sheaf of rings, in each coordinate chart $U \subset X$, it is a pure polynomial algebra isomorphic to

$$\mathcal{O}_X[f_j^{(s)}]_{1 \leq j \leq n, \, 1 \leq s \leq k}$$
 where $\deg f_j^{(s)} = s$.

If a change of coordinates $z \mapsto w = \psi(z)$ is performed on U, the curve $t\mapsto f(t)$ becomes $t\mapsto \psi\circ f(t)$ and we have inductively

$$(\psi \circ f)^{(s)} = (\psi' \circ f) \cdot f^{(s)} + Q_{\psi,s}(f', \dots, f^{(s-1)})$$

where $Q_{\psi,s}$ is a polynomial of weighted degree s.

By filtering by the partial degree of $P(x; \xi_1, ..., \xi_k)$ successively in ξ_k , $\xi_{k-1},...,\xi_1$, one gets a multi-filtration on $E_{k,m}(X)$ such that the graded pieces are

$$G^{\bullet}E_{k,m}(X) = \bigoplus_{\ell_1+2\ell_2+\cdots+k\ell_k=m} S^{\ell_1}T_X^*\otimes\cdots\otimes S^{\ell_k}T_X^*.$$

Logarithmic jet differentials

Take a logarithmic pair (X, Δ) , $\Delta = \sum \Delta_i$ normal crossing divisor.

Fix a point $x \in X$ which belongs exactly to p components, say $\Delta_1,...,\Delta_p$, and take coordinates $(z_1,...,z_n)$ so that $\Delta_j=\{z_j=0\}$.

⇒ log differential operators : polynomials in the derivatives

$$(\log f_j)^{(s)}, \quad 1 \leq j \leq p \quad \text{and} \quad f_j^{(s)}, \quad p+1 \leq j \leq n.$$

Alternatively, one gets an algebra of logarithmic jet differentials, denoted $\bigoplus_{m} E_{k,m}(X,\Delta)$, that can be expressed locally as

$$\mathcal{O}_{X}[(f_{1})^{-1}f_{1}^{(s)},...,(f_{p})^{-1}f_{p}^{(s)},f_{p+1}^{(s)},...,f_{n}^{(s)}]_{1\leq s\leq k}.$$

One gets a multi-filtration on $E_{k,m}(X,\Delta)$ with graded pieces

$$G^{\bullet}E_{k,m}(X,\Delta) = \bigoplus_{\ell_1+2\ell_2+\cdots+k\ell_k=m} S^{\ell_1}T_X^*\langle\Delta\rangle\otimes\cdots\otimes S^{\ell_k}T_X^*\langle\Delta\rangle$$

where $T_X^*\langle\Delta
angle$ is the logarithmic tangent bundle, i.e., the locally free sheaf generated by $\frac{dz_1}{z_1},...,\frac{dz_p}{z_p},dz_{p+1},...,dz_n$.

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021 Holomorphic Morse inequalities, old and new

15/24

Projectivized jets and direct image formula

Green Griffiths bundles

Consider $X_k := J^k X/\mathbb{C}^* = \operatorname{Proj} \bigoplus_m E_{k,m}(X)$. This defines a bundle $\pi_k: X_k \to X$ of weighted projective spaces whose fibers are the quotients of $(\mathbb{C}^n)^k \setminus \{0\}$ by the \mathbb{C}^* action

$$\lambda \cdot (\xi_1, \dots, \xi_k) = (\lambda \xi_1, \lambda^2 \xi_2, \dots, \lambda^k \xi_k).$$

Correspondingly, there is a tautological rank 1 sheaf $\mathcal{O}_{X_k}(m)$ [invertible only when lcm(1,...,k) | m], and a direct image formula

$$E_{k,m}(X) = (\pi_k)_* \mathcal{O}_{X_k}(m).$$

In the logarithmic case, we define similarly

$$X_k\langle\Delta\rangle := \operatorname{Proj} \bigoplus_m E_{k,m}(X,\Delta)$$

and let $\mathcal{O}_{X_k\langle\Delta
angle}(1)$ be the corresponding tautological sheaf, so that

$$E_{k,m}(X,\Delta) = (\pi_k)_* \mathcal{O}_{X_k\langle \Delta \rangle}(m).$$

Generalized Green-Griffiths-Lang conjecture

Generalized GGL conjecture

If (X, Δ) is a log pair of general type, in the sense that $K_X + \Delta$ is big, then there is a proper algebraic subvariety $Y \subseteq X \setminus \Delta$ containing all entire curves $f: \mathbb{C} \to X \setminus \Delta$.

One possible strategy is to show that such entire curves f must satisfy a lot of algebraic differential equations of the form $P(f; f', ..., f^{(k)}) = 0$ for $k \gg 1$. This is based on:

Fundamental vanishing theorem

[Green-Griffiths 1979], [D- 1995], [Siu-Yeung 1996], ... Let A be an ample divisor on X. Then, for all global jet differential operators on (X, Δ) with coefficients vanishing on A, i.e. $P \in H^0(X, E_{k,m}(X, \Delta) \otimes \mathcal{O}(-A))$, and for all entire curves $f: \mathbb{C} \to X \setminus \Delta$, one has $P(f_{[k]}) \equiv 0$.

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021 Holomorphic Morse inequalities, old and new

17/24

Proof of the fundamental vanishing theorem

Simple case. First consider the compact case ($\Delta = 0$), and assume that f is a Brody curve, i.e. $||f'||_{\omega}$ bounded for some hermitian metric ω on X. By raising P to a power, we can assume A very ample, and view P as a $\mathbb C$ valued differential operator whose coefficients vanish on a very ample divisor A.

The Cauchy inequalities imply that all derivatives $f^{(s)}$ are bounded in any relatively compact coordinate chart. Hence $u_A(t) = P(f_{[k]})(t)$ is bounded, and must thus be constant by Liouville's theorem.

Since A is very ample, we can move $A \in |A|$ such that A hits $f(\mathbb{C}) \subset X$. But then u_A vanishes somewhere, and so $u_A \equiv 0$.

Logarithmic case. In the logarithmic case, one can use instead a "Poincaré type metric" ω . Removing the hypothesis f' bounded is more tricky. One possible way is to use the Ahlfors lemma and some representation theory.

Probabilistic cohomology estimate

Theorem (D-, PAMQ 2011 + recent work for logarithmic case)

Fix A ample line bundle on X, and hermitian structures $(T_X(\Delta), h)$, (A, h_A) with $\omega_A = \Theta_{A, h_A} > 0$. Let $\eta_{\varepsilon} = \Theta_{K_X + \Delta, \det h^*} - \varepsilon \omega_A$ and

$$L_{k,\varepsilon} = \mathcal{O}_{X_k\langle\Delta
angle}(1)\otimes\pi_k^*\mathcal{O}_X\Big(-rac{1}{kn}\Big(1+rac{1}{2}+\cdots+rac{1}{k}\Big)arepsilon A\Big),\ \ arepsilon\in\mathbb{Q}_+.$$

Then for m sufficiently divisible, we have a lower bound

$$h^{0}(X_{k}, L_{k,\varepsilon}^{\otimes m}) = h^{0}\left(X, E_{k,m}(X, \Delta) \otimes \mathcal{O}_{X}\left(-\frac{m\varepsilon}{kn}\left(1 + \frac{1}{2} + \dots + \frac{1}{k}\right)A\right)\right)$$

$$\geq \frac{m^{n+kn-1}}{(n+kr-1)!} \frac{\left(1 + \frac{1}{2} + \dots + \frac{1}{k}\right)^{n}}{n! (k!)^{n}} \left(\int_{X(\eta, \leq 1)} \eta_{\varepsilon}^{n} - \frac{C}{\log k}\right).$$

Corollary

If $K_X + \Delta$ is big and $\varepsilon > 0$ is small, then η_{ε} can be taken > 0, so $h^0(X_k, L_{k,\varepsilon}^{\otimes m}) \geq C_{n,k,\eta,\varepsilon} m^{n+kn-1}$ with $C_{n,k,\eta,\varepsilon} > 0$, for $m \gg k \gg 1$.

Therefore, all $f: \mathbb{C} \to X \setminus \Delta$ satisfy algebraic diff. equations.

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021

Holomorphic Morse inequalities, old and new

19/24

A good Finsler metric on the k-jet bundle

Proof. Consider for simplicity the absolute (non logarithmic) case. Assume that T_X is equipped with a C^{∞} connection ∇ and a hermitian metric h. One then defines a "weighted Finsler metric" on J^kX by taking b = lcm(1, 2, ..., k) and, $\forall f, f(0) = x \in X_k$,

$$\Psi_{h_k}(f_{[k]}) := \Big(\sum_{1 \leq s \leq k} \|\varepsilon_s \nabla^s f(0)\|_{h(x)}^{2b/s}\Big)^{1/b}, \quad 1 = \varepsilon_1 \gg \varepsilon_2 \gg \cdots \gg \varepsilon_k.$$

Letting $\xi_s = \varepsilon_s \nabla^s f(0)$, this can be viewed as a metric h_k on $L_k := \mathcal{O}_{X_k}(1)$, and the curvature form of L_k is obtained by computing $\frac{i}{2\pi}\partial\overline{\partial}\log\Psi_{h_k}(f_{[k]})$ as a function of (x,ξ_1,\ldots,ξ_k) .

Modulo negligible error terms of the form $O(\varepsilon_{s+1}/\varepsilon_s)$, this gives

$$\Theta_{L_k,h_k} = \omega_{\mathrm{FS},k}(\xi) + \frac{i}{2\pi} \sum_{1 \leq s \leq k} \frac{1}{s} \frac{|\xi_s|^{2b/s}}{\sum_t |\xi_t|^{2b/t}} \sum_{i,i,\alpha,\beta} c_{ij\alpha\beta} \frac{\xi_{s\alpha}\overline{\xi}_{s\beta}}{|\xi_s|^2} dz_i \wedge d\overline{z}_j$$

where $(c_{ij\alpha\beta})$ are the coefficients of the curvature tensor $-\Theta_{T_X,h}$ and $\omega_{\mathrm{FS},k}$ is the weighted Fubini-Study metric on the fibers of $X_k \to X$.

Evaluation of Morse integrals

The above expression can be simplified by using polar coordinates

$$x_s = |\xi_s|_h^{2b/s}, \quad u_s = \xi_s/|\xi_s|_h = \nabla^s f(0)/|\nabla^s f(0)|.$$

Since the weighted projective space can be viewed as a circle quotient of the pseudosphere $\sum |\xi_s|^{2b/s}=1$, we can take $\sum x_s=1$, i.e. (x_s) in the (k-1)-dimensional simplex Δ^{k-1} , and we obtain

$$\Theta_{L_k,h_k} = \omega_{\mathrm{FS},k}(\xi) + \frac{i}{2\pi} \sum_{1 \leq s \leq k} \frac{1}{s} x_s \sum_{i,j,\alpha,\beta} c_{ij\alpha\beta}(z) \, u_{s\alpha} \overline{u}_{s\beta} \, dz_i \wedge d\overline{z}_j$$

where $\omega_{\mathrm{FS},k}(\xi) = \frac{i}{2\pi b} \partial \overline{\partial} \log \sum_{1 \le s \le k} |\xi_s|^{2b/s} > 0$ on fibers of $X_k \to X$.

By holomorphic Morse inequalities, we need to evaluate an integral

$$\int_{X_k(\Theta_{L_h,h_k},\leq 1)} \Theta_{L_k,h_k}^{N_k}, \quad N_k = \dim X_k = n + (kn-1),$$

and we have to integrate over the parameters $z \in X$, $x_s \in \mathbb{R}_+$ and u_s in the unit sphere bundle $\mathbb{S}(T_X,1) \subset T_X$.

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021

Holomorphic Morse inequalities, old and new

21/24

Probabilistic interpretation of the curvature

The signature of Θ_{L_k,h_k} depends only on the vertical terms, i.e.

$$\sum_{1\leq s\leq k}\frac{1}{s}x_sQ(u_s),\quad Q(u_s):=\frac{i}{2\pi}\sum_{i,j,\alpha,\beta}c_{ij\alpha\beta}(z)\,u_{s\alpha}\overline{u}_{s\beta}\,dz_i\wedge d\overline{z}_j.$$

After averaging over $(x_s)\in \Delta^{k-1}$ and computing the rational number $\int \omega_{\mathrm{FS},k}(\xi)^{nk-1} = \frac{1}{(k!)^n}$, what is left is to evaluate Morse integrals with respect to $(u_s) \in (\mathbb{S}(T_X,1))^k$ of "horizontal" (1,1)-forms given by sums $\sum \frac{1}{s} Q(u_s)$, where (u_s) is a sequence of "random points" on the unit sphere.

As $k \to +\infty$, this sum is asymptotically equivalent to a

"Monte-Carlo" integral
$$\left(1+\frac{1}{2}+\cdots+\frac{1}{k}\right)\int_{u\in\mathbb{S}(T_X,1)}Q(u)\,du$$
.

Now, Q(u) quadratic form $\Rightarrow \int_{u \in S(T_X,1)} Q(u) du = \frac{1}{n} Tr(Q)$,

and we have $\operatorname{Tr}(Q) = \operatorname{Tr}(-\Theta_{T_X,h}) = \Theta_{\det T_X^*,\det h^*} = \Theta_{K_X,\det h^*}.$

The asserted Morse estimates follow.

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021 Holomorphic Morse inequalities, old and new

A result on the base loci of jet differentials

Thorem (D-, 2021)

Let (X, Δ) be a pair of general type, i.e. such that $K_X + \Delta$ is big. Then there exists $k_0 \in \mathbb{N}$ and $\delta > 0$ with the following properties.

Let $Z \subset X_k$ be an irreducible algebraic subvariety that is a component of a complete intersection of irreducible hypersurfaces

$$igcap_{1\leq j\leq \ell}ig\{ extit{k-jets } f_{[k]}\in X_k \, ; \ P_j(f)=0ig\}, \quad P_j\in H^0(X,E_{s_j,m_j}(X,\Delta)\otimes L_j)$$

with
$$k \geq k_0$$
, ord $(P_j) = s_j$, $1 \leq s_1 < \dots < s_\ell \leq k$, $\sum_{1 \leq j \leq \ell} \frac{1}{s_j} \leq \delta \log k$.

Then the Morse integrals $\int_{Z(L_{k,\varepsilon},<1)} \Theta_{L_{k,\varepsilon}}^{\dim Z}$ of

$$L_{k,\varepsilon} = \mathcal{O}_{X_k\langle\Delta\rangle}(1)\otimes\pi_k^*\mathcal{O}_X\Big(-rac{1}{kn}\Big(1+rac{1}{2}+\cdots+rac{1}{k}\Big)\varepsilon A\Big)$$

are positive for $\varepsilon > 0$ small, hence $H^0(Z, L_{k,\varepsilon}^{\otimes m}) \ge c m^{\dim Z}$ for $m \gg 1$.

Unfortunately, seems insufficient to show that $\dim \mathrm{IBs}(L_{k,\varepsilon}) < n$.

J.-P. Demailly (Grenoble), 35th Geom. Festival, April 24, 2021 Holomorphic Morse inequalities, old and new

23/24

The end

Thank you for your attention!

