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0. Introduction and notation

One of the most fundamental facts of algebraic geometry is the possibility of
characterizing ampleness of line bundles by numerical criteria (Nakai-Moishezon,
Kleiman-Seshadri, . . .), or by cohomology vanishing theorems. Over the complex
numbers, ampleness is moreover equivalent to the existence of a metric of positive
curvature (Kodaira).

The case of line bundles with curvature of mixed signature is also of a
considerable importance. Andreotti and Grauert [AG62] have proved the following
result:

Given X a compact complex manifold and L a holomorphic line bundle over
X carrying a hermitian metric h whose curvature form Θh(L) is a (1, 1)-form
with at least n − q positive eigenvalues at every point, then for every coherent
sheaf F over X the cohomology groups Hj(X,F ⊗ O(mL)) vanish for j > q and
m ≥ m0(F).

The purpose of this paper is to investigate line bundles satisfying partial
positivity properties in a systematic way. For this we introduce the following

Definition. — Let L be a holomorphic line bundle over a projective manifold X .
We let σ+(L) be the smallest integer q with the following property: there exists
an ample divisor A on X and a constant C > 0 such that Hj(X, mL − pA) = 0
for all integers j > q and m, p ≥ 0, m ≥ C(p + 1).

One of the reasons of introducing A in the definition is to recover the notion
of ampleness: indeed, L is ample precisely if σ+(L) = 0. On the other hand
σ+(L) = n = dim X if and only if c1(L

⋆) is in the closure of the cone of effective
divisors. Moreover σ+(L) is an upper semicontinuous function of c1(L) in the
Néron-Severi group of X over Q.

The above mentioned vanishing theorem of Andreotti-Grauert takes in this
context a slightly more precise form.

Proposition. — If Θh(L) has at least n− q positive eigenvalues at every point
for some integer q = 0, 1, . . . , n, then σ+(L) ≤ q.

In view of Kodaira’s characterization of ampleness by positive curvature, it
would be interesting to know the answer to the following problem.

Problem. — Let L be a holomorphic line bundle over a projective algebraic
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manifold X and let q = σ+(L). Is there a smooth hermitian metric h on L such
that Θh(L) has at least n − q positive eigenvalues at each point ?

We prove that the problem has a positive answer in case X = IP(E) and
L = OIP(E)(±1), where E⋆ → Y is an ample rank r vector bundle and Y is a
curve, or Y is arbitrary and E⋆ is generated by sections. This makes use of results
of Umemura [Um73] and Sommese [So78] relating the notions of ampleness and
Griffiths positivity for vector bundles.

A more algebraic approach leads us to introduce the following definition of
a purely numerical nature.

Definition. — Let X be a projective n-dimensional manifold. A sequence
Yq ⊂ Yq+1 ⊂ . . . ⊂ Yn−1 ⊂ Yn = X of k-dimensional algebraic subvarieties Yk

of X is called an ample q-flag if for each k = q, . . . , n − 1 there exists an ample
Cartier divisor Zk in the normalization Ỹk+1, such that Yk = νk+1(SuppZk) as a

set, where νk+1 : Ỹk+1 → Yk+1 is the normalization map.

We say that a line bundle L ∈ Pic(X) is q-flag positive if there exists an
ample q-flag Yq ⊂ Yq+1 . . . ⊂ X such that L|Yq

is positive.

The reason for considering normalizations in the definition of ample flags
is that we want this notion to be invariant by finite maps. Without taking
normalizations, a push forward of a Cartier divisor would not necessarily be a
Cartier divisor. Our main result in this direction is that the above numerical
criterion implies cohomology vanishing.

Theorem. — Let L ∈ Pic(X). If L is q-flag positive, then σ+(L) ≤ n − q.

The example of L = OIP(E)(1) over X = IP(E) for E = Ω1
S ⊗ OS(2) over a

general quartic surface in IP3 shows that the converse to the Theorem is not true
when n = 3, q = 2 (see Example 5.6). However, we do not have counterexamples
in the most interesting case q = 1. In this case we have a partial positive result,
using a recent paper of Campana-Flenner [CF91].

Proposition. — Let X = IP(E)
π
−→ C be a IPn−1-bundle over a smooth curve

and let L be a line bundle on X with σ+(L) ≤ n − 1. Then L is 1-flag positive.

Moreover there is a base change F ⋆ : X̃ = IP(f⋆E) → X = IP(E) given by a finite

map f : C̃ → C, such that the pull-back F ⋆L admits an ample 1-flag

Y1 ⊂ . . . ⊂ Yn−1 ⊂ X

of the form Yi = Di ∩ . . . ∩ Dn−1 with Di, . . . , Dn−1 very ample and intersecting
transversally.

Our next concern is to study the cone of “ample curves”, in relation with
effective divisors and ample 1-flags. To this effect, we introduce the following
notation, which will be used throughout the paper.
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Definition. — (i) Let X be a nonsingular projective variety, n = dim X . The
Neron-Severi group of X is by definition the quotient group

NS(X) =
(
Pic(X)/≡

)
≃ H2(X, ZZ) ∩ H1,1(X),

where ≡ denotes the numerical equivalence of divisors. We define the real Néron-
Severi group to be NS1(X) = NS(X)⊗ZZ IR, and we let its dual be NS1(X). The
Picard number of X is ρ(X) = dimIR(NS1(X)) = rankZZNSZZ(X).

(i) We denote by Keff(X) ⊂ NS1(X) the cone generated by cohomology classes
of effective divisors in X , by Kamp(X) ⊂ NS1(X) the cone generated by classes
of ample divisors, and by Keff(X), Kamp(X) their closures. In a parallel way,
we define Neff(X) ⊂ NS1(X) to be the cone generated by homology classes of
effective curves, and we let Namp(X) ⊂ NS1(X) be the dual cone of Keff(X), i.e.
ξ ∈ Namp(X) if and only if D · ξ ≥ 0 for all D ∈ Keff(X). The interior Namp(X)
of Namp(X) will be called the cone of ample curves.

It is well known that Kamp(X) is the set of classes of nef divisors, i.e. the
dual cone of N eff (X) (see [Ha70]). By definition Kamp(X) and Namp(X) are open
cones. However, Keff(X) and Neff (X) are in general neither closed nor open; the
interior K◦

eff(X) is the cone generated by line bundles of maximum Kodaira-Iitaka
dimension κ(L) = dim X . The inclusion Kamp(X) ⊂ Keff(X) yields by duality
Namp(X) ⊂ N eff(X), from which we also deduce Namp(X) ⊂ Neff(X). Moreover,
the equality Namp(X) = N eff(X) occurs if and only if Kamp(X) = Keff(X), i.e.,
if and only if every effective divisor of X is nef. Our main results in this direction
are:

Theorem. — For an irreducible curve C ⊂ X , consider the following properties.

(i) C is the first member Y1 of an irreducible ample 1-flag Y1 ⊂ . . . ⊂ Yn−1 ⊂ X .
(We say that a flag is irreducible if all subvarieties Yi are irreducible.)

(ii) {C} ∈ Namp(X).

(iii) {C} ∈ Namp(X).

(iv) The normal bundle NC/X = HomO(IC/I2
C ,OC) is ample

(i.e., OIP(NC/X)(1) is ample).

(v) The normal bundle NC/X is nef (i.e., OIP(NC/X)(1) is nef).

(vi) The current of integration [C] is weakly cohomologous to a smooth positive
definite form of bidegree (n−1, n−1), i.e. [C] = u+∂R+∂R+S where u is
a smooth positive definite (n−1, n−1)-form with ∂∂u = 0, R is a current of
type (n−2, n−1), and S is a d-closed (n−1, n−1)-current whose cohomology
class {S} ∈ Hn−1,n−1(X) is orthogonal to NS1(X) ⊂ H1,1(X).

(vii) The current of integration [C] is weakly cohomologous to a smooth semiposi-
tive form of bidegree (n − 1, n − 1) (as in (vi), but with u ≥ 0 only).
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(viii) There is a family of generically irreducible curves (Ct) covering X such that
C0 = mC as a cycle.

Then we have the following implications:

(i) ⇒ (ii) ⇒ (iii),(a)

(i) ⇒ (iv), if additionally every Yi is Cartier in Yi+1,(b)

(iv) ⇒ (v) ⇒ (iii), (viii) ⇒ (iii)(c)

(ii) ⇔ (vi) ⇒ (vii) ⇒ (iii)(d)

Let Nµ(X) (or simply Nµ) be the convex cones generated by all classes of
curves defined by Property (µ), 1 ≤ µ ≤ 8, and let Nµ be their closures. Then we
have:

Theorem. — There are the following relations between the various cones:

N1 ⊂ N2 = N3 = N6 = N7, N8 ⊂ N5 ⊂ N3, N4 ⊂ N5.

In particular, the inclusions N1 ⊂ N4 and N2 ⊂ N1 would imply the equality of
all cones. This is indeed the case if X is a surface.

Finally, we investigate the structure of projective 3-folds with σ+(−KX) = 1.
In fact, it is well-known since a long time that the structure of projective varieties
should be described in terms of the existence of positive, negative or vanishing
“directions” in the canonical bundle KX . In order to understand the negative
directions we put σ(X) = 3 − σ+(−KX). Then the condition σ(X) ≥ 1 holds
precisely if KX /∈ Keff(X), which (via deep results of Mori and Miyaoka on the
classification of 3-folds) just means that KX /∈ Keff(X), i.e. κ(X) = −∞. Since
σ(X) = dim X if and only if X is a Fano manifold, the invariant σ(X) measures
how far X is from being Fano. First we give various examples of 3-folds with
σ(X) = 2 ; the most interesting example we have is X = IP(Ω1

S) where S ⊂ IP3 is
a general quartic surface. Then we discuss birational properties of σ(X). Among
other results, we show the following

Proposition. — Let X be a smooth projective 3-fold with −KX big and nef
but not ample. Let ϕ : X → Y be the map given by the base point free linear
system | − m0KX | with m0 ≫ 0. Then σ(X) = 2 precisely if all nontrivial fibers
of ϕ are of dimension 1.

An interesting open problem would be to know whether the condition
σ(X) ≥ 2 is invariant under birational maps of flipping type for singular X , so
that this condition would be invariant by all operations of the Mori program.

Acknowledgement: Our collaboration has been partially supported by Pro-
cope, Europroj and by the DFG Schwerpunktprogramm “Komplexe Mannig-
faltigkeiten”.
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1. Vanishing of top or bottom cohomology groups

Let X be a nonsingular projective variety and let n = dim X . We are
interested in line bundles L over X such that all large multiples mL have zero
cohomology groups in a certain range of degrees. However, the vanishing properties
we want to consider should be stable under small perturbations of L. For this, we
make the following definition.

1.1. Definition. — Let L be a holomorphic line bundle over X .

(i) We let σ+(L) be the smallest integer q with the following property: there ex-
ists an ample divisor A and a constant C > 0 such that Hj(X, mL − pA) = 0
for all integers j > q and m, p ≥ 0, m ≥ C(p + 1).

(ii) Similarly, we let σ−(L) be the largest integer q such that there is an ample
divisor A and a constant C > 0 for which Hj(X, mL + pA) = 0 when j < q
and m, p ≥ 0, m ≥ C(p + 1).

Let F be a coherent sheaf over X and let A be an ample line bundle. Then
there exist locally free resolutions of the form

(⋆) · · · →
⊕

1≤ℓ≤mk

O(−dk,ℓA) → · · · →
⊕

1≤ℓ≤m0

O(−d0,ℓA) → F → 0

with suitable integers mk, dk,ℓ ≥ 0. We define the height of F with respect to A
to be the integer

htA(F) = min
{resolutions (⋆) of F}

max
0≤k≤n, 1≤ℓ≤mk

dk,ℓ , n = dimX.

By taking the tensor product of the resolutions associated with coherent sheaves
F1, F2, we infer easily htA(F1 ⊗O F2) ≤ htA(F1) + htA(F2).

1.2. Proposition. — With the same constant C as in 1.1 (i), we have

Hj(X,O(mL) ⊗ F) = 0

for all integers j > σ+(L) and m ≥ C(htA(F) + 1).

Proof. Choose a resolution (⋆) which achieves the actual value of htA(F). Let Fk

be the image sheaf of the differential of degree k in (⋆). Then we have short exact
sequences

0 → Fk+1 →
⊕

1≤ℓ≤mk

O(−dk,ℓA) → Fk → 0, 0 ≤ k ≤ n,

and Def. 1.1 (i) yields Hj(X, mL−dk,ℓA) = 0 for j > σ+(L) and m ≥ C(dk,ℓ +1).
Since F0 = F , this implies inductively

Hj(X,O(mL) ⊗F) ≃ . . .Hj+k(X,O(mL) ⊗ Fk) ≃ Hj+k+1(X,O(mL) ⊗Fk+1)

for j > q and m ≥ C(htA(F) + 1). Taking k = n = dimX , we get the desired
conclusion.
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Proposition 1.2 implies immediately that the choice of the ample divisor A
in Definition 1.1 is irrelevant: if A′ is another ample divisor, then htA(−pA′) ≤
p htA(−A′), thus the constant C in 1.1 (i) need only be replaced by C htA(−A′).
On the other hand, Serre duality gives:

1.3. Duality formula. — σ−(L) = n − σ+(L⋆).

Proof. Since Hj(X, mL+pA) = Hn−j(X, mL⋆−pA+KX) and htA(−pA+KX) ≤
p + htA(KX), this group vanishes for m/(p + 1) large and n − j > σ+(L),
hence σ−(L) ≥ n − σ+(L). On the other hand, Hj(X, mL − pA + KX) =
Hn−j(X, mL⋆ +pA) vanishes for n− j < σ−(L) and m ≥ C(p+1). Resolving OX

by direct sums of negative line bundles of the form O(−dA+KX) and arguing as in
the proof of Prop. 1.2, we conclude that Hj(X, mL−pA) vanishes for j > n−σ−(L)
and m/(p + 1) large, thus σ+(L) ≤ n − σ−(L).

Note also that our definitions imply σ−(L) ≤ σ+(L), because there must be
some degree j ∈ {0, 1, . . . , n} such that the groups Hj(X, mL− pA) are non zero
for arbitrary large values of m ≫ p ≫ 1 (the leading term (mL − pA)n/n! of the
Euler characteristic is a non zero homogeneous polynomial of degree n in m, p).
Finally, we have σ+(L) = σ+(kL) for every integer k > 0. Hence, for a Q-divisor D,
the integer σ+(D) can be defined as σ+(kD) for any common denominator k of
the coefficients of D.

1.4. Proposition. — For D ∈ DivQ(X), the integer σ+(D) depends only on
the first Chern class c1(D). Moreover, the function c1(D) 7→ σ+(D) is upper
semicontinuous with respect to the vector space topology of the real Néron-Severi
group NS1(X).

Proof. Fix D ∈ DivZZ(X) and Bi ∈ DivZZ(X), 1 ≤ i ≤ ρ, such that the Chern
classes c1(Bi) define a basis of NS1(X). Then for any D′ ∈ DivQ(X), the
difference D′−D is numerically equivalent to a linear combination

∑
λiBi, λi ∈ Q,

and c1(D
′) is close to c1(D) if and only if

∑
|λi| is small. Let k be a common

denominator of the λi’s. Then we can write

kD′ = kD +
∑

kλiBi + F

where F is a numerically trivial integral divisor. Since Pic0(X) is compact, there
is a uniform bound M of the height of all numerically trivial divisors with respect
to the given ample divisor A. Thus for m, p > 0 and j > σ+(D), we get

Hj(X, mkD′ − pA) = Hj
(
X, mkD +

∑
mkλiBi + mF − pA

)
= 0

provided that mk is at least equal to

C
(
htA

(∑
mkλiBi + mF − pA

)
+ 1

)
≤ C

(∑
mk|λi| htA(Bi) + M + p + 1

)
.

If the λi’s are chosen so small that C
∑

|λi| htA(Bi) < 1/2, it is then enough to
take mk ≥ 2C(M + p + 1). This implies σ+(D′) ≥ σ+(D), whence the upper
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semicontinuity of σ+(D). The fact that σ+(D) depends solely on c1(D) is proved
similarly (and is even easier).

1.5. General properties. — All varieties X , X ′ involved below are supposed
to be projective and nonsingular. Let L be a holomorphic line bundle over X .

(i) σ+(L) = 0 if and only if L is positive (i.e., ample), and σ−(L) = n if and
only if L is negative.

(ii) σ−(L) = 0 if and only if c1(L) ∈ Keff(X), and σ+(L) = n if and only if
c1(L

⋆) ∈ Keff(X).

(iii) If f : X ′ → X is a finite map, then σ+(f⋆L) = σ+(L) and σ−(f⋆L) = σ−(L).

(iv) Let Y ⊂ X be a nonsingular subvariety and let L be a line bundle over X .
Then σ+(L|Y ) ≤ σ+(L).

(v) Let L → X and L′ → X ′ be holomorphic line bundles. Then

σ+(L×L′) = σ+(L) + σ+(L′).

(vi) Let L, L′ be holomorphic line bundles over X . Then

σ+(L + L′) ≤ σ+(L) + σ+(L′).

Proof. (i) If σ+(L) = 0, Proposition 1.2 applied to the ideal sheaves F = I{x}I{y}

of pairs of points shows that Hj(X,O(mL) ⊗ I{x}I{y}) = 0 for all m ≥ m0,
j > 0 and x, y ∈ X . Hence O(mL) is very ample for m ≥ m0, and L is positive.
Conversely, if L is positive, there are integers k0, k1 > 0 such that k0L − A > 0
and k1L − KX > 0. Then

mL − pA − KX = (m − pk0 − k1)L + p(k0L − A) + k1L − KX > 0

for m, p ≥ 0 and m ≥ pk0 + k1, and the Kodaira vanishing theorem implies
Hj(X, mL − pA) = 0 for j > 0. Hence σ+(L) = 0. The dual case σ−(L) = n
follows by Proposition 1.3.

(ii) By Definition, we have σ−(L) = 0 if and only if H0(X, mL + pA) 6= 0
for m, p ≥ 0 and m/(p + 1) arbitrary large. The existence of such sections implies
c1(L) + p

m
c1(A) ∈ Keff(X), hence c1(L) ∈ Keff(X) in the limit. Conversely, the

assumption c1(L) ∈ Keff(X) implies σ−(L) = 0. In fact, for every such L, we
claim that H0(X, mL + pA) 6= 0 for all m ≥ 0 and p ≥ p0, where p0 is chosen so
large that p0A − KX − nH > 0 for any given very ample line bundle H. To see
this, observe that the ample divisors lie in the interior K◦

eff(X) of the cone. Hence
we have

c1

(
mL + pA − KX − (n + ε)H

)
∈ K◦

eff(X)

for all m ≥ 0, p ≥ p0 and ε < ε0 sufficiently small. This implies that
mL + pA − KX − (n + ε)H is linearly equivalent to an effective Q-divisor D
plus a numerically trivial line bundle T . Hence

O(mL + pA) ≃ O(KX + (n + ε)H + D + T ).
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Now, fix a point x0 /∈ D. The line bundle G = O((n + ε)H + D + T ) can be
equipped with a hermitian metric h with logarithmic poles at x0 and along D,
such that h is nonsingular on X \ (D ∪ {x0}) and has positive definite curvature
everywhere on X in the sense of currents. In fact the line bundle O(εH + D + T )
possesses a singular metric with curvature form equal to εω + [D], where ω is a
Kähler form in c1(H) and [D] is the current of integration over D ; on the other
hand, O(nH) can be equipped with a hermitian metric of semipositive curvature
possessing an isolated pole at x0, namely a metric of the form

O(nH)x ∋ ξ 7−→ |ξ|2/(
∑

|hj(x)|2)n

where (hj) is a basis of the space of sections of H vanishing at x0. Since this
last metric is not integrable at x0, Hörmander’s L2 existence theorem shows that
mL + pA ∼ KX + G has a global section which does not vanish at x0 ; see e.g.
[De90] for details. Therefore H0(X, mL + pA) 6= 0 and σ−(L) = 0. The case
σ+(L) = n is dual.

(iii) If f : X ′ → X is a finite map and A an ample line bundle over X , then
f⋆A is ample on X ′. The projection formula yields

f⋆O(mf⋆L − p f⋆A) = O(mL − pA) ⊗ f⋆OX′ .

All higher direct images are zero because f is finite. The Leray spectral sequence
yields

Hj(X ′, m f⋆L − p f⋆A) = Hj(X,O(mL − pA) ⊗ f⋆OX′).

Since the height of O(−pA)⊗f⋆OX′ is bounded by p+htA(f⋆OX′), we infer from
Proposition 1.3 that

Hj(X ′, m f⋆L − p f⋆A) = 0

for j > σ+(L) and m ≥ C(p + Const). Hence σ+(f⋆L) ≤ σ+(L). Now, the
vanishing of Hj(X ′, m f⋆L − p f⋆A) implies the vanishing of Hj(X, mL − pA),
because OX is a direct summand in f⋆OX′ . Therefore σ+(f⋆L) ≥ σ+(L) and we
have equality. The formula for σ−(f⋆L) follows by duality.

(iv) Let A be an ample divisor on X and let IY be the ideal sheaf of Y . Then
A|Y is ample and Proposition 1.3 gives

Hj(Y, mL|Y − pA|Y ) = Hj
(
X,O(mL − pA) ⊗ (OX/IY )

)
= 0

for j > σ+(L) and m ≥ C(p + htA(OX/IY ) + 1), whence the desired inequality.

(v) Let A, A′ be ample divisors on X , X ′ respectively. Then A×A′ is ample
on X × X ′, and the Künneth formula yields

Hk(X × X ′, mL×L′ − p A×A′) =
⊕

i+j=k

Hi(X, mL − A) ⊗ Hj(X ′, mL′ − A′).

The conclusion follows immediately from this.

(vi) is a straightforward consequence of (iii) and (iv), because the line bundle
L + L′ is just the restriction of L×L′ to the diagonal of X × X .
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We now consider the effect of blowing-up on line bundles with partially
vanishing cohomology groups.

1.6. Proposition. — Let π : X̃ → X be a blow-up with smooth center Y ⊂ X ,
and let E ⊂ X̃ be the exceptional divisor. Then, for every line bundle L over X ,
we have the following inequalities.

(i) σ+(π⋆L) ≤ max
{
σ+(L), σ+(L|Y ) + codim Y − 1

}
≤ σ+(L) + codim Y − 1.

(ii) σ−(π⋆L) ≥ min
{
σ−(L), σ−(L|Y ) + 1

}
≥ σ−(L) − (codimY − 1).

(iii) For k ≥ k0 large, σ+(k π⋆L − E) ≤ σ+(L).

Proof. Let A be an ample divisor on X . Then there is an integer d > 0 such that
Ã = d π⋆A − E is ample on X̃. We have

Hj
(
X̃, mπ⋆L − p(d π⋆A − E)

)
= Hj

(
X̃, π⋆(L − pdA) + pE

)
,

and the projection formula implies

Rjπ⋆O
(
π⋆(L − pdA) + pE

)
= O(L − pdA) ⊗ Rjπ⋆O(pE).

By a well-known formula, the direct images Rjπ⋆O(pE) are given by

Rjπ⋆O(pE) =





Ip−

Y for j = 0,

0 for j 6= 0, r − 1,

Fp for j = r − 1,

r = codimY,

where Fp is a coherent OX/I
(p−r+1)+

Y -module with support on Y (thus equal to
0 for p < r), such that

Fp ⊃ Fp−1 ⊃ . . .Fp−k = Ik
Y Fp ⊃ . . . , Fp−k/Fp−k−1 ≃ det N⋆

Y ⊗ Sp−k−rN⋆
Y

for 0 ≤ k ≤ p − r. By the Leray spectral sequence, we infer that the groups
Hj

(
X̃, mπ⋆L − p(d π⋆A − E)

)
vanish provided that

Hj(X, mL − pdA) = 0, resp.

Hj−(r−1)
(
Y,O(mL|Y − pdA|Y ) ⊗ det N⋆

Y ⊗ Sp−k−rN⋆
Y

)
= 0

for k = r, r + 1, . . . , p. When m/(p + 1) is large enough, these groups actually
vanish for j > σ+(L), resp. for j − (r − 1) > σ+(L|Y ) ; indeed the height of the

sheaf O(−pdA)⊗detN⋆
Y ⊗Sp−k−rN⋆

Y is bounded by a constant multiple of p. The
first inequality in (i) follows from this; the second one is then a consequence of
1.5 (iv). The inequalities in (ii) are equivalent to those in (i) by duality.

(iii) Quite similarly, we find

Hj
(
X̃, m(k π⋆L − E) − p(d π⋆A − E)

)
= Hj

(
X̃, π⋆(mkL − pdA) − (m − p)E

)

≃ Hj
(
X,O(mkL − pdA) ⊗ Im−p

Y

)

for m ≥ p (in that case, O(−(m − p)E) has no higher direct images). The height
of O(−pdA) ⊗ Im−p

Y is bounded by pd + (m − p)htA(IY ), so we get vanishing for
j > σ+(L) and mk ≥ C(pd + (m − p)C′ + 1). The last condition is satisfied for
k ≥ CC′ + 1 and m ≥ C(pd + 1), whence the inequality σ+(k π⋆L − E) ≤ σ+(L)
for k ≥ CC′ + 1.
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2. Cohomology vanishing and signature properties of the curvature

Suppose that the line bundle L over X is equipped with a hermitian metric
L and let Θh(L) = i

2π
D2

L,h be the Chern curvature form of h. The Andreotti-
Grauert theorem implies that one can deduce coarse vanishing theorems from a
knowledge of upper and lower bounds on the signature of Θh(L). Here we obtain
a slightly more precise statement by means of the Bochner-Kodaira formula.

2.1. Proposition. — Suppose that L has a smooth hermitian metric h such
that the curvature form Θh(L) has at least q′ negative eigenvalues and at least
n − q′′ positive eigenvalues at each point of X , for some integers 0 ≤ q′ ≤ q′′ ≤ n.
Then q′ ≤ σ−(L) ≤ σ+(L) ≤ q′′.

Proof. This is essentially well-known, but we reproduce briefly the argument for
self-containedness. By duality, it is enough to show the inequality σ+(L) ≤ q′′,
i.e., Hj(X, mL − pA) = 0 for j > q′′ and m ≥ C(p + 1). For this, we apply the
Bochner-Kodaira formula in the case of a nonnecessarily Kähler metric ω on X
(see e.g. [De84]). Let u be a smooth (0, j)-form with values in a hermitian line
bundle G. The Bochner-Kodaira formula implies an a priori estimate

∫

X

(
‖∂u‖2 + ‖∂

⋆
u‖2

)
dV ≥

∫

X

(γ1 + . . . + γj − Cω)‖u‖2dV,

where γ1 ≤ . . . ≤ γn are the eigenvalues of the curvature form of G at any point
of X , and Cω is a constant depending only on the torsion and Ricci curvature
of ω. In particular, if γ1 + . . . + γj > Cω everywhere, then Hj(X, G) = 0. We
select the hermitian metric ω such that the eigenvalues λ1 ≤ . . . ≤ λn of L satisfy
λq′′+1 = . . . = λn = 1 and λ1 ≥ −ε. (For this it is enough to take ω large enough
on the negative eigenspaces of the curvature form Θh(L) and equal to Θh(L) on
the positive eigenspaces.) Then, if α is a bound for the eigenvalues of Θ(A), the
eigenvalues of G = mL − pA satisfy γj ≥ mλj − pα, hence

γ1 + . . . + γj ≥ m
(
(j − q′′) − q′′ε

)
− pjα.

If we choose j > q′′ and ε < 1/2q′′, we get γ1 + . . . + γj −Cω > m/2 − pnα −Cω,
hence Hj(X, mL − pA) = 0 for m ≥ 2pnα + 2Cω.

In view of the Kodaira ampleness criterion, it is natural to ask whether the
following “converse” to Proposition 2.1 holds.

2.2. Problem. — Let L be a holomorphic line bundle over a projective algebraic
manifold X and let q′ = σ−(L), q′′ = σ+(L). Is there a smooth hermitian metric h′

(resp. h′′) on L such that Θh′(L) has at least q′ negative eigenvalues and Θh′′(L)
has at least n − q′′ positive eigenvalues at each point ?

We now study the particular case of line bundles such that the nonzero
cohomology groups arise only in one degree, in relation with the signature of the
curvature form.
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2.3. Definition. — A line bundle L has cohomology concentrated in degree q
if σ+(L) = σ−(L) = q.

2.4. Definition. — A line bundle L has constant signature (p, q) with p+q ≤ n,
if there is a smooth hermitian metric h on L such that Θh(L) has signature (p, q)
at every point.

By Proposition 2.1, if L has signature (n − q, q), then L has cohomology
concentrated in degree q. The converse is not true, even though we expect
Problem 2.2 to have a positive answer. The trouble is that the metrics h′ and
h′′ will in general not coincide even if we assume that q′ = q′′.

2.5. Example. — An obvious necessary condition for the existence of a line
bundle of constant signature (n − q, q) is that the tangent bundle TX splits
topologically into a direct sum of complex subbundles of rank (n − q) and q (the
positive and negative eigenspaces with respect to any fixed hermitian metric on the
base). Take for instance a surface X which is the blow-up of some other surface X ′

at a point, and let L = π⋆L′−kE where E is the exceptional divisor, L′ is ample on
X ′ and k ≫ 0 ; it is indeed enough to take k such that L ·A = π⋆L′ ·A−kE ·A < 0
for some ample divisor A on X . Then neither mL + pA nor −mL + pA have
sections for m ≫ p (take e.g. A = µπ⋆L′ − E with µ large enough to see this
easily), hence σ+(L) = σ−(L) = 1. However TX does not split topologically into a
sum of two line bundles if we take for instance X to be the blow-up of IP2 at two
points, hence L cannot have constant signature (1, 1). (This simple example has
been communicated to us by A. Beauville and F.A. Bogomolov.)

By 1.5 (i) and the Kodaira ampleness criterion, Problem 2.2 has an affirma-
tive answer in the positive or negative definite cases q = 0, q = n. The nondefinite
case, however, seems to be a very hard problem, and we have very little evidence
for it. The only general indication we have is that the sign of the determinant is
correct in the average, i.e. that (−1)qc1(L)n = (−1)q

∫
X

Θh(L)n ≥ 0. (We can
even obtain this integral to be > 0 when dimX ≤ 3.)

2.6. Proposition. — Suppose that L has cohomology concentrated in degree q.
Let k be the maximal integer with c1(L)k 6= 0. Then n − k is even and
(−1)qc1(L)k · c1(G)n−k ≥ 0 for all G ∈ Pic(X), in particular (−1)qc1(L)n ≥ 0.
Moreover, we have (−1)qc1(L)n > 0 if n = dimX ≤ 3.

Proof. For m large, the Riemann-Roch formula gives

0 ≤ hq(X, mL) = (−1)qχ(X, mL) ∼ (−1)qc1(L)nmn/n!,

thus (−1)qc1(L)n ≥ 0. Since σ+(L) and σ−(L) are left unchanged by small
perturbations of L, we conclude that (−1)qc1(L + εG)n ≥ 0 for any G ∈ Pic(X)
and ε ∈ Q small. Expanding the n-th power and letting ε tend to 0, we get
(−1)qc1(L)k · (±c1(G))n−k ≥ 0 for all G ∈ Pic(X). Since the product is not
always zero when G runs over Pic(X), n − k must be even. Observe that k > 1,
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otherwise L is numerically trivial and σ−(L) = 0 < σ+(L) = n. If n = dim X ≤ 3,
the only remaining possibility is k = n, whence (−1)qc1(L)n > 0.

2.7. Examples. —

(i) If L → X is positive, L′ → X ′ is negative and n = dim X , n′ = dim X ′, then
L×L′ has constant signature (n, n′).

(ii) Let E be a holomorphic vector bundle of rank r over a n-dimensional
variety Y , and let L be the tautological line bundle L = OIP(E)(1) over
X = IP(E). Then σ+(L) ≤ n. Moreover, L has cohomology concentrated in
degree n, i.e. σ+(L⋆) ≤ r − 1, if and only if E⋆ is ample.

(iii) Let E → Y be as in (ii). If E is negative in the sense of Griffiths, then L has
signature (r− 1, n) over X . In particular, Problem 2.2 has a positive answer
for L = OIP(E)(1) when E⋆ → Y is an ample vector bundle over a curve.

Proof. (i) is obvious.

(ii) Let π : X → Y be the natural projection. There is an ample line bundle
H on Y such that A = OIP(E)(1) ⊗ π⋆H is ample on X . Then, for m, p ≥ 0 and
ε = ±1, the line bundle

mL + εpA = OIP(E)(m + εp) ⊗ π⋆O(εpH)

has direct image π⋆O(mL + εpA) = Sm+εpE ⊗ O(εpH) and zero higher direct
images when m ≥ −εp. The Leray spectral sequence implies, together with Serre
duality,

Hj(X, mL + εpA) ≃ Hj
(
Y, Sm+εpE ⊗O(εpH)

)

≃ Hn−j
(
Y, Sm+εpE⋆ ⊗O(−εpH) ⊗ KY

)
.

By taking ε = −1, it follows immediately that σ+(L) ≤ n. Moreover, if E⋆ is ample
and ε = +1, the last group vanishes for j < n and m/(p+1) large, thus σ−(L) = n.
Conversely, if σ−(L) = n, we have Hj(Y, Sm+pE⋆ ⊗O(−pH)⊗KY ) = 0 for j > 0
and m/(p + 1) large; resolving arbitrary coherent sheaves F by line bundles of
the form O(−pH) ⊗ KY , we conclude that Hj(Y, SmE⋆ ⊗ F) = 0 for j > 0 and
m ≥ m0(F), hence E⋆ is ample.

(iii) Suppose that E carries a hermitian metric h with negative curvature
tensor

Θh(E) =
∑

1≤j,k≤n
1≤λ,µ≤n

cjkλµdzj ∧ dzk ⊗ e⋆
λ ⊗ eµ

in the sense of Griffiths. We suppose here that (eλ) is a local holomorphic frame
of E near a point x ∈ X , which is orthonormal at x and satisfies ∇eλ(x) = 0. The
Griffiths negativity assumption means that

∑
cjkλµtjtkvλvµ < 0 for all non zero

vectors t =
∑

tj∂/∂zj ∈ TX,x and v =
∑

vλeλ ∈ Ex. Let (z1, . . . , zn, w1, . . . , wn)
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be the normal coordinates on E⋆ given by the dual frame (e⋆
λ). A standard calcu-

lation shows that the curvature of L = OIP(E)(1) at [e⋆
λ] ∈ IP(E) is

Θh(L)[e⋆
λ
] =

∑

1≤j,k≤n

cjkλλdzj ∧ dzk +
∑

1≤µ≤r, µ6=λ

dwµ ∧ dwµ

in terms of the coordinates (z1, . . . , zn, w1, . . . , wλ=1, . . . , wn) on IP(E). Hence
the Griffiths negativity of E implies that Θh(L) has signature (r−1, n), with pos-
itive eigenvalues in the fibre directions and negative eigenvalues in the horizontal
directions. Finally, every ample vector bundle over a curve is positive in the sense
of Griffiths (Umemura), so Conjecture 2.5 holds in that case.

There are only very few known cases of Conjecture 2.5, even in the case
of line bundles L = OIP(E)(1) with E⋆ ample. The following results are due to
A. Sommese.

2.8. Proposition (A. Sommese). — Conjecture 2.5 holds for L = OIP(E)(1) if
E⋆ → Y is ample and satisfies one of the following additional properties:

(i) E has a strictly pseudoconvex neighborhood U of the zero section such that
all slices Ex ∩ U are linearly strictly convex (U is supposed to be relatively
compact with smooth boundary in E).

(ii) E is seminegative in the sense of Griffiths.

(iii) E⋆ is generated by sections.

Sketch of the proof (see [So78]). First observe that the hypotheses are related
by the implications (iii) ⇒ (ii) ⇒ (i). The implication (iii) ⇒ (ii) is standard,
while (ii) ⇒ (i) is checked as follows. Since E⋆ is ample, there is a stricly
plurisubharmonic Finsler metric on E, i.e., a smooth strictly plurisubharmonic
function F on E \{0} such that F (λξ) = |λ|F (ξ). On the other hand, the Griffiths
seminegativity means that there is a weakly plurisubharmonic hermitian norm ‖ξ‖.
Then, for ε > 0 small, the Finsler metric ‖ξ‖+ εF (ξ) is strictly plurisubharmonic
and fibrewise strictly convex; thus U = {ξ ∈ E ; ‖ξ‖ + εF (ξ) < 1} satisfies (i).

Now, assuming that (i) holds, Sommese [So78] has made an explicit calcula-
tion of the Levi form of the dual neighborhood

U◦ =
{
ξ⋆ ∈ E⋆

x ; x ∈ X, F ⋆(ξ⋆) := sup
ξ∈Ex∩U

|ξ⋆(ξ)| < 1
}
.

It follows that the Finsler metric F ⋆(ξ⋆) on E⋆ has a Levi form i∂∂F ⋆ of
signature (r, n), where r = rank(E) and n = dimY (in particular, U◦ is a
(n + 1)-convex neighborhood of the zero section in E⋆). Then F ⋆ can be also seen
as a hermitian metric on L⋆ = OIP(E)(−1) whose curvature form has signature
(n, r − 1) on IP(E).

It is interesting to observe that Conjecture 2.5 is related to several natural
questions in analytic geometry. In particular, it would yield a considerably simpler
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proof of the regularization theorem for closed positive (1, 1)-currents established
in [De92]. More importantly, it would yield a positive answer to the following
conjecture made by M. Schneider [Sch73].

2.9. Conjecture (M. Schneider). — Let Y ⊂ X be a nonsingular subvariety
with ample normal bundle NY . Then, denoting k = codimY , the complement
X \ Y is k-convex in the sense of Andreotti-Grauert.

2.10. Proposition. — Conjecture 2.9 holds provided that Problem 2.2 has
an affirmative solution in the case of line bundles of the form L = OIP(N⋆

Y
)(1).

Especially, X \ Y is k-convex if NY is ample and generated by sections.

Proof. Let X̃ → X be the blow-up of X with center Y , let E be the exceptional
divisor and n = dim X . Then X \Y ≃ X̃ \E and O(E)|E ≃ N

E/X̃
≃ OIP(N⋆

Y
)(−1)

has a metric of signature (n−k, k−1) by Conjecture 2.5. Therefore, O(E) can be
equipped with a metric of signature (n−k+1, k−1) in a neighborhood of E. (Take

a smooth extension of the metric to X̃ and multiply if necessary by a factor of the
form exp(−Cd(z, E)2) in order to produce a positive curvature eigenvalue in the
normal directions to E.) If σ is the canonical section of O(E), then − log ||σ(z)||
is an exhaustion function on X̃ \ E, and its Levi form has signature (n− k, k − 1)
in a neighborhood of E. It follows that X̃ \ E is k-convex.

3. Ample flags and partial cohomology vanishing

Proposition 1.4 shows that σ+(L) is a numerical invariant of L. For instance,
the ampleness of L (i.e., the vanishing of σ+(L)) is characterized by the well-
known Nakai-Moishezon criterion: L is ample if and only if Lp · Y > 0 for every
p-dimensional subvariety Y ⊂ X . We expect that there is such a nice numerical
criterion characterizing the invariant σ+(L). First, we introduce the notion of an
ample flag of algebraic subvarieties.

3.1. Definition. — Let X be a projective n-dimensional manifold. A sequence
Yq ⊂ Yq+1 ⊂ . . . ⊂ Yn−1 ⊂ Yn = X of k-dimensional algebraic subvarieties of X is
called an ample q-flag if for each k = q, . . . , n − 1 there exists an ample Cartier
divisor Zk in the normalization Ỹk+1, such that Yk = νk+1(SuppZk) as a set, where

νk+1 : Ỹk+1 → Yk+1 is the normalization map.

3.2. Definition. — We say that L ∈ Pic(X) is q-flag positive (resp. negative) if
there exists an ample q-flag Yq ⊂ Yq+1 . . . ⊂ X such that L|Yq

is positive (negative).

The reason for considering normalizations in the definition of ample flags
is that we want this notion to be invariant by finite maps. Without taking
normalizations, a push forward of a Cartier divisor would not necessarily be a
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Cartier divisor. The invariance by finite maps can be stated as follows.

3.3. Proposition. — Let f : X ′ → X be a finite map and let L ∈ Pic(X). Then
L is q-flag positive if and only if f⋆L is q-flag positive. Moreover, if (Y ′

k)q≤k≤n

is an ample q-flag for f⋆L, then (f(Y ′
k))q≤k≤n is an ample q-flag for L, and if

(Yk)q≤k≤n is an ample q-flag for L, then there exists an ample q-flag (Y ′
k)q≤k≤n

for f⋆L such that Yk = f(Y ′
k) (however Y ′

k may be smaller than f−1(Yk)).

Proof. First suppose that f⋆L is q-flag positive and that (Y ′
k)q≤k≤n is an ample

q-flag with L|Y ′
q

ample. Then we set Yk = f(Y ′
k). This gives a commutative

diagram of normalizations

Ỹ ′
k+1

f̃
−→ Ỹk+1

ν′
k+1

y yνk+1(⋆)

Y ′
k+1

f
−→ Yk+1.

Let Z ′
k be a Cartier divisor in Ỹ ′

k+1 such that Y ′
k = ν′

k+1(SuppZ ′
k) set theoretically.

We define Zk to be the push forward Zk = f̃⋆Z
′
k. Recall that if U is a small open

set in Ỹk+1 and g′ a generator of O(−Z ′
k) on Ỹ ′

k+1 ∩ f̃−1(U), then g = f̃⋆g
′ defined

by g(x) :=
∏

x′∈Ỹ ′
k+1

g′(x′) is a generator of O(−Zk) on U ; note that g is actually

holomorphic on Ỹk+1 because Ỹk+1 is a normal space. Hence Zk is a Cartier
divisor, and we have

νk+1(Zk) = νk+1(f̃(Z ′
k)) = f(ν′

k+1(Z
′
k)) = f(Y ′

k) = Yk.

Finally, O(Zk) is ample on Yk+1. Indeed, for m large enough and for all x1 6= x2 in

Ỹk+1, there are sections h′ ∈ H0(Ỹ ′
k+1,O(mZ ′

k)) which vanish at a given point of

a fibre f̃−1(x1), but do not vanish at the other points nor at the points of f̃−1(x2).

Hence h = f̃⋆h
′ ∈ H0(Ỹk+1,O(mZk)) vanishes at x1 but does not vanish at x2.

This implies that O(Zk) is ample on Ỹk+1.

Now, suppose that L is q-flag positive and that (Yk)q≤k≤n is an ample q-flag

with L|Yq
ample. Let Zk be a Cartier divisor in Ỹk+1 with Yk = νk+1(SuppZk).

We construct an ample flag (Y ′
k)q≤k≤n in X ′ such that f(Y ′

k) = Yk, defining Y ′
k

by backward induction on k. We set of course Y ′
n = X ′. If Y ′

k+1 has already been
constructed, we get a commutative diagram of normalizations (⋆) as above. We

then define Z ′
k := f̃⋆(Zk) and Y ′

k := ν′
k+1(SuppZ ′

k) as a set. Since the pull-back
of an ample Cartier divisor is an ample Cartier divisor, it is clear that (Y ′

k)q≤k≤n

is an ample q-flag. Moreover, (f⋆L)|Y ′
q

is the pull-back of the ample line bundle

L|Yq
, hence (f⋆L)|Y ′

q
is ample.

3.4. Theorem. — Let L ∈ Pic(X). If L is q-flag positive, then σ+(L) ≤ n − q,
and thus σ−(L⋆) ≥ q.
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Proof. Let (Yk)q≤k≤n be an ample q-flag such that L|Yq
is ample, and let Zk be an

ample Cartier divisor in the normalization Ỹk+1 of Yk with Yk = νk+1(SuppZk).

The inclusions jk,ℓ : Yk →֒ Yℓ can be lifted as finite maps j̃k,ℓ : Ỹk → Yℓ. For each
multi-index α = (αk, . . . , αn−1) of nonnegative integers, we set

Gα = j̃⋆
k,k+1O(αkZk) ⊗ . . . ⊗ j̃⋆

k,nO(αn−1Zn−1).

Since O(Zℓ)is ample on Ỹℓ+1, we conclude that Gα is nef on Ỹk and ample if α 6= 0.
Let A be an ample line bundle on X , and let F be an arbitrary coherent sheaf
on Ỹk. We prove by induction on k = q, q + 1, . . . , n the following property:

(Pk)

{
Hi(Ỹk,O(mL − pA)

|Ỹk
⊗ Gα ⊗ F) = 0

for all i > k − q, α ∈ INn−k, m ≥ C(F)(p + 1).

Here we write O(mL − pA)
|Ỹk

= j̃⋆
k,nO(mL − pA) for the simplicity of notations.

The desired conclusion is just statement (Pn) in the case Gα = F = OX . Observe
that it is sufficient to prove (Pk) in the special case F = O

Ỹk
, since we may

otherwise take resolutions of F by locally free sheaves of the form O(−dA)⊕N ,
and argue by backward induction on i as in the proof of Proposition 1.2.

First step: k = q. — By our assumption, O(L)
|Ỹq

= j̃⋆
q,nO(L) is ample.

Using a resolution of O(−A)
|Ỹq

of the form

O(−dsL)⊕Ns

|Ỹq

→ · · · → O(−d1L)⊕N1

|Ỹq

→ O(−d0L)⊕N0

|Ỹq

→ O(−A)
|Ỹq

→ 0

and raising it to the power p to get a resolution of O(−pA)
|Ỹq

, we are led to prove

the vanishing property

Hi(Ỹq,O((m− ds1
− · · · − dsp

)L)
|Ỹk

⊗ Gα) = 0, ∀i > 0, sj ≤ n,

for m′ = m− ds1
− · · · − dsp

≥ m− pdn ≥ m0 independent of α. Hence we merely

have to consider the groups Hi(Ỹq,O(mL)⊗Gα). By the Kodaira-Serre vanishing

theorem and the ampleness of L on Ỹq, we know that these groups vanish for
m ≥ m0(α). We have to check that m0(α) can be taken independent of α. (This
would be of course a straightforward consequence of the precise vanishing theorem
if Ỹq were smooth.) For this, we use the ampleness of O(Zℓ) to obtain resolutions
of O

Ỹq
of the form

O(−δn,ℓZℓ)
⊕Nn,ℓ

|Ỹq

→ · · · → O(−δ1,ℓZℓ)
⊕N1,ℓ

|Ỹq

→ O(−δ0,ℓZℓ)
⊕N0,ℓ

|Ỹq

→ O
Ỹq

→ 0

with δn,ℓ > . . . > δ1,ℓ > δ0,ℓ > 0, for each ℓ = k, . . . , n−1. If αℓ ≥ δn,ℓ, we take the
tensor product of this resolution with O(mL) ⊗ Gα. This reduces the vanishing

of Hi(Ỹq,O(mL) ⊗ Gα), i > 0, to the vanishing of all analogous groups with
α′ = (αq, . . . , αℓ−ds,ℓ, . . . , αn−1) in place of α. Hence we are reduced inductively
to the case where αℓ < δn,ℓ for all ℓ, and we may take m0 = max{α; αℓ<δn,ℓ} m0(α).

Second step. — Suppose that property (Pk) holds for some index k in the

range {q, . . . , n − 1}. Observe that Gα is the restriction to Ỹk of an invertible

sheaf defined on Ỹk+1, namely

O(αkZk) ⊗ Gβ with α = (αk, β), β = (αk+1, . . . , αn−1).
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The exact sequence

0 −→ O(−Zq) −→ O
Ỹk+1

−→ OZk
−→ 0

defines a (possibly non reduced) scheme structure on Zk. Taking the tensor
product with O(αkZk) ⊗ Gβ and the associated cohomology sequence, we get
the exact sequence

Hi−1
(
Zk,O(mL − pA)|Zk

⊗O(αkZk)|Zk
⊗ Gβ

|Zk

)

−→ Hi
(
Ỹk+1,O(mL − pA)

|Ỹk+1

⊗O((αk − 1)Zk) ⊗ Gβ
)

(†)

−→ Hi
(
Ỹk+1,O(mL − pA)

|Ỹk+1

⊗O(αkZk) ⊗ Gβ
)

−→ Hi
(
Zk,O(mL − pA)|Zk

⊗O(αkZk)|Zk
⊗ Gβ

|Zk

)
.

Claim 3.5. — For every subscheme S ⊂ Zk ⊂ Ỹk+1 and every coherent sheaf F
on S, we have

Hi
(
S,O(mL − pA)|S ⊗O(αkZk)|S ⊗ Gβ

|S ⊗ F
)

= 0

for all i > k − q ≥ 0, α ∈ INn−k and m ≥ C(F)(p + 1).

We apply this to S = Zk itself and F = OS = OZk
. Then (†) implies that

the groups
Hi

(
Ỹk+1,O(mL − pA)

|Ỹk+1

⊗O(αkZk) ⊗ Gβ
)

are independent of αk for all i > k + 1 − q, β ∈ INn−k−1 and m ≥ C(p + 1).

However, these groups vanish for αk large since O(Zk) is ample on Ỹk+1. Hence
they vanish for αk = 0 and for all i > k + 1 − q, β ∈ INn−k−1 and m ≥ C(p + 1).
Therefore property (Pk+1) holds.

Third step: (Pk) implies Claim 3.5. — We prove the claim by induction
on dim S, the result being obvious if dim S = 0. In fact, it is sufficient to prove
the claim when S is reduced. Otherwise, let N be the sheaf of nilpotent elements
of the structure sheaf OS ; then (N jF) defines a finite filtration of F and the
quotients N jF/N j+1F are coherent sheaves over Sred. Therefore, if the vanishing
property 3.5 holds on Sred, it also holds on S with C(F) = maxj C(N jF/N j+1F).
We can also suppose F = OS , otherwise we are reduced to this case by taking
resolutions of F by locally free sheaves of the form O(−dA)⊕N

|S ).

Now, suppose that S is reduced and F = OS . The map µ = νk+1|S : S → Yk

can be lifted to a map µ̃ : S̃ → Ỹk. This gives a commutative diagram

S̃
µ̃
−→ Ỹk

j̃k,k+1
−→ Ỹk+1

ν
y yνk

yνk+1

S
µ
−→ Yk

jk,k+1
−֒→ Yk+1
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where the vertical arrows are the normalization maps. Moreover, the diagram
commutes with the diagonal injection S →֒ Ỹk+1.

Since we have vanishing on Ỹk by hypothesis (Pk) and since µ̃ is a finite map,
the Leray spectral sequence implies

Hi
(
S̃,O(mL − pA)

|S̃
⊗O(αkZk)

|S̃
⊗ Gβ

|S̃

)

= Hi
(
Ỹk,O(mL − pA)

|Ỹk
⊗O(αkZk)

|Ỹk
⊗ Gβ

|Ỹk

⊗ µ̃⋆OS̃

)
= 0

for i > k − q, α ∈ INn−k and m ≥ C(p + 1). Taking the direct image by ν, this
gives

(††) Hi
(
S,O(mL − pA)|S ⊗O(αkZk)|S ⊗ Gβ

|S ⊗ ν⋆OS̃

)
= 0.

Let I ⊂ OS be the sheaf of universal denominators of ν⋆OS̃
, i.e., the largest ideal

I ⊂ OS such that I · ν⋆OS̃
⊂ OS . The support of OS/I coincides with the subva-

riety of non normal points in S. Hence, for d > 0 large enough, O(dA)|S ⊗ I has
a global section u whose set of zeros is a subvariety S′ ⊂ S with dim S′ < dim S
at every point. We get an exact sequence

0 −→ O(−dA)|S ⊗ ν⋆OS̃

u×
−→ OS −→ F −→ 0,

where F is supported on S′. By the induction hypothesis on dimS we have

Hi
(
S′,O(mL − pA)|S′ ⊗O(αkZk)|S′ ⊗ Gβ

|S′ ⊗ F
)

= 0

for i > k − q and m ≥ C(F)(p + 1), while (††) implies

Hi
(
S,O(mL − pA)|S ⊗O(αkZk)|S ⊗ Gβ

|S ⊗O(−dA)|S ⊗ ν⋆OS̃

)
= 0

for i > k − q and m ≥ C(p + d + 1). The above exact sequence shows that the
cohomology groups of the central term also vanish in degrees i > k−q, as asserted
by Claim 3.5.

Theorem 3.4 leads in a natural way to the following problem.

3.6. Problem. — Given a line bundle L ∈ Pic(X) such that σ+(L) ≤ n − q,
under which conditions can one conclude that L is q-flag positive ?

If no further assumptions are made, the answer is in general negative by
Example 5.6 below (in which case we have n = 3 and q = 2). However, we have no
counterexample in the most interesting case q = 1. Since the problem seems very
difficult to attack in full generality, we will content ourselves with rather special
cases.

3.7. Lemma. — Let X be a projective manifold and let D1, . . . , Dn−1 ⊂ X
be irreducible divisors, such that the O(Di) are nef and Yi = Di ∩ . . . ∩ Dn−1 is
i-dimensional. Let L be a line bundle with L·Y1 > 0. Then there is an ample 1-flag
for L of the form Y ′

i = D′
i ∩ . . .∩D′

n−1 with all D′
j being very ample, nonsingular

and intersecting transversally.
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Proof. Fix an ample divisor H on X . Choosing smooth generic members D′
i ∈

|k(mDi + H)|, k ≫ 0, m ≫ 0, we get the desired 1-ample flag for L. (Note that
L · Y ′

i ∼ (km)n−1L · Y1 as k, m → +∞.)

3.8. Proposition. — Let X = IP(E)
π
−→ C be a IPn−1-bundle over a smooth

curve and let L be a line bundle on X with σ+(L) ≤ n − 1. Then L is 1-flag

positive. Moreover there is a base change F ⋆ : X̃ = IP(f⋆E) → X = IP(E) given

by a finite map f : C̃ → C, such that the pull-back F ⋆L admits an ample 1-flag

Y1 ⊂ . . . ⊂ Yn−1 ⊂ X

of the form Yi = Di ∩ . . . ∩ Dn−1 with Di, . . . , Dn−1 very ample and intersecting
transversally.

Proof. All line bundles over IP(E) are of the form L = OIP(E)(k) ⊗ π⋆G for some
G ∈ Pic(C). If k = 0, then G must have positive degree and the conclusion
is obtained by taking an arbitrary ample flag such that Y1 is mapped onto C
by π. Hence suppose k 6= 0. After taking a finite covering f : Ĉ → C, we may
assume that G = OC , replacing E by f⋆(E ⊗ G1/k). By Proposition 3.3, the

conclusion is invariant by finite maps, hence we may replace C by Ĉ and assume
L = OIP(E)(±1).

In the case L = OIP(E)(1), we take Y1 ⊂ . . . ⊂ Yn−1 to be a flag of linear
subspaces in a fibre Yn−1 = IP(Ex). Then Dn−1 = IP(Ex) and D2, . . . , Dn−2 can
be taken to be suitable IPn−2-subbundles of IP(E) defined by sections of an ample
line bundle OIP(E)(1) ⊗ π⋆H. Note that Dn−1 is just nef, but Lemma 3.7 can be
applied to get an ample 1-flag.

The only nontrivial case is L = OIP(E)(−1). Our assumption σ+(L) ≤ n − 1
implies that E⋆ is ample (cf. 2.7 (ii)). By a result of Campana and Flenner [CF91],

there is a finite map f : C̃ → C, a very ample line bundle A on C̃ and a surjective
morphism

A⊕N −→ f⋆E⋆ −→ 0.

Replacing C by C̃ and E by f⋆E, we may assume that we have f = Id. Then
E⋆ ⊗ A⋆ is generated by sections and we get bundle-monomorphisms

ϕj : A⊕(n−1) −֒→ E⋆,

sending the sum of factors A of indices m ∈ {1, . . . , n} \ {j} in A⊕N into E⋆.
(Otherwise, change A⊕N → E by a constant linear transformation acting on A⊕N

to achieve this property.) These monomorphisms define exact sequences

(⋆⋆) 0 −→ K −→ E
ϕ⋆

j
−→ (A⋆)⊕(n−1) −→ 0

and divisors
Dj := IP

(
(A⋆)⊕(n−1)

)
⊂ IP(E).

These divisors intersect transversally. We set

Yj := Dj ∩ . . . ∩ Dn−1.
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(a) First, we check that O(Dj) is nef in IP(E). Since O(Dj) = OIP(E)(1)⊗π⋆(K⋆),
we have to show that E ⊗ K⋆ is nef. From (⋆⋆), we get

0 −→ O −→ E ⊗ K⋆ −→ (A⋆ ⊗ K⋆)⊕(n−1) −→ 0.

Hence it is enough to show that A⋆ ⊗K⋆ is nef. However, this is clear because K⋆

is a quotient of E⋆ and thus of A⊕N .

(b) Now, we have to check that L ·Y1 > 0. First suppose that n = 2, thus Y1 = D1.
Then

L · D1 = c1

(
OIP(E)(−1)

)
·
(
c1

(
OIP(E)(1)

)
+ π⋆c1(K

⋆)
)

= −c1(E) + c1(K) = c1(A) > 0

thanks to (⋆⋆) and to the relations h2−π⋆c1(E)h+π⋆c2(E) = 0, π⋆h = 1 satisfied
by h = c1

(
OIP(E)(1)

)
.

(c) In the general case n > 2, we have

Y1 = IP(A⋆) ⊂ Y2 = IP(A⋆⊕2) ⊂ IP(E), L|Y2
= OIP(A⋆⊕2)(−1),

where the inclusions are defined by the projections E → A⋆ (resp. E → A⋆⊕2)
on the n-th factor (resp. on the first and n-th factor). This reduces the problem
to the case of the rank 2 bundle E = (A⋆)⊕2. By applying case (b), we thus get
L · Y1 > 0, as desired.

4. The cone of ample curves

In this section, we concentrate ourselves on the study of the cone of “ample
curves”, in relation with effective divisors and ample 1-flags.

4.1. Theorem. — For an irreducible curve C ⊂ X , consider the following
properties.

(i) C is the first member Y1 of an irreducible ample 1-flag Y1 ⊂ . . . ⊂ Yn−1 ⊂ X .
(We say that a flag is irreducible if all subvarieties Yi are irreducible.)

(ii) {C} ∈ Namp(X).

(iii) {C} ∈ Namp(X).

(iv) The normal bundle NC/X = HomO(IC/I2
C ,OC) is ample

(i.e., OIP(NC/X)(1) is ample).

(v) The normal bundle NC/X is nef (i.e., OIP(NC/X)(1) is nef).

(vi) The current of integration [C] is weakly cohomologous to a smooth positive
definite form of bidegree (n−1, n−1), i.e. [C] = u+∂R+∂R+S where u is
a smooth positive definite (n−1, n−1)-form with ∂∂u = 0, R is a current of
type (n−2, n−1), and S is a d-closed (n−1, n−1)-current whose cohomology
class {S} ∈ Hn−1,n−1(X) is orthogonal to NS1(X) ⊂ H1,1(X).
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(vii) The current of integration [C] is weakly cohomologous to a smooth semiposi-
tive form of bidegree (n − 1, n − 1) (as in (vi), but with u ≥ 0 only).

(viii) There is a family of generically irreducible curves (Ct) covering X such that
C0 = mC as a cycle.

Then we have the following implications:

(i) ⇒ (ii) ⇒ (iii),(a)

(i) ⇒ (iv), if additionally every Yi is Cartier in Yi+1,(b)

(iv) ⇒ (v) ⇒ (iii), (viii) ⇒ (iii)(c)

(ii) ⇔ (vi) ⇒ (vii) ⇒ (iii)(d)

Proof. The implications (ii) ⇒ (iii), (iv) ⇒ (v) and (vi) ⇒ (vii) are obvious.

(a) We only have to show (i) ⇒ (ii). Let C = Y1 be the first member of the ample
irreducible flag

Y1 ⊂ Y2 ⊂ . . . ⊂ Yn−1 ⊂ X.

Let D ∈ Keff(X). We first check D ·C ≥ 0, so as to conclude that C ∈ Namp(X).
Otherwise L = O(−D) satisfies L · C > 0, i.e. L|C is ample. By Theorem 3.4 we

conclude that σ+(L) ≤ n − 1, hence D /∈ Keff(X) by 1.5 (ii), contradiction. This
shows that the cone N1 generated by all curves C = Y1 is contained in Namp(X).

Now, we check that C cannot be a boundary point of Namp(X). Let
H be a very ample line bundle on X and let (Zk)1≤k≤n−1 be Cartier divisors

in Ỹk+1 such that Yk = νk+1(SuppZk) (see Def. 3.1). There is an integer

m1 > 0 such that m1Z1 − H
|Ỹ2

is very ample on Ỹ2. Select an irreducible

divisor Z ′
1 ∈ |m1Z1 − H

|Ỹ2

|. Since the 1-cycle (ν2)⋆(Z1) is a multiple p1Y1, we

conclude that Y ′
1 = (ν2)⋆(Z

′
1) ≡ m1p1Y1 − (H · Y2) ∈ N1. Quite similarly, we have

irreducible very ample divisors Z ′
k ∼ mkZk − H

|Ỹk+1

and k-dimensional cycles

Y ′
k = (νk+1)⋆(Z

′
k) ≡ mkpkYk − H · Yk+1. Moreover

Hk−1 · Y ′
k ≡ mkpkHk−1 · Yk − Hk · Yk+1 ∈ N1

because H is very ample and Y ′
k is a member of a k-flag. By multiplying the above

line by mk+1pk+1 . . .mn−1pn−1 and adding everything together for k = 1, . . . , n−1,
we find

m1p1 . . .mn−1pn−1Y1 − Hn−1 ∈ N1 ⊂ Namp(X).

However Hn−1 is in the open cone Namp(X). Therefore {Y1} ∈ Namp(X) and
N1 ⊂ Namp(X).

(b) Next we prove (i) ⇒ (iv) in case every Yi is Cartier in Yi+1. This is done easily
by induction using the exact sequences of vector bundles

0 −→ NC/Yi
−→ NC/Y i+1 −→ NYi/Yi+1|C −→ 0.

(c) The implication (v) ⇒ (iii) is more complicated. Let C ⊂ X be an irreducible
curve such that NC/X is nef. Let D ⊂ X be an irreducible hypersurface. It is
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sufficient to prove D · C ≥ 0 if C ⊂ D. Let I be the ideal defining C in X , J the
ideal defining C in D. Then there is an exact sequence

OX(−D)|C = N⋆
D/X|C −→ I/I2 −→ J /J 2 −→ 0.

If C 6⊂ Sing(D), the map α : N⋆
D/X|C −→ I/I2 is non-zero, hence injective. Thus

α⋆ : NC/X −→ ND/X|C

is generically surjective. Since Imα⋆ is again nef (observe that IP(Imα⋆) ⊂
IP((I/I2)⋆) and OIP(Imα⋆)(1) = OIP((I/I2)⋆)(1)|IP(Imα⋆)), it follows clearly that
deg (ND/X|C) = D ·C ≥ 0. If however α = 0 we have slightly to modify the above
arguments. We want to ”generalize” the diagram

I/I2

α ր ց

N⋆
D/X|C

γ
−→ Ω1

X|C

where γ was given just by taking the linear part of the power series expansion
along D of a local equation f for D. Suppose now that C ⊂ Sing(D), so that
α = 0. Let m be the vanishing order of f along C. By taking the homogeneous
part of degree m in f , we obtain a map

γ̃ : N⋆
D/X|C −→ Sm(Ω1

X|C).

As before γ̃ factors over

α̃ : N⋆
D/X|C −→ Sm(I/I2).

Since Sm((I/I2)⋆) = Sm(I/I2)⋆ is again nef, we conclude in the same way as
before that D · C ≥ 0.

The implication (viii) ⇒ (iii) is again easy. Let (Ct) be a family of curves covering
X such that C0 = mC as cycles. It is sufficient to prove that for every effective
divisor D we have D · C ≥ 0. But this is obvious: we choose t general, such that
Ct 6⊂ Supp(D).

(d) Finally, the implications (vi) ⇒ (ii) and (vii) ⇒ (iii) follow from the following
fact: if D ∈ Keff (X) and [C] ∼ u weakly, u ≥ 0, then

D · C =

∫

D

u ≥ 0,

with strict inequality if D 6= 0 and u > 0. We now prove the converse implication
(ii) ⇒ (vi) as a consequence of the Hahn-Banach theorem.

Let D′
1,1 be the space of currents of bidegree (1, 1) equipped with the weak

topology. In D′
1,1 we consider the closed convex cone of positive currents D+

1,1. Let

ω be a Kähler metric on X . It is well-known that the intersection of D+
1,1 with the

hyperplane of currents T such that
∫

X
T ∧ωn−1 = 1 is weakly compact, so D+

1,1 has
a compact base. On the other hand, we pick a class {C} ∈ Namp(X) and consider
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the vector space EC of d-closed currents T such that the cohomology class {T}
belongs to NS1(X) and satisfies {T} · {C} = 0. We claim that D+

1,1 ∩ EC = {0}.

In fact the set of classes in NS1(X) represented by positive currents is precisely
Keff(X) (see e.g. [De92], Prop. 6.1 (vi)), hence a class D+

1,1 ∩ EC is the set of

classes {T} ∈ Keff(X) such that {T} · {C} = 0, but this set reduces to {0} by
our assumption {C} ∈ Namp(X). The Hahn-Banach theorem implies that there
is a linear form u on D′

1,1 such that u is positive on D+
1,1

\ {0} and vanishes
on E . From the positivity property, we conclude that u is a positive definite
smooth (n − 1, n − 1)-form on X . On the other hand, since EC contains ∂∂D′

0,0,

we have ∂∂u = 0. In fact EC is the set of d-closed (1, 1)-currents whose classes
are orthogonal to IR{C} ⊕ NS1(X)⊥ ⊂ Hn−1,n−1(X). Hence there is a class
λ{C}+{S} with a constant λ ∈ IR and {S} ∈ NS1(X)⊥ such that {u−λ[C]−S}
vanishes on all d-closed (1, 1)-currents. But this means precisely that there is
a (n − 2, n − 1)-current R such that u − λ[C] − S = ∂R + ∂R. Now λ must
be positive, otherwise u > 0 would have nonpositive intersection product with
effective divisors. Hence we get the desired conclusion (vi) by multiplying u, S, R
with λ−1.

4.2. Remark. — In general neither (vi) nor (ii) implies (v). For example take
a Fano 3-fold X with b2 = 1 and index 1. Then {C} ∈ Namp(X) (resp. [C] is
cohomologous to a smooth positive definite form of bidegree (2, 2) for every curve
C ⊂ X , however NC/X might not be nef. Take e.g. a line in X , this is a smooth
rational curve C with NC/X = O ⊕O(−1) or O(1) ⊕O(−2).

However we may hope that (vi) or (ii) imply (v) on the level of cones, e.g., given
α ∈ Namp(X) which is represented by curves, then one can find C with α = λ{C}
with λ ∈ Q+ such that NC/X is nef (or even ample). An implication (viii) ⇒ (v)
is true generically as we show in Theorem 4.3, however there seems to be no hope
to prove (iv) ⇒ (viii) or (v) ⇒ (viii) despite a concrete counterexample seems still
not to exist, at least to our knowledge.

Let Nµ(X) (or simply Nµ) be the convex cones generated by all classes of curves
in 4.1(µ), 1 ≤ µ ≤ 8, and let Nµ be their closures. Then we have:

4.3. Theorem. — There are the following relations between the various cones:
N1 ⊂ N2 = N3 = N6 = N7, N8 ⊂ N5 ⊂ N3, N4 ⊂ N5.

Proof. The equalities N2 = N3 and N6 = N7 are obvious. Moreover N2 = N6,
N1 ⊂ N2 and N5 ⊂ N3 follow from 4.1.

The only remaining case is N8 ⊂ N5. Let (Ct) be a covering family of irreducible
curves. We show that for general t, NCt/X is nef. Consider the graph of the family

Z
p
−→ X

q
y

T
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We may assume dim T = n− 1, hence p is generically finite. Let I be the ideal of
Ct in X , J the ideal of Ct in Z. As Ct is a fiber of q, (J /J 2)⋆ is nef; it is even
trivial for generic t. Now the canonical map

p⋆(Ω1
X|Ct

) −→ Ω1
Z|Ct

is generically surjective. Thus for generic t, NCt/Z embeds into p⋆(NCt/X) and
consequently –both sheaves being of same rank– NCt/X is nef.

In this context, the special case q = 1 of Problem 3.6 can be restated in a
slightly stronger form:

4.4. Proposition. — The following three statements are equivalent:

(i) A line bundle L ∈ Pic(X) satisfies σ+(L) ≤ n − 1 if and only if there is an
irreducible ample 1-flag Y1 ⊂ . . . ⊂ Yn−1 ⊂ X such that L|Y1

is ample.

(ii) N1(X) = N2(X) ;

(iii) N1(X) = N2(X).

Proof. Thanks to 1.5 (ii), Statement 4.4(i) can be restated: {L⋆} /∈ Keff (X) if and
only if there is an irreducible ample 1-flag Y1 ⊂ . . . ⊂ Yn−1 ⊂ X with L|Y1

ample.

Changing L into L⋆ and taking the negation, this becomes: {L} ∈ Keff(X) if and
only if for every irreducible ample 1-flag Y1 ⊂ . . . ⊂ Yn−1 ⊂ X , then L ·Y1 ≥ 0. By
duality, this means precisely that the dual cone Namp(X) of Keff(X) is the closure
N1(X) of the convex cone generated by all curves Y1. This is actually equivalent
to Namp(X) = N1(X), because we have shown in the Proof of 4.1(a) that N1(X)
does not contain boundary points of Namp(X).

4.5. Proposition. — Let X be a projective surface. Then all cones Nµ

coincide, in particular Statements 4.4 (i,ii,iii) hold on X .

Proof. By definition, we have Keff(X) = Neff(X) in dimension 2. Thus by duality,
Namp(X) = Kamp(X). This means that Namp(X) is generated by the irreducible
curves Y1 which are ample divisors in X , i.e. N1 = N2. Now, an irreducible ample
curve has an ample normal bundle O(C)|C , hence N1 ⊂ N4. By Theorem 4.3, this

implies the equality of all cones Nµ.

4.6. Remarks and open problems. —

(1) Observe that the inclusions N2 ⊂ N1 ⊂ N4 and N1 ⊂ N8 would imply the
equality of all cones Nµ. The first inclusion seems to be the most difficult
step.

(2) The comparison between N1 and N4 is not quite clear, however the (a priori)

slightly smaller cone N
′

1 consisting of classes of those C which are the first
members of an ample irreducible flag

Y1 ⊂ . . . ⊂ Yn−1 ⊂ X
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such that every Yi is Cartier in Yi, is contained in N4.

Problem: Is N1 = N
′

1 ? Is at least N1 ⊂ N4 ?

(3) Is always N4 = N5 ?

(4) What is the relation between N8 and N1 ? Given a covering family (Ct) of
irreducible curves in X , it is at least true that we obtain a flag of irreducible
varieties

Y1 ⊂ . . . ⊂ Yn−1 ⊂ X

such that the deformations of Yi fill up Yi+1 .

4.7. Remark. — Exceptional curves are far from being ample. This is made
precise by the following statement. Let X be a projective manifold, f : X −→ Y
be a modification such that Y carries a big line bundle (e.g. Y is smooth or
normal projective). Let C ⊂ X be an irreducible curve with dim f(C) = 0. Then
{C} 6∈ Namp(X).

At this point, one should note that Namp(X) is in general not generated by
complete intersection curves of the type H1 · . . . · Hn−1 with divisors Hi that are
ample. This is shown by the following example:

4.8. Example. — Let X = IP(E) over IP1, with E = O ⊕O(−1) ⊕O(−2). Let
p be the projection. Assume that Namp(X) is generated by curves H1 · H2 with
Hi ample on X . Let L = OIP(E)(1)⊗ p⋆(O(λ)) with λ ∈ Q. Then for every λ < 0,

we have {L} /∈ Keff(X). We will show that for λ ≥ −1 there cannot exist H1, H2

ample such that L · H1 · H2 < 0.

Write Hi = OIP(E)(1) ⊗ p⋆(O(ai)) as Q-divisors, after possibly rescaling Hi

by a positive factor. Since Hi = OIP(E⊗O(ai))(1), Hi is ample if and only if ai > 2.
Denoting h = c1(OIP(E)(1)), we have c1(E) = −3, thus h3 +3h2 = 0 and p⋆h

2 = 1.
This implies

L·H1·H2 = (h+λ)(h+a1)(h+a2) = p⋆

(
h3+(a1+a2+λ)h2

)
= a1+a2+λ−3 > λ+1.

Hence we must have L · H1 · H2 > 0 for λ ≥ −1, although {L} /∈ Keff(X) for
λ < 0. This example also shows that f cannot be taken to be the identity map in
the conclusion of Theorem 3.8.

We now discuss Problem 3.6 in the case σ+(L) ≤ n − 1 for 3-folds and only
for the most important line bundle, namely the anti-canonical bundle −KX . The
condition σ+(−KX) ≤ 2 is equivalent to KX /∈ N eff(X) which in turn just means
κ(X) = −∞, i.e. X is uniruled ([Mo88]). Instead of X being smooth, we deal even
with normal projective varieties having at most terminal singularities ([KMM87]).

4.9. Proposition. — Let X be a normal projective Q-Gorenstein 3-fold,
ϕ : X → Y a surjective holomorphic map to a normal projective variety Y of
dimension at most 2, such that −KX|ϕ−1(y) is ample for general y ∈ Y . Then
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there exists H ample on X with KX · H2 < 0. In particular there exists an
irreducible ample 1-flag Y1 ⊂ Y2 ⊂ X such that −KX|Y1

is ample.

Proof. If dim Y = 0, then −KX is ample and there is nothing to prove. So assume
dim Y ≥ 0 and fix an ample divisor H0 on X . If KX · H2

0 < 0, we are done. Thus
we assume KX · H2

0 ≥ 0. Choose L ∈ Pic(Y ) ample and define

H = H0 + ϕ⋆(mL)

with m ≫ 0 to be specified in a moment. Clearly H is ample. We have

KX · H2 = KX · H2
0 + 2KX · H0 · ϕ

⋆(mL) + KX · (ϕ⋆(mL))2.

(a) If dim Y = 2, then KX · ϕ⋆(L)2 < 0, since L · L is cohomologous to a multiple
of a generic fibre and −KX|ϕ−1(y) is ample on such fibres. Hence for m ≫ 0,
KX · H2 < 0.

(b) If dimY = 1, we obtain ϕ⋆(mL)2 = 0. But now

KX · H0 · ϕ
⋆(mL) < 0,

hence again KX · H2 < 0 for m ≫ 0. This finishes the proof of 4.9, the existence
of the ample 1-flag being an obvious consequence of the main statement.

4.10. Corollary. — Let X be a normal projective Q-Gorenstein 3-fold with
at most terminal singularities. Assume κ(X) = −∞. If one of the following
conditions is satisfied, there exists an ample divisor H on X with KX · H2 < 0 :

(a) The dimension of the image of the Albanese map α of X is 2 (or, more
generally, there exists a surjective map of X to an irreducible reduced surface
whose desingularisation has Kodaira dimension at least 0).

(b) There exists a modification ϕ : X → X ′ onto a normal projective Q-
Gorenstein 3-fold X ′ such that X ′ admits a map onto Y as in 4.9.

(c) κ(−KX) ≥ 0.

Proof. (a) The general fiber of α is IP1, by Iitaka’s conjecture C3,2 or the
uniruledness of X , hence we can apply 4.9.

(b) By 4.9 there exists H ′ ample on X ′ such that KX′ · H ′2. We conclude
KX · ϕ⋆(H ′)2 < 0, hence, approximating the nef and big divisor ϕ⋆(H ′) by ample
Q-divisors, we obtain our claim.

c) Take Z ∈ | − mKX | and any ample divisor H. Then clearly Z · H2 > 0, hence
our claim follows.

4.11. Remark. — By the minimal model theory [Mo88] every smooth projective
3-fold X with κ(X) = −∞ is birational to a normal projective variety X ′ having
at most terminal singularities which admits a map ϕ : X ′ −→ Y with −K ′

X being
ϕ-ample. Hence there exists H ′ ample on X ′ such that K ′

X · H ′2 < 0. However
we cannot easily conclude the same for X . The difficulty is the following: X ′
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arises from X by a sequence of contractions of prime divisors and by flips. For
contractions of prime divisors everything is settled by 4.10 (b). What is totally
unclear and maybe even false is the following:

4.12. Problem. — Assume X and X ′ are normal projective varieties having
at most terminal singularities. Let ϕ : X −→ X ′ be a birational rational map
of flipping type (in particular isomorphic in codimension 1). Assume that there
exists H ′ ample on X ′ such that KX′ ·H ′2 < 0. Does there exist an ample divisor
H on X with the analogous property ? Slightly more modest would be to ask for
an ample 1-flag for −KX if there is one for −KX′ .

5. Threefolds with σ−(KX) = 2

Our goal here is to study 3-folds which have a noneffective canonical divisor
KX . To this end, we introduce the following definition.

5.1. Definition. — Let X be a normal projective variety, assume X to be
Q-Gorenstein. Choose m ∈ IN such that mKX is Cartier. Then we define:

σ(X) = σ−(mKX).

Note that σ(X) does not depend on the choice of m (we could also take the
minimal m such that mKX is Cartier). We have 0 ≤ σ(X) ≤ n = dimX ; and
σ(X) ≥ 1 is equivalent to saying that KX /∈ N eff(X). Moreover σ(X) = n iff −KX

is ample, i.e. X is Q-Fano. Thus σ(X) measures how far X is from being Fano.
We now concentrate on 3-folds. Then for X smooth, σ(X) ≥ 1 iff κ(X) = −∞
(see [Mi87], [Mo88]), thus it is interesting to investigate 3-folds with σ(X) = 2.

5.2. Example. — Let X be a smooth projective 3-fold, ϕ : X → Y a surjective
holomorphic map onto a compact Riemann surface Y such that −KX is ϕ-ample.
Then σ(X) ≥ 2 (in particular, if g(Y ) ≥ 1, then σ(X) = 2).

Proof. Fix A ample on X . Since −KX is ϕ-ample, we have Riϕ⋆(−mKX−pA) = 0,
for i ≥ 1 and m ≥ C(p + 1). Hence

H2(X,−mKX − pA) = H2(Y, ϕ⋆(−mKX − pA)) = 0

for those m, p, i.e. σ+(−KX) ≤ 1. (Of course here we do not need dim X = 3.)

Examples of maps ϕ arising in Example 5.2 are contractions of extremal rays;
note also that the proof still works if X is only normal and Q-Gorenstein.

Now we turn to fibrations over surfaces. Since this seems to be rather
complicated in general, we restrict ourselves to the case of IP1-bundles. Recall
that for a IPm-bundle X = IP(E)

π
−→ Y over a projective manifold Y we have the

formula
KX = π⋆(KY + det E) ⊗OIP(E)(−m − 1).

5.3. Problem. — Let X = IP(E)
π
−→ S be a IP1-bundle over a smooth

projective surface S. Under which conditions is σ(X) = 2 ?
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This question will be considered in (5.5), (5.6). Note that in the Fano case
σ(X) = 3, the situation is not so difficult to understand: S has automatically to
be a del Pezzo surface and the condition on E can be expressed in the following
way: E ⊗ (detE ⊗ KS)−1/2 has to be ample. At least for S = IP2 all those E are
classified (see [SW90]).

5.4. Examples. —

(1) Let X = IP1 × S with a projective surface S. Then σ(X) = σ(S) + 1, hence
σ(X) ≥ 2 iff κ(S) = −∞ , with equality iff S is not Fano.

(2) Now assume X = C ×S with g(C) ≥ 1. Then σ(X) = σ(S), hence σ(X) = 2
iff S is Fano. In fact, let A = A1×A2 with A1 ample on C, A2 ample on S.
Then

Hq(X, mKX + pA) = Hq
(
X,O(mKC + pA1)×O(mKS + pA2)

)

= H0(X,O(mKC + pA1)) ⊗ Hq(S,O(mKS + pA2))

by Künneth, hence σ−(KX) = σ−(KS).

(3) Let X = IP
(
OIP2

(1) ⊕OIP2
(n)

)
, n ∈ IN. Then

σ(X) = 3 iff n = 1 or 2,

σ(X) = 2 iff n = 3.

(See 5.5 below for more general calculations).

5.5. Remarks. — Let X = IP(E) → S be a IP1-bundle over a projective
surface S. We may assume E to be ample. In order to compute σ(X) we have to
consider H1(X, mKX + pA) for some ample A. We choose A = OIP(E)(1). Then

H1(X, mKX + pA) ≃ H0(S, S2m−p−2(E⋆) ⊗ (det E)m−1 ⊗ Km
S ).

Thus σ(X) = 2 implies (and, if X is not Fano, is in fact equivalent to)

(⋆) H0(S, S2m−p−2(E⋆) ⊗ (det E)m−1 ⊗ Km
S ) = 0, m ≥ C(p + 1).

Consider the Q-vector bundle E0 = E ⊗ (detE)−1/2, so that E⋆
0 ≃ E0 and

c1(E0) = 0. Then (⋆) is equivalent to

(⋆⋆) H0(S, S2m−p−2E0 ⊗ (det E)p/2 ⊗ Km
S ) = 0, m ≥ C(p + 1).

This should be considered as a kind of stability property of E. For instance, if
κ(S) ≥ 0, then (det E)p/2 ⊗ Km

S has sections for all p ≥ p0 and m ≥ 0, so (⋆⋆)
immediately implies that

H0(S, SkE0) = 0, ∀k > 0.

(Note that E0 is not necessarily a “real” vector bundle if det E is not divisible by
2 in Pic(S) ; in that case we only consider the case of even integers k so that SkE0

is actually a vector bundle.)

(a) Assume that c1(E)2 > 4 c2(E), S minimal and κ(S) ≥ 0. Then σ(X) = 1.
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Proof. If σ(X) = 2, then by (⋆⋆) with m = (k + p + 2)/2 and p chosen such that

(det E)p/2 ⊗ K
(p+2)/2
S has sections, we conclude (at least for even k) that

(+) H0
(
S, Sk(E0 ⊗ K

1/2
S )

)
= 0, ∀k ≥ 0.

By Riemann-Roch, χ
(
Sk(E0 ⊗ K

1/2
S )

)
∼ (c2

1 − c2)k
3/6 where ci = ci(E0 ⊗ K

1/2
S ).

By assumption c2
1(E) > 4 c2(E) and K2

S ≥ 0, hence

c2
1 − c2 =

3

4
K2

S − c2(E0) =
3

4
K2

S +
1

4
c1(E)2 − c2(E) > 0.

Thus Riemann-Roch implies

H2
(
S, Sk(E0 ⊗ K

1/2
S )

)
6= 0

for k large. By duality we obtain

H0
(
S, Sk(E0 ⊗ K

−1/2
S ) ⊗ KS

)
6= 0.

This contradicts (+).

(b) We observe also that σ(X) = 2 implies κ(KS + det E⋆) = −∞, and even
that KS + det E⋆ /∈ N eff(S). Furthermore the proof of a) yields 3

4K2
S ≤ c2(E0)

if σ(X) = 2. Our conclusion is that the condition “σ(X) = 2” becomes more
and more difficult to achieve when KS becomes more positive. Hence the question
arises whether there exists any IP1-bundle X over a surface S with κ(S) ≥ 0 having
σ(X) = 2.

5.6. Example. — Let S ⊂ IP3 be a general quartic surface. Then S is a K3
surface and has Picard number ρ(S) = 1. Let X = IP(Ω1

S) → S. We are going to
show that σ(X) = 2.

By (5.5) it is sufficient to prove that

(⋆) H0(S, S2m−p−2(Ω1
S) ⊗ Ap) = 0, m ≥ C(p + 1)

where A is a sufficiently ample line bundle (so that E = Ω1
S ⊗ A in the context

of 5.5; note that det Ω1
S = OS , hence E0 = Ω1

S). We may take for instance
A = OS(2) = OIP3

(2)|S. Now (⋆) is easily verified by considering the standard
exact sequences

0 −→ OS(−4) −→ Ω1
IP3|S

−→ Ω1
S −→ 0,

0 −→ OS −→ OS(1)⊕4 −→ TIP3|S −→ 0 (Euler sequence),

0 −→ Ω1
IP3|S

−→ OS(−1)⊕4 −→ OS −→ 0 (dual sequence),

and their k-th symmetric powers

0 −→ OS(−4) ⊗ Sk−1Ω1
IP3|S

−→ SkΩ1
IP3|S

−→ SkΩ1
S −→ 0,

0 −→ SkΩ1
IP3|S

−→
⊕

OS(−k) −→
⊕

OS(1 − k) −→ 0.

In fact we find for every k ∈ IN a constant Ck such that

H0
(
S, SmΩ1

X ⊗OX(k)
)

= 0, m ≥ Ck.
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Note that property (⋆) for an arbitrary 2-bundle E with c1(E) = 0 on a K3
surface with ρ(S) = 1 is just slightly stronger than the condition that all SmE
are stable. Namely, (⋆) can be rephrased by saying that OIP(E)(1) /∈ N eff(IP(E)),
while stability of SmE means that OIP(E)(m) is never effective. So it seems that
5.6 should work for most Hermite-Einstein bundles for which SmE never splits off
a direct summand.

Now we use this example to show that Problem 3.6 has not always a positive
answer. In fact we prove

(⋆⋆) If Y ⊂ X is ample, then K2
X · Y < 0,

whereas σ+(KX) = 1. We can write

OX(Y ) = OIP(Ω1
S
)(α) ⊗ π⋆OS(β),

with α, β ∈ ZZ. Then certainly α > 0, and also β > 0 since Ω1
S is not ample.

Replacing Y by some multiple, we may assume the existence of a smooth curve
C ∈ |OS(β)|. Since

−KX = OIP(Ω1
S
)(2),

we have (abbreviating OIP(Ω1
S
)(2) by OIP(2)):

K2
X · Y = 4 c1

(
OIP(1)

)2(
α c1(OIP(1)) + π⋆C

)

= 4α c1

(
OIP(1)

)3
+ 4 c1

(
OIP(Ω1

S|C
)(1)

)2
.

Since
c1

(
OIP(1)

)3
= c1(Ω

1
S)2 − c2(Ω

1
S) = −c2(S) = −24

and
c1

(
OIP(Ω1

S|C
)(1)

)2
= c1(Ω

1
S|C) = 0,

our claim (⋆⋆) follows.

Now we discuss birational properties of σ(X).

5.7. Proposition. — Let X and Y be normal projective varieties of dimension
3 with at most terminal singularities. Let ϕ : X → Y be a birational map with
exceptional set E such that −KX is ϕ-ample. Then:

(a) σ(Y ) = 2 =⇒ σ(X) = 2 if dimϕ(E) = 0 ;

(b) σ(X) = 2 =⇒ σ(Y ) ≥ 2.

Proof. Fix an ample divisor A on Y . Let Ei be the (automatically 1-codimensional)
components of E. For simplicity of notations we may assume X and Y Gorenstein
(otherwise substitute K by mK). Write

KX = ϕ⋆(KY ) +
∑

λiEi.

Because Y has terminal singularities, all λi are > 0. Since −KX is ϕ-ample, so is
−

∑
λiEi. Hence we find p0 such that

B = ϕ⋆(p0A) −
∑

λiEi
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is ample on X . Substituting A by p0A, we may assume p0 = 1.

Let us first prove (b). So assume σ(X) = 2. Then

Hq(X,−mKX − pB) = 0, m ≥ C(p + 1), q ≥ 2.

Since
− mKX − pB = −ϕ⋆(mKY + pA) −

∑
(m − p)λiEi and

Rqϕ⋆

(
O

( ∑
(p − m)λiEi

))
= 0

for p < m and q > 0 (−
∑

λiEi being ϕ-ample), we conclude via the Leray spectral
sequence that

Hq(Y,−mKY − pA) = 0, m ≥ C(p + 1), q ≥ 2,

hence σ(Y ) ≥ 2. For (a) assume σ(Y ) = 2, so

Hq(Y,−mKY − pA) = H3−q(Y, (m + 1)KY + pA) = 0, m ≥ C(p + 1), q ≥ 2.

We observe that

ϕ⋆(−mKX − pB) = O(−mKY − pA) ⊗ ϕ⋆

(
O

(∑
(p − m)λiEi

))
.

Since p < m, we see that ϕ⋆

(
O

(∑
(p − m)λiEi

))
is an ideal sheaf I with

Supp(O/I) = ϕ(E), hence with finite support. Thus

Hq
(
Y, ϕ⋆(−mKX − pB)

)
= Hq(Y,−mKY − pA), q ≥ 2.

By the Leray spectral sequence, we conclude as before that

Hq(X,−mKX − pB) = Hq(Y,−mKY − pA) = 0, m ≥ C′(p + 1), q ≥ 2.

Hence σ(X) ≥ 2. If finally σ(X) = 3, we have

H1
(
Y, ϕ⋆(−mKX − pB)

)
= 0,

hence H1(Y,−mKY − pA) = 0 and consequently σ(Y ) = 3.

5.8. Remark. — If in particular X is a projective 3-fold with at most terminal
singularities and ϕ : X → Y is a birational contraction of an extremal ray whose
exceptional set is not of codimension ≥ 2, then Proposition 5.7 applies.

5.9. Problem. — Let X , Y be projective 3-folds with only terminal singularities
and let ϕ : X - -→ Y be a birational morphism of flipping type. Is σ(X) ≥ 2 iff
σ(Y ) ≥ 2 ?

If this is true, then by Mori [Mo88] we conclude the following: if X and Y
are smooth projective 3-folds (or Q-factorial with at most terminal singularities)
and if f : X → Y is a birational morphism, then σ(X) = 2 implies σ(Y ) ≥ 2.

5.10. Example. — We will show that in Prop. 5.7 (a) the conclusion σ(X) = 2
no longer holds if dim ϕ(E) = 1. Let Y = IP3 , let D be a smooth complete
intersection curve of type (a, a) with a ≥ 7. Let ϕ : X → Y be the blow-up of Y
along D.
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Claim. — We have σ(X) = 1.

Proof. Let A and B as in the proof of Prop. 5.7, so A = OIP3
(p0) and B = ϕ⋆A−E

for some integer p0 (In this situation, the exceptional divisor E has just one
component with λ = 1.) We will show that

H2(X,−mKX) 6= 0

for m ≫ 0. In fact we have an exact sequence

0 → Im
D ⊗O(−mKY ) → O(−mKY ) → O(−mKY )|Dm

→ 0,

| |

ϕ⋆(−mKX)

where Dm is the (m− 1)-th infinitesimal neighborhood of D defined by Im
D . Since

Hq(Y,−mKY ) = 0 for q > 0 and all m > 0, it is sufficient to prove

H1(Dm,−mKY ) 6= 0, m ≫ 0.

Since
χ(Dm,O(4m)) =

∑

0≤ν≤m−1

χ(D, SνN⋆
C ⊗OD(4m)

)

it is sufficient to prove that this last sum is negative for m ≫ 0. By Riemann-Roch
we have ∑

0≤ν≤m−1

χ(D, SνN⋆
C ⊗OD(4m)

)
=

=
∑

0≤ν≤m−1

(
(1 − g)(ν + 1) + (ν + 1)a2(4m − νa)

)

= (1 − g + 4ma2)m(m + 1)/2 − a3m(m2 − 1)/3.

The leading term of this cubic polynomial in m is

a2(2 − a/3)m3

which is negative by our assumption a ≥ 7.

5.11. Proposition. — Let X be a smooth projective 3-fold. Assume −KX to
be big and nef but not ample. Let ϕ : X → Y be the map given by the base point
free linear system | − m0KX | with m0 ≫ 0. Then:

σ(X) = 2 iff all nontrivial fibers of ϕ are 1-dimensional.

Proof. By the base point free theorem, some multiple −m0KX is globally generated
and since −KX is big, the associated map ϕ : X → Y is a modification onto a
normal projective variety Y .

(1) Assume that ϕ has at least one 2-dimensional fiber F .

In this case, we will show that H2(X,−mKX − pA) 6= 0, p ≫ 0, where A is
an arbitrary fixed ample divisor on X . For this we use the Leray spectral sequence

Ep,q
2 = Hp

(
Y, Rqϕ⋆O(−mKX − pA)

)
.
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First consider E0,2
2 = H0

(
Y, R2ϕ⋆O(−mKX − pA)

)
. Since σ−(mKX) = σ−(KX)

we may assume m0 = 1 in our considerations, hence KX = ϕ⋆(KY ). So

E0,2
2 = H0

(
Y, R2ϕ⋆O(−pA) ⊗O(−mKY )

)
.

We show that R2ϕ⋆O(−pA) 6= 0 in order to conclude E0,2
2 6= 0. Let {x} = ϕ(F ).

Then rk(R2ϕ⋆O(−pA)x) ≥ h2(F,−pA|F ). Here we equip F with the reduced
structure. Since F is Cohen-Macaulay, we have

H2(F,−pA|F ) ≃ H0(F, KF ⊗ pA|F ),

which is nonzero for all p ≫ 0. Hence E0,2
2 6= 0 for p ≫ 0 and all m. Next consider

E2,1
0 = H2

(
Y, R1ϕ⋆O(−pA) ⊗ O(−mKY )

)
. Since dim SuppR1ϕ⋆O(−pA) = 0,

E2,1
2 = 0. Hence E0,2

2 ≃ E0,2
3 ≃ E0,2

∞ and thus

H2(X,−mKX − pA) 6= 0, p ≫ 0.

(2) Now assume that all fibers of ϕ have dimension 1.

Then take a general smooth ample (hyper)surface H ⊂ X . It will meet every
fiber in a finite set. Hence −KX ·C > 0 for every curve C ⊂ H, otherwise C would
be contracted to a point by ϕ. Furthermore K2

X ·H > 0 since −KX is big and nef
on the general member of the linear system |mH|, m ≫ 0. Hence −KX|H is ample
by Nakai-Moishezon. Theorem 3.4 implies σ−(KX) ≥ 2, and a strict inequality
cannot occur because −KX is not ample.

5.12. Remark. — The proof of 5.11 can be easily modified to make it work
for all Q-Gorenstein normal projective varieties X . In that case F might not
be Cohen-Macaulay, so we possibly have to pass to the normalization which is
Cohen-Macaulay.
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