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Abstract

This note investigates compact complex manifolds X of dimension 3 with second Betti
number b2(X) = 0. If X admits a non-constant meromorphic function, then we prove
that either b1(X) = 1 and b3(X) = 0, or b1(X) = 0 and b3(X) = 2. The main idea
is to show that c3(X) = 0 by means of a vanishing theorem for generic line bundles
over X . As a consequence, a compact complex threefold homeomorphic to the 6-sphere
S6 cannot admit a non-constant meromorphic function. Furthermore, we investigate the
structure of threefolds with b2(X) = 0 and algebraic dimension 1, in the case when the
algebraic reduction X ≻ P1 is holomorphic.
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Introduction

In this note we shall investigate compact complex manifolds of dimension three and sec-
ond Betti number b2(X) = 0. Such a manifold cannot be algebraic or Kähler. Therefore
we will be interested in the algebraic dimension a(X) which is by definition the transcen-
dence degree of the field of meromorphic functions over the field of complex numbers.
Note that a(X) > 0 if and only if X admits a non-constant meromorphic function. The
topological Euler characteristic will be denoted χtop(X) which is also the third Chern
class c3(X) by a theorem of Hopf. Our main result is

Theorem

Let X be a compact 3-dimensional complex manifold with b2(X) = 0 and a(X) > 0.
Then

c3(X) = χtop(X) = 2 − 2b1(X) − b3(X) = 0,

i.e. we either have b1(X) = 0, b3(X) = 2 or b1(X) = 1, b3(X) = 0.

Notice that if a(X) = 3, i.e. X is Moishezon, then we have b2(X) > 0, but examples of
compact threefolds X with a(X) = 1 or 2 and with the above Betti numbers exist (see
sect. 2).
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The following corollary was actually our motivation for the Theorem:

Corollary

Let X be a compact complex manifold homeomorphic to the 6-dimensional sphere S6.
Then a(X) = 0.

In other words, S6 does not admit a complex structure with a non-constant meromorphic
function.

Our Main Theorem is an immediate consequence of the following more general

Theorem

Let X be a compact 3-dimensional complex manifold with b2(X) = 0 and a(X) > 0. Let
B be a vector bundle on X. Then Hi(X, B⊗M) = 0 for i ≥ 0 and generic M ∈ Pic0(X),
in particular χ(X, B ⊗M) = 0 for all M ∈ Pic0(X).

In the last section we study more closely the structure of threefolds X with b2(X) = 0
and algebraic dimension 1 whose algebraic reduction is holomorphic. We show e.g. that
smooth fibers can only be Inoue surfaces, Hopf surface with algebraic dimension 0 or
tori.

Finally we would like to thank the referee for suggestions of improvements in the expo-
sition.

1. Preliminaries and Criteria for the vanishing of H
0.

1.0 Notations

(1) Let X be a compact complex manifold, always assumed to be connected. The alge-
braic dimension, denoted a(X), is the transcendence degree of the field of meromorphic
functions over C.

(2) bi(X) = dim Hi(X, R) denotes the i-th Betti number of X .

(3) If G is a finitely generated abelian group, then rk G will denote its rank (over Z).

(4) If X is a compact space, then hq(X,F) denotes the dimension of Hq(X,F).

1.1 Proposition

Let Y be a connected compact complex space (not necessarily reduced), every component
Yi of Y being of positive dimension. Let D be an effective Cartier divisor on Y such
that D|Yi

6= 0 for all i. Let F be a locally free sheaf on Y . Then there exists k0 ∈ N such
that

H0(Y,F ⊗OY (−kD)) = 0

for k ≥ k0.
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Proof. We have natural inclusions

H0(Y,F ⊗OY (−(k + 1)D)) ⊂ H0(Y,F ⊗OY (−kD)).

Take k0 such that this sequence is stationary for k ≥ k0. Then s has to vanish at
any order along D|Yi

for every i (s can be thought of locally as a tuple of holomorphic
functions), hence s|Yi

= 0, and s = 0.

1.2 Corollary

Let S be a smooth compact complex surface containing an effective divisor C such that
c1(OS(C)) = 0. Let B be a vector bundle on S. Then for a generic L ∈ Pic0(X) we
have

H0(S, B ⊗L) = H2(S, B ⊗ L) = 0.

In particular χ(S, B) = χ(S, B ⊗ L) = −h1(S, B ⊗ L) ≤ 0.

Proof. The vanishing H0(S, B ⊗ OS(−kC)) = 0 for large k follows from (1.1). Since
OS(kC) is topologically trivial for large suitable k, the required H0-vanishing follows
from semi-continuity. The H2-vanishing follows by applying the previous arguments to
B∗ ⊗ KS and Serre duality.

1.3 Corollary

Let X be a smooth compact threefold with b2(X) = 0 carrying an effective divisor D.
Then H0(X, B ⊗L) = 0 for generic L in Pic0(X) and every vector bundle B on X.

Proof. The assumption b2(X) = 0 means that H2(X, Z) is finite, hence there exists an
integer m > 0 such that c1(OX(mD)) = 0 in H2(X, Z). We can apply (1.1) to obtain

H0(X, B ⊗OX(−kmD)) = 0

for k large. Now we conclude again by semi-continuity.

The next lemma is well-known; we include it for the convenience of the reader.

1.4 Lemma

Let X be a compact manifold of dimension n with a(X) = n. Then b2(X) > 0.

Proof. Choose a birational morphism π : X̂ −→ X such that X̂ is a projective manifold.
Take a general very ample divisor D̂ on X̂ and a general curve Ĉ ∈ X̂ . Let D = π(D̂)
and C = π(Ĉ). Then D meets C in finitely many points, hence D ·C > 0, in particular
c1(OX(D)) is not torsion in H2(X, Z).

1.5 Lemma

Let X be a smooth compact threefold and f : X −→ C be a surjective holomorphic map
to a smooth curve C. Let F be a locally free sheaf on X. Then Rif∗(F) is locally free
for all i.
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Proof. (a) Note that local freeness is equivalent to torsion freeness, since dim C = 1.
Hence the claim is clear for i = 0.

(b) Next we treat the case i = 2. We shall use relative duality (see [RRV71], [We85]); it
states in our special situation (f is flat with even Gorenstein fibers) that if Rjf∗(G) is
locally free for a given locally free sheaf G and fixed j, then

R2−jf∗(G∗ ⊗ ωX/C) ≃ Rjf∗(G)∗,

in particular R2−jf∗(G∗⊗ωX/C) is locally free. Here ωX/C = ωX ⊗f∗(ω∗
C) is the relative

dualizing sheaf. Applying this to j = 0 and G = F∗ ⊗ ω∗
X/C our claim for i = 2 follows.

(c) Finally we prove the freeness of R1f∗(F). By a standard theorem of Grauert it is
sufficient that h1(Xy,F|Xy

) is constant, Xy the analytic fiber over y ∈ C. By flatness,

χ(Xy,F|Xy
) is constant, hence it is sufficient that hj(Xy,F|Xy

) is constant for j = 0
and j = 2. By the vanishing R3f∗(F) = 0, we have (see e.g. [BaSt76])

R2f∗(F)|{y} ≃ H2(Xy,F|Xy
).

Therefore h2(Xy,F|Xy
) is constant by (b). Finally

h0(Xy,F|Xy
) = h2(Xy,F

∗
|Xy

⊗ ωXy
) = h2(Xy, (F∗ ⊗ ωX)|Xy

)

is constant by applying the same argument to F∗ ⊗ ωX .

2. The Main Theorem.

In this section we prove the main result of this note:

2.1 Theorem

Let X be a 3-dimensional compact complex manifold with b2(X) = 0 and a(X) > 0. Let
B be a vector bundle on X. Then

(1) Hi(X, B ⊗M) = 0 for i ≥ 0 and M ∈ Pic0(X) generic.

(2) χ(X, B ⊗M) = 0 for all M ∈ Pic0(X).

(3) c3(X) = 0, i.e. either b1(X) = 0 and b3(X) = 2 or b1(X) = 1 and b3(X) = 0.

Proof. First notice that (2) and (3) follow from (1). In fact, by (1) we have

χ(X, B ⊗M) = 0

for generic M and thus the same holds for all M by Riemann-Roch and the equality
cj(B) = cj(B ⊗M). For (3), we apply (2) to B = TX and get

χ(X, TX) = 0.

Now, since H2(X, R) = H4(X, R) = 0, we have c1(X) = c2(X) = 0, hence

0 = χ(X, TX) =
1

2
c3(X)
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by Riemann-Roch.

So it suffices to prove (1). Moreover by Serre duality we only need to prove the vanishing
for i = 0 and i = 2.

In case i = 0 we observe that there are non-zero effective divisors on X (since a(X) > 0)
and we can apply (1.3) to get the claim.

So let i = 2. Let g : X ≻ P1 be a non-constant meromorphic function. Let σ : X̂ −→ X
be a resolution of the indeterminacies of g and let f : X̂ −→ C be the Stein factorisation
of the holomorphic map σ ◦ g. Fix an ample divisor A on C and let L be the line bundle
on X determined by

(a) f∗(A) = σ∗(L) ⊗OX̂(−E)

with a suitable effective divisor E supported on the exceptional set of σ. We need to
exhibit a line bundle M ∈ Pic0(X) with

H2(X, B ⊗M) = 0.

We shall distinguish two cases according to whether the indeterminacy locus of g is
empty or not.

We start treating the case that g is not holomorphic. First note that the canonical map

H2(X, B ⊗M) −→ H2(X̂, σ∗(B ⊗M))

is injective. This is obvious from the Leray spectral sequence. Hence it is sufficient to
show

(∗) H2(X̂, σ∗(B ⊗M)) = 0.

Actually for (∗) we only need

(∗∗) H2(X̂, σ∗(B ⊗M)(−tE)) = 0

for some t ≥ 0. To verify that (∗∗) implies (∗), consider the exact sequence

H2(X̂, σ∗(B ⊗M)(−tE)) −→ H2(X̂, σ∗(B ⊗M)) −→ H2(tE, σ∗(B ⊗M))

and note that H2(tE, σ∗(B ⊗M)) = 0. This last vanishing is seen as follows: let At be
the complex subspace of X defined by the ideal sheaf σ∗(−tE), then

H2(tE, σ∗(B ⊗M)) = H2(At, B ⊗M) = 0

since dim At = 1.

We make the ansatz M = Lt+k with t and k to be determined; of course we need to prove
the vanishing only for one M by semi-continuity. Using the Leray spectral sequence for
f : X̂ −→ C, (∗∗) comes down to

(∗∗∗) Hq(C, Rpf∗(σ∗(B ⊗ Lk)) ⊗ tA) = 0
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for p + q = 2, and large t, k. For q = 2, (∗∗∗) is obvious and for q = 1 it follows from
Serre’s vanishing theorem for t ≫ 0. So let q = 0. We need to see that

F = R2f∗(σ∗(B ⊗ Lk)) = 0.

Since F is locally free by (1.5), it suffices that F|F = 0 for the general fiber F of f and
large k. But this follows from (1.1), the effective divisor E|F being non-zero:

H2(F, σ∗(B ⊗ Lk)) ≃ H0(F, σ∗(B∗) ⊗ KF ⊗OF (−kE)) = 0.

If g is holomorphic, i.e. we may take σ = id, so that f = g, this argument does not work
since E = 0. Here we have to replace Lt+k by a different line bundle. First note that

(+) H0(C, R2f∗(B) ⊗ (−tA)) = 0

for t sufficiently large. We claim that this implies

(++) H0(C, R2f∗(B ⊗M)) = 0

for general M ∈ Pic0(X). Let W = H1(X,OX). Then every element in W is represented
as a topologically trivial line bundle.

Consider locally the universal bundle M̂ on X × W . Let F = f × id : X × W −→
C × W and B̂ = pr∗X(B). The coherent sheaf R2F∗(B̂ ⊗ M̂) satisfies

R2F∗(B̂ ⊗ M̂)|C × {t} ≃ R2f∗(B ⊗ M̂t),

where M̂t is the line bundle corresponding to t ∈ W . Choose m ≫ 0 and t0 such that
f∗(A−m) = M̂t0 . This is possible since b2(X) = 0. By (+) we have

H0(C, R2f∗(B ⊗ M̂t0)) = 0.

Hence it is sufficient to show that RjF∗(B̂ ⊗ M̂) is flat with respect to the projection
q : C ×W −→ W , over a Zariski open set of W , then the usual semi-continuity theorem
gives the claim (2). Now R2f∗(B⊗M̂t) is locally free on C = C × t for every t by (1.5),
hence it is clear that there is a Zariski open set U ⊂ W such that R2F∗(B̂ ⊗ M̂) has
constant rank over U , hence is locally free over U (observe just that the set where the
rank of a coherent sheaf is not minimal is analytic). This proves (++).

On the other hand we have for m ≫ 0 by Serre’s vanishing theorem

H1(C, R1f∗(B) ⊗ Am) = 0.

In the same way as above we conclude that

H1(C, R1f∗(B ⊗M)) = 0

for general M ∈ W .

By the Leray spectral sequence we therefore again obtain H2(X, B ⊗M) = 0 for gen-
eral M. This finishes the proof of the theorem.
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2.2 Corollary

Let X be a compact complex threefold homeomorphic to the sphere S6. Then every
meromorphic function on X is constant.

Proof. Note that c3(X) = χtop(S6) = 2 and apply (2.1).

Next we give examples of threefolds with a(X) > 0, b2(X) = 0 and c3(X) = 0 so that
the Main Theorem (2.1) is sharp.

2.3 Example

The so-called Calabi-Eckmann threefolds are compact threefolds homeomorphic to
S3 × S3, see [Ue75]. They can be realized as elliptic fiber bundles over P1 × P1. Hence
a(X) = 2, b1(X) = b2(X) = 0 and b3(X) = 2.

We now show that Calabi-Eckmann manifolds can be deformed to achieve a(X) = 1
or a(X) = 0 and b1 = b2 = 0, b3 = 2. We choose positive real numbers a, b, c and let
B = C2 \ {(0, 0)}. We define the following action of C on B × B :

(t, x, y, u, v) 7→ (exp(t)x, exp(at)y, exp(ibt)u, exp(ict)v).

One checks easily that this action is holomorphic, free and almost proper so that the
quotient X exists and is a compact manifold. If a = 1 and b = c, then X is a Calabi-
Eckmann manifold. If however a 6∈ Q and b = c resp. a 6∈ Q and b

c 6∈ Q, then a(X) = 1
resp. a(X) = 0.

2.4 Example

Hopf threefolds of the form
C3 \ {(0, 0, 0)}/Z,

with the action of Z ≃ {λk ; k ∈ Z} being defined by

λ(x, y, z) = (αx, βy, γz), 0 < |α|, |β|, |γ| < 1

are homeomorphic to S1 × S5. They have a(X) = 0, 1 or 2 and b1(X) = 1, while
b2(X) = b3(X) = 0. This realizes the other possibility for the pair (b1, b3) when b2 = 0
and a(X) > 0, as stated in the Main Theorem.

Notice that the algebraic reduction is holomorphic in (2.3) but it is not holomorphic in
(2.4) if a(X) = 1.

2.5 Example

We finally give other examples of compact threefolds X with a(X) = 0 and b1 = b2 = 0,
b3 = 2. Let Γ ⊂ Sl(2, C) be a torsion free cocompact lattice in such a way that the
quotient X := Sl(2, C)/Γ has b1(X) = 0.

This last condition is not automatic. Let Y = SU(2)\ Sl(2, C)/Γ; then Y is a compact
differentiable manifold admitting a differentiable fibration π : X −→ Y with S3 is fiber.
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Since b1(X) = 0, we also have b1(Y ) = 0, hence b2(Y ) = 0 by Poincaré duality. Now the
Leray spectral sequence immediately gives b2(X) = 0, the fibers of π being 3-spheres.
b3(X) = 2 is again clear from the Leray spectral sequence. Finally the fact that X does
not carry any non-constant meromorphic function results from [HM83] from which we
even deduce that X does not carry any hypersurface (as X is homogeneous).

3. On the finer structure of threefolds with

b2(X) = 0 and a(X) = 1.

In this section we investigate more closely threefolds X with b2(X) = 0 and algebraic
dimension 1. By construction, the algebraic reduction f : X ≻ V is a meromorphic
map to a normal algebraic space, hence V is a nonsingular curve. We claim that V
must be rational. In fact, we have b1(X) ≤ 1 by 2.1 (3); on the other hand, for every
holomorphic 1-form u on V , then f⋆u extends to a d-closed holomorphic 1-form on X ,
thus b1(X) ≥ 2 h1,0(V ) and h1,0(V ) must be zero. In the rest of this section, we restrict
ourselves to the case when the algebraic reduction f : X → V is holomorphic. The key
to our investigations is

3.1 Theorem

Let F be a general smooth fiber of f . Then the restriction r : H1(X,OX) −→ H1(F,OF )
is surjective.

We need some preparations for the proof of (3.1). Let ∆ ⊂ V be a finite non empty
set such that A = f−1(∆) ⊂ X contains all singular fibers of f . Let V ′ = V \ ∆,
and X ′ = f−1(V ′) so that f ′ = f|X′ is a smooth fibration. Let Di, 1 ≤ i ≤ r be the
irreducible components of A and let s = card ∆ be the number of connected components
of A. Furthermore we set t = b1(F ) where F is the general smooth fiber of f . For a
non-compact space Z we let bi(Z) = dim Hi(Z, R), whatever this dimension is. We
prepare the proof of (3.1) by three lemmas.

3.2 Lemma

(1) The natural exact sequence of groups

1 = π2(V ′) −→ π1(F ) −→ π1(X ′) −→ π1(V ′) −→ 1

is exact and (non-canonically) split.

(2) b1(X ′) = b1(V ′) + b1(F ) = s − 1 + t.

(3) r = s − 1 + t − b1(X).

Proof. (1) Since V ′ is a non-compact Riemann surface, π1(V ′) is a free group of
s − 1 generators and since V ′ is uniformized by either C or by the unit disc, we have
π2(V ′) = 1. Hence the exact homotopy sequence of the fibration f ′ : X ′ −→ V ′ gives
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the exact sequence of groups stated in (1). Since π1(V ′) is a free group, the sequence
splits.

(2) From (1) we deduce that

H1(X ′, Z) ≃ H1(V ′, Z) ⊕ H1(F, Z).

Moreover f∗ : π1(X) −→ π1(V ) is surjective since the fibers of f are connected. Hence
(2) follows.

(3) The cohomology sequence with rational coefficients of the pair (X, A) gives

0 = H4(X) −→ H4(A) −→ H5(X, A) −→ H5(X) −→ H5(A) = 0.

By duality we have H5(X, A) ≃ H1(X ′) and H5(X) ≃ H1(X). Hence r = dim H4(A) =
b1(X ′) − b1(X) = s − 1 + t − b1(X) by (2), as claimed.

Now choose an integer m > 0 such that c1(OX(mDi)) = 0 in H2(X, Z) for all 1 ≤ i ≤ r.
Let

⊕

Z[mDi] ≃ Zr be the free abelian group generated by mDi, 1 ≤ i ≤ r, and let
φ :

⊕

Z[mDi] −→ Pic0(X) be given by sending D =
∑

i aimDi to OX(D).

3.3 Lemma

Let K = Ker φ and I = Im φ. Then rk K ≤ s − 1 and rk I ≥ r − s + 1.

Proof. The kernel K consists of all divisors D such that OX(D) ≃ OX , i.e. such that D
is the divisor of a global meromorphic function h on X . As f : X → V is the algebraic
reduction of X , there must exist a meromorphic function h̃ on V such that h = h̃ ◦ f .
Now, the divisor D̃ of h̃ has degree 0 and support in ∆ = {x1, . . . , xs}. This implies
that K is contained in f∗(Pic0(∆)). As Pic0(∆) ≃ Zs−1, the claim follows.

The last ingredient in the proof of (3.1) is provided by

3.4 Lemma

The restriction map α : H1(X,OX) −→ H1(X ′,OX′) is injective.

Proof. The Leray spectral sequences of the fibrations f : X → V and f ′ : X ′ → V ′

yield a commutative diagram

0 = H1(V,OV )
f∗

−→ H1(X,OX)
≃
−→ H0(V, R1f∗OX) −→ H2(V,OV ) = 0





y





y

α




y

α̃




y

0 = H1(V ′,OV ′) −→ H1(X ′,OX′)
≃
−→ H0(V ′, R1f ′

∗OX′) −→ H2(V ′,OV ′) = 0,

and since R1f∗OX is locally free by (1.5), we conclude that α̃ is injective, QED.

We are now able to finish the proof of (3.1).
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Consider again I ⊂ Pic0(X), the image of φ :
⊕

Z[mDi] −→ Pic0(X), and let Ĩ be
the inverse image of I under the natural map H1(X,OX) −→ Pic0(X). We have a
commutative diagram

H1(X, Z) −→ H1(X ′, Z)
βZ

−→ H0(V ′, R1f ′
∗Z)

γZ

−→ H1(F, Z)




y





y

θ




y





y

Ĩ ⊂ H1(X,OX)
α
−→ H1(X ′,OX′)

β
−→
≃

H0(V ′, R1f ′
∗OX′)

γ
−→ H1(F,OF )





y





y





y

I ⊂ H1(X,O∗
X)

α̂
−→ H1(X ′,O∗

X′)

where the two vertical sequences are exponential exact sequences, α and α̂ are restriction
maps from X to X ′, β and βZ arise from the spectral sequence, and γ, γZ are restriction
maps to a generic fiber F . We get

rk Ĩ = rk I + rk H1(X, Z) ≥ r − s + 1 + b1(X) = t

by 3.3 and 3.2 (3). Now α̂(I) = 0, since α̂(OX(mDi)) = OX′(mDi)) ≃ OX′ for all i. It
follows that α(Ĩ) is contained in the image of θ, thus θ−1(α(Ĩ)) ⊂ H1(X ′, Z) has rank

rk(θ−1(α(Ĩ))) ≥ rk α(Ĩ) ≥ rk Ĩ ≥ t

thanks to the injectivity of α. Moreover, R1f ′
∗Z is a locally constant system of rank

rk H1(F, Z) = t, hence H0(V ′, R1f ′
∗Z) has rank at most t. On the other hand, as β is an

isomorphism and rk α(Ĩ) ≥ t, we see that βZ(θ−1(α(Ĩ))) has rank at least t. Therefore,
γZ ◦βZ(θ−1(α(Ĩ))) is of finite index in H1(F, Z). Since H1(F,OF ) is the complex linear
span of the image of H1(F, Z), we see that γ ◦ β ◦ α(Ĩ) also generates H1(F,OF ).
In particular, the restriction map H1(X,OX) → H1(F,OF ) must be surjective. This
concludes the proof of (3.1).

(3.5) We now study the structure of the smooth fibers F of f . The exact sequence

0 −→ TF −→ (TX)|F −→ O(F )|F −→ 0

and the equality c1(O(F )) = 0 in H2(X, R) imply

c1(F ) = c1(X)|F = 0, c2(F ) = c2(X)|F = 0

in particular we also have χ(F,OF ) = 0). We conclude from the classification of surfaces
that F is one of the following: a Hopf surface, an Inoue surface, a Kodaira surface
(primary or secondary), a torus or a hyperelliptic surface (see e.g. [BPV84]). By [Ka69]
however, F cannot be hyperelliptic. The reason is the existence of a relative Albanese
reduction in that case.

3.6 Proposition

The general fiber F of f cannot be a Kodaira surface nor a Hopf surface with algebraic
dimension 1.
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Proof. Let F0 be a fixed smooth fiber and assume that F0 is a Kodaira surface or a
Hopf surface with a(F0) = 1. Let g0 : F0 −→ C0 be “the” algebraic reduction which is
an elliptic fiber bundle. Let L0 = g∗

0(G0) with G0 very ample on C0.

(1) There exists a line bundle L̃ on X with L̃|F0
= L0.

Proof. By passing to some power Lm
0 if necessary, we have c1(L0) = 0 in H2(X, Z). Let

λ1 : H1(X,OX) −→ Pic(X)

and
λ2 : H1(F0,OF0

) −→ Pic(F0)

be the canonical maps, and let r : H1(X,OX) −→ H1(F0,OF0
) be the restriction map.

Choose α ∈ H1(F0,OF0
) with λ2(α) =  L0. Since r is surjective by (3.2), we find

β ∈ H1(X,OX) with r(β) = α. Now let L̃ = λ1(β).

(2) Let F be any smooth fiber of f . Then κ(L̃|F ) = 1. In fact, it follows from the local

freeness of Rjf∗(L̃) stated in Lemma 1.5 that

f∗(L̃µ)|{y} ≃ H0(F, L̃µ),

where F = f−1(y), see [BaSt76, chap.3, 3.10].

(3) From the generically surjective morphism

f∗f∗(L̃m) −→ L̃m,

(m ≫ 0), we obtain a meromorphic map

g : X ≻ P(f∗(L̃m)),

which, restricted to F is holomorphic and just gives the algebraic reduction of F . Let Z
be the closure of the image of g. Then f factors via the meromorphic map h1 : X ≻ Z
and the holomorphic map h2 : Z −→ V . Now h2 is the restriction of the canonical
projection P(f∗(L̃m)) −→ V , therefore h2 is a projective morphism and Z is projective.
Hence a(X) ≥ 2, contradiction.

From (3.6) it follows that F can only be an Inoue surface, a Hopf surface without
meromorphic functions or a torus. In order to exclude by a similar method as in (3.6)
also tori of algebraic dimension 1, we would need the existence of a relative algebraic
reduction (the analogue of h2 : X ≻ Z) in that case, too.

We now look more closely to the structure of f .

3.7 Proposition

Assume that F is not a torus. Then

(1) R1f∗(OX) = OV

(2) R2f∗(OX) = 0

(3) dim H1(X,OX) = 1

(4) H2(X,OX) = H3(X,OX) = 0.

11



Proof. (2) Since H2(F,OF ) = 0, the sheaf R2f∗(OX) is torsion, hence identically zero
by 1.5. Then H3(X,OX) = 0 is immediate from the Leray spectral sequence.

(1) Since h1(F,OF ) = 1, R1f∗(OX) is a line bundle on V . Let

d = deg R1f∗(OX).

Then Riemann-Roch gives χ(R1f∗(OX)) = d + 1. On the other hand the Leray spectral
sequence together with H3(X,OX) = 0 and (2) yields

χ(R1f∗(OX)) = h1(OX) − h2(OX) = −χ(OX) + 1.

We conclude d = −χ(OX) = 0. This proves (1). Now (3) and the second part of (4) are
obvious.

3.8 Remark In case F is a torus, R1f∗(OX) is a rank 2 bundle and R2f∗(OX) is a
line bundle. Using Theorem 3.1 it is easy to see that

(1) R1f∗(OX) = O(a) ⊕O(b) with a, b ≥ 0

(2) R2f∗(OX) = O(a + b).

Note that (2) gives dually f∗(ωX|V ) = O(−a − b). Usually one expects the degree of
f∗(ωX|V ) to be semi-positive, but here we are in a highly non-Kähler situation where it
might happen that the above degree is negative, see [Ue87].

3.9 Proposition

Assume that F is not a torus. Then H0(X, Ωi
X) = 0, 1 ≤ i ≤ 3.

Proof. For i = 3 the claim follows already from 3.7 (4) and Serre duality.

(1) First we treat the case i = 1. Let ω be a holomorphic 1-form. Let j : F −→ X be
the inclusion. Then j∗(ω) = 0, hence at least locally near F we have ω = f∗(η), hence
dω = 0 near F and therefore the holomorphic 2-form dω is identically zero on X . Now
the space of closed holomorphic 1-forms can be identified with H0(X, dOX) and, as it
is well known (see e.g. [Ue75]), we have the inequality

2h0(X, dOX) ≤ b1(X).

The inequality b1(X) ≤ 1 implies h0(X, Ω1
X) = h0(X, dOX) = 0, as desired.

(2) In case i = 2, we again have j∗(ω) = 0. Let U be a small open set in V such that
f|f−1(U) is smooth. Let z be a coordinate on U and h = f∗(z). Then we conclude that

ω|f−1(U) = dh ∧ α

with some relative holomorphic 1-form α ∈ H0(f−1(U), Ω1
X/V ). Now again j∗(α) = 0

and therefore α = 0, ω = 0.

3.10 Corollary

12



Assume that F is not a torus. Then either f∗(Ω1
X/V ) = 0 or there exists some x ∈ V

such that f∗(Ω1
X/V ) = Cx, i.e. a sheaf supported on x with a 1-dimensional stalk at x.

In particular f has at most one singular fiber and such a fiber is normal with exactly
one singularity of embedding dimension 3.

Proof. Consider the exact sequence

0 −→ f∗(Ω1
V ) −→ Ω1

X −→ Ω1
X/V −→ 0.

Since F has no holomorphic 1-forms, f∗(Ω1
X/V ) is a torsion sheaf on the curve V . The

corollary will follow if we check that h0(V, f∗(Ω1
X/V )) = h0(X, Ω1

X/V ) ≤ 1. Now, observe
the following facts.

(1) H0(X, Ω1
X) = 0, by (3.9);

(2) H1(X, f∗(Ω1
V )) = H1(V, Ω1

V )
by Leray’s spectral sequence and the equalities Rif∗(f∗Ω1

V ) = Rif∗(OX)⊗Ω1
V = Ω1

V ,
i = 0, 1 (cf. 3.7 (1));

(3) dim H1(V, Ω1
V ) = 1.

Then, taking cohomology groups in the first exact sequence, we get the desired inequality

h0(X, Ω1
X/V ) ≤ h1(V, Ω1

V ) = 1.

We can say something more about the structure of the singular fibers of f .

3.11 Proposition

Assume that F is not a torus. Let A be a union of fibers containing all singular fibers
of f . Let s = card(f(A)) and r the number of irreducible componentsof A. Then r = s,
i.e. all fibers of f are irreducible and b1(X) = 0.

Proof. Since F is an Inoue surface or a Hopf surface, we have b1(F ) = 1, thus 3.2 (3)
implies r = s − b1(X). As r ≥ s, we must have r = s and b1(X) = 0.

3.12 Remark In case F is a torus, 3.2 (3) implies r = s + 3 − b1(X) ≥ s + 2. It seems
rather reasonable to expect that tori actually cannot appear as fibers of f . Observe that
f must have a singular fiber in this case because of r > s. So a study of the singular
fibers is needed to exclude tori as fibers of f . However there is a significant difference :
the case of tori is one (in fact the only one) where C3,1 might fail, see [Ue87].

3.13 Proposition

Assume that F is not a torus. Then h1,1 = h1,2 = h2,1 = 1 (so that we know all Hodge
numbers of X).

Proof.(1) h1,2 = h2,1 is of course Serre duality.

(2) By (3.9) and χ(X, Ω1
X) = 0 it suffices to see h1,3 = 0 in order to get h1,1 = h1,2. But

this follows again from Serre duality and the equality h2,0 = h0(X, Ω2
X) = 0.
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(3) From the exact sequence

0 −→ f∗(Ω1
V ) −→ Ω1

X −→ Ω1
X/V −→ 0 (S)

we deduce that it suffices to show

(a) h2(X, f∗(Ω1
V )) = 1

(b) h2(X, Ω1
X/V ) = 0

in order to get h1,2 ≤ 1.

(a) By the Leray spectral sequence and (3.7) we have h2(X, f∗(Ω1
V )) = h1(V, Ω1

V ) = 1.

(b) Again we argue by the Leray spectral sequence. Since R1f∗(Ω1
X/V ) is a torsion sheaf,

we need only to show that
R2f∗(Ω1

X/V ) = 0.

In fact, taking the direct image f∗ of (S), we see that R2f∗(Ω1
X/V ) is a quotient of

R2f∗(Ω1
X) which is 0 by the equality H2(F, Ω1

F ) = H0(F, Ω1
F ) = 0 and by (1.5).

(4) We finally show h1,1 6= 0 to conclude the proof. Let (Ep,q
r ) be the Frölicher spectral

sequence on X . Since b1(X) = 0 by (3.11), we get E0,1
∞ = 0. Hence E0,1

2 = 0. On the
other hand

E0,1
2 = Ker ∂ : E0,1

1 −→ E1,1
1 .

Since Ep,q
1 = Hp,q(X), we conclude that H1(X,OX) injects into H1,1(X). So by (3.7)

H1,1(X) 6= 0.

We finally collect all our knowledge in the case the general fiber of f is not a torus.

3.14 Theorem

Let X be a smooth compact threefold with b2(X) = 0 and holomorphic algebraic reduction
f : X −→ V to the smooth curve V . Assume that the general smooth fiber is not a torus.
Then:

(1) b1(X) = 0, b3(X) = 2.

(2) Any smooth fiber of f is a Hopf surface without meromorphic functions or an Inoue
surface.

(3) The Hodge numbers of X are as follows: h1,0 = 0, h0,1 = 0, h2,0 = 0, h1,1 = 1,
h0,2 = 0, h3,0 = 0, h2,1 = 1 (the others are determined by these via Serre duality).

(4) All fibers of f are irreducible. There is at most one normal singular fiber.
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