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Abstract

This note investigates compact complex manifolds X of dimension 3 with second Betti
number by(X) = 0. If X admits a non-constant meromorphic function, then we prove
that either b;(X) = 1 and b3(X) = 0, or b;(X) = 0 and b3(X) = 2. The main idea
is to show that c3(X) = 0 by means of a vanishing theorem for generic line bundles
over X. As a consequence, a compact complex threefold homeomorphic to the 6-sphere
S6 cannot admit a non-constant meromorphic function. Furthermore, we investigate the
structure of threefolds with b2(X) = 0 and algebraic dimension 1, in the case when the
algebraic reduction X -+ P; is holomorphic.
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Introduction

In this note we shall investigate compact complex manifolds of dimension three and sec-
ond Betti number bs(X) = 0. Such a manifold cannot be algebraic or Kéahler. Therefore
we will be interested in the algebraic dimension a(X) which is by definition the transcen-
dence degree of the field of meromorphic functions over the field of complex numbers.
Note that a(X) > 0 if and only if X admits a non-constant meromorphic function. The
topological Euler characteristic will be denoted Xop(X) which is also the third Chern
class c3(X) by a theorem of Hopf. Our main result is

Theorem

Let X be a compact 3-dimensional complex manifold with ba(X) = 0 and a(X) > 0.
Then
c3(X) = Xeop(X) =2 — 2b1(X) — b3(X) =0,

i.e. we either have b1(X) =0, b3(X) =2 or b1 (X) =1, b3(X) =0.
Notice that if a(X) = 3, i.e. X is Moishezon, then we have by(X) > 0, but examples of

compact threefolds X with a(X) =1 or 2 and with the above Betti numbers exist (see
sect. 2).



The following corollary was actually our motivation for the Theorem:

Corollary

Let X be a compact complex manifold homeomorphic to the 6-dimensional sphere S°.
Then a(X) = 0.

In other words, S% does not admit a complex structure with a non-constant meromorphic
function.

Our Main Theorem is an immediate consequence of the following more general

Theorem

Let X be a compact 3-dimensional complex manifold with ba(X) =0 and a(X) > 0. Let
B be a vector bundle on X. Then H'(X, BOM) = 0 fori > 0 and generic M € Pic’(X),
in particular x(X,B ® M) =0 for all M € Pic’(X).

In the last section we study more closely the structure of threefolds X with bo(X) =0
and algebraic dimension 1 whose algebraic reduction is holomorphic. We show e.g. that
smooth fibers can only be Inoue surfaces, Hopf surface with algebraic dimension 0 or
tori.

Finally we would like to thank the referee for suggestions of improvements in the expo-
sition.

1. Preliminaries and Criteria for the vanishing of HP°.

1.0 Notations

(1) Let X be a compact complex manifold, always assumed to be connected. The alge-
braic dimension, denoted a(X), is the transcendence degree of the field of meromorphic
functions over C.

(2) b;(X) = dim H*(X,R) denotes the i-th Betti number of X.
(3) If G is a finitely generated abelian group, then rk G will denote its rank (over Z).
(4) If X is a compact space, then h1(X, F) denotes the dimension of H4(X, F).

1.1 Proposition

Let Y be a connected compact complex space (not necessarily reduced), every component
Y, of Y being of positive dimension. Let D be an effective Cartier divisor on'Y such
that Dy, # 0 for alli. Let F be a locally free sheaf on'Y'. Then there exists ko € N such
that

H(Y,F ® Oy (—kD)) =0
for k > k.



Proof. We have natural inclusions
HY(Y,F ® Oy(—(k+1)D)) c H°(Y, F @ Oy (—kD)).

Take kg such that this sequence is stationary for k > kg. Then s has to vanish at
any order along D)y, for every i (s can be thought of locally as a tuple of holomorphic
functions), hence s}y, = 0, and s = 0.

1.2 Corollary

Let S be a smooth compact complex surface containing an effective divisor C such that
c1(0s(C)) = 0. Let B be a vector bundle on S. Then for a generic £ € Pic®(X) we
have

H°(S,B® L) =H*(S,B® L) =0.

In particular x(S,B) = x(S,B® L) = —h'(S,B® L) <0.

Proof. The vanishing H°(S, B ® Og(—kC)) = 0 for large k follows from (1.1). Since
Os(kC) is topologically trivial for large suitable k, the required H°-vanishing follows
from semi-continuity. The H?-vanishing follows by applying the previous arguments to
B* ® Kg and Serre duality.

1.3 Corollary

Let X be a smooth compact threefold with ba(X) = 0 carrying an effective divisor D.
Then HY(X, B ® L) =0 for generic £ in Pic’(X) and every vector bundle B on X .

Proof. The assumption by(X) = 0 means that H?(X,Z) is finite, hence there exists an
integer m > 0 such that ¢1(Ox(mD)) =0 in H*(X,Z). We can apply (1.1) to obtain

H(X,B® Ox(—kmD)) =0

for k large. Now we conclude again by semi-continuity.
The next lemma is well-known; we include it for the convenience of the reader.

1.4 Lemma

Let X be a compact manifold of dimension n with a(X) =mn. Then by(X) > 0.

Proof. Choose a birational morphism 7 : X — X such that X is a projective manifold.
Take a general very ample divisor D on X and a general curve C' € X. Let D = (D)

and C = w(C). Then D meets C in finitely many points, hence D - C' > 0, in particular
c1(Ox (D)) is not torsion in H%(X,Z).

1.5 Lemma

Let X be a smooth compact threefold and f : X — C be a surjective holomorphic map
to a smooth curve C. Let F be a locally free sheaf on X. Then Rif.(F) is locally free
for all 1.



Proof. (a) Note that local freeness is equivalent to torsion freeness, since dimC = 1.
Hence the claim is clear for ¢ = 0.

(b) Next we treat the case ¢ = 2. We shall use relative duality (see [RRV71], [We85]); it
states in our special situation (f is flat with even Gorenstein fibers) that if R7 f.(G) is
locally free for a given locally free sheaf G and fixed j, then

R*f.(G* @wx/c) ~ R f.(G)",

in particular R>7 f, (G* ®wx/c) is locally free. Here wx,c = wx ® f*(w¢) is the relative
dualizing sheaf. Applying this to j =0 and G = F* @ w /¢ our claim for ¢ = 2 follows.

(c) Finally we prove the freeness of R!f,(F). By a standard theorem of Grauert it is
sufficient that hl(Xy,f| Xy) is constant, X, the analytic fiber over y € C'. By flatness,

X(Xy, F|x,) is constant, hence it is sufficient that hj(Xy,ﬂXy) is constant for 7 = 0
and j = 2. By the vanishing R?f.(F) = 0, we have (see e.g. [BaSt76])

R?fo(F) gy ~ H*(Xy, Fix,)-
Therefore h?(X,, Fix,) is constant by (b). Finally
h(Xy, Fix,) = B4 (Xy, Fix, ® wx,) = B*(Xy, (F* @ wx)x,)

is constant by applying the same argument to F* ® wx.

2. The Main Theorem.
In this section we prove the main result of this note:

2.1 Theorem

Let X be a 3-dimensional compact complex manifold with ba(X) =0 and a(X) > 0. Let
B be a vector bundle on X. Then

(1) H(X,B® M) =0 fori >0 and M € Pic’(X) generic.

(2) x(X,B® M) =0 for all M € Pic’(X).

(3) ¢c3(X) =0, i.e. either by(X) =0 and b3(X) =2 or by(X) =1 and b3(X) = 0.

Proof. First notice that (2) and (3) follow from (1). In fact, by (1) we have
X(X,Be®M)=0

for generic M and thus the same holds for all M by Riemann-Roch and the equality
¢;(B) =¢j(B®M). For (3), we apply (2) to B =Tx and get

X(X, Tx> =0.

Now, since H2(X,R) = H*(X,R) = 0, we have ¢;(X) = c2(X) = 0, hence

0= X(X,Tx) = ges(X)
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by Riemann-Roch.

So it suffices to prove (1). Moreover by Serre duality we only need to prove the vanishing
for i =0 and ¢ = 2.

In case ¢ = 0 we observe that there are non-zero effective divisors on X (since a(X) > 0)
and we can apply (1.3) to get the claim.

Soleti=2. Let g : X - IP; be a non-constant meromorphic function. Let o : X —X
be a resolution of the indeterminacies of g and let f : X — C be the Stein factorisation
of the holomorphic map o og. Fix an ample divisor A on C and let £ be the line bundle
on X determined by

(a) [1(A) = 0" (L)@ Ox(=E)

with a suitable effective divisor F supported on the exceptional set of . We need to
exhibit a line bundle M € Pic’(X) with

H*(X,B® M) =0.

We shall distinguish two cases according to whether the indeterminacy locus of g is
empty or not.

We start treating the case that g is not holomorphic. First note that the canonical map
H*(X,B® M) — H*(X,0c"(B® M))

is injective. This is obvious from the Leray spectral sequence. Hence it is sufficient to
show

(*) H*(X,0*(B® M)) = 0.

Actually for (x) we only need

() H*(X,0"(B® M)(—tE)) =0

for some ¢ > 0. To verify that (xx) implies (%), consider the exact sequence
H*(X,0*(B® M)(—tE)) — H*(X,0*(B® M)) — H*(tE,c*(B® M))

and note that H?(tE,c*(B ® M)) = 0. This last vanishing is seen as follows: let A; be
the complex subspace of X defined by the ideal sheaf o,(—tFE), then

H?(tE,0c*(B®M)) = H*(A;, B M) =0

since dim A; = 1.

We make the ansatz M = L£!7F with ¢t and k to be determined; of course we need to prove
the vanishing only for one M by semi-continuity. Using the Leray spectral sequence for
f:X — C, (xx) comes down to

(%) HY(C,RPf (0" (B® LF)) ®tA) =0
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for p 4+ q = 2, and large t, k. For ¢ = 2, (x*x) is obvious and for ¢ = 1 it follows from
Serre’s vanishing theorem for ¢ > 0. So let ¢ = 0. We need to see that

F=Rf(o"(B® L") =0.

Since F is locally free by (1.5), it suffices that F|r = 0 for the general fiber F' of f and
large k. But this follows from (1.1), the effective divisor £z being non-zero:

H?*(F,0*(B® L*)) ~ H(F,0*(B*) ® Kr @ Op(—kE)) = 0.

If g is holomorphic, i.e. we may take o = id, so that f = g, this argument does not work
since E = 0. Here we have to replace L% by a different line bundle. First note that

(+) H°(C, R*f.(B) ® (~tA)) =0
for t sufficiently large. We claim that this implies
(++) H°(C,R?f.(B@ M))=0

for general M € Pic?(X). Let W = H'(X, Ox). Then every element in W is represented
as a topologically trivial line bundle.

Consider locally the universal bundle M on X XW. Let F'=fxid: X xW —
C x W and B = pr%(B). The coherent sheaf R*F,(B ® M) satisfies

R*F.(B® M)jc x {t} ~ R*f.(B& M,),

where M, is the line bundle corresponding to ¢ € W. Choose m > 0 and ty such that
f (A7) = M,,. This is possible since by(X) = 0. By (+) we have

HO<07 R2f*<B ® Mto)) = 0.

Hence it is sufficient to show that R’ F*(B ® M) is flat with respect to the projection
q:CxW — W, over a Zariski open set of W, then the usual semi-continuity theorem
gives the claim (2). Now R2f, (B ® M,) is locally free on C' = C x t for every t by (1.5),
hence it is clear that there is a Zariski open set U C W such that R?F, (E ® M) has
constant rank over U, hence is locally free over U (observe just that the set where the
rank of a coherent sheaf is not minimal is analytic). This proves (++).

On the other hand we have for m > 0 by Serre’s vanishing theorem
HY(C,R'f.(B) ® A™) = 0.

In the same way as above we conclude that
HY(C,R'f.(B® M)) =0

for general M € W.

By the Leray spectral sequence we therefore again obtain H?(X, B ® M) = 0 for gen-
eral M. This finishes the proof of the theorem.
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2.2 Corollary

Let X be a compact complex threefold homeomorphic to the sphere S®. Then every
meromorphic function on X is constant.

Proof. Note that c3(X) = xtop(9°%) = 2 and apply (2.1).

Next we give examples of threefolds with a(X) > 0, b2(X) = 0 and c3(X) = 0 so that
the Main Theorem (2.1) is sharp.

2.3 Example

The so-called Calabi-Eckmann threefolds are compact threefolds homeomorphic to
S3 x S3, see [Ue75]. They can be realized as elliptic fiber bundles over P; x P;. Hence
a(X) =2, b1(X) =b2(X) =0 and b3(X) = 2.

We now show that Calabi-Eckmann manifolds can be deformed to achieve a(X) = 1
or a(X) =0 and by = by = 0, b3 = 2. We choose positive real numbers a, b, ¢ and let
B =C?%\{(0,0)}. We define the following action of C on B x B :

(t,2,y,u,v) — (exp(t)z, exp(at)y, exp(ibt)u, exp(ict)v).

One checks easily that this action is holomorphic, free and almost proper so that the
quotient X exists and is a compact manifold. If a = 1 and b = ¢, then X is a Calabi-
Eckmann manifold. If however a ¢ Q and b = c resp. a ¢ Q and 2 ¢ Q, then a(X) = 1
resp. a(X) = 0.

2.4 Example

Hopf threefolds of the form
C*\ {(0,0,0)}/2,

with the action of Z ~ {\*; k € Z} being defined by

Az, y,2) = (o, By,vz),  0<lal,|B],]7] <1

are homeomorphic to S! x S5 They have a(X) = 0,1 or 2 and b;(X) = 1, while
ba(X) = b3(X) = 0. This realizes the other possibility for the pair (b, b3) when by = 0
and a(X) > 0, as stated in the Main Theorem.

Notice that the algebraic reduction is holomorphic in (2.3) but it is not holomorphic in
(2.4) if a(X) = 1.
2.5 Example

We finally give other examples of compact threefolds X with a(X) = 0 and b; = by = 0,
bs = 2. Let I" C SI(2,C) be a torsion free cocompact lattice in such a way that the
quotient X := S1(2,C)/I" has b;(X) = 0.

This last condition is not automatic. Let Y = SU(2)\ SI(2,C)/I"; then Y is a compact
differentiable manifold admitting a differentiable fibration 7 : X — Y with S2 is fiber.
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Since b1 (X) = 0, we also have b1 (Y) = 0, hence b2(Y') = 0 by Poincaré duality. Now the
Leray spectral sequence immediately gives by(X) = 0, the fibers of 7 being 3-spheres.
bs(X) = 2 is again clear from the Leray spectral sequence. Finally the fact that X does
not carry any non-constant meromorphic function results from [HMS83] from which we
even deduce that X does not carry any hypersurface (as X is homogeneous).

3. On the finer structure of threefolds with
b2(X) =0 and a(X) = 1.

In this section we investigate more closely threefolds X with bo(X) = 0 and algebraic
dimension 1. By construction, the algebraic reduction f : X ---» V is a meromorphic
map to a normal algebraic space, hence V is a nonsingular curve. We claim that V'
must be rational. In fact, we have b1(X) < 1 by 2.1(3); on the other hand, for every
holomorphic 1-form u on V| then f*u extends to a d-closed holomorphic 1-form on X,
thus b1 (X) > 2h10(V) and RY°(V) must be zero. In the rest of this section, we restrict
ourselves to the case when the algebraic reduction f : X — V is holomorphic. The key
to our investigations is

3.1 Theorem

Let F be a general smooth fiber of f. Then the restrictionr : HY(X,Ox) — H(F,OF)
18 surjective.

We need some preparations for the proof of (3.1). Let A C V be a finite non empty
set such that A = f~1(A) C X contains all singular fibers of f. Let V/ = V \ A,
and X' = f~1(V’) so that f' = fix/ is a smooth fibration. Let D;, 1 < i < r be the
irreducible components of A and let s = card A be the number of connected components
of A. Furthermore we set t = by(F) where F' is the general smooth fiber of f. For a
non-compact space Z we let b;(Z) = dim H;(Z,R), whatever this dimension is. We
prepare the proof of (3.1) by three lemmas.

3.2 Lemma

(1) The natural exact sequence of groups
1= 7I‘2(V/) — 7T1(F) — 7T1(X/) — 7T1(V/) — 1

is exact and (non-canonically) split.
(2) (X)) =b(V')+b1(F)=s—1+t.
(B3) r=s—1+t—0b1(X).

Proof. (1) Since V' is a non-compact Riemann surface, m(V’) is a free group of
s — 1 generators and since V' is uniformized by either C or by the unit disc, we have
mo(V') = 1. Hence the exact homotopy sequence of the fibration f': X’ — V' gives
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the exact sequence of groups stated in (1). Since 71(V’) is a free group, the sequence
splits.

(2) From (1) we deduce that
H(X',Z)~ H(V',Z) ® H,(F,Z).

Moreover f, : m(X) — 71 (V) is surjective since the fibers of f are connected. Hence
(2) follows.

(3) The cohomology sequence with rational coefficients of the pair (X, A) gives
0=H*%X)— H*(A) — H*(X,A) — H5(X) — H°(A) = 0.

By duality we have H(X, A) ~ H{(X') and H°(X) ~ Hy(X). Hence r = dim H*(A) =
b1(X') —b1(X)=s—1+1t—0b1(X) by (2), as claimed.

Now choose an integer m > 0 such that ¢;(Ox(mD;)) = 0in H*(X,Z) for all 1 <i < r.
Let @ Z[mD;] ~ Z" be the free abelian group generated by mD;, 1 < i < r, and let
¢ : @ Z[mD;] — Pic’(X) be given by sending D = 3", a;mD; to Ox (D).

3.3 Lemma

Let K =Ker¢p and I =Im¢. Thentk K <s—1 andrkl >r — s+ 1.

Proof. The kernel K consists of all divisors D such that Ox (D) ~ Ox, i.e. such that D
is the divisor of a global meromorphic function h on X. As f: X — V is the algebraic
reduction of X, there must exist a meromorphic function A on V such that h = ho f.
Now, the divisor D of h has degree 0 and support in A = {z1,...,zs}. This implies
that K is contained in f*(Pic’(A)). As Pic’(A) ~ Z*~1, the claim follows.

The last ingredient in the proof of (3.1) is provided by

3.4 Lemma

The restriction map o : HY(X,Ox) — HY (X', Ox) is injective.

Proof. The Leray spectral sequences of the fibrations f : X — V and f/ : X' — V'
yield a commutative diagram

0= HYV,0v) EAR HY(X,0x) = HO(V,R'f.0x) — H2(V,0y) =0

| Je |2 J

0=HYV' Oy) — HY X', Ox) =, HO(V',R* f!Ox:)) — H*(V',0y) =0,
and since R!f,Ox is locally free by (1.5), we conclude that & is injective, QED.

We are now able to finish the proof of (3.1).
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Consider again I C Pic’(X), the image of ¢ : @ Z[mD;] — Pic’(X), and let I be
the inverse image of I under the natural map H'(X,0x) — Pic’(X). We have a
commutative diagram

7 Z
H(x.z) — H\(x,z) L omow ripz) Lopirz)

K l l

[ c H(X,0x) % HY(X', 0x) % HO(V', R f.Ox)) - H'(F,Op)

! !

I C HY(X,0%) % HY(X, 0%,)

where the two vertical sequences are exponential exact sequences, a and & are restriction
maps from X to X', 3 and % arise from the spectral sequence, and v, vZ are restriction
maps to a generic fiber F'. We get

vkl =1k I+ 1k HY(X,Z)>r —s+1+b(X) =

by 3.3 and 3.2 (3). Now &(I) = 0, since &(Ox(mD;)) = mD;)) ~ Ox/ for all i. It

Ox/(
follows that (1) is contained in the image of 0, thus 6~ (« (I) HY(X',7Z) has rank
k(8= (1)) > rka(l) > rkI >t

thanks to the injectivity of a. Moreover, R'f!Z is a locally constant system of rank
rk H'(F,Z) = t, hence H*(V', R' f|Z) has rank at most ¢. On the other hand, as 3 is an
isomorphism and rk a(I) > ¢, we see that 5Z(0~(«(I))) has rank at least t. Therefore,
72 o 820~ (a(1))) is of finite index in H'(F,Z). Since H'(F,Op) is the complex linear
span of the image of H'(F,Z), we see that v o o a(I) also generates H'(F,Op).
In particular, the restriction map H'(X,Ox) — H!(F,Of) must be surjective. This
concludes the proof of (3.1).

(3.5) We now study the structure of the smooth fibers F' of f. The exact sequence
0 —Tp — (Ix)p — OF)jp — 0
and the equality c¢;(O(F)) = 0 in H?(X,R) imply
ci(F) =c(X)r=0, c2(F) = co(X)|p =0

in particular we also have x(F, Or) = 0). We conclude from the classification of surfaces
that F is one of the following: a Hopf surface, an Inoue surface, a Kodaira surface
(primary or secondary), a torus or a hyperelliptic surface (see e.g. [BPV84]). By [Ka69]
however, F' cannot be hyperelliptic. The reason is the existence of a relative Albanese
reduction in that case.

3.6 Proposition

The general fiber F' of f cannot be a Kodaira surface nor a Hopf surface with algebraic
dimension 1.
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Proof. Let F, be a fixed smooth fiber and assume that Fj is a Kodaira surface or a
Hopf surface with a(Fy) = 1. Let g : Fy — Cp be “the” algebraic reduction which is
an elliptic fiber bundle. Let Lo = ¢ (Go) with Gy very ample on Cj.

(1) There exists a line bundle £ on X with £~|F0 = Lo.

Proof. By passing to some power L£J" if necessary, we have c¢;(Lo) = 0 in H*(X,Z). Let
A HY(X,0x) — Pic(X)

and
/\2 : Hl(Fo, OFO) — PIC(F())

be the canonical maps, and let r : H'(X,Ox) — H'(Fy, Or,) be the restriction map.
Choose a € H'(Fy,Op,) with Az(a) = Lg. Since r is surjective by (3.2), we find
B € HY(X,Ox) with r(3) = a. Now let £ = \{(3).

(2) Let F' be any smooth fiber of f. Then R<,C~|F) = 1. In fact, it follows from the local
freeness of R7 f,(L) stated in Lemma 1.5 that

Fe(L) 1y = HO(F, LH),

where F' = f~1(y), see [BaSt76, chap.3, 3.10].

(3) From the generically surjective morphism
frf(Lmy — L™,
(m > 0), we obtain a meromorphic map
g: X = P(fu(L™)),

which, restricted to F'is holomorphic and just gives the algebraic reduction of F. Let Z
be the closure of the image of g. Then f factors via the meromorphic map hy : X -+ Z
and the holomorphic map hy : Z — V. Now hsy is the restriction of the canonical
projection P(f,(£™)) — V, therefore hy is a projective morphism and Z is projective.
Hence a(X) > 2, contradiction.

From (3.6) it follows that F' can only be an Inoue surface, a Hopf surface without
meromorphic functions or a torus. In order to exclude by a similar method as in (3.6)
also tori of algebraic dimension 1, we would need the existence of a relative algebraic
reduction (the analogue of hy : X -+ Z) in that case, too.

We now look more closely to the structure of f.

3.7 Proposition

Assume that F is not a torus. Then
(1) R'f.(Ox) = Oy

(2) R*f.(Ox) =0

(3) dim HY(X,0x) =1

(4) H*(X,0x) = H3(X,0x) = 0.
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Proof. (2) Since H?(F,OF) = 0, the sheaf R%f,(Ox) is torsion, hence identically zero
by 1.5. Then H3(X,Ox) = 0 is immediate from the Leray spectral sequence.

(1) Since h!(F,Or) =1, R' f.(Ox) is a line bundle on V. Let
d = deg R' f.(Ox).

Then Riemann-Roch gives x(R'f.(Ox)) = d + 1. On the other hand the Leray spectral
sequence together with H3(X,Ox) = 0 and (2) yields

X(R'f.(Ox)) = h'(Ox) — h*(Ox) = —x(Ox) + 1.

We conclude d = —x(Ox) = 0. This proves (1). Now (3) and the second part of (4) are
obvious.

3.8 Remark In case F is a torus, R'f.(Ox) is a rank 2 bundle and R?f,(Ox) is a
line bundle. Using Theorem 3.1 it is easy to see that

(1) R*£.(Ox) = O(a) ® O(b) with a,b > 0
(2) R?f.(Ox) = 0O(a+0D).

Note that (2) gives dually f.(wx|v) = O(—a —b). Usually one expects the degree of
f«(wx|v) to be semi-positive, but here we are in a highly non-Kéhler situation where it
might happen that the above degree is negative, see [Ue87|.

3.9 Proposition
Assume that F is not a torus. Then HY(X,Q%)=0,1<i<3.

Proof. For i = 3 the claim follows already from 3.7 (4) and Serre duality.

(1) First we treat the case i = 1. Let w be a holomorphic 1-form. Let j : I — X be
the inclusion. Then j*(w) = 0, hence at least locally near F' we have w = f*(n), hence
dw = 0 near F' and therefore the holomorphic 2-form dw is identically zero on X. Now
the space of closed holomorphic 1-forms can be identified with H(X,dOx) and, as it
is well known (see e.g. [Ue75]), we have the inequality

2h°(X,d0x) < by (X).

The inequality by (X) < 1 implies h°(X, QL) = h%(X,dOx) = 0, as desired.

(2) In case i = 2, we again have j*(w) = 0. Let U be a small open set in V such that
fif-1(u) is smooth. Let z be a coordinate on U and h = f*(z). Then we conclude that

Wi f-1(U) = dh A\ «

with some relative holomorphic 1-form « € HO(f~1(U), Qk/v). Now again j*(a) = 0
and therefore a =0, w = 0.

3.10 Corollary
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Assume that F' is not a torus. Then either f*(Qﬁ(/V) = 0 or there exists some x € V

such that f*(Qﬁ(/V) = C,, i.e. a sheaf supported on x with a I-dimensional stalk at x.
In particular f has at most one singular fiber and such a fiber is normal with exactly
one singularity of embedding dimension 3.

Proof. Consider the exact sequence
0 — f1(Q) — Qk — Ok — 0.

Since F' has no holomorphic 1-forms, f,(Q% /V) is a torsion sheaf on the curve V. The
corollary will follow if we check that h°(V, f.(Q ) = h°(X, Qi) < 1. Now, observe
the following facts.

(1) H(X, Q%) =0, by (3.9);

(2) HY(X, f*() = H'(V,Qy)
by Leray’s spectral sequence and the equalities R' f..(f*Q,) = R f.(Ox )2, = O,
i=0,1(cf. 3.7 (1));

(3) dim H'(V, QL) = 1.

Then, taking cohomology groups in the first exact sequence, we get the desired inequality

WX, ) <RH(V, ) = 1.

We can say something more about the structure of the singular fibers of f.

3.11 Proposition

Assume that F is not a torus. Let A be a union of fibers containing all singular fibers
of f. Let s = card(f(A)) and r the number of irreducible componentsof A. Then r = s,
i.e. all fibers of f are irreducible and by (X) = 0.

Proof. Since F' is an Inoue surface or a Hopf surface, we have by (F') = 1, thus 3.2 (3)
implies r = s — b1 (X). As r > s, we must have r = s and b1 (X) = 0.

3.12 Remark In case F is a torus, 3.2 (3) implies r = s + 3 — b1 (X) > s+ 2. It seems
rather reasonable to expect that tori actually cannot appear as fibers of f. Observe that
f must have a singular fiber in this case because of r > s. So a study of the singular
fibers is needed to exclude tori as fibers of f. However there is a significant difference :
the case of tori is one (in fact the only one) where C3 1 might fail, see [Ue87].

3.13 Proposition

Assume that F is not a torus. Then ht! = ht? = h?! =1 (so0 that we know all Hodge
numbers of X).

Proof.(1) ht? = h?! is of course Serre duality.

(2) By (3.9) and x(X, Q%) = 0 it suffices to see h'® = 0 in order to get h'! = h'2. But
this follows again from Serre duality and the equality h?° = h?(X, Q%) = 0.
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(3) From the exact sequence
0 ) — 0k — Oy 0 (s)

we deduce that it suffices to show

(a) P2(X, f*(Qy)) =1

(b) h?(X, 0L ) =0

in order to get hi? < 1.

(a) By the Leray spectral sequence and (3.7) we have h?(X, f*(Q4,)) = R} (V,Q},) = 1.

(b) Again we argue by the Leray spectral sequence. Since R' f,(Q% /V) is a torsion sheaf,
we need only to show that

R*f-(Qxv) = 0.
In fact, taking the direct image f. of (S), we see that R?f,(Q} sv) is a quotient of
R%f.(QY) which is 0 by the equality H?(F, QL) = HY(F, Q%) = 0 and by (1.5).
(4) We finally show h''! 2 0 to conclude the proof. Let (EP+9) be the Frolicher spectral
sequence on X. Since by(X) = 0 by (3.11), we get E%! = 0. Hence ES' = 0. On the

other hand
EJ' =Kerd: E)'' — B

Since EP'? = HP9(X), we conclude that H!(X, Ox) injects into H1(X). So by (3.7)
HYY(X) # 0.

We finally collect all our knowledge in the case the general fiber of f is not a torus.

3.14 Theorem

Let X be a smooth compact threefold with by(X) = 0 and holomorphic algebraic reduction
f: X — V to the smooth curve V. Assume that the general smooth fiber is not a torus.
Then:

(1) b1(X) =0, b3(X) = 2.
(2) Any smooth fiber of f is a Hopf surface without meromorphic functions or an Inoue
surface.

(3) The Hodge numbers of X are as follows: h''* = 0, h%' = 0, R2°0 = 0, 1! =1,
h%2 =0, h3% =0, h?! =1 (the others are determined by these via Serre duality).

(4) All fibers of f are irreducible. There is at most one normal singular fiber.
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