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Introduction

The notion of complex structure was introduced as a local substitute of algebraic struc-
ture on algebraic manifolds over complex numbers. It makes possible to apply powerful
methods of complex analysis to the problems in algebraic geometry.

All compact complex manifolds of dimension one are projective and the complex struc-
ture uniquely defines the adherent algebraic structure. A similar statement is false already
in dimension two by the existence of smooth, compact, non-projective complex surfaces.
However, the gap between the two structures is not yet very big in dimension two.

From dimension three up, the class of complex compact manifolds becomes substantially
larger than the class of projective manifolds. For instance C. Taubes [5] constructed three-
dimensional complex manifolds with fundamental group isomorphic to an arbitrarily given
finitely presented group, by use of twistor construction due to Penrose.

In this article I want to give a construction of complex structure which retains some
algebraic flavor. We produce a complex structure on a real manifold which is transversal
to an algebraic foliation on a complex projective manifold. The main result of the article
is that any complex structure on a compact manifold can be realized in this way.

§1. Construction of complex structure via algebraic foliation

We begin with the description of our general construction.

Let X be a smooth complex projective manifold and F a holomorphic foliation on X.
F is a coherent integrable subsheaf of the holomorphic tangent sheaf ΘX . F may possess
singularities along a closed subset of codimension two or more.

Let S be a real smooth submanifold in X.

Lemma 1. Assume that S intersects F transversally, i.e.

ΘX|x ⊕ΘX|x = F|x ⊕ F|x ⊕ (C⊗R TS,x)

at each point x of S, where Ts,x stands for the tangent space at x ot S as a differentiable
manifold. Then there is a natural complex structure on S induced by (X,F ).

Proof. Put TF,x be the elements ∈ F|x⊕F|x which is invariant under complex conjugation.
The complex structure J on TX,x leaves TF,x stable because F is an analytic foliation.
Hence J naturally induces an almost complex structure on TX,x/TF,x, which is identified
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with TS,x. This almost complex structure is integrable. In fact, F is a smooth foliation
around S and the Frobenius theorem tells us that X is analytically locally a product
Cn−r × Cr where the fibers of the first projection are the leaves of F of rank r. Thus a
local coordinate of S is given by that of Cn−r.

Remark 1. The complex structure stays invariant under small variation of the cycle S since
the complex structure is given by the local fibring structure induced by the holomorphic
foliation F . Variation of F , on the other hand, will induce non-trivial variation of complex
structure of S.

Remark 2. In order to obtain a complex structure on S, we do not have to require S to
lie on the smooth locus of F or to be everywhere transversal to F . The right condition is
more subtle. By changing F so that the transversality condition fails at a limit, we can
obtain a natural degeneration of the complex structure of S. This leads us to a somewhat
nonstandard description of deformation and degeneration of complex structure.

We are going to prove that any complex structure on a compact real manifold can be
obtained in this way.

This statement means in particular that, given a compact complex manifold, we can
choose local coordinate functions such that they are solutions of algebraic differential
equations. It is also true for a big class of open complex manifolds.

Let M be a complex manifold of dimension n. The notion of conjugate complex structure
on M is always well-defined and the corresponding complex manifold will he denoted by Mc.
This structure is obtained from the same covering of M by unit balls, but the holomorphic
coordinates are z on Mc in place of z on M .

Take the product M ×Mc, which is a complex manifold of dimension 2n. It is a self
conjugate manifold with anti-holomorphic involution i : (x, y) 7→ (y, x). The “diagonal” ∆
is defined to be the real points on M ×Mc, i.e. the fixed point set of the involution i. ∆
is a real submanifold of real dimension 2n.

By a theorem of Grauert [1], a small tubular neighborhood U ⊂ M ×Mc of ∆ is a
Stein manifold. It has a natural holomorphic projection onto M and this fibring defines
a holomorphic foliation FU on U . The diagonal ∆ is transversal to FU and the induced
complex structure on ∆ coincides with that of M . We would like to embed U into a
projective manifold in such a way that FU is induced by the global algebraic foliation.

Remark 3. The manifold ∆ has natural structure of an analytic manifold over real numbers
which is obtained from the complex structure on M . A small variation of this structure
makes it a component of real algebraic manifold.

We will reduce the problem of extending the holomorphic foliation above to a similar
but simpler problem on holomorphic 1-forms. We need the notion of generic holomorphic
1-forms on a complex manifold.

Definition 1. A holomorphic 1-form ω on a complex manifold M is said to be generic at
p ∈M if ω, (dω)n, ω ∧ (dω)n−1 are non-vanishing at p.

Definition 2. An invertible subsheaf L ⊂ Ω1
M on a compact complex manifold is said to be

generic if at any point p ∈M , a local basis of L is generic at p.

Note that the definition does not depend on the choice of local bases of L.
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Lemma 2. Let L ⊂ Ω1
M be a generic invertible subsheaf on a 2n-dimensional complex

manifold X. Then L defines a holomorphic foliation F of rank n.

Proof. Let ω be a local generator of L at p. The 1-form ω, which is generic at p, has
a standard local expression

∑n
i=1 z2i−1dz2i, by the classical Darboux lemma [3][4]. Then

the coordinates with even subscripts define a local product structure on X and hence a
holomorphic foliation F near p.

This foliation is uniquely determined by the conformal class of ω, or equivalently by L.
Indeed the leaves of the foliation is defined as the completely integrable holonomic system
given by the holomorphic vector fields satisfying ω(X) = 0, (ω ∧ dω)(X) = 0, so that we
get the same equation after replacing ω by fω, see [3][4].

Let M be a compact complex manifold. Let ∆ ⊂ U ⊂ M ×Mc and FU be as above.
Suppose that our initial manifold M is of dimension ≥ 2. Take a general homomorphism
ω : ΘU/FU → OU , ω is naturally a holomorphic 1-form on U , and L = OUω is generic in
the sense in Definition 2, with FU being the associated foliation on U .

Realize the real algebraic manifold ∆ as the real point set of an algebraic variety P . U
is then viewed as an open subset in P . Let j : U ↪→ P be the embedding.

We may assume that the restriction map PicP → PicU is surjective and the sheaf FU

extends to a coherent sheaf on P . Furthermore, the embedding FU ↪→ TU is approximated
by global algebraic maps.

Lemma 3. Let D be a very ample divisor on P . Then ω is approximated by a sequence
ωi ∈ H0(P,Ω1

P (iD)), i = 1, 2, . . . which generate generic invertible subsheaves Li of Ω1
P .

In particular, the complex structure of M is approximated by a sequence of complex
structure induced from algebraic foliations on P .

Proof. The totally real submanifold ∆ is away from D, and so is U . Hence any ω is
approximated by a sequence of algebraic 1-forms with poles along D. On the other hand,
the property of being generic is an open condition, and we can assume that OPωi is
generic.

LetM denote the set of the complex structure on M , andM0 the connected component
which contains the original complex structure. The variation of the complex structures
attached to the choice of ωi is connected, since

⋃
H0(P,Ω1

P (iD)) is a vector space and the
genericity condition on ωi is an open, algebraic condition. Hence the set of the complex
structures M′0 which is obtained by foliations F ′ attached to generic algebraic invertible
subsheaves L ⊂ Ω1

P is dense inM0 which is finite-dimensional since M is compact. On the
other hand, it is easy to see that a limit of algebraic foliations is again algebraic. Thus we
have that M0 =M′0.

Thus we have arrived at the conclusion:

Theorem 4. The complex structure on M is induced by an algebraic foliation on P .

§2 Conclusion

The above result confirms once more that the structure of algebraic foliation is too rich
to be described in purely algebraic terms. In particular, the result of Taubes may transfer
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some of the statement which says that some group cannot be realized as the fundamental
group of algebraic manifolds into similar results on the leaves of algebraic foliations. It
potentially provides us with a series of applications in analytic geometry and algebraic
geometry which are comparable to the ones in the topology of 4-manifolds provided by
gauge theory.

It is difficult to predict right now how useful this approach could be in the theory of
complex manifolds, but at least it may help settle some fundamental problems, including,
for example, the following question which I believe is of basic importance:

Problem. Does any compact complex manifold contain an open Stein subset U , such that
the complement is a CW-complex of a strictly smaller dimension?

The answer is clearly affirmative for projective manifolds, complex tori and some non-
algebraic complex surfaces. But even in the case of surfaces, we need precise knowledge
on the structure of the surfaces to get the “Stein cell” U above.

I have raised this question more than twenty-five years ago and have not received any
serious answer yet. I am now much less sure about it now than when I was a student
(Taubes threefolds may actually give a counterexample), but I still view it as a basic
problem in complex analytic geometry.

Our realization of a given complex manifold as a real cycle M on an algebraic manifold
X may also have potential application to algebraic geometry, I have in mind a construction
of counterexamples to the Hodge conjecture and similar problems of general character. For
instance, if M is not algebraic and if we know that the cohomology class of the cycle M is
of type (p, p), it might be a potential counterexample to the Hodge conjecture.

The missing ingredient here is a natural cohomological correspondence between the
cycles transversal to a given holomorphic foliation. Such a correspondence exists on the
level of subrings generated by the Chern classes of the normal bundle, thanks to a modified
version of the Bott-Baum theorems on the holomorphic foliations with singularities.

Many examples give evidence, for a general hypothesis that an algebraic foliation will
induce general correspondence between the cohomology groups of generically transversal
cycles.

The class of three-dimensional complex manifolds contains lot of manifolds with non-
trivial cohomological operations. We can easily produce simply-connected complex mani-
folds of dimension six or greater with non-trivial cohomological operations, by using, say,
symmetric power construction and desingularization. It would be natural to expect that
the properties of simply connected manifolds will better survive the above correspondence,
and that such cohomological operation will provide an obstruction for a (p, p)-cycle to be
algebraic. This speculation gives a hint that the first natural codimension for the simplest
counterexample to Hodge conjecture would be six.

The idea of foliations with transversal structure seems to have been known for a long
time, but it was developed mostly in the work of A. Haefliger [2].

The construction above was discovered by the author in the late 70’s, but it lacked
the final step which reduces the extension of foliations to the extension of 1-forms, and
therefore was incomplete at the time.

I am very grateful to several mathematicians with whom I discussed it earlier, specifically
to A. Hirschowitz and A. Haefliger. The final result was obtained while I was at RIMS,
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Kyoto; I am thankful to RIMS and to Y. Miyaoka for the invitation. I am also grateful to
S. Mochizuki, whose preprint reminded me of the old construction described above.
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