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Abstract. — The notion of a singular hermitian metric on a holomorphic line
bundle is introduced as a tool for the study of various algebraic questions. One of
the main interests of such metrics is the corresponding L2 vanishing theorem for ∂
cohomology, which gives a useful criterion for the existence of sections. In this context,
numerically effective line bundles and line bundles with maximum Kodaira dimension
are characterized by means of positivity properties of the curvature in the sense of
currents. The coefficients of isolated logarithmic poles of a plurisubharmonic singular
metric are shown to have a simple interpretation in terms of the constant ε of Seshadri’s
ampleness criterion. Finally, we use singular metrics and approximations of the
curvature current to prove a new asymptotic estimate for the dimension of cohomology
groups with values in high multiples O(kL) of a line bundle L with maximum Kodaira
dimension.

1. Introduction

Our purpose is to show that several important concepts of algebraic geometry
have a nice interpretation in differential geometric terms, once we admit hermitian
metrics with singularities, and especially plurisubharmonic weights with logarithmic
poles.

A singular (hermitian) metric on a line bundle L is simply a hermitian metric
which is given in any trivialization by a weight function e−ϕ such that ϕ is locally
integrable. We then have a well-defined curvature current c(L) = i

π∂∂ϕ and the case
when c(L) ≥ 0 as a current is especially interesting. One of the main reasons for
this is the basic L2 existence theorem of Hörmander-Andreotti-Vesentini for solutions
of ∂ equations with plurisubharmonic weights. With relatively few efforts, the L2

theory gives strong vanishing theorems (of Kawamata-Viehweg type) and existence
results for sections of the adjoint line bundle KX + L ; here KX denotes the canonical
line bundle of the base manifold X , and an additive notation is used for the group
Pic(X) = H1(X,O⋆). These techniques can also be applied in combination with the
Calabi-Yau theorem to obtain explicit numerical criteria for very ample line bundles;
we refer to [De 90] for results in this direction.
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On a projective algebraic manifold X , the real vector space generated by the
Neron-Severi group H2(X,ZZ) ∩ H1,1(X) contains two canonical closed convex cones
Γ+ ⊃ Γa, which are generated by cohomology classes of effective or ample divisors,
respectively. For a line bundle L on X , we show that L has a singular metric with
positive curvature current if and only if c1(L) ∈ Γ+. We also give similar differential
geometric descriptions of the line bundles for which c1(L) belongs to Γa (numerically
effective line bundles), or to the open cone Γ◦

+ (line bundles with κ(L) = n), or else to
Γ◦

+ ∩ Γa (big and nef line bundles).

The well-known Seshadri ampleness criterion asserts that a line bundle L on
a projective manifold X is ample if and only if there is a constant ε > 0 such that
L ·C ≥ εm(C) for every curve C ⊂ X , where m(C) is the maximum of the multiplicity
of the singular points of C. We show that the optimal constant ε(L) is precisely equal
to the supremum of coefficients γ for which a plurisubharmonic weight on L may have
an isolated logarithmic pole of slope γ at any point. This result is then refined by
introducing “local” Seshadri constants ε(L, x) which measure ampleness along curves
passing though a fixed point x.

Finally we use approximation techniques for singular metrics, combined with
the general holomorphic Morse inequalities of [De 85], to obtain an asymptotic upper
bound for the dimensions of cohomology groups Hq(X, kL) when L is a line bundle of
maximum Kodaira dimension κ(L) = n and k tends to +∞. If some multiple of L is
written as mL ≃ O(A+D) where A (resp. D) is an ample (resp. effective) divisor, the
upper bound is expressed in a simple way in terms of the first Chern class c1(L), the
multiplicities of the singular points of D and the curvature of the tangent bundle TX .

Several results of the present article have been worked out while the author was
visiting the Tata Institute in Bombay in August 1989. The author wishes to thank this
institution for its hospitality, and especially Prof. M.S. Narasimhan, R.R Simha and
S. Subramanian for stimulating discussions.

2. Notion of singular hermitian metrics

Let L be a holomorphic line bundle over a complex manifold X . We are mostly
interested in the case of a compact manifold, but this restriction is irrelevant in the
present section.

Definition 2.1. — A singular (hermitian) metric on L is a metric which is

given in any trivialization θ : L|̀Ω
≃
−→ Ω × C by

‖ξ‖ = |θ(ξ)| e−ϕ(x), x ∈ Ω, ξ ∈ Lx

where ϕ ∈ L1
loc(Ω) is an arbitrary function, called the weight of the metric with respect

to the trivialization θ.

If θ′ : L|̀Ω′ −→ Ω′ × C is another trivialization, ϕ′ the associated weight and
g ∈ O⋆(Ω ∩ Ω′) the transition function, then θ′(ξ) = g(x) θ(ξ) for ξ ∈ Lx, and so
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ϕ′ = ϕ+ log |g| on Ω ∩ Ω′. The curvature form of L is then given by the closed (1, 1)-
current c(L) = i

π∂∂ϕ on Ω, if we compute formally c(L) = i
2πD

2 as in the smooth
case ; c(L) is, of course, a global current on X which is independent of the choice of
trivializations. Our assumption ϕ ∈ L1

loc(Ω) guarantees that c(L) exists in the sense
of distribution theory. Then the De Rham cohomology class of c(L) is the image of
the first Chern class c1(L) ∈ H2(X,ZZ) in H2

DR(X, IR) (De Rham cohomology can be
computed either by means of smooth differential forms or by means of currents). Before
going further, we discuss two basic examples.

Example 2.2. — Let D =
∑
αjDj be a divisor with coefficients αj ∈ ZZ and

let L = O(D) be the associated invertible sheaf of meromorphic functions f such that
div(f)+D ≥ 0 ; the corresponding line bundle can be equipped with the singular metric
defined by ||f || = |f |. If gj is a generator of the ideal of Dj on an open set Ω ⊂ X
then θ(f) = f

∏
g
αj

j defines a trivialization of O(D) over Ω, thus our singular metric is
associated to the weight ϕ =

∑
αj log |gj|. By the Lelong-Poincaré equation, we find

(2.3) c
(
O(D)

)
=

i

π
∂∂ϕ = [D],

where [D] =
∑
αj [Dj ] denotes the current of integration over D (cf. [Le 57] and [Le 69]).

Example 2.4. — Assume that σ1, . . . , σN are non zero holomorphic sections of
L. Then we can define a natural (possibly singular) hermitian metric on L⋆ by

||ξ⋆||2 =
∑

1≤j≤n

∣∣ξ⋆.σj(x)
∣∣2 for ξ⋆ ∈ L⋆x.

The dual metric on L is given by

||ξ||2 =
|θ(ξ)|2

|θ(σ1(x))|2 + · · ·+ |θ(σN(x))|2

with respect to any trivialization θ. The associated weight function is thus given by
ϕ(x) = log

(∑
1≤j≤N |θ(σj(x))|

2
)
1/2. In this case ϕ is a plurisubharmonic function, so

c(L) is a (closed) positive current.

It is worth observing that the weight functions ϕ have logarithmic poles in both
examples. In the second case, the set of poles is the base locus

⋂
σ−1
j (0) of the linear

system generated by the sections σ1, . . . , σN . In the sequel, we always suppose that the
curvature current c(L) is positive, i.e. that the weight functions ϕ are plurisubharmonic.

Definition 2.5. — A singular metric on L with positive curvature current
c(L) ≥ 0 is said to have a logarithmic pole of coefficient γ at a point x ∈ X if the Lelong
number

ν(ϕ, x) = lim inf
z→x

ϕ(z)

log |z − x|

is non zero and if ν(ϕ, x) = γ.
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For the basic properties of Lelong numbers, we refer to [Le 69], [Siu 74] and
[De 87]. It is well known that ν(ϕ, x) is always equal to the Lelong number of the
associated current T = i

π
∂∂ϕ, defined by ν(T, x) = limr→0+

ν(T, x, r) with

(2.6) ν(T, x, r) =
1

(2πr2)n−1

∫

B(x,r)

T (z) ∧ (i∂∂|z|2)n−1.

Finally, for every c > 0, we consider the sublevel sets

(2.7) Ec(T ) =
{
x ∈ X ; ν(T, x) ≥ c

}
.

By a theorem of [Siu 74], Ec(T ) is a (closed) analytic subset of X . If T = i
π
∂∂ϕ on

an open set Ω ⊂ X , we denote accordingly Ec(ϕ) = Ec(T ) ∩ Ω. The following simple
lemma is very useful in this context.

Lemma 2.8. — If ϕ is a plurisubharmonic function onX , then e−2ϕ is integrable
in a neighborhood of x as soon as ν(ϕ, x) < 1 and non integrable as soon as ν(ϕ, x) ≥ n.

Proof. — If ν(ϕ, x) = γ, the usual convexity properties of plurisubharmonic
functions show that

(2.9) ϕ(z) ≤ γ log |z − x| +O(1) near x,

thus e−2ϕ(z) ≥ C|z− x|−2γ is non integrable as soon as γ ≥ n. For a proof that e−2ϕ is
integrable when ν(ϕ, x) < 1, we refer to Skoda [Sk 72]. Both bounds are best possible
as the examples ϕ(z) = (n− ε) log |z| and ϕ(z) = log |z1| in Cn easily show; in the first
case ν(ϕ, 0) = n−ε but e−2ϕ is integrable at 0 ; in the second case ν(ϕ, 0) = 1 but e−2ϕ

is non integrable at 0 .

3. L2 vanishing theorem and criterion for the existence of sections

One of the main reasons for which singular metrics are especially interesting is
the powerful existence theorem of Hörmander for solutions of equations ∂u = v.

Theorem 3.1. — Suppose that X is a Stein or compact projective manifold
equipped with a Kähler metric ω. Let L be a holomorphic line bundle equipped with a
singular metric associated to plurisubharmonic weight functions ϕ such that c(L) ≥ ε ω
for some ε > 0. For every q ≥ 1 and every (n, q) form v with values in L such that
∂v = 0 and

∫
X
|v|2e−2ϕdVω < +∞, there is a (n, q − 1)-form u with values in L such

that ∂u = v and ∫

X

|u|2e−2ϕdVω ≤
1

2πqε

∫

X

|v|2e−2ϕdVω.

Here dVω stands for the Kähler volume element ωn/n! and |u|2e−2ϕ denotes
somewhat abusively the pointwise norm of u(z) at each point z ∈ X , although ϕ is
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only defined on an open set in X . The constant 2π comes from the fact that we have
included 2π in the definition of c(L).

Proof. — The result is standard when X is Stein and L is the trivial bundle (see
[AV 65] and [Hö 66]); the proof can then be reduced to the case of a smooth metric,
because any plurisubharmonic function is the limit of a decreasing sequence of smooth
plurisubharmonic functions. In general, there exists a hypersurface H ⊂ X such that
X \ H is Stein and L is trivial over X \ H. We then solve the equation ∂u = v over
X \H and observe that the solution extends to X thanks to the L2 estimate (cf. [De 82],
lemma 6.9).

From this general theorem, we can easily derive an abstract vanishing theorem for
the adjoint line bundle KX +L and a criterion for the existence of sections of KX +L.

Corollary 3.2. — Let L be a line bundle with a singular hermitian metric.
Assume that c(L) ≥ ε ω and that the metric (i.e. the weight e−2ϕ) is integrable near all
but finitely many points of X . Then Hq(X,KX + L) = 0 for q ≥ 1.

Proof. — Let x1, . . . , xm be the points where the metric is not integrable and
let v be a smooth (n, q)–form with values in L such that ∂v = 0 . Let uj be a smooth
solution of ∂uj = v in a neighborhood of Vj of xj and ψj a cut-off function with
support in Vj such that ψj(xj) = 1 . Then v′ = v −

∑
∂(ψjuj) satisfies ∂v′ = 0 and∫

X
|v′|2e−2ϕdσ < +∞, because e−2ϕ is integrable except at the xj ’s and v′ vanishes in

a neighborhood of xj . By theorem 3.1, there is a L2 solution u′ of ∂u′ = v′ , hence
u = u′ +

∑
ψjuj is a solution of ∂u = v . It is well-known that the existence of a L2

loc

solution implies the existence of a smooth one, whence the corollary.

Corollary 3.3. — Let L be a line bundle with a singular metric such that
c(L) ≥ ε ω, ε > 0. If the weight function ϕ is such that ν(ϕ, x) ≥ n + s at some point
x ∈ X which is an isolated point of E1(ϕ), then H0(X,KX+L) generates all s-jets at x.

Proof. — The proof is a straightforward adaptation of the Hörmander-Bombieri-
Skoda technique ([Bo 70], [Sk 75]). We have e−2ϕ(z) ≥ C|z − x|−2(n+s) near x by
(2.9), and in particular e−2ϕ is non integrable near x. Since x is supposed to be
isolated in E1(ϕ), we infer from lemma 2.8 that e−2ϕ is locally integrable on a small
punctured neighborhood V \ {x}. Let P (z) be an arbitrary polynomial of degree ≤ s in
given analytic coordinates (z1, . . . , zn) on V . Fix a smooth cut-off function χ with
compact support in V such that χ = 1 near x and a non vanishing local section
h ∈ H0(V,KX + L). Then v = P∂χ ⊗ h can be viewed as a ∂-closed (n, 1)-form
on X with values in L, such that

∫
X
|v|2e−2ϕdVω < +∞ ; indeed v is smooth, has

compact support in V and vanishes near x. The solution u of ∂u = v is smooth and we
have |u(z)| = o(|z − x|s) near x thanks to the L2 estimate. Therefore

f = χPh− u ∈ H0(X,KX + L)

has the prescribed s-jet Ph at x.
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4. Numerical cones associated to positive line bundles

We suppose here that X is a projective algebraic manifold and denote n = dimX .
It is well known that an integral cohomology class in H2(X,ZZ) is the first Chern class of
a holomorphic (or algebraic) line bundle if and only if this class is of type (1, 1). Hence
the so-called Neron-Severi group

NS(X) = H2(X,ZZ) ∩H1,1(X) ⊂ H2(X, IR)

is the set of cohomology classes of algebraic line bundles (or of integral divisors).

Definition 4.1. — A holomorphic line bundle L over X is said to be numeri-
cally effective, nef for short, if L · C =

∫
C
c1(L) ≥ 0 for every curve C ⊂ X , and in this

case L is said to be big if Ln =
∫
X
c1(L)n > 0.

If L is nef, it is well known that Lp · Y =
∫
Y
c1(L)p ≥ 0 for any p-dimensional

subvariety Y ⊂ X (see e.g. [Ha 70]). The Nakai-Moishezon ampleness criterion then
shows that L + A is ample as soon as A is ample. In fact, if A is ample, it is easy to
see that L is nef if and only if kL+ A is ample for all integers k ≥ 1. We are going to
describe a simple dictionary relating these concepts to similar concepts in the context
of differential geometry.

Let NSIR(X) be the real vector space NS(X) ⊗ IR ⊂ H2(X, IR) and let
Γ+ ⊂ NSIR(X), resp. Γa ⊂ Γ+, be the closed convex cone generated by cohomology
classes of effective (resp. ample) divisors D ; denote by Γ◦

+ (resp. Γ◦
a) the interior of Γ+

(resp. Γa). We will call Γ+ and Γ◦
a respectively the effective cone and the ample cone

of X . Finally, recall that the Kodaira dimension κ(L) is the supremum of the rank of
the canonical maps

Φm : X \ Zm −→ P (V ⋆m), x 7−→ Hx = {σ ∈ Vm ; σ(x) = 0}, m ≥ 1

with Vm = H0(X,mL) and Zm =
⋂
σ∈Vm

σ−1(0) = base locus of Vm. If Vm = {0} for

all m ≥ 1, we set κ(L) = −∞. Then we have h0(X,mL) ≤ O(mκ(L)) for m ≥ 1, and
κ(L) is the smallest constant for which this estimate holds.

Proposition 4.2. — If L is a holomorphic line bundle on X , ω a Kähler metric
and ε > 0, we have the following equivalent properties:

c1(L) ∈ Γ+ ⇐⇒ L has a singular metric with c(L) ≥ 0 ;(a)

c1(L) ∈ Γ◦
+ ⇐⇒ ∃ε, L has a singular metric with c(L) ≥ ε ω ⇐⇒ κ(L) = n ;(b)

c1(L) ∈ Γa ⇐⇒ ∀ε, L has a smooth metric with c(L) ≥ −ε ω ⇐⇒ L is nef ;(c)

c1(L) ∈ Γ◦
a ⇐⇒ ∃ε, L has a smooth metric with c(L) ≥ ε ω ⇐⇒ L is ample.(d)

Proof. — It is well known that L is ample if and only if L has a smooth metric
with positive definite curvature, and this gives the last equivalence in (4.2d).

(4.2a) Suppose that c1(L) ∈ Γ+. By definition c1(L) is a limit of cohomology
classes of effective real divisors Dk =

∑
λj,kDj,k. Then [Dk] is a sequence of closed
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positive currents, with a uniform bound of the mass
∫
X

[Dk] ∧ ω
n−1, for this integral

converges to
∫
X
c1(L) ∧ ωn−1. By weak compactness, there is a subsequence [Dkν

]
converging to some closed positive current T of bidegree (1, 1), such that the cohomology
class of T is equal to c1(L). Therefore, if L is equipped with an arbitrary smooth metric,
we find T = c(L) + i

π∂∂ψ for some function ψ ∈ L1(X), and T is the curvature current
of the singular metric obtained by multiplication of the original smooth metric by e−ψ.
Conversely, if L has a singular metric with c(L) ≥ 0, we fix a point x0 ∈ X such that
the associated weight satisfies ν(ϕL, x0) = 0. Let ψ0 be a smooth function on X \ {x0}
which is equal to n log |z−x0| (in some coordinates) near x0, and let A be a fixed ample
line bundle, equipped with a smooth metric of positive curvature. For m0 large enough,
we have m0c(A) + i

π∂∂ψ0 ≥ ω and the tensor product metric on kL+m0A multiplied
by e−2ψ0 is associated to a weight ϕk = kϕL +m0ϕA + ψ0 such that

i

π
∂∂ϕk = k c(L) +m0c(A) +

i

π
∂∂ψ0 ≥ k c(L) + ω ≥ ω ∀k ≥ 1.

Moreover ν(ϕk, x0) = n, whereas ν(ϕk, x) = k ν(ϕL, x) < 1 for x 6= x0 near x0. We
infer from corollary 3.3 that kL +m0A +KX has non zero sections for all k ≥ 1. Let
Dk be the divisor of any such section and {Dk} its cohomology class. Then

c1(L) =
1

k

(
{Dk} −m0c1(A) − c1(KX)

)
= lim
k→+∞

1

k
{Dk}

and therefore c1(L) ∈ Γ+.

(4.2b) Without loss of generality, we may suppose that the cohomology class
{ω} is integral, i.e. {ω} ∈ NS(X). The first equivalence in (4.2b) is then an immediate
consequence of (4.2a), since a class {α} is in the interior Γ◦

+ if and only if {α−ε ω} ∈ Γ+

for ε small enough ({ω} is obviously an interior point). If c(L) ≥ ε ω, we can construct
as above a singular metric ϕk on kL − KX such that i

π
∂∂ϕk ≥ ω for k ≥ k0,

ν(ϕk, x0) = n+ 1 and ν(ϕk, x) < 1 for x 6= x0 near x0. Then corollary 3.3 shows that
kL has sections with arbitrary 1-jets at x0, hence κ(L) = n. Conversely, if κ(L) = n,
then h0(X, kL) ≥ ckn for k ≥ k0 and c > 0. Let A be a smooth ample divisor. The
exact cohomology sequence

0 −→ H0(X, kL− A) −→ H0(X, kL) −→ H0(A, kL|̀A)

where h0(A, kL|̀A) = O(kn−1) shows that kL− A has non zero sections for k large. If
D is the divisor of such a section, then kL ≃ O(A +D). If we select a smooth metric
on A such that c(A) ≥ ε0ω and the singular metric on O(D) described in example 2.2,
then c(L) = 1

k

(
c(A) + [D]

)
≥ (ε0/k)ω, as desired.

(4.2c) If c1(L) ∈ Γa, then L is nef, because the condition that a cohomology
class of type (1, 1) has nonnegative integrals over curves is preserved through convex
combinations and limits. Conversely, when L is nef, kL + A is ample as soon as A is
ample; thus c1(kL + A) is the cohomology class of an ample rational divisor Dk and
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c1(L) = limk→+∞ k−1{Dk} ∈ Γa. Moreover, arbitrary choices of smooth metrics with
positive curvature on A and kL+ A yield a smooth metric on L such that

c(L) =
1

k

(
c(kL+ A) − c(A)

)
≥ −

1

k
c(A) ;

in this way the negative part can be made smaller than ε ω for any ε > 0 if we take
k large enough. Finally, if c(L) ≥ −ε ω for every ε > 0, then L · C ≥ −ε

∫
C
ω and we

conclude that L ·C ≥ 0, thus L is nef.

(4.2d) Only the first equivalence remains to be checked: this is an immediate
consequence of (4.2c) and the fact that {ω} ∈ Γ◦

a.

Corollary 4.3. — If L is nef, then κ(L) = n if and only if Ln > 0. Moreover,
the following properties are equivalent:

(a) L is nef and big ;

(b) c1(L) ∈ Γa ∩ Γ◦
+ ;

(c) for every δ > 0, L has a singular metric such that c(L) ≥ ε ω for some ε > 0
and such that maxx∈X ν(ϕ, x) ≤ δ.

The metrics obtained in (c) can be chosen to be smooth on the complement of a fixed
divisor D, with logarithmic poles along D.

Proof. — The first statement is well-known and obtained as follows: if L is nef,
the Hilbert polynomial of χ(X, kL) has leading coefficient Ln/n! ≥ 0 ; by the Kodaira-
Nakano vanishing theorem, we have an exact sequence

Hj−1
(
A, (kL+A)|̀A

)
−→ Hj(X, kL) −→ Hj(X, kL+ A) = 0, j ≥ 1

whenever A is a smooth divisor chosen sufficiently ample so that A−KX is ample; thus
hj(X, kL) = O(kn−1) for j ≥ 1 and

h0(X, kL) = (Ln/n!) kn +O(kn−1),

therefore L is big if and only if κ(L) = n. The equivalence of (a) and (b) follows
immediately from this and from (4.2b), (4.2c).

We also observe that H0(X, kL − A) is the kernel of the restriction morphism
H0(X, kL) → H0(A, kL|̀A) in which the target has dimension O(kn−1). If Ln > 0,
we infer H0(X, kL − A) 6= 0 for k large, so there is an effective divisor D such that
kL ≃ O(A+D). Now, pL+A is ample for every p ≥ 0, so pL+A has a smooth metric
with c(pL + A) ≥ εpω and the isomorphism (k + p)L ≃ pL+ A +D gives a metric on
L such that

c(L) = (k + p)−1c(pL+A) + (k + p)−1[D] ≥ (k + p)−1εp ω.

Observe that the singular part (p+k)−1[D] can be chosen as small as desired by taking
p large, so maxX ν(ϕ, x) ≤ (k+p)−1 maxD ν(D, x) can be made arbitrarily small. Hence
(a) implies (c).
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Finally, if property (c) holds, the regularization theorem of [De 91] applied to
T = c(L) shows that L has smooth metrics such that the regularized curvature form
Tε has arbitrary small negative part. Hence L is nef by (4.2c) and κ(L) = n by (4.2b).
Therefore (c) implies (a).

5. The Kawamata-Viehweg vanishing theorem

To illustrate the strength of theorem 3.1, we give below a very simple derivation of
the Kawamata-Viehweg vanishing theorem [Ka 82], [Vi 82]. Only the case of maximum
Kodaira dimension will be treated here (the general case can be easily deduced by a
slicing argument and an induction on dimX , cf. [De 89]).

Definition 5.1. — We say that a divisor D =
∑
αjDj with rational coeffi-

cients αj ∈ Q is integrable at a point x0 ∈ X if the function
∏

|gj|
−2αj associated to

local generators gj of the ideal of Dj at x0 is integrable on a neighborhood of x0 .

Observe that
∏

|gj|
−2αj = e−2ϕ where ϕ is the weight function of the natural

singular metric on O(D) described in example 2.2. When D has normal crossings, the
gj ’s can be taken to be coordinates at x0 ; thus D is integrable if and only if αj < 1
for all j . When D is effective and has arbitrary singularities, lemma 2.8 shows that a
sufficient condition for the integrability of D at x0 is that the multiplicity (or Lelong
number)

ν(D, x0) =
∑

αj ν(Dj , x0)

be < 1. If neither D has normal crossings nor ν(D, x0) < 1 , the integrability condition
can be checked by means of a sequence of blowing-ups which lift D into a divisor with
normal crossings (this is always possible by [Hi 64]). Taking into account the jacobian
divisor J of the blow-up morphism π, we get at the end a divisor D′ = π⋆D − J with
normal crossings which is integrable if and only if D is integrable. A consequence of
this is that integrability is an open condition : if E is an arbitrary effective divisor and
if D is integrable at x0, then D + p−1E is again integrable at x0 for p large enough.
With these definitions, we have:

Theorem 5.2 (Kawamata-Viehweg). — Let L be a line bundle over a projective
manifold X with κ(L) = n. Assume that some positive multiple mL can be written
mL = O(F+D) where F is a nef line bundle and D an effective divisor such that m−1D
is integrable on X \ {finite set}. Then

Hq(X,KX + L) = 0 for q ≥ 1.

Proof. — By the proof of (4.2b), there is an ample divisor A and an effective
divisor E such that kL ≃ O(A + E). Then (pm + k)L ≃ O(pF + A + pD + E) where
pF + A is ample and

(pm+ k)−1(pD +E) ≤ m−1D + (pm+ k)−1E
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is integrable onX \{finite set} for p ≥ 1 large enough (integrability is an open condition).
If we select a smooth metric on pF +A with positive curvature ωp = c(pF +A) and take
the singular metric on O(pD + E) described in example 2.2, we find a singular metric
on L such that

c(L) = (pk +m)−1ωp + (pk +m)−1(p[D] + [E]),

and the associated weight e−2ϕ is locally integrable on X \ {finite set}. Hence we can
apply corollary 3.2 to conclude that Hq(X,KX + L) = 0 for q ≥ 1.

6. Seshadri constants of nef line bundles

Let L be a nef line bundle over a projective algebraic manifold X . To every point
x ∈ X , we attach the number

(6.1) ε(L, x) = inf
C∋x

L · C

ν(C, x)

where the infimum is taken over all irreducible curves C passing through x and ν(C, x)
is the multiplicity of C at x. The infimum

(6.1′) ε(L) = inf
x∈X

ε(L, x) = inf
C

L · C

ν(C)
where ν(C) = max

x∈C
ν(C, x)

will be called the Seshadri constant of L. It is well known that L is ample if and only
if ε(L) > 0 (Seshadri’s criterion [Ha 70]). For two nef line bundles L1, L2 we have
ε(L1 + L2) ≥ ε(L1) + ε(L2), in particular this shows again that L1 + L2 is ample if L1

or L2 is ample.

If L is a nef line bundle, we are especially interested in singular metrics with
isolated logarithmic poles: we say that a logarithmic pole x of the weight ϕ is isolated
if ϕ is finite and continuous on V \ {x} for some neighborhood V of x and we define

(6.2) γ(L, x) = sup

{
γ ∈ IR+ such that L has a singular metric with ic(L)≥0
and with an isolated log pole of coefficient γ at x

}
;

if there are no such metrics, we set γ(L, x) = 0.

The numbers ε(L, x) and γ(L, x) will be seen to carry a lot of useful information
about the global sections of L and its multiples kL. To make this precise, we first
introduce some further definitions. Let s(L, x) be the largest integer s ∈ IN such that
the global sections in H0(X,L) generate all s-jets JsxL = Ox(L)/Ms+1

x Ox(L). If Lx
is not generated, i.e. if all sections of L vanish at x, we set s(L, x) = −∞. We also
introduce the limit value

(6.3) σ(L, x) = lim sup
k→+∞

1

k
s(kL, x) = sup

k∈IN⋆

1

k
s(kL, x)
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if s(kL, x) 6= −∞ for some k, and σ(L, x) = 0 otherwise. The limsup is actually equal
to the sup thanks to the superadditivity property

s(L1 + L2, x) ≥ s(L1, x) + s(L2, x).

The limsup is in fact a limit as soon as kL spans at x for k ≥ k0, e.g. when L is ample.

Theorem 6.4. — Let L be a nef line bundle over X . For every point x ∈ X
we have

ε(L, x) ≥ γ(L, x) ≥ σ(L, x).

If L is ample, the equality holds for every x ∈ X . If L is nef and big, the equality holds
outside any divisor D prescribed by corollary 4.3.

Proof. — Fix a point x ∈ X and a coordinate system (z1, . . . , zn) centered at x.
If s = s(kL, x), then H0(X, kL) generates all s-jets at x and we can find holomorphic
sections f1, . . . , fN whose s-jets are all monomials zα, |α| = s. We define a global
singular metric on L by

(6.5) |ξ| =

( ∑

1≤j≤N

|fj(z) · ξ
−k|2

)−1/2k

, ξ ∈ Lz

associated to the weight function ϕ(z) = 1
2k log

∑ ∣∣θ(fj(z))
∣∣2 in any trivialization

L|̀Ω ≃ Ω × C. Then ϕ has an isolated logarithmic pole of coefficient s/k at x, thus

γ(L, x) ≥
1

k
s(kL, x)

and in the limit we get γ(L, x) ≥ σ(L, x).

Now, suppose that L has a singular metric with an isolated log pole of coefficient
≥ γ at x. Set c(L) = i

π∂∂ϕ on a neighborhood Ω of x and let C be an irreducible curve
passing through x. Then all weight functions associated to the metric of L must be
locally integrable along C (since ϕ has an isolated pole at x). We infer

L ·C =

∫

C

c(L) ≥

∫

C∩Ω

i

π
∂∂ϕ ≥ γ ν(C, x)

because the last integral is larger than the Lelong number of the current [C] with
respect to the weight ϕ (cf. [De 87]) and we may apply the comparison theorem with
the ordinary Lelong number associated to the weight log |z − x|. Therefore

ε(L, x) = inf
L · C

ν(C, x)
≥ sup γ = γ(L, x).

Finally, we show that σ(L, x) ≥ ε(L, x) when L is ample. This is done essentially
by same arguments as in the proof of Seshadri’s criterion, as explained in [Ha 70].
Consider the blow-up π : X̃ → X at point x, the exceptional divisor E = π−1(x)
and the line bundles Fp,q = O(p π⋆L − q E) over X̃, where p, q > 0. Recall that
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O(−E)|̀E is the canonical line bundle OE(1) over E ≃ IPn−1, in particular we have
En = OE(−1)n−1 = (−1)n−1. For any irreducible curve C̃ ⊂ X̃ , either C̃ ⊂ E and

Fp,q · C̃ = O(−q E) · C̃ = qOE(1) · C̃ = q deg C̃

or π(C̃) = C is a curve and

Fp,q · C̃ = pL · C − q ν(C, x) ≥
(
p− q/ε(L, x)

)
L · C.

Thus Fp,q is nef provided that p ≥ q/ε(L, x). Since Fp,q is ample when p/q is large, a
simple interpolation argument shows that Fp,q is ample for p > q/ε(L, x). In that case,
the Kodaira-Serre vanishing theorem gives

H1(X̃, k Fp,q) = H1
(
X̃,O(kp π⋆L− kq E)

)
= 0

for k large. Hence we get a surjective map

H0(X̃, kp π⋆L) −→−→ H0
(
X̃,O(kp π⋆L) ⊗ (O/O(−kq E)

))
≃ Jkq−1

x (kpL),

that is, H0(X, kpL) generates all (kq − 1) jets at x. Therefore p > q/ε(L, x) implies
s(kpL, x) ≥ kq − 1 for k large, so σ(L, x) ≥ q/p. At the limit we get σ(L, x) ≥ ε(L, x).

Assume now that L is nef and big and that ε(L, x) > 0. By the proof of lemma 4.3,
there exist an integer k0 ≥ 1 and effective divisors A,D such that k0L ≃ A +D where
A is ample. Then a π⋆A−E is ample for a large. Hence there are integers a, b > 0 such
that a π⋆A− bE −K

X̃
is ample. When Fp,q is nef, the sum with any positive multiple

k Fp,q is still ample and the Akizuki-Nakano vanishing theorem gives

H1(X̃, k Fp,q + a π⋆A− bE) = H1
(
X̃, (kp+ k0a) π

⋆L− a π⋆D − (kq + b)E
)

= 0

when we substitute A = k0L−D. As above, this implies that we have a surjective map

H0
(
X, (kp+ k0a)L− aD

)
−→−→ Jkq+b−1

x

(
(kp+ k0a)L− aD

)

when p ≥ q/ε(L, x). Since O(−aD) ⊂ O, we infer s
(
(kp + k0a)L, x

)
≥ kq + b − 1 at

every point x ∈ X \D and at the limit σ(L, x) ≥ ε(L, x).

Remark 6.6. — Suppose that L is ample. The same arguments show that if
π : X̃ → X is the blow-up at two points x, y and if Ex + Ey is the exceptional divisor,
then Fp,q = p π⋆L − q Ex − Ey is ample for p > q/ε(L, x) + 1/ε(L, y). In that case,
H0(X, kpL) generates Jkq−1

x (kpL)⊕Jk−1
y (kpL) for k large. Take p > q/ε(L, x)+1/ε(L)

and let y run over X \ {x}. For k large, we obtain sections fj ∈ H0(X, kpL) whose jets
at x are all monomials zα, |α| = kq − 1, and with no other common zeros. Moreover,
formula (6.5) produces a metric on L which is smooth and has positive definite curvature
on X \ {x}, and which has a log pole of coefficient (kq − 1)/kp at x. Therefore the
supremum γ(L, x) = sup{γ} is always achieved by metrics that are smooth and have
positive definite curvature on X \ {x}.
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Remark 6.7. — If Y is a p-dimensional algebraic subset of X passing through x,
then

Lp · Y ≥ ε(L, x)pν(Y, x)

where Lp · Y =
∫
Y
c1(L)p and ν(Y, x) is the multiplicity of Y at x (equal by Thie’s

theorem [Th 67] to the Lelong number of the integration current [Y ]). If L is ample,
we can take a metric on L which is smooth on X \ {x} and defined on a neighborhood
Ω of x by a weight function ϕ with a log pole of coefficient γ at x. By the comparison
theorem for Lelong numbers, we get

Lp · Y ≥

∫

Y ∩Ω

( i
π
∂∂ϕ

)p
≥ γpν(Y, x)

and γ can be chosen arbitrarily close to ε(L, x). If L is nef, we apply the inequality to
k L+M with M ample and take the limit as k → +∞.

The numbers ε(L, x) and Seshadri’s constant ε(L) = inf ε(L, x) are especially
interesting because they provide effective results concerning the existence of sections of
KX + L. The following proposition illustrates this observation.

Proposition 6.8. — Let L be a big nef line bundle over X .

(a) If ε(L, x) > n+ s, then H0(X,KX + L) generates all s-jets at x.

(b) If ε(L) > 2n, then KX + L is very ample.

Proof. — By the proof of theorem 6.4, the line bundle π⋆L − q E is nef for
q ≤ ε(L, x). Moreover, its n-th self intersection is equal to Ln + (−q)nEn = Ln − qn

and as Ln ≥ ε(L, x)n by remark 3.5, we see that π⋆L− q E is big for q < ε(L, x). The
Kawamata-Viehweg vanishing theorem 5.2 then gives

H1(X̃,K
X̃

+ π⋆L− q E) = H1
(
X̃, π⋆KX + π⋆L− (q − n+ 1)E

)
= 0,

since K
X̃

= π⋆KX + (n− 1)E. Thus we get a surjective map

H0
(
X̃, π⋆KX + π⋆L) −→−→ H0

(
X̃, π⋆O(KX + L) ⊗O/O(−(q − n+ 1)E)

)

‖ ‖

H0(X,KX + L) −→−→ Jq−nx (KX + L)

provided that ε(L, x) > q. The first statement is proved. To show that KX + L is very
ample, we blow up at two points x, y. The line bundle π⋆L− nEx − nEy is ample for
1/ε(L, x) + 1/ε(L, y) < 1/n, a sufficient condition for this is ε(L) > 2n. Then we see
that

H0(X,KX + L) −→ (KX + L)x ⊕ (KX + L)y

is also surjective.

These results are related to a conjecture of Fujita [Fu 88], asserting that if L is
an ample line bundle, then KX + mL is spanned for m ≥ n + 1 and very ample for
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m ≥ n+2. The answer is positive for surfaces, thanks to I. Reider’s numerical criterion
(a deep extension of Bombieri’s work [Bo 73] on pluricanonical embeddings of surfaces
of general type). Our paper [De 90] describes a new method which gives partial results
in the higher dimensional case. By proposition 6.8 above, we know that KX + mL
generates s-jets for m > (n + s)/ε(L) and is very ample for m > 2n/ε(L). It is easy
to see for example that ε(L) ≥ 1 for any flag manifold, in which the ample cone has a
very simple structure. In general, unfortunately, it seems to be a rather hard problem
to compute the Seshadri constant ε(L), even in the case of surfaces. An answer to the
following question would be urgently needed.

Question 6.9. — Given a projective algebraic manifold X , is there always a
universal lower bound for ε(L) when L runs over all ample line bundles of X ? In
this case, is it possible to compute explicitly such a lower bound in terms of geometric
invariants of X ?

7. Asymptotic estimates of cohomology groups

Let X be a compact Kähler manifold, E a holomorphic vector bundle of rank r
and L a line bundle over X . If L is equipped with a smooth metric of curvature form
c(L), we define the q-index set of L to be the open subset

(7.1) X(q, L) =

{
x ∈ X ; c(L)x has

q

n− q

negative eigenvalues

positive eigenvalues

}
, 0 ≤ q ≤ n.

It is shown in [De 85] that the cohomology groups Hq
(
X,E ⊗ O(kL)

)
satisfy the

asymptotic “Morse inequalities”

(7.2) hq
(
X,E ⊗O(kL)

)
≤ r

kn

n!

∫

X(q,L)

(−1)q
(
c(L)

)n
+ o(kn) as k → +∞.

One difficulty in the application of this result is that the curvature integral is in general
quite uneasy to compute, since it is neither a topological nor a holomorphic invariant.
However, when c1(L) ∈ Γ+, the results of [De 91] allow us to measure the distance of
L to the ample cone Γa. In that case, a use of singular metrics combined with the
approximation theorem of [De 91] produces smooth metrics on L for which an explicit
bound of the negative part of the curvature is known. It follows that (7.2) gives an
explicit upper bound of the cohomology groups of E ⊗O(kL) in terms of a polynomial
in the first Chern class c1(L) (related techniques have already been used in [Su] in a
slightly different context). To state the precise result, we need the notion of nefness for
a real (1, 1) cohomology class which does not necessarily belong to NSIR(X): we say
that {u} ∈ H1,1(X) is nef if {u} belongs to the closure of the convex cone generated by
classes of Kähler forms

(
the so-called Kähler cone of H1,1(X)

)
.

Theorem 7.3. — Suppose that there is a nef cohomology class {u} in H1,1(X)
such that c1

(
OTX(1)

)
+ π⋆{u} is nef over the hyperplane bundle P (T ⋆X). Suppose
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moreover that L is equipped with a singular metric such that T = c(L) ≥ 0. For
p = 1, 2, . . . , n, n+ 1 set

bp = inf{c > 0 ; codimEc(T ) ≥ p},

with bn+1 = maxx∈X ν(T, x). Then for any holomorphic vector bundle E of rank r
over X we have

hq
(
X,E ⊗O(kL)

)
≤ Aqr k

n + o(kn)

where Aq is the cup product

Aq =
1

q! (n− q)!

(
bn−q+1{u}

)q
·
(
c1(L) + bn−q+1{u}

)n−q

in H2n(X, IR), identified to a positive number.

Remark 7.4. — When X is projective algebraic and κ(L) = n, the proof of
(4.2b) shows that mL ≃ O(A + D) with A ample and D effective, for some m ≥ 1.
Then we can choose a singular metric on L such that T = c(L) = ω +m−1[D], where
ω = m−1c(A) is a Kähler metric. As ν(T, x) = m−1ν(D, x) at each point, the constants
bj of theorem 7.3 are obtained by counting the multiplicities of the singular points of
D ; for example, if D only has isolated singularities, then b1 = 0, b2 = . . . = bn = 1/m.
Observe moreover that the nefness assumption on OTX(1) is satisfied with {u} = c1(G)
if G is a nef Q-divisor such that O(TX) ⊗ O(G) is nef, e.g. if O(SmTX) ⊗O(mG) is
spanned by sections for some m ≥ 1.

Proof of theorem 7.3. — By definition, we have 0 = b1 ≤ b2 ≤ . . . ≤ bn ≤ bn+1,
and for c ∈ ]bp, bp+1], Ec(T ) has codimension ≥ p with some component(s) of
codimension p exactly. Let ω be a fixed Kähler metric on X . By adding εω to u if
necessary, we may assume that u ≥ 0 and that OTX(1) has a smooth hermitian metric
such that c

(
OTX(1)

)
+ π⋆u ≥ 0.

Under this assumption, the main approximation theorem of [De 91] shows that
the metric of L can be approximated by a sequence of smooth metrics such that the
associated curvature forms Tj satisfy the uniform lower bound

(7.5) Tj ≥ −λj(x) u(x)− εj ω(x)

where lim↓ j→+∞εj = 0 and (λj)j>0 is a decreasing sequence of continuous functions
on X such that limj→+∞ λj(x) = ν(T, x) at each point.

Estimate (7.2) cannot be used directly with T = c(L) because wedge products of
currents do not make sense in general. Therefore, we replace c(L) by its approximations
Tj and try to find an upper bound for the limit.

Lemma 7.6. — Let Uj = X(q, Tj) be the q-index set associated to Tj and let c
be a positive number. On the open set Ωc,j = {x ∈ X ; λj(x) < c} we have

(−1)q1lUj
Tnj ≤

n!

q! (n− q)!

(
c u+ εj ω

)q
∧

(
Tj + c u+ εj ω

)n−q
.
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Proof. — Write v = c u+ εj ω > 0 and let α1,j ≤ . . . ≤ αn,j be the eigenvalues
of Tj with respect to v at each point. Then Tnj = α1,j . . . αn,j v

n and

vq ∧ (Tj + v)n−q =
q! (n− q)!

n!

∑

1≤i1<...<in−q≤n

(1 + αi1,j) . . . (1 + αin−q ,j) v
n.

On Ωc,j we get Tj ≥ −v by inequality (7.5), thus αi,j ≥ −1; moreover, we have
α1 ≤ . . . ≤ αq < 0 and 0 < αq+1 ≤ . . . ≤ αn on Uj . On Ωc,j we thus find

0 ≤ (−1)q1lUj
α1,j . . . αn,j ≤ 1lUj

αq+1,j . . . αn,j ≤ (1 + αq+1,j) . . . (1 + αn,j),

therefore (−1)q1lUj
Tnj ≤

(
n!/q! (n− q)!

)
vq ∧ (Tj + v)n−q.

End of the proof of theorem 7.3. — Set Λ = maxX λ1(x). By lemma 7.6 applied
with an arbitrary c > Λ we have

(−1)q1lUj
Tnj ≤

n!

q!(n− q)!
(Λu+ ε1ω)q ∧ (Tj + Λu+ ε1ω)n−q on X.

Then estimate (7.2) and lemma 7.6 again imply

hq
(
X,E ⊗O(kL)

)
≤ r

kn

n!

∫

X

(−1)q1lUj
Tnj + o(kn)

≤
r kn

q! (n− q)!

(∫

Ωc,j

(c u+ εj ω)q ∧ (Tj + c u+ εj ω)n−q

+

∫

X \Ωc,j

(Λu+ ε1ω)q ∧ (Tj + Λu+ ε1ω)n−q
)

+ o(kn).(7.7)

Since λj(x) decreases to ν(T, x) as j → +∞, the set X \ Ωc,j decreases to Ec(T ). Now,
Tj + Λu+ ε1ω is a closed positive (1, 1)-form belonging to a fixed cohomology class, so
the mass of any wedge power (Tj + Λu+ ε1ω)p with respect to ω is constant. By weak
compactness, there is a subsequence (jν) such that (Tjν +Λu+ ε1ω)p converges weakly
to a closed positive current Θp of bidegree (p, p), for each p = 1, . . . , n. For c > bp+1,
we have codimEc(T ) ≥ p + 1, hence 1lEc(T )Θp = 0. It follows that the integral over
X \ Ωc,j in (7.7) converges to 0 when c > bn−q+1. For the same reason the integral over
Ωc,j converges to the same limit as its value over X : observe that (Tj + c u+ εj ω)n−q

can be expressed in terms of powers of u, ω and of the positive forms (Tj + Λu+ ε1ω)p

with p ≤ n − q ; thus the limit is a linear combination with smooth coefficients of the
currents Θp, which carry no mass on Ec(T ). In the limit, we obtain

hq
(
X,E ⊗O(kL)

)
≤

r kn

q! (n− q)!
(c{u})q ·

(
c1(L) + c{u}

)n−q
+ o(kn),

and since this is true for every c > bn−q+1, theorem 7.3 follows.
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