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Goals

Study sections and cohomology of holomorphic line
bundles L → X on compact Kähler manifolds,
without assuming any strict positivity of the curvature
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Goals

Study sections and cohomology of holomorphic line
bundles L → X on compact Kähler manifolds,
without assuming any strict positivity of the curvature

Generalize the Nadel vanishing theorem
(and therefore Kawamata-Viehweg)

Several known results already in this direction:
– Skoda division theorem (1972)
– Ohsawa-Takegoshi L2 extension theorem (1987)
– more recent work of Yum-Tong Siu:
invariance of plurigenera (1998 → 2000),
analytic version of Shokurov’s non vanishing theorem,
finiteness of the canonical ring (2007),
study of the abundance conjecture (2010) ...
– solution of MMP (BCHM 2006), D-Hacon-Păun (2010)
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Basic concepts (1)

Let X = compact Kähler manifold, L → X holomorphic line bundle,
h a hermitian metric on L.
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Basic concepts (1)

Let X = compact Kähler manifold, L → X holomorphic line bundle,
h a hermitian metric on L.
Locally L|U ≃ U × C and for ξ ∈ Lx ≃ C, ‖ξ‖2h = |ξ|2e−ϕ(x).
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Basic concepts (1)

Let X = compact Kähler manifold, L → X holomorphic line bundle,
h a hermitian metric on L.
Locally L|U ≃ U × C and for ξ ∈ Lx ≃ C, ‖ξ‖2h = |ξ|2e−ϕ(x).
Writing h = e−ϕ locally, one defines the curvature form of L to
be the real (1, 1)-form

ΘL,h =
i

2π
∂∂ϕ = −dd c log h,
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Basic concepts (1)

Let X = compact Kähler manifold, L → X holomorphic line bundle,
h a hermitian metric on L.
Locally L|U ≃ U × C and for ξ ∈ Lx ≃ C, ‖ξ‖2h = |ξ|2e−ϕ(x).
Writing h = e−ϕ locally, one defines the curvature form of L to
be the real (1, 1)-form

ΘL,h =
i

2π
∂∂ϕ = −dd c log h,

c1(L) =
{
ΘL,h

}
∈ H2(X ,Z).
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Basic concepts (1)

Let X = compact Kähler manifold, L → X holomorphic line bundle,
h a hermitian metric on L.
Locally L|U ≃ U × C and for ξ ∈ Lx ≃ C, ‖ξ‖2h = |ξ|2e−ϕ(x).
Writing h = e−ϕ locally, one defines the curvature form of L to
be the real (1, 1)-form

ΘL,h =
i

2π
∂∂ϕ = −dd c log h,

c1(L) =
{
ΘL,h

}
∈ H2(X ,Z).

Any subspace Vm ⊂ H0(X , L⊗m) define a meromorphic map

ΦmL : X rZm −→ P(Vm) (hyperplanes of Vm)

x 7−→ Hx =
{
σ ∈ Vm ; σ(x) = 0

}

where Zm = base locus B(mL) =
⋂

σ−1(0).
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Basic concepts (2)

Given sections σ1, . . . , σn ∈ H0(X , L⊗m), one gets a
singular hermitian metric on L defined by

|ξ|2h =
|ξ|2

(∑
|σj(x)|2

)1/m ,
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Basic concepts (2)

Given sections σ1, . . . , σn ∈ H0(X , L⊗m), one gets a
singular hermitian metric on L defined by

|ξ|2h =
|ξ|2

(∑
|σj(x)|2

)1/m ,

its weight is the plurisubharmonic (psh) function

ϕ(x) =
1

m
log

(∑
|σj(x)|

2
)
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Basic concepts (2)

Given sections σ1, . . . , σn ∈ H0(X , L⊗m), one gets a
singular hermitian metric on L defined by

|ξ|2h =
|ξ|2

(∑
|σj(x)|2

)1/m ,

its weight is the plurisubharmonic (psh) function

ϕ(x) =
1

m
log

(∑
|σj(x)|

2
)

and the curvature is ΘL,h =
1
m
dd c logϕ ≥ 0

in the sense of currents, with logarithmic poles along the base
locus

B =
⋂

σ−1
j (0) = ϕ−1(−∞).
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Basic concepts (2)

Given sections σ1, . . . , σn ∈ H0(X , L⊗m), one gets a
singular hermitian metric on L defined by

|ξ|2h =
|ξ|2

(∑
|σj(x)|2

)1/m ,

its weight is the plurisubharmonic (psh) function

ϕ(x) =
1

m
log

(∑
|σj(x)|

2
)

and the curvature is ΘL,h =
1
m
dd c logϕ ≥ 0

in the sense of currents, with logarithmic poles along the base
locus

B =
⋂

σ−1
j (0) = ϕ−1(−∞).

One has

(ΘL,h)|X rB =
1

m
Φ∗

mLωFS where ΦmL : X rB → P(Vm) ≃ PNm .
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Basic concepts (3)

Definition

L is pseudoeffective (psef) if ∃h = e−ϕ, ϕ ∈ L1
loc
,

(possibly singular) such that ΘL,h = −dd c log h ≥ 0 on X ,
in the sense of currents.
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L is pseudoeffective (psef) if ∃h = e−ϕ, ϕ ∈ L1
loc
,

(possibly singular) such that ΘL,h = −dd c log h ≥ 0 on X ,
in the sense of currents.

L is semipositive if ∃h = e−ϕ smooth such that
ΘL,h = −dd c log h ≥ 0 on X .
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Basic concepts (3)

Definition

L is pseudoeffective (psef) if ∃h = e−ϕ, ϕ ∈ L1
loc
,

(possibly singular) such that ΘL,h = −dd c log h ≥ 0 on X ,
in the sense of currents.

L is semipositive if ∃h = e−ϕ smooth such that
ΘL,h = −dd c log h ≥ 0 on X .

L is positive if ∃h = e−ϕ smooth such that
ΘL,h = −dd c log h > 0 on X .
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Basic concepts (3)

Definition

L is pseudoeffective (psef) if ∃h = e−ϕ, ϕ ∈ L1
loc
,

(possibly singular) such that ΘL,h = −dd c log h ≥ 0 on X ,
in the sense of currents.

L is semipositive if ∃h = e−ϕ smooth such that
ΘL,h = −dd c log h ≥ 0 on X .

L is positive if ∃h = e−ϕ smooth such that
ΘL,h = −dd c log h > 0 on X .

The well-known Kodaira embedding theorem states that
L is positive if and only if L is ample, namely:
Zm = B(mL) = ∅ and

Φ|mL| : X → P(H0(X , L⊗m))

is an embedding for m ≥ m0 large enough.
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Positive cones

Definitions

Let X be a compact Kähler manifold.

The Kähler cone is the (open) set K ⊂ H1,1(X ,R) of
cohomology classes {ω} of positive Kähler forms.

Jean-Pierre Demailly – Abel Symposium, July 5, 2013 On the cohomology of pseudoeffective line bundles 6/21[1:21]



Positive cones

Definitions

Let X be a compact Kähler manifold.

The Kähler cone is the (open) set K ⊂ H1,1(X ,R) of
cohomology classes {ω} of positive Kähler forms.

The pseudoeffective cone is the set E ⊂ H1,1(X ,R) of
cohomology classes {T} of closed positive (1, 1) currents.
This is a closed convex cone.
(by weak compactness of bounded sets of currents).
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Positive cones

Definitions

Let X be a compact Kähler manifold.

The Kähler cone is the (open) set K ⊂ H1,1(X ,R) of
cohomology classes {ω} of positive Kähler forms.

The pseudoeffective cone is the set E ⊂ H1,1(X ,R) of
cohomology classes {T} of closed positive (1, 1) currents.
This is a closed convex cone.
(by weak compactness of bounded sets of currents).

K is the cone of “nef classes”. One has K ⊂ E .
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Positive cones

Definitions

Let X be a compact Kähler manifold.

The Kähler cone is the (open) set K ⊂ H1,1(X ,R) of
cohomology classes {ω} of positive Kähler forms.

The pseudoeffective cone is the set E ⊂ H1,1(X ,R) of
cohomology classes {T} of closed positive (1, 1) currents.
This is a closed convex cone.
(by weak compactness of bounded sets of currents).

K is the cone of “nef classes”. One has K ⊂ E .

It may happen that K ( E :
if X is the surface obtained by blowing-up P2 in one
point, then the exceptional divisor E ≃ P1 has a
cohomology class {α} such that

∫
E
α = E 2 = −1, hence

{α} /∈ K, although {α} = {[E ]} ∈ E .
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Ample / nef / effective / big divisors
Positive cones can be visualized as follows :

H1,1(X ,R) (containing Neron-Severi space NSR(X ))

K

KNS

E

ENS

Kähler
cone

psef
cone

ample divisors: KNS

nef divisors: KNS

big divisors: E◦
NS

effective & psef: ENS

KNS = K ∩ NSR(X )
ENS = E ∩NSR(X )

where

NSR(X ) = (H1,1(X ,R) ∩ H2(X ,Z))⊗Z R
NSR(X )
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Approximation of currents, Zariski decomposition

Definition

On X compact Kähler, a Kähler current T is a closed positive
(1, 1)-current T such that T ≥ δω for some smooth hermitian
metric ω and a constant δ ≪ 1.
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Approximation of currents, Zariski decomposition

Definition

On X compact Kähler, a Kähler current T is a closed positive
(1, 1)-current T such that T ≥ δω for some smooth hermitian
metric ω and a constant δ ≪ 1.

Easy observation

α ∈ E◦ (interior of E) ⇐⇒ α = {T}, T = a Kähler current.

We say that E◦ is the cone of big (1, 1)-classes.
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Approximation of currents, Zariski decomposition

Definition

On X compact Kähler, a Kähler current T is a closed positive
(1, 1)-current T such that T ≥ δω for some smooth hermitian
metric ω and a constant δ ≪ 1.

Easy observation

α ∈ E◦ (interior of E) ⇐⇒ α = {T}, T = a Kähler current.

We say that E◦ is the cone of big (1, 1)-classes.

Theorem on approximate Zariski decomposition (D, ’92)

Any Kähler current can be written T = limTm where
Tm ∈ {T} has analytic singularities & logarithmic poles,

i.e. ∃ modification µm : X̃m → X such that µ⋆
mTm = [Em] + βm

where Em is an effective Q-divisor on X̃m with coefficients in
1
m
Z and βm is a Kähler form on X̃m.
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Schematic picture of Zariski decomposition

NSR(X̃m) ⊂

H1,1(X̃m,R)

NSR(X ) ⊂

H1,1(X ,R)

K(X̃m) K(X )

ω

Em

βm

µ∗
mTm

E(X )E(X̃m)

T−δω≥0

Tm

T

µm : X̃m −→ X (blow-up)
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Idea of proof of analytic Zariski decomposition

• Write locally
T = i∂∂ϕ

for some strictly plurisubharmonic psh potential ϕ on X .
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Idea of proof of analytic Zariski decomposition

• Write locally
T = i∂∂ϕ

for some strictly plurisubharmonic psh potential ϕ on X .

• Approximate T (again locally) as

Tm = i∂∂ϕm, ϕm(z) =
1

2m
log

∑

ℓ

|gℓ,m(z)|
2

where (gℓ,m) is a Hilbert basis of the space

H(Ω,mϕ) =
{
f ∈ O(Ω) ;

∫

Ω

|f |2e−2mϕdV < +∞
}
.
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Idea of proof of analytic Zariski decomposition

• Write locally
T = i∂∂ϕ

for some strictly plurisubharmonic psh potential ϕ on X .

• Approximate T (again locally) as

Tm = i∂∂ϕm, ϕm(z) =
1

2m
log

∑

ℓ

|gℓ,m(z)|
2

where (gℓ,m) is a Hilbert basis of the space

H(Ω,mϕ) =
{
f ∈ O(Ω) ;

∫

Ω

|f |2e−2mϕdV < +∞
}
.

• The Ohsawa-Takegoshi L2 extension theorem (extending
from a single isolated point) implies that there are enough
such holomorphic functions, and thus ϕm ≥ ϕ− C/m.
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Idea of proof of analytic Zariski decomposition

• Write locally
T = i∂∂ϕ

for some strictly plurisubharmonic psh potential ϕ on X .

• Approximate T (again locally) as

Tm = i∂∂ϕm, ϕm(z) =
1

2m
log

∑

ℓ

|gℓ,m(z)|
2

where (gℓ,m) is a Hilbert basis of the space

H(Ω,mϕ) =
{
f ∈ O(Ω) ;

∫

Ω

|f |2e−2mϕdV < +∞
}
.

• The Ohsawa-Takegoshi L2 extension theorem (extending
from a single isolated point) implies that there are enough
such holomorphic functions, and thus ϕm ≥ ϕ− C/m.

• Further, ϕ = lim
m→+∞

ϕm by the mean value inequality.
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“Movable” intersection of currents

Let P(X ) = closed positive (1, 1)-currents on X

H
k,k
≥0 (X ) =

{
{T} ∈ Hk,k(X ,R) ; T closed ≥ 0

}
.
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“Movable” intersection of currents

Let P(X ) = closed positive (1, 1)-currents on X

H
k,k
≥0 (X ) =

{
{T} ∈ Hk,k(X ,R) ; T closed ≥ 0

}
.

Theorem (Boucksom PhD 2002, Junyan Cao PhD 2012)

∀k = 1, 2, . . . , n, ∃ canonical “movable intersection product”

P × · · · × P → H
k,k
≥0 (X ), (T1, . . . ,Tk) 7→ 〈T1 · T2 · · ·Tk〉
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“Movable” intersection of currents

Let P(X ) = closed positive (1, 1)-currents on X

H
k,k
≥0 (X ) =

{
{T} ∈ Hk,k(X ,R) ; T closed ≥ 0

}
.

Theorem (Boucksom PhD 2002, Junyan Cao PhD 2012)

∀k = 1, 2, . . . , n, ∃ canonical “movable intersection product”

P × · · · × P → H
k,k
≥0 (X ), (T1, . . . ,Tk) 7→ 〈T1 · T2 · · ·Tk〉

Method. Tj = limε→0Tj + εω, can assume Tj Kähler.
Approximate each Tj by Kähler currents Tj ,m with logarithmic

poles,take a simultaneous log-resolution µm : X̃m → X such
that

µ⋆
mTj = [Ej ,m] + βj ,m.

and define

〈T1 · T2 · · ·Tk〉 = lim ↑
m→+∞

{(µm)⋆(β1,m ∧ β2,m ∧ . . . ∧ βk,m)}.
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Volume and numerical dimension of currents

Remark. The limit exists a weak limit of currents thanks to
uniform boundedness in mass.
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Volume and numerical dimension of currents

Remark. The limit exists a weak limit of currents thanks to
uniform boundedness in mass.
Uniqueness comes from monotonicity (βj ,m “increases” with m)
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Volume and numerical dimension of currents

Remark. The limit exists a weak limit of currents thanks to
uniform boundedness in mass.
Uniqueness comes from monotonicity (βj ,m “increases” with m)

Special case. The volume of a class α ∈ H1,1(X ,R) is

Vol(α) = sup
T∈α

〈T n〉 if α ∈ E◦ (big class),

Vol(α) = 0 if α 6∈ E◦,
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Volume and numerical dimension of currents

Remark. The limit exists a weak limit of currents thanks to
uniform boundedness in mass.
Uniqueness comes from monotonicity (βj ,m “increases” with m)

Special case. The volume of a class α ∈ H1,1(X ,R) is

Vol(α) = sup
T∈α

〈T n〉 if α ∈ E◦ (big class),

Vol(α) = 0 if α 6∈ E◦,

Numerical dimension of a current

nd(T ) = max
{
p ∈ N ; 〈T p〉 6= 0 in H

p,p
≥0 (X )

}
.
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Volume and numerical dimension of currents

Remark. The limit exists a weak limit of currents thanks to
uniform boundedness in mass.
Uniqueness comes from monotonicity (βj ,m “increases” with m)

Special case. The volume of a class α ∈ H1,1(X ,R) is

Vol(α) = sup
T∈α

〈T n〉 if α ∈ E◦ (big class),

Vol(α) = 0 if α 6∈ E◦,

Numerical dimension of a current

nd(T ) = max
{
p ∈ N ; 〈T p〉 6= 0 in H

p,p
≥0 (X )

}
.

Numerical dimension of a hermitian line bundle (L, h)

nd(L, h) = nd(ΘL,h).
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Generalized abundance conjecture

Numerical dimension of a class α ∈ H1,1(X ,R)

If α is not pseudoeffective, set nd(α) = −∞, otherwise

nd(α) = max
{
p∈N ; ∃Tε∈{α+εω}, lim

ε→0
〈T p

ε 〉 ∧ ωn−p ≥ C>0
}
.
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Generalized abundance conjecture

Numerical dimension of a class α ∈ H1,1(X ,R)

If α is not pseudoeffective, set nd(α) = −∞, otherwise

nd(α) = max
{
p∈N ; ∃Tε∈{α+εω}, lim

ε→0
〈T p

ε 〉 ∧ ωn−p ≥ C>0
}
.

Numerical dimension of a pseudo-effective line bundle

nd(L) = nd(c1(L)).
L is said to be abundant if κ(L) = nd(L).
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Generalized abundance conjecture

Numerical dimension of a class α ∈ H1,1(X ,R)

If α is not pseudoeffective, set nd(α) = −∞, otherwise

nd(α) = max
{
p∈N ; ∃Tε∈{α+εω}, lim

ε→0
〈T p

ε 〉 ∧ ωn−p ≥ C>0
}
.

Numerical dimension of a pseudo-effective line bundle

nd(L) = nd(c1(L)).
L is said to be abundant if κ(L) = nd(L).

Subtlety ! Let E be the rank 2 v.b. = non trivial extension
0 → OC → E → OC → 0 on C = elliptic curve, let X = P(E )
(ruled surface over C ) and L = OP(E)(1). Then nd(L) = 1 but
∃ ! positive current T = [σ(C )] ∈ c1(L) and nd(T ) = 0 !!
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Generalized abundance conjecture

Numerical dimension of a class α ∈ H1,1(X ,R)

If α is not pseudoeffective, set nd(α) = −∞, otherwise

nd(α) = max
{
p∈N ; ∃Tε∈{α+εω}, lim

ε→0
〈T p

ε 〉 ∧ ωn−p ≥ C>0
}
.

Numerical dimension of a pseudo-effective line bundle

nd(L) = nd(c1(L)).
L is said to be abundant if κ(L) = nd(L).

Subtlety ! Let E be the rank 2 v.b. = non trivial extension
0 → OC → E → OC → 0 on C = elliptic curve, let X = P(E )
(ruled surface over C ) and L = OP(E)(1). Then nd(L) = 1 but
∃ ! positive current T = [σ(C )] ∈ c1(L) and nd(T ) = 0 !!

Generalized abundance conjecture

For X compact Kähler, KX is abundant, i.e. κ(X ) = nd(KX ).
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Hard Lefschetz theorem with pseudoeffective

coefficients

Let (L, h) be a pseudo-effective line bundle on a compact
Kähler manifold (X , ω) of dimension n, and for h = e−ϕ, let
I(h) = I(ϕ) be the multiplier ideal sheaf:

I(ϕ)x :=
{
f ∈ OX ,x ; ∃V ∋ x ,

∫

V

|f |2e−ϕdVω < +∞
}
.
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Hard Lefschetz theorem with pseudoeffective

coefficients

Let (L, h) be a pseudo-effective line bundle on a compact
Kähler manifold (X , ω) of dimension n, and for h = e−ϕ, let
I(h) = I(ϕ) be the multiplier ideal sheaf:

I(ϕ)x :=
{
f ∈ OX ,x ; ∃V ∋ x ,

∫

V

|f |2e−ϕdVω < +∞
}
.

The Nadel vanishing theorem claims that

ΘL,h ≥ εω =⇒ Hq(X ,KX ⊗ L⊗ I(h) = 0 for q ≥ 1.
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Let (L, h) be a pseudo-effective line bundle on a compact
Kähler manifold (X , ω) of dimension n, and for h = e−ϕ, let
I(h) = I(ϕ) be the multiplier ideal sheaf:

I(ϕ)x :=
{
f ∈ OX ,x ; ∃V ∋ x ,

∫

V

|f |2e−ϕdVω < +∞
}
.

The Nadel vanishing theorem claims that

ΘL,h ≥ εω =⇒ Hq(X ,KX ⊗ L⊗ I(h) = 0 for q ≥ 1.

Hard Lefschetz theorem (D-Peternell-Schneider 2001)

Assume merely ΘL,h ≥ 0. Then, the Lefschetz map :
u 7→ ωq ∧ u induces a surjective morphism :

Φq
ω,h : H

0(X ,Ωn−q
X ⊗ L⊗ I(h)) −→ Hq(X ,Ωn

X ⊗ L⊗ I(h)).
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Idea of proof of Hard Lefschetz theorem

Main tool. “Equisingular approximation theorem”:

ϕ = lim ↓ ϕν ⇒ h = lim hν

with:

ϕν ∈ C∞(X rZν), where Zν is an increasing sequence of
analytic sets,

I(hν) = I(h), ∀ν,

ΘL,hν ≥ −ενω.

(Again, the proof uses in several ways the Ohsawa-Takegoshi
theorem).
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Idea of proof of Hard Lefschetz theorem

Main tool. “Equisingular approximation theorem”:

ϕ = lim ↓ ϕν ⇒ h = lim hν

with:

ϕν ∈ C∞(X rZν), where Zν is an increasing sequence of
analytic sets,

I(hν) = I(h), ∀ν,

ΘL,hν ≥ −ενω.

(Again, the proof uses in several ways the Ohsawa-Takegoshi
theorem).

Then, use the fact that X rZν is Kähler complete, so one can
apply (non compact) harmonic form theory on X rZν , and
pass to the limit to get rid of the errors εν .
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Generalized Nadel vanishing theorem

Theorem (Junyan Cao, PhD 2012)

Let X be compact Kähler, and let (L, h) be pseudoeffective
on X . Then

Hq(X ,KX ⊗ L⊗ I+(h)) = 0 for q ≥ n − nd(L, h) + 1,

where
I+(h) = limε→0 I(h

1+ε) = limε→0 I((1 + ε)ϕ)

is the “upper semicontinuous regularization” of I(h).
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Let X be compact Kähler, and let (L, h) be pseudoeffective
on X . Then

Hq(X ,KX ⊗ L⊗ I+(h)) = 0 for q ≥ n − nd(L, h) + 1,

where
I+(h) = limε→0 I(h

1+ε) = limε→0 I((1 + ε)ϕ)

is the “upper semicontinuous regularization” of I(h).

Remark 1. Conjecturally I+(h) = I(h). This might follow from
recent work by Bo Berndtsson on the openness conjecture.
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Generalized Nadel vanishing theorem

Theorem (Junyan Cao, PhD 2012)

Let X be compact Kähler, and let (L, h) be pseudoeffective
on X . Then

Hq(X ,KX ⊗ L⊗ I+(h)) = 0 for q ≥ n − nd(L, h) + 1,

where
I+(h) = limε→0 I(h

1+ε) = limε→0 I((1 + ε)ϕ)

is the “upper semicontinuous regularization” of I(h).

Remark 1. Conjecturally I+(h) = I(h). This might follow from
recent work by Bo Berndtsson on the openness conjecture.

Remark 2. In the projective case, one can use a hyperplane
section argument, provided one first shows that nd(L, h)
coincides with H. Tsuji’s algebraic definition (dimY = p) :

nd(L, h) = max
{
p∈N ; ∃Y p⊂X , h0(Y , (L⊗m⊗I(hm))|V ) ≥ cmp

}
.
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Proof of generalized Nadel vanishing (projective case)

Hyperplane section argument (projective case). Take A = very
ample divisor, ω = ΘA,hA > 0, and Y = A1 ∩ . . . ∩ An−p,
Aj ∈ |A|. Then

〈Θp
L,h〉 · Y =

∫

X

〈Θp
L,h〉 · Y =

∫

X

〈Θp
L,h〉 ∧ ωn−p > 0.

From this one concludes that (ΘL,h)|Y is big.
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ample divisor, ω = ΘA,hA > 0, and Y = A1 ∩ . . . ∩ An−p,
Aj ∈ |A|. Then

〈Θp
L,h〉 · Y =

∫

X

〈Θp
L,h〉 · Y =

∫

X

〈Θp
L,h〉 ∧ ωn−p > 0.

From this one concludes that (ΘL,h)|Y is big.

Lemma (J. Cao)

When (L, h) is big, i.e. 〈Θn
L,h〉 > 0, there exists a metric h̃ such

that I(h̃) = I+(h) with Θ
L,h̃ ≥ εω [Riemann-Roch].

Then Nadel ⇒ Hq(X ,KX ⊗ L⊗ I+(h)) = 0 for q ≥ 1.
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Hyperplane section argument (projective case). Take A = very
ample divisor, ω = ΘA,hA > 0, and Y = A1 ∩ . . . ∩ An−p,
Aj ∈ |A|. Then

〈Θp
L,h〉 · Y =

∫

X

〈Θp
L,h〉 · Y =

∫

X

〈Θp
L,h〉 ∧ ωn−p > 0.

From this one concludes that (ΘL,h)|Y is big.

Lemma (J. Cao)

When (L, h) is big, i.e. 〈Θn
L,h〉 > 0, there exists a metric h̃ such

that I(h̃) = I+(h) with Θ
L,h̃ ≥ εω [Riemann-Roch].

Then Nadel ⇒ Hq(X ,KX ⊗ L⊗ I+(h)) = 0 for q ≥ 1.

Conclude by induction on dimX and the exact cohomology
sequence for the restriction to a hyperplane section.
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Proof of generalized Nadel vanishing (Kähler case)

Kähler case. Assume c1(L) nef for simplicity. Then c1(L) + εω
Kähler. By Yau’s theorem, solve Monge-Ampère equation:

∃hε on L, (ΘL,hε + εω)n = Cεω
n.

Here Cε ≥
(
n

p

)
〈Θp

L,h〉 · (εω)
n−p ∼ Cεn−p, p = nd(L, h).
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Kähler case. Assume c1(L) nef for simplicity. Then c1(L) + εω
Kähler. By Yau’s theorem, solve Monge-Ampère equation:

∃hε on L, (ΘL,hε + εω)n = Cεω
n.

Here Cε ≥
(
n

p

)
〈Θp

L,h〉 · (εω)
n−p ∼ Cεn−p, p = nd(L, h).

Ch. Mourougane argument (PhD 1996). Let λ1 ≤ . . . ≤ λn be
the eigenvalues of ΘL,h + εω w.r.to ω. Then

λ1 . . . λn = Cε ≥ Const εn−p

and ∫

X

λq+1 . . . λn ω
n =

∫

X

Θn−q
L,h ∧ ωq ≤ Const, ∀q ≥ 1,
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Kähler case. Assume c1(L) nef for simplicity. Then c1(L) + εω
Kähler. By Yau’s theorem, solve Monge-Ampère equation:

∃hε on L, (ΘL,hε + εω)n = Cεω
n.

Here Cε ≥
(
n

p

)
〈Θp

L,h〉 · (εω)
n−p ∼ Cεn−p, p = nd(L, h).

Ch. Mourougane argument (PhD 1996). Let λ1 ≤ . . . ≤ λn be
the eigenvalues of ΘL,h + εω w.r.to ω. Then

λ1 . . . λn = Cε ≥ Const εn−p

and ∫

X

λq+1 . . . λn ω
n =

∫

X

Θn−q
L,h ∧ ωq ≤ Const, ∀q ≥ 1,

so λq+1 . . . λn ≤ C on a large open set U ⊂ X and

λq
q ≥ λ1 . . . λq ≥ cεn−p ⇒ λq ≥ cε(n−p)/q on U ,

∑q

j=1(λj − ε) ≥ λq − qε ≥ cε(n−p)/q − qε > 0 for q > n − p.
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Final step: use Bochner-Kodaira formula

λj = eigenvalues of (ΘL,hε+εω) ⇒ (eigenvalues of ΘL,hε) = λj − ε.
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Final step: use Bochner-Kodaira formula

λj = eigenvalues of (ΘL,hε+εω) ⇒ (eigenvalues of ΘL,hε) = λj − ε.

Bochner-Kodaira formula yields

‖∂u‖2ε + ‖∂∗u‖2ε ≥

∫

X

( q∑

j=1

(λj − ε)
)
|u|2e−ϕεdVω.
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Final step: use Bochner-Kodaira formula

λj = eigenvalues of (ΘL,hε+εω) ⇒ (eigenvalues of ΘL,hε) = λj − ε.

Bochner-Kodaira formula yields

‖∂u‖2ε + ‖∂∗u‖2ε ≥

∫

X

( q∑

j=1

(λj − ε)
)
|u|2e−ϕεdVω.

Then one has to show that one can take the limit by assuming
integrability with e−(1+δ)ϕ, thus introducing I+(h).
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Application to Kähler geometry

Definition (Campana)

A compact Kähler manifold is said to be simple if there are no
positive dimensional analytic sets Ax ⊂ X through a very
generic point x ∈ X .
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Application to Kähler geometry

Definition (Campana)

A compact Kähler manifold is said to be simple if there are no
positive dimensional analytic sets Ax ⊂ X through a very
generic point x ∈ X .

Well-known fact

A complex torus X = Cn/Λ defined by a sufficiently generic
lattice Λ ⊂ Cn is simple, and in fact has no positive
dimensional analytic subset A ( X at all.
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Well-known fact

A complex torus X = Cn/Λ defined by a sufficiently generic
lattice Λ ⊂ Cn is simple, and in fact has no positive
dimensional analytic subset A ( X at all.

In fact [A] would define a non zero (p, p)-cohomology class
with integral periods, and there are no such classes in general.
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Application to Kähler geometry

Definition (Campana)

A compact Kähler manifold is said to be simple if there are no
positive dimensional analytic sets Ax ⊂ X through a very
generic point x ∈ X .

Well-known fact

A complex torus X = Cn/Λ defined by a sufficiently generic
lattice Λ ⊂ Cn is simple, and in fact has no positive
dimensional analytic subset A ( X at all.

In fact [A] would define a non zero (p, p)-cohomology class
with integral periods, and there are no such classes in general.

It is expected that simple compact Kähler manifolds are either
generic complex tori, generic hyperkähler manifolds and their
finite quotients, up to modification.
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On simple Kähler 3-folds

Theorem (Campana - D - Verbitsky, 2013)

Let X be a compact Kähler 3-fold without any positive
dimensional analytic subset A ( X . Then
X is a complex 3-dimensional torus.
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On simple Kähler 3-folds

Theorem (Campana - D - Verbitsky, 2013)

Let X be a compact Kähler 3-fold without any positive
dimensional analytic subset A ( X . Then
X is a complex 3-dimensional torus.

Sketch of proof

Every pseudoeffective class is nef, i.e. K = E (D, ’90)
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Let X be a compact Kähler 3-fold without any positive
dimensional analytic subset A ( X . Then
X is a complex 3-dimensional torus.

Sketch of proof

Every pseudoeffective class is nef, i.e. K = E (D, ’90)

KX is pseudoeffective: otherwise X would be covered by
rational curves (Brunella 2008), hence in fact nef.

All multiplier ideal sheaves I(h) are trivial
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Let X be a compact Kähler 3-fold without any positive
dimensional analytic subset A ( X . Then
X is a complex 3-dimensional torus.

Sketch of proof

Every pseudoeffective class is nef, i.e. K = E (D, ’90)

KX is pseudoeffective: otherwise X would be covered by
rational curves (Brunella 2008), hence in fact nef.

All multiplier ideal sheaves I(h) are trivial

H0(X ,Ωn−q
X ⊗ K⊗m−1

X ) → Hq(X ,K⊗m
X ) is surjective
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On simple Kähler 3-folds
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Let X be a compact Kähler 3-fold without any positive
dimensional analytic subset A ( X . Then
X is a complex 3-dimensional torus.

Sketch of proof

Every pseudoeffective class is nef, i.e. K = E (D, ’90)

KX is pseudoeffective: otherwise X would be covered by
rational curves (Brunella 2008), hence in fact nef.

All multiplier ideal sheaves I(h) are trivial

H0(X ,Ωn−q
X ⊗ K⊗m−1

X ) → Hq(X ,K⊗m
X ) is surjective

Hilbert polynomial P(m) = χ(X ,K⊗m
X ) is bounded, hence

χ(X ,OX ) = 0.
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On simple Kähler 3-folds

Theorem (Campana - D - Verbitsky, 2013)

Let X be a compact Kähler 3-fold without any positive
dimensional analytic subset A ( X . Then
X is a complex 3-dimensional torus.

Sketch of proof

Every pseudoeffective class is nef, i.e. K = E (D, ’90)

KX is pseudoeffective: otherwise X would be covered by
rational curves (Brunella 2008), hence in fact nef.

All multiplier ideal sheaves I(h) are trivial

H0(X ,Ωn−q
X ⊗ K⊗m−1

X ) → Hq(X ,K⊗m
X ) is surjective

Hilbert polynomial P(m) = χ(X ,K⊗m
X ) is bounded, hence

χ(X ,OX ) = 0.

Albanese map α : X → Alb(X ) is a biholomorphism.
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théorème d’annulation de Bogomolov, Dedicated to the
memory of Fernando Serrano, Collect. Math. 49 (1998)

Jean-Pierre Demailly – Abel Symposium, July 5, 2013 On the cohomology of pseudoeffective line bundles Ref. 3[75]



433–445.

[Nad90] Nadel, A.: Multiplier ideal sheaves and

Kähler-Einstein metrics of positive scalar curvature, Ann. of
Math. 132 (1990) 549–596.

[OT87] Ohsawa, T., Takegoshi, K.: On the extension of L2

holomorphic functions, Math. Zeitschrift, 195 (1987) 197–204.
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