

Bergman bundles and applications to the geometry of compact complex manifolds

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes & Académie des Sciences de Paris

Virtual Conference in Complex Analysis and Geometry hosted at Western University, London, Ontario May 4 – 24, 2020

Goal. Investigate positivity for general compact manifolds/ \mathbb{C} .

Goal. Investigate positivity for general compact manifolds $/\mathbb{C}$.

Obviously, non projective varieties do not carry any ample line bundle.

Goal. Investigate positivity for general compact manifolds/ \mathbb{C} . Obviously, non projective varieties do not carry any ample line bundle. In the Kähler case, a Kähler class $\{\omega\} \in H^{1,1}(X,\mathbb{R}), \ \omega > 0$, may sometimes be used as a substitute for a polarization.

Goal. Investigate positivity for general compact manifolds/ \mathbb{C} .

Obviously, non projective varieties do not carry any ample line bundle. In the Kähler case, a Kähler class $\{\omega\} \in H^{1,1}(X,\mathbb{R}), \ \omega > 0$, may sometimes be used as a substitute for a polarization.

What for non Kähler compact complex manifolds?

Goal. Investigate positivity for general compact manifolds/ \mathbb{C} .

Obviously, non projective varieties do not carry any ample line bundle. In the Kähler case, a Kähler class $\{\omega\} \in H^{1,1}(X,\mathbb{R}), \ \omega > 0$, may sometimes be used as a substitute for a polarization.

What for non Kähler compact complex manifolds?

Surprising facts (?)

– Every compact complex manifold X carries a "very ample" complex Hilbert bundle, produced by means of a natural Bergman space construction.

Goal. Investigate positivity for general compact manifolds/ \mathbb{C} .

Obviously, non projective varieties do not carry any ample line bundle. In the Kähler case, a Kähler class $\{\omega\} \in H^{1,1}(X,\mathbb{R}), \ \omega > 0$, may sometimes be used as a substitute for a polarization.

What for non Kähler compact complex manifolds?

Surprising facts (?)

- Every compact complex manifold X carries a "very ample" complex Hilbert bundle, produced by means of a natural Bergman space construction.
- The curvature of this bundle is strongly positive in the sense of Nakano, and is given by a universal formula.

Goal. Investigate positivity for general compact manifolds/ \mathbb{C} .

Obviously, non projective varieties do not carry any ample line bundle. In the Kähler case, a Kähler class $\{\omega\}\in H^{1,1}(X,\mathbb{R}), \omega>0$, may sometimes be used as a substitute for a polarization.

What for non Kähler compact complex manifolds?

Surprising facts (?)

- Every compact complex manifold X carries a "very ample" complex Hilbert bundle, produced by means of a natural Bergman space construction.
- The curvature of this bundle is strongly positive in the sense of Nakano, and is given by a universal formula.

The aim of this lecture is to investigate further this construction and explain potential applications to analytic geometry (invariance of plurigenera, transcendental holomorphic Morse inequalities...)

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$.

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$.

Denote by \overline{X} its complex conjugate (X, -J), so that $\mathcal{O}_{\overline{X}} = \overline{\mathcal{O}_X}$.

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$.

Denote by \overline{X} its complex conjugate (X, -J), so that $\mathcal{O}_{\overline{X}} = \overline{\mathcal{O}_X}$.

The diagonal of $X \times \overline{X}$ is totally real, and by Grauert, we know that it possesses a fundamental system of Stein tubular neighborhoods.

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$.

Denote by \overline{X} its complex conjugate (X, -J), so that $\mathcal{O}_{\overline{X}} = \overline{\mathcal{O}_X}$.

The diagonal of $X \times \overline{X}$ is totally real, and by Grauert, we know that it possesses a fundamental system of Stein tubular neighborhoods.

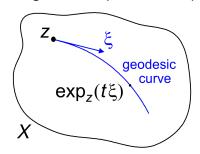
Assume that X is equipped with a real analytic hermitian metric γ ,

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$.

Denote by \overline{X} its complex conjugate (X, -J), so that $\mathcal{O}_{\overline{X}} = \overline{\mathcal{O}_X}$.

The diagonal of $X \times \overline{X}$ is totally real, and by Grauert, we know that it possesses a fundamental system of Stein tubular neighborhoods.

Assume that X is equipped with a real analytic hermitian metric γ , and let $\exp: T_X \to X \times X$, $(z, \xi) \mapsto (z, \exp_z(\xi))$, $z \in X$, $\xi \in T_{X,z}$ be the associated geodesic exponential map.



Lemma

Denote by exph the "holomorphic" part of exp, so that for $z \in X$ and $\xi \in T_{X,z}$

$$\exp_z(\xi) = \sum_{lpha, eta \in \mathbb{N}^n} a_{lpha \, eta}(z) \xi^{lpha} \overline{\xi}^{eta}, \quad \exp_z(\xi) = \sum_{lpha \in \mathbb{N}^n} a_{lpha \, 0}(z) \xi^{lpha}.$$

Lemma

Denote by exph the "holomorphic" part of exp , so that for $z \in X$ and $\xi \in T_{X,z}$

$$\exp_z(\xi) = \sum_{\alpha, \beta \in \mathbb{N}^n} a_{\alpha\beta}(z) \xi^{\alpha} \overline{\xi}^{\beta}, \quad \exph_z(\xi) = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha0}(z) \xi^{\alpha}.$$

Then $d_{\xi} \exp_z(\xi)_{\xi=0} = d_{\xi} \exp h_z(\xi)_{\xi=0} = \operatorname{Id}_{T_X}$, and so exph is a diffeomorphism from a neighborhood V of the 0 section of T_X to a neighborhood V' of the diagonal in $X \times X$.

Lemma

Denote by exph the "holomorphic" part of exp , so that for $z \in X$ and $\xi \in T_{X,z}$

$$\exp_z(\xi) = \sum_{\alpha,\beta \in \mathbb{N}^n} a_{\alpha\beta}(z) \xi^{\alpha} \overline{\xi}^{\beta}, \quad \exph_z(\xi) = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha0}(z) \xi^{\alpha}.$$

Then $d_{\xi} \exp_z(\xi)_{\xi=0} = d_{\xi} \exp h_z(\xi)_{\xi=0} = \operatorname{Id}_{\mathcal{T}_X}$, and so exph is a diffeomorphism from a neighborhood V of the 0 section of \mathcal{T}_X to a neighborhood V' of the diagonal in $X \times X$.

Notation

With the identification $\overline{X} \simeq_{\mathrm{diff}} X$, let $\mathrm{logh}: X \times \overline{X} \supset V' \to T_{\overline{X}}$ be the inverse diffeomorphism of exph and

$$U_{\varepsilon} = \{(z, w) \in V' \subset X \times \overline{X}; | logh_{z}(w)|_{\gamma} < \varepsilon\}, \quad \varepsilon > 0.$$

Lemma

Denote by exph the "holomorphic" part of exp, so that for $z \in X$ and $\xi \in T_{X,z}$

$$\exp_z(\xi) = \sum_{\alpha,\beta \in \mathbb{N}^n} a_{\alpha\beta}(z) \xi^{\alpha} \overline{\xi}^{\beta}, \quad \exph_z(\xi) = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha0}(z) \xi^{\alpha}.$$

Then $d_{\xi} \exp_{z}(\xi)_{\xi=0} = d_{\xi} \exp h_{z}(\xi)_{\xi=0} = \operatorname{Id}_{T_{x}}$, and so exph is a diffeomorphism from a neighborhood V of the 0 section of T_X to a neighborhood V' of the diagonal in $X \times X$.

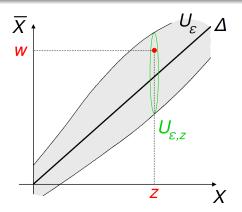
Notation

With the identification $\overline{X} \simeq_{\text{diff}} X$, let $\log h: X \times \overline{X} \supset V' \to T_{\overline{X}}$ be the inverse diffeomorphism of exph and

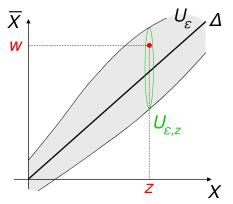
$$U_{\varepsilon} = \{(z, w) \in V' \subset X \times \overline{X}; | logh_{z}(w)|_{\gamma} < \varepsilon\}, \quad \varepsilon > 0.$$

Then, for $\varepsilon \ll 1$, U_{ε} is Stein and $\operatorname{pr}_1:U_{\varepsilon}\to X$ is a real analytic locally trivial bundle with fibers biholomorphic to complex balls.

Such tubular neighborhoods are Stein



Such tubular neighborhoods are Stein



In the special case $X = \mathbb{C}^n$, $U_{\varepsilon} = \{(z, w) \in \mathbb{C}^n \times \mathbb{C}^n ; |\overline{z} - w| < \varepsilon\}$ is of course Stein since

$$|\overline{z} - w|^2 = |z|^2 + |w|^2 - 2\operatorname{Re}\sum z_j w_j$$

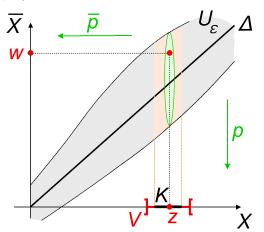
and $(z, w) \mapsto \operatorname{Re} \sum z_j w_j$ is pluriharmonic.

Bergman sheaves

Let $U_{\varepsilon}=U_{\gamma,\varepsilon}\subset X imes \overline{X}$ be the ball bundle as above, and $p=(\mathrm{pr}_1)_{|U_{\varepsilon}}:U_{\varepsilon}\to X, \qquad \overline{p}=(\mathrm{pr}_2)_{|U_{\varepsilon}}:U_{\varepsilon}\to \overline{X}$ the natural projections.

Bergman sheaves

Let $U_{\varepsilon}=U_{\gamma,\varepsilon}\subset X imes \overline{X}$ be the ball bundle as above, and $p=(\mathrm{pr}_1)_{|U_{\varepsilon}}:U_{\varepsilon}\to X, \qquad \overline{p}=(\mathrm{pr}_2)_{|U_{\varepsilon}}:U_{\varepsilon}\to \overline{X}$ the natural projections.



Definition of the Bergman sheaf $\mathcal{B}_{arepsilon}$

The Bergman sheaf $\mathcal{B}_{\varepsilon} = \mathcal{B}_{\gamma,\varepsilon}$ is by definition the L^2 direct image $\mathcal{B}_{\varepsilon} = p_*^{L^2}(\overline{p}^*\mathcal{O}(K_{\overline{Y}})),$

Definition of the Bergman sheaf $\mathcal{B}_{\varepsilon}$

The Bergman sheaf $\mathcal{B}_{arepsilon}=\mathcal{B}_{\gamma,arepsilon}$ is by definition the L^2 direct image

$$\mathcal{B}_{\varepsilon} = p_*^{L^2}(\overline{p}^*\mathcal{O}(K_{\overline{X}})),$$

i.e. the space of sections over an open subset $V \subset X$ defined by $\mathcal{B}_{\varepsilon}(V) = \text{holomorphic sections } f \text{ of } \overline{p}^* \mathcal{O}(K_{\overline{X}}) \text{ on } p^{-1}(V),$

$$f(z, w) = f_1(z, w) dw_1 \wedge \ldots \wedge dw_n, \quad z \in V,$$

Definition of the Bergman sheaf $\mathcal{B}_{arepsilon}$

The Bergman sheaf $\mathcal{B}_{arepsilon}=\mathcal{B}_{\gamma,arepsilon}$ is by definition the L^2 direct image

$$\mathcal{B}_{\varepsilon} = p_*^{L^2}(\overline{p}^*\mathcal{O}(K_{\overline{X}})),$$

i.e. the space of sections over an open subset $V \subset X$ defined by $\mathcal{B}_{\varepsilon}(V) = \text{holomorphic sections } f \text{ of } \overline{p}^*\mathcal{O}(K_{\overline{X}}) \text{ on } p^{-1}(V),$

$$f(z, w) = f_1(z, w) dw_1 \wedge \ldots \wedge dw_n, \quad z \in V,$$

that are in $L^2(p^{-1}(K))$ for all compact subsets $K \in V$:

$$\int_{p^{-1}(K)} i^{n^2} f(z,w) \wedge \overline{f(z,w)} \wedge \gamma(z)^n < +\infty, \quad \forall K \subseteq V.$$

(This L^2 condition is the reason we speak of " L^2 direct image").

Definition of the Bergman sheaf $\mathcal{B}_{arepsilon}$

The Bergman sheaf $\mathcal{B}_{arepsilon}=\mathcal{B}_{\gamma,arepsilon}$ is by definition the L^2 direct image

$$\mathcal{B}_{\varepsilon} = p_*^{L^2}(\overline{p}^*\mathcal{O}(K_{\overline{X}})),$$

i.e. the space of sections over an open subset $V \subset X$ defined by $\mathcal{B}_{\varepsilon}(V) = \text{holomorphic sections } f \text{ of } \overline{p}^*\mathcal{O}(K_{\overline{X}}) \text{ on } p^{-1}(V),$

$$f(z, w) = f_1(z, w) dw_1 \wedge \ldots \wedge dw_n, \quad z \in V,$$

that are in $L^2(p^{-1}(K))$ for all compact subsets $K \subseteq V$:

$$\int_{p^{-1}(K)} i^{n^2} f(z,w) \wedge \overline{f(z,w)} \wedge \gamma(z)^n < +\infty, \quad \forall K \in V.$$

(This L^2 condition is the reason we speak of " L^2 direct image").

Clearly, $\mathcal{B}_{\varepsilon}$ is an \mathcal{O}_X -module over X, but since it is a space of functions in w, it is of infinite rank.

Definition of the associated Bergman bundle B_{ε}

We consider the vector bundle $B_{\varepsilon} \to X$ whose fiber B_{ε,z_0} consists of all holomorphic functions f on $p^{-1}(z_0) \subset U_{\varepsilon}$ such that

$$||f(z_0)||^2 = \int_{\rho^{-1}(z_0)} i^{n^2} f(z_0, w) \wedge \overline{f(z_0, w)} < +\infty.$$

Definition of the associated Bergman bundle B_{ε}

We consider the vector bundle $B_{\varepsilon} \to X$ whose fiber B_{ε,z_0} consists of all holomorphic functions f on $p^{-1}(z_0) \subset U_{\varepsilon}$ such that

$$||f(z_0)||^2 = \int_{p^{-1}(z_0)} i^{n^2} f(z_0, w) \wedge \overline{f(z_0, w)} < +\infty.$$

Then B_{ε} is a real analytic locally trivial Hilbert bundle whose fiber B_{ε,z_0} is isomorphic to the Hardy-Bergman space $\mathcal{H}^2(B(0,\varepsilon))$ of L^2 holomorphic n-forms on $p^{-1}(z_0) \simeq B(0,\varepsilon) \subset \mathbb{C}^n$.

Definition of the associated Bergman bundle B_{ε}

We consider the vector bundle $B_{\varepsilon} \to X$ whose fiber B_{ε,z_0} consists of all holomorphic functions f on $p^{-1}(z_0) \subset U_{\varepsilon}$ such that

$$||f(z_0)||^2 = \int_{p^{-1}(z_0)} i^{n^2} f(z_0, w) \wedge \overline{f(z_0, w)} < +\infty.$$

Then B_{ε} is a real analytic locally trivial Hilbert bundle whose fiber B_{ε,z_0} is isomorphic to the Hardy-Bergman space $\mathcal{H}^2(B(0,\varepsilon))$ of L^2 holomorphic n-forms on $p^{-1}(z_0) \simeq B(0,\varepsilon) \subset \mathbb{C}^n$.

The Ohsawa-Takegoshi extension theorem implies that every $f \in B_{\varepsilon,z_0}$ can be extended as a germ \tilde{f} in the sheaf $\mathcal{B}_{\varepsilon,z_0}$.

Definition of the associated Bergman bundle B_{ε}

We consider the vector bundle $B_{\varepsilon} \to X$ whose fiber B_{ε,z_0} consists of all holomorphic functions f on $p^{-1}(z_0) \subset U_{\varepsilon}$ such that

$$||f(z_0)||^2 = \int_{p^{-1}(z_0)} i^{n^2} f(z_0, w) \wedge \overline{f(z_0, w)} < +\infty.$$

Then B_{ε} is a real analytic locally trivial Hilbert bundle whose fiber B_{ε,z_0} is isomorphic to the Hardy-Bergman space $\mathcal{H}^2(B(0,\varepsilon))$ of L^2 holomorphic *n*-forms on $p^{-1}(z_0) \simeq B(0, \varepsilon) \subset \mathbb{C}^n$.

The Ohsawa-Takegoshi extension theorem implies that every $f \in B_{arepsilon, \mathbf{z}_0}$ can be extended as a germ $ilde{f}$ in the sheaf $\mathcal{B}_{arepsilon, \mathbf{z}_0}$. Moreover, for $\varepsilon' > \varepsilon$, there is a restriction map $\mathcal{B}_{\varepsilon',z_0} \to \mathcal{B}_{\varepsilon,z_0}$

such that B_{ε,z_0} is the L^2 completion of $\mathcal{B}_{\varepsilon',z_0}/\mathfrak{m}_{z_0}\mathcal{B}_{\varepsilon',z_0}$.

Definition of the associated Bergman bundle B_{ε}

We consider the vector bundle $B_{\varepsilon} \to X$ whose fiber B_{ε,z_0} consists of all holomorphic functions f on $p^{-1}(z_0) \subset U_{\varepsilon}$ such that

$$||f(z_0)||^2 = \int_{p^{-1}(z_0)} i^{n^2} f(z_0, w) \wedge \overline{f(z_0, w)} < +\infty.$$

Then B_{ε} is a real analytic locally trivial Hilbert bundle whose fiber B_{ε,z_0} is isomorphic to the Hardy-Bergman space $\mathcal{H}^2(B(0,\varepsilon))$ of L^2 holomorphic *n*-forms on $p^{-1}(z_0) \simeq B(0,\varepsilon) \subset \mathbb{C}^n$.

The Ohsawa-Takegoshi extension theorem implies that every $f \in B_{\varepsilon,z_0}$ can be extended as a germ \tilde{f} in the sheaf $\mathcal{B}_{\varepsilon,z_0}$. Moreover, for $\varepsilon' > \varepsilon$, there is a restriction map $\mathcal{B}_{\varepsilon',z_0} \to \mathcal{B}_{\varepsilon,z_0}$ such that $\mathcal{B}_{\varepsilon,z_0}$ is the L^2 completion of $\mathcal{B}_{\varepsilon',z_0}/\mathfrak{m}_{z_0}\mathcal{B}_{\varepsilon',z_0}$.

Question

Is there a "complex structure" on B_{ε} such that " $\mathcal{B}_{\varepsilon} = \mathcal{O}(B_{\varepsilon})$ "?

Bergman Dolbeault complex

For this, consider the "Bergman Dolbeault" complex $\overline{\partial}: \mathcal{F}^q_{\varepsilon} \to \mathcal{F}^{q+1}_{\varepsilon}$ over X, with $\mathcal{F}^q_{\varepsilon}(V) = \text{smooth } (n,q)$ -forms

$$f(z,w) = \sum_{|J|=q} f_J(z,w) dw_1 \wedge ... \wedge dw_n \wedge d\overline{z}_J, \quad (z,w) \in U_{\varepsilon} \cap (V \times \overline{X}),$$

such that $f_J(z, w)$ is holomorphic in w, and for all $K \subseteq V$ one has

$$f(z,w)\in L^2(p^{-1}(K))$$
 and $\overline{\partial}_z f(z,w)\in L^2(p^{-1}(K)).$

Bergman Dolbeault complex

For this, consider the "Bergman Dolbeault" complex $\overline{\partial}: \mathcal{F}^q_{\varepsilon} \to \mathcal{F}^{q+1}_{\varepsilon}$ over X, with $\mathcal{F}^q_{\varepsilon}(V) = \text{smooth } (n,q)$ -forms

$$f(z,w) = \sum_{|J|=q} f_J(z,w) dw_1 \wedge ... \wedge dw_n \wedge d\overline{z}_J, \quad (z,w) \in U_{\varepsilon} \cap (V \times \overline{X}),$$

such that $f_J(z, w)$ is holomorphic in w, and for all $K \subseteq V$ one has

$$f(z,w) \in L^2(p^{-1}(K))$$
 and $\overline{\partial}_z f(z,w) \in L^2(p^{-1}(K))$.

An immediate consequence of this definition is:

Proposition

 $\overline{\partial} = \overline{\partial}_z$ yields a complex of sheaves $(\mathcal{F}_{\varepsilon}^{\bullet}, \overline{\partial})$, and the kernel Ker $\overline{\partial} : \mathcal{F}_{\varepsilon}^{0} \to \mathcal{F}_{\varepsilon}^{1}$ coincides with $\mathcal{B}_{\varepsilon}$.

Bergman Dolbeault complex

For this, consider the "Bergman Dolbeault" complex $\overline{\partial}: \mathcal{F}^q_{\varepsilon} \to \mathcal{F}^{q+1}_{\varepsilon}$ over X, with $\mathcal{F}_{\varepsilon}^{q}(V) = \text{smooth } (n, q)$ -forms

$$f(z,w) = \sum_{|J|=q} f_J(z,w) dw_1 \wedge ... \wedge dw_n \wedge d\overline{z}_J, \quad (z,w) \in U_{\varepsilon} \cap (V \times \overline{X}),$$

such that $f_J(z, w)$ is holomorphic in w, and for all $K \subseteq V$ one has

$$f(z,w)\in L^2(p^{-1}(K))$$
 and $\overline{\partial}_z f(z,w)\in L^2(p^{-1}(K)).$

An immediate consequence of this definition is:

Proposition

 $\overline{\partial} = \overline{\partial}_z$ yields a complex of sheaves $(\mathcal{F}_{\varepsilon}^{\bullet}, \overline{\partial})$, and the kernel $\operatorname{Ker} \overline{\partial}: \mathcal{F}^0_{\varepsilon} \to \mathcal{F}^1_{\varepsilon}$ coincides with $\mathcal{B}_{\varepsilon}$.

If we define $\mathcal{O}_{L^2}(B_{\varepsilon})$ to be the sheaf of L^2_{loc} sections f of B_{ε} such that $\overline{\partial} f = 0$ in the sense of distributions, then we exactly have $\mathcal{O}_{L^2}(B_{\varepsilon}) = \mathcal{B}_{\varepsilon}$ as a sheaf.

Bergman sheaves are "very ample"

Theorem

Assume that $\varepsilon > 0$ is taken so small that $\psi(z, w) := |\log h_z(w)|^2$ is strictly plurisubharmonic up to the boundary on the compact set $\overline{U}_{\varepsilon} \subset X \times \overline{X}$.

Bergman sheaves are "very ample"

Theorem

Assume that $\varepsilon>0$ is taken so small that $\psi(z,w):=|\log h_z(w)|^2$ is strictly plurisubharmonic up to the boundary on the compact set $\overline{U}_\varepsilon\subset X\times \overline{X}$. Then the complex of sheaves $(\mathcal{F}_\varepsilon^\bullet,\overline{\partial})$ is a resolution of \mathcal{B}_ε by soft sheaves over X (actually, by \mathcal{C}_X^∞ -modules), and for every holomorphic vector bundle $E\to X$ we have

$$H^q(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E)) = H^q(\Gamma(X, \mathcal{F}_{\varepsilon}^{\bullet} \otimes \mathcal{O}(E)), \overline{\partial}) = 0, \quad \forall q \geq 1.$$

Bergman sheaves are "very ample"

Theorem

Assume that $\varepsilon>0$ is taken so small that $\psi(z,w):=|\log h_z(w)|^2$ is strictly plurisubharmonic up to the boundary on the compact set $\overline{U}_\varepsilon\subset X\times \overline{X}$. Then the complex of sheaves $(\mathcal{F}_\varepsilon^\bullet,\overline{\partial})$ is a resolution of \mathcal{B}_ε by soft sheaves over X (actually, by \mathcal{C}_X^∞ -modules), and for every holomorphic vector bundle $E\to X$ we have

$$H^q(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E)) = H^q(\Gamma(X, \mathcal{F}_{\varepsilon}^{\bullet} \otimes \mathcal{O}(E)), \overline{\partial}) = 0, \quad \forall q \geq 1.$$

Moreover the fibers $B_{\varepsilon,z} \otimes E_z$ are always generated by global sections of $H^0(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E))$.

In that sense, B_{ε} is a "very ample holomorphic vector bundle" (as a Hilbert bundle of infinite dimension).

Bergman sheaves are "very ample"

Theorem

Assume that $\varepsilon > 0$ is taken so small that $\psi(z, w) := | \log h_z(w) |^2$ is strictly plurisubharmonic up to the boundary on the compact set $\overline{U}_{\varepsilon} \subset X \times \overline{X}$. Then the complex of sheaves $(\mathcal{F}_{\varepsilon}^{\bullet}, \overline{\partial})$ is a resolution of $\mathcal{B}_{\varepsilon}$ by soft sheaves over X (actually, by $\mathcal{C}_{\mathbf{x}}^{\infty}$ -modules), and for every holomorphic vector bundle $E \rightarrow X$ we have

$$H^q(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E)) = H^q(\Gamma(X, \mathcal{F}_{\varepsilon}^{\bullet} \otimes \mathcal{O}(E)), \overline{\partial}) = 0, \quad \forall q \geq 1.$$

Moreover the fibers $B_{\varepsilon,z} \otimes E_z$ are always generated by global sections of $H^0(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E))$.

In that sense, B_{ε} is a "very ample holomorphic vector bundle" (as a Hilbert bundle of infinite dimension).

The proof is a direct consequence of Hörmander's L^2 estimates.

Caution !!

 B_{ε} is NOT a locally trivial holomorphic bundle.

Embedding into a Hilbert Grassmannian

Corollary of the very ampleness of Bergman sheaves

Let X be an arbitrary compact complex manifold, $E \to X$ a holomorphic vector bundle (e.g. the trivial bundle). Consider the Hilbert space $\mathbb{H} = H^0(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E))$.

Embedding into a Hilbert Grassmannian

Corollary of the very ampleness of Bergman sheaves

Let X be an arbitrary compact complex manifold, $E \to X$ a holomorphic vector bundle (e.g. the trivial bundle). Consider the Hilbert space $\mathbb{H} = H^0(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E))$. Then one gets a "holomorphic embedding" into a Hilbert Grassmannian,

$$\Psi: X \to Gr(\mathbb{H}), \quad z \mapsto S_z,$$

mapping every point $z \in X$ to the infinite codimensional closed subspace S_z consisting of sections $f \in \mathbb{H}$ such that f(z) = 0 in $B_{\varepsilon,z}$, i.e. $f_{|p^{-1}(z)} = 0$.

Embedding into a Hilbert Grassmannian

Corollary of the very ampleness of Bergman sheaves

Let X be an arbitrary compact complex manifold, $E \to X$ a holomorphic vector bundle (e.g. the trivial bundle). Consider the Hilbert space $\mathbb{H} = H^0(X, \mathcal{B}_{\varepsilon} \otimes \mathcal{O}(E))$. Then one gets a "holomorphic embedding" into a Hilbert Grassmannian,

$$\Psi: X \to Gr(\mathbb{H}), \quad z \mapsto S_z,$$

mapping every point $z \in X$ to the infinite codimensional closed subspace S_z consisting of sections $f \in \mathbb{H}$ such that f(z) = 0in $B_{\varepsilon,z}$, i.e. $f_{|p^{-1}(z)} = 0$.

The main problem with this "holomorphic embedding" is that the holomorphicity is to be understood in a weak sense, for instance the map Ψ is not even continuous with respect to the strong metric topology of $Gr(\mathbb{H})$, given by d(S, S') = Hausdorff distance of the unit balls of S, S'.

Since we have a natural $\nabla^{0,1}=\overline{\partial}$ connection on B_{ε} , and a natural hermitian metric as well, it follows from the usual formalism that B_{ε} can be equipped with a unique Chern connection.

Since we have a natural $\nabla^{0,1}=\overline{\partial}$ connection on B_{ε} , and a natural hermitian metric as well, it follows from the usual formalism that B_{ε} can be equipped with a unique Chern connection.

Model case: $X = \mathbb{C}^n$, $\gamma =$ standard hermitian metric.

Since we have a natural $\nabla^{0,1}=\overline{\partial}$ connection on B_{ε} , and a natural hermitian metric as well, it follows from the usual formalism that B_{ε} can be equipped with a unique Chern connection.

Model case: $X = \mathbb{C}^n$, $\gamma =$ **standard hermitian metric.** Then one sees that a orthonormal frame of B_{ε} is given by

$$e_{\alpha}(z,w) = \pi^{-n/2} \varepsilon^{-|\alpha|-n} \sqrt{\frac{(|\alpha|+n)!}{\alpha_1! \dots \alpha_n!}} (w-\overline{z})^{\alpha}, \quad \alpha \in \mathbb{N}^n.$$

Since we have a natural $\nabla^{0,1}=\overline{\partial}$ connection on B_{ε} , and a natural hermitian metric as well, it follows from the usual formalism that B_{ε} can be equipped with a unique Chern connection.

Model case: $X = \mathbb{C}^n$, $\gamma =$ standard hermitian metric.

Then one sees that a orthonormal frame of B_{ε} is given by

$$e_{\alpha}(z,w) = \pi^{-n/2} \varepsilon^{-|\alpha|-n} \sqrt{\frac{(|\alpha|+n)!}{\alpha_1! \dots \alpha_n!}} (w-\overline{z})^{\alpha}, \quad \alpha \in \mathbb{N}^n.$$

It is non holomorphic!

Since we have a natural $\nabla^{0,1}=\overline{\partial}$ connection on B_{ε} , and a natural hermitian metric as well, it follows from the usual formalism that B_{ε} can be equipped with a unique Chern connection.

Model case: $X = \mathbb{C}^n$, $\gamma =$ standard hermitian metric.

Then one sees that a orthonormal frame of B_{ε} is given by

$$e_{\alpha}(z,w) = \pi^{-n/2} \varepsilon^{-|\alpha|-n} \sqrt{\frac{(|\alpha|+n)!}{\alpha_1! \dots \alpha_n!}} (w-\overline{z})^{\alpha}, \quad \alpha \in \mathbb{N}^n.$$

It is non holomorphic! The (0,1)-connection $abla^{0,1}=\overline{\partial}$ is given by

$$\nabla^{0,1}e_{\alpha} = \overline{\partial}_{z}e_{\alpha}(z,w) = \varepsilon^{-1}\sum_{1 \leq i \leq n} \sqrt{\alpha_{i}(|\alpha|+n)} \ d\overline{z}_{i} \otimes e_{\alpha-c_{i}}$$

where $c_i = (0, ..., 1, ..., 0) \in \mathbb{N}^n$.

Let $\Theta_{B_{\varepsilon},h} = \nabla^2$ be the curvature tensor of B_{ε} with its natural Hilbertian metric h.

Let $\Theta_{B_{\varepsilon},h} = \nabla^2$ be the curvature tensor of B_{ε} with its natural Hilbertian metric h. Remember that

$$\Theta_{B_{\varepsilon},h} = \nabla^{1,0}\nabla^{0,1} + \nabla^{0,1}\nabla^{1,0} \in C^{\infty}(X,\Lambda^{1,1}T_X^{\star} \otimes \operatorname{Hom}(B_{\varepsilon},B_{\varepsilon})),$$

and that one gets an associated quadratic Hermitian form on $T_X \otimes B_{\varepsilon}$ such that

$$\widetilde{\Theta}_{\varepsilon}(v\otimes \xi) = \langle \Theta_{B_{\varepsilon},h}\sigma(v,Jv)\xi,\xi\rangle_{h}$$

for $v \in T_X$ and $\xi = \sum_{\alpha} \xi_{\alpha} e_{\alpha} \in B_{\varepsilon}$.

Let $\Theta_{B_{\varepsilon},h} = \nabla^2$ be the curvature tensor of B_{ε} with its natural Hilbertian metric h. Remember that

$$\Theta_{B_{\varepsilon},h} = \nabla^{1,0}\nabla^{0,1} + \nabla^{0,1}\nabla^{1,0} \in C^{\infty}(X,\Lambda^{1,1}T_X^{\star} \otimes \operatorname{Hom}(B_{\varepsilon},B_{\varepsilon})),$$

and that one gets an associated quadratic Hermitian form on $T_X \otimes B_{arepsilon}$ such that

$$\widetilde{\Theta}_{\varepsilon}(\mathbf{v}\otimes\xi)=\langle\Theta_{B_{\varepsilon},h}\sigma(\mathbf{v},J\mathbf{v})\xi,\xi\rangle_{h}$$

for $v \in T_X$ and $\xi = \sum_{\alpha} \xi_{\alpha} e_{\alpha} \in B_{\varepsilon}$.

Definition

One says that the curvature tensor is **Griffiths** positive if

$$\widetilde{\Theta}_{\varepsilon}(v \otimes \xi) > 0$$
, $\forall 0 \neq v \in T_X$, $\forall 0 \neq \xi \in B_{\varepsilon}$,

Let $\Theta_{B_{\varepsilon},h} = \nabla^2$ be the curvature tensor of B_{ε} with its natural Hilbertian metric h. Remember that

$$\Theta_{B_{\varepsilon},h} = \nabla^{1,0}\nabla^{0,1} + \nabla^{0,1}\nabla^{1,0} \in C^{\infty}(X,\Lambda^{1,1}T_X^{\star} \otimes \operatorname{Hom}(B_{\varepsilon},B_{\varepsilon})),$$

and that one gets an associated quadratic Hermitian form on $T_X \otimes B_{\varepsilon}$ such that

$$\widetilde{\Theta}_{\varepsilon}(\mathbf{v}\otimes\xi)=\langle\Theta_{B_{\varepsilon},h}\sigma(\mathbf{v},J\mathbf{v})\xi,\xi\rangle_{h}$$

for $v \in T_X$ and $\xi = \sum_{\alpha} \xi_{\alpha} e_{\alpha} \in B_{\varepsilon}$.

Definition

One says that the curvature tensor is Griffiths positive if

$$\widetilde{\Theta}_{\varepsilon}(v \otimes \xi) > 0, \quad \forall 0 \neq v \in T_X, \quad \forall 0 \neq \xi \in B_{\varepsilon},$$

and Nakano positive if

$$\widetilde{\Theta}_{\varepsilon}(\tau) > 0, \quad \forall 0 \neq \tau \in T_X \otimes B_{\varepsilon}.$$

A simple calculation of ∇^2 in the orthonormal frame (e_{α}) leads to:

Formula

In the model case $X = \mathbb{C}^n$, the curvature tensor of the Bergman bundle (B_{ε}, h) is given by

$$\widetilde{\Theta}_{\varepsilon}(\mathbf{v}\otimes \mathbf{\xi}) = \varepsilon^{-2} \sum_{\alpha \in \mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha-c_j} \mathbf{v}_j \right|^2 + \sum_j (|\alpha|+n) \, |\xi_{\alpha}|^2 |\mathbf{v}_j|^2 \right).$$

A simple calculation of ∇^2 in the orthonormal frame (e_{α}) leads to:

Formula

In the model case $X=\mathbb{C}^n$, the curvature tensor of the Bergman bundle (B_{ε},h) is given by

$$\widetilde{\Theta}_{\varepsilon}(\mathbf{v}\otimes \mathbf{\xi}) = \varepsilon^{-2} \sum_{\alpha \in \mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha-c_j} \mathbf{v}_j \right|^2 + \sum_j (|\alpha| + n) \, |\xi_{\alpha}|^2 |\mathbf{v}_j|^2 \right).$$

Consequence

In \mathbb{C}^n , the curvature tensor $\Theta_{\varepsilon}(v \otimes \xi)$ is Nakano positive.

A simple calculation of ∇^2 in the orthonormal frame (e_{α}) leads to:

Formula

In the model case $X = \mathbb{C}^n$, the curvature tensor of the Bergman bundle (B_{ε}, h) is given by

$$\widetilde{\Theta}_{\varepsilon}(\mathbf{v}\otimes \mathbf{\xi}) = \varepsilon^{-2} \sum_{\alpha\in\mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha-c_j} \mathbf{v}_j \right|^2 + \sum_j (|\alpha|+n) \, |\xi_{\alpha}|^2 |\mathbf{v}_j|^2 \right).$$

Consequence

In \mathbb{C}^n , the curvature tensor $\Theta_{\varepsilon}(v \otimes \xi)$ is Nakano positive.

On should observe that $\widetilde{\Theta}_{\varepsilon}(v \otimes \xi)$ is an unbounded quadratic form on B_{ε} with respect to the standard metric $\|\xi\|^2 = \sum_{\alpha} |\xi_{\alpha}|^2$.

A simple calculation of ∇^2 in the orthonormal frame (e_{α}) leads to:

Formula

In the model case $X=\mathbb{C}^n$, the curvature tensor of the Bergman bundle (B_{ε},h) is given by

$$\widetilde{\Theta}_{\varepsilon}(\mathbf{v}\otimes\xi)=\varepsilon^{-2}\sum_{\alpha\in\mathbb{N}^n}\Biggl(\Biggl|\sum_j\sqrt{\alpha_j}\,\xi_{\alpha-\mathbf{c}_j}\mathbf{v}_j\Biggr|^2+\sum_j(|\alpha|+n)\,|\xi_{\alpha}|^2|\mathbf{v}_j|^2\Biggr).$$

Consequence

In \mathbb{C}^n , the curvature tensor $\Theta_{\varepsilon}(v \otimes \xi)$ is Nakano positive.

On should observe that $\widetilde{\Theta}_{\varepsilon}(v \otimes \xi)$ is an unbounded quadratic form on B_{ε} with respect to the standard metric $\|\xi\|^2 = \sum_{\alpha} |\xi_{\alpha}|^2$.

However there is convergence for all $\xi = \sum_{\alpha} \xi_{\alpha} e_{\alpha} \in \underline{B}_{\varepsilon'}$, $\varepsilon' > \varepsilon$, since then $\sum_{\alpha} (\varepsilon'/\varepsilon)^{2|\alpha|} |\xi_{\alpha}|^2 < +\infty$.

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^{ω} hermitian metric γ , and $B_{\varepsilon} = B_{\gamma,\varepsilon}$ the associated Bergman bundle.

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^ω hermitian metric γ , and $B_\varepsilon=B_{\gamma,\varepsilon}$ the associated Bergman bundle. Then its curvature is given by an asymptotic expansion

$$\widetilde{\Theta}_{\varepsilon}(z,v\otimes\xi)=\sum_{p=0}^{+\infty}\varepsilon^{-2+p}Q_{p}(z,v\otimes\xi),\ \ v\in T_{X},\ \ \xi\in B_{\varepsilon}$$

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^ω hermitian metric γ , and $B_\varepsilon=B_{\gamma,\varepsilon}$ the associated Bergman bundle. Then its curvature is given by an asymptotic expansion

$$\widetilde{\Theta}_{\varepsilon}(z,v\otimes\xi)=\sum_{p=0}^{+\infty}\varepsilon^{-2+p}Q_{p}(z,v\otimes\xi),\ \ v\in T_{X},\ \ \xi\in B_{\varepsilon}$$

where $Q_0(z, v \otimes \xi) = Q_0(v \otimes \xi)$ is given by the model case \mathbb{C}^n :

$$Q_0(v \otimes \xi) = \varepsilon^{-2} \sum_{\alpha \in \mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha - c_j} v_j \right|^2 + \sum_j (|\alpha| + n) \, |\xi_\alpha|^2 |v_j|^2 \right).$$

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^ω hermitian metric γ , and $B_\varepsilon=B_{\gamma,\varepsilon}$ the associated Bergman bundle. Then its curvature is given by an asymptotic expansion

$$\widetilde{\Theta}_{\varepsilon}(z,v\otimes\xi)=\sum_{p=0}^{+\infty}\varepsilon^{-2+p}Q_p(z,v\otimes\xi),\ \ v\in T_X,\ \ \xi\in B_{\varepsilon}$$

where $Q_0(z, v \otimes \xi) = Q_0(v \otimes \xi)$ is given by the model case \mathbb{C}^n :

$$Q_0(v \otimes \xi) = \varepsilon^{-2} \sum_{\alpha \in \mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha - c_j} v_j \right|^2 + \sum_j (|\alpha| + n) \, |\xi_\alpha|^2 |v_j|^2 \right).$$

The other terms $Q_p(z, v \otimes \xi)$ are real analytic; Q_1 and Q_2 depend respectively on the torsion and curvature tensor of γ .

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^ω hermitian metric γ , and $B_\varepsilon=B_{\gamma,\varepsilon}$ the associated Bergman bundle. Then its curvature is given by an asymptotic expansion

$$\widetilde{\Theta}_{\varepsilon}(z,v\otimes\xi)=\sum_{p=0}^{+\infty}\varepsilon^{-2+p}Q_p(z,v\otimes\xi),\ \ v\in\mathcal{T}_X,\ \ \xi\in\mathcal{B}_{\varepsilon}$$

where $Q_0(z, v \otimes \xi) = Q_0(v \otimes \xi)$ is given by the model case \mathbb{C}^n :

$$Q_0(v \otimes \xi) = \varepsilon^{-2} \sum_{\alpha \in \mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha - c_j} v_j \right|^2 + \sum_j (|\alpha| + n) \, |\xi_\alpha|^2 |v_j|^2 \right).$$

The other terms $Q_p(z, v \otimes \xi)$ are real analytic; Q_1 and Q_2 depend respectively on the torsion and curvature tensor of γ . In particular $Q_1 = 0$ is γ is Kähler.

Bergman curvature formula on a general hermitian manifold

Let X be a compact complex manifold equipped with a C^{ω} hermitian metric γ , and $B_{\varepsilon}=B_{\gamma,\varepsilon}$ the associated Bergman bundle. Then its curvature is given by an asymptotic expansion

$$\widetilde{\Theta}_{\varepsilon}(z,v\otimes\xi)=\sum_{p=0}^{+\infty}\varepsilon^{-2+p}Q_{p}(z,v\otimes\xi),\ \ v\in\mathcal{T}_{X},\ \ \xi\in\mathcal{B}_{\varepsilon}$$

where $Q_0(z, v \otimes \xi) = Q_0(v \otimes \xi)$ is given by the model case \mathbb{C}^n :

$$Q_0(v \otimes \xi) = \varepsilon^{-2} \sum_{\alpha \in \mathbb{N}^n} \left(\left| \sum_j \sqrt{\alpha_j} \, \xi_{\alpha - c_j} v_j \right|^2 + \sum_j (|\alpha| + n) \, |\xi_\alpha|^2 |v_j|^2 \right).$$

The other terms $Q_p(z, v \otimes \xi)$ are real analytic; Q_1 and Q_2 depend respectively on the torsion and curvature tensor of γ . In particular $Q_1 = 0$ is γ is Kähler.

A consequence of the above formula is that B_{ε} is strongly Nakano positive for $\varepsilon > 0$ small enough.

The formula is in principle a special case of a more general result proved by Wang Xu, expressing the curvature of weighted Bergman bundles \mathcal{H}_t attached to a smooth family $\{D_t\}$ of strongly pseudoconvex domains.

The formula is in principle a special case of a more general result proved by Wang Xu, expressing the curvature of weighted Bergman bundles \mathcal{H}_t attached to a smooth family $\{D_t\}$ of strongly pseudoconvex domains. Wang's formula is however in integral form and not completely explicit.

The formula is in principle a special case of a more general result proved by Wang Xu, expressing the curvature of weighted Bergman bundles \mathcal{H}_t attached to a smooth family $\{D_t\}$ of strongly pseudoconvex domains. Wang's formula is however in integral form and not completely explicit.

Here, one simply uses the real analytic Taylor expansion of logh: $X \times \overline{X} \to T_X$ (inverse diffeomorphism of exph)

$$\begin{aligned} \log h_{z}(w) &= w - \overline{z} + \sum z_{j} a_{j}(w - \overline{z}) + \sum \overline{z}_{j} a_{j}'(w - \overline{z}) \\ &+ \sum z_{j} z_{k} b_{jk}(w - \overline{z}) + \sum \overline{z}_{j} \overline{z}_{k} b_{jk}'(w - \overline{z}) \\ &+ \sum z_{j} \overline{z}_{k} c_{jk}(w - \overline{z}) + O(|z|^{3}), \end{aligned}$$

The formula is in principle a special case of a more general result proved by Wang Xu, expressing the curvature of weighted Bergman bundles \mathcal{H}_t attached to a smooth family $\{D_t\}$ of strongly pseudoconvex domains. Wang's formula is however in integral form and not completely explicit.

Here, one simply uses the real analytic Taylor expansion of $logh: X \times X \to T_X$ (inverse diffeomorphism of exph)

$$\begin{split} \log h_z(w) &= w - \overline{z} + \sum z_j a_j(w - \overline{z}) + \sum \overline{z}_j a_j'(w - \overline{z}) \\ &+ \sum z_j z_k b_{jk}(w - \overline{z}) + \sum \overline{z}_j \overline{z}_k b_{jk}'(w - \overline{z}) \\ &+ \sum z_j \overline{z}_k c_{jk}(w - \overline{z}) + O(|z|^3), \end{split}$$

which is used to compute the difference with the model case \mathbb{C}^n , for which $logh_{\overline{z}}(w) = w - \overline{z}$.

Conjecture

Let $\pi: \mathcal{X} \to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S.

Conjecture

Let $\pi: \mathcal{X} \to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S. Assume that the family admits a polarization, i.e. a closed smooth (1,1)-form ω such that $\omega_{|X_t}$ is positive definite on each fiber $X_t := \pi^{-1}(t)$.

Conjecture

Let $\pi:\mathcal{X}\to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S. Assume that the family admits a polarization, i.e. a closed smooth (1,1)-form ω such that $\omega_{|X_t}$ is positive definite on each fiber $X_t:=\pi^{-1}(t)$. Then the plurigenera

 $p_m(X_t) = h^0(X_t, mK_{X_t})$ are independent of t for all $m \ge 0$.

Conjecture

Let $\pi:\mathcal{X}\to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S. Assume that the family admits a polarization, i.e. a closed smooth (1,1)-form ω such that $\omega_{|X_t}$ is positive definite on each fiber $X_t:=\pi^{-1}(t)$. Then the plurigenera

 $p_m(X_t) = h^0(X_t, mK_{X_t})$ are independent of t for all $m \ge 0$.

The conjecture is known to be true for a projective family $\mathcal{X} \to S$:

- Siu and Kawamata (1998) in the case of varieties of general type
- Siu (2000) and Păun (2004) in the arbitrary projective case

Conjecture

Let $\pi: \mathcal{X} \to S$ be a proper holomorphic map defining a family of smooth compact Kähler manifolds over an irreducible base S. Assume that the family admits a polarization, i.e. a closed smooth (1,1)-form ω such that $\omega_{|X_t}$ is positive definite on each fiber $X_t := \pi^{-1}(t)$. Then the plurigenera

 $p_m(X_t) = h^0(X_t, mK_{X_t})$ are independent of t for all $m \ge 0$.

The conjecture is known to be true for a projective family $\mathcal{X} \to \mathcal{S}$:

- Siu and Kawamata (1998) in the case of varieties of general type
- Siu (2000) and Păun (2004) in the arbitrary projective case

No algebraic proof is known in the latter case; one deeply uses the L^2 estimates of the Ohsawa-Takegoshi extension theorem.

It is enough to consider the case of a family $\mathcal{X} \to \Delta$ over the disc, such that there exists a relatively ample line bundle \mathcal{A} over \mathcal{X} .

It is enough to consider the case of a family $\mathcal{X} \to \Delta$ over the disc, such that there exists a relatively ample line bundle \mathcal{A} over \mathcal{X} .

Given $s \in H^0(X_0, mK_{X_0})$, the point is to show that it extends into $\widetilde{s} \in H^0(\mathcal{X}, mK_{\mathcal{X}})$, and for this, one only needs to produce a hermitian metric $h = e^{-\varphi}$ on $K_{\mathcal{X}}$ such that:

- $\Theta_h = i\partial \overline{\partial} \varphi \ge 0$ in the sense of currents
- $|s|_h^2 = |s|^2 e^{-\varphi} \le 1$, i.e. $\varphi \ge \log |s|$ on X_0 .

It is enough to consider the case of a family $\mathcal{X} \to \Delta$ over the disc, such that there exists a relatively ample line bundle \mathcal{A} over \mathcal{X} .

Given $s \in H^0(X_0, mK_{X_0})$, the point is to show that it extends into $\widetilde{s} \in H^0(\mathcal{X}, mK_{\mathcal{X}})$, and for this, one only needs to produce a hermitian metric $h = e^{-\varphi}$ on $K_{\mathcal{X}}$ such that:

- $\Theta_h = i\partial \overline{\partial} \varphi \ge 0$ in the sense of currents
- $|s|_h^2 = |s|^2 e^{-\varphi} \le 1$, i.e. $\varphi \ge \log |s|$ on X_0 .

The Ohsawa-Takegoshi theorem then implies the existence of \tilde{s} .

It is enough to consider the case of a family $\mathcal{X} \to \Delta$ over the disc, such that there exists a relatively ample line bundle \mathcal{A} over \mathcal{X} .

Given $s \in H^0(X_0, mK_{X_0})$, the point is to show that it extends into $\tilde{s} \in H^0(\mathcal{X}, mK_{\mathcal{X}})$, and for this, one only needs to produce a hermitian metric $h = e^{-\varphi}$ on $K_{\mathcal{X}}$ such that:

- $\Theta_h = i\partial \overline{\partial} \varphi \ge 0$ in the sense of currents
- $|s|_h^2 = |s|^2 e^{-\varphi} \le 1$, i.e. $\varphi \ge \log |s|$ on X_0 .

The Ohsawa-Takegoshi theorem then implies the existence of \tilde{s} .

To produce $h=e^{-\varphi}$, one produces inductively (also by O-T !) sections of $\sigma_{p,i}$ of $\mathcal{L}_p:=\mathcal{A}+p\mathcal{K}_{\mathcal{X}}$ such that:

- $(\sigma_{p,i})$ generates \mathcal{L}_p for $0 \le p < m$
- $\sigma_{p,j}$ extends $(\sigma_{p-m,j}s)_{|X_0}$ to $\mathcal X$ for $p\geq m$
- $\int_{\mathcal{X}} \frac{\sum_{j} |\sigma_{p,j}|^2}{\sum_{i} |\sigma_{p-1,j}|^2} \le C \text{ for } p \ge 1.$

By Hölder, the L^2 estimates imply $\int_{\mathcal{X}} \left(\sum_j |\sigma_{p,j}|^2 \right)^{1/p} \leq C$ for all p, and using the fact that $\lim \frac{1}{p} \Theta_{\mathcal{A}} = 0$, one can take

$$\varphi = \limsup_{p \to +\infty} \varphi_p, \quad \varphi_p := \frac{1}{p} \log \sum_j |\sigma_{p,j}|^2.$$

By Hölder, the L^2 estimates imply $\int_{\mathcal{X}} \left(\sum_j |\sigma_{p,j}|^2 \right)^{1/p} \leq C$ for all p, and using the fact that $\lim \frac{1}{p} \Theta_{\mathcal{A}} = 0$, one can take

$$\varphi = \limsup\nolimits_{p \to +\infty} \varphi_p, \quad \varphi_p := \tfrac{1}{p} \log \sum\nolimits_j |\sigma_{p,j}|^2.$$

Idea. In the polarized Kähler case, use the Bergman bundle $\mathcal{B}_{\varepsilon} \to \mathcal{X}$ instead of an ample line bundle $\mathcal{A} \to \mathcal{X}$. This amounts to applying the Ohsawa-Takegoshi L^2 extension on Stein tubular neighborhoods $U_{\varepsilon} \subset \mathcal{X} \times \overline{\mathcal{X}}$, with projections $\operatorname{pr}_1: U_{\varepsilon} \to \mathcal{X}$ and $\pi: \mathcal{X} \to \Delta$.

By Hölder, the L^2 estimates imply $\int_{\mathcal{X}} \left(\sum_j |\sigma_{p,j}|^2 \right)^{1/p} \leq C$ for all p, and using the fact that $\lim_{p} \Theta_{\mathcal{A}} = 0$, one can take

$$\varphi = \limsup\nolimits_{p \to +\infty} \varphi_p, \quad \varphi_p := \tfrac{1}{p} \log \sum\nolimits_j |\sigma_{p,j}|^2.$$

Idea. In the polarized Kähler case, use the Bergman bundle $B_{\varepsilon} \to \mathcal{X}$ instead of an ample line bundle $\mathcal{A} \to \mathcal{X}$. This amounts to applying the Ohsawa-Takegoshi L^2 extension on Stein tubular neighborhoods $U_{\varepsilon} \subset \mathcal{X} \times \overline{\mathcal{X}}$, with projections $\operatorname{pr}_1: U_{\varepsilon} \to \mathcal{X}$ and $\pi: \mathcal{X} \to \Delta$.

Proposition

In the polarized Kähler case (\mathcal{X}, ω) , shrinking from U_{ε} to $U_{\rho\varepsilon}$ with $\rho < 1$, the B_{ε} curvature estimate gives

$$\varphi_p := \frac{1}{p} \log \sum_i \|\sigma_{p,j}\|_{U_{p\varepsilon}}^2 \quad \Rightarrow \quad i \partial \overline{\partial} \varphi_p \ge -\frac{C}{\varepsilon^2 \rho^2} (C' - \varphi_p) \omega.$$

By Hölder, the L^2 estimates imply $\int_{\mathcal{X}} \left(\sum_j |\sigma_{p,j}|^2 \right)^{1/p} \leq C$ for all p, and using the fact that $\lim_{p \to \infty} \frac{1}{p} \Theta_{\mathcal{A}} = 0$, one can take

$$\varphi = \limsup\nolimits_{p \to +\infty} \varphi_p, \quad \varphi_p := \tfrac{1}{p} \log \sum\nolimits_j |\sigma_{p,j}|^2.$$

Idea. In the polarized Kähler case, use the Bergman bundle $B_{\varepsilon} \to \mathcal{X}$ instead of an ample line bundle $\mathcal{A} \to \mathcal{X}$. This amounts to applying the Ohsawa-Takegoshi L^2 extension on Stein tubular neighborhoods $U_{\varepsilon} \subset \mathcal{X} \times \overline{\mathcal{X}}$, with projections $\operatorname{pr}_1: U_{\varepsilon} \to \mathcal{X}$ and $\pi: \mathcal{X} \to \Delta$.

Proposition

In the polarized Kähler case (\mathcal{X}, ω) , shrinking from U_{ε} to $U_{\rho\varepsilon}$ with $\rho < 1$, the B_{ε} curvature estimate gives

$$\varphi_p := \frac{1}{p} \log \sum_i \|\sigma_{p,j}\|_{U_{\rho\varepsilon}}^2 \quad \Rightarrow \quad i \partial \overline{\partial} \varphi_p \ge -\frac{\mathcal{C}}{\varepsilon^2 \rho^2} (\mathcal{C}' - \varphi_p) \omega.$$

This implies that $\varphi = \limsup \varphi_p$ satisfies $\psi := -\log(C'' - \varphi)$ quasi-psh, but yields invariance of plurigenera only for $\varepsilon \to +\infty$.

Conjecture

Let X be a compact n-dimensional complex manifold and $\alpha \in H^{1,1}_{BC}(X,\mathbb{R})$ a Bott-Chern class, represented by closed real (1,1)-forms modulo $\partial \overline{\partial}$ exact forms.

Conjecture

Let X be a compact n-dimensional complex manifold and $\alpha \in H^{1,1}_{BC}(X,\mathbb{R})$ a Bott-Chern class, represented by closed real (1,1)-forms modulo $\partial\overline{\partial}$ exact forms. Set

$$\operatorname{Vol}(\alpha) = \sup_{T = \alpha + i\partial \overline{\partial} \varphi \ge 0} \int_X T_{ac}^n, \quad T \ge 0 \text{ current.}$$

Conjecture

Let X be a compact n-dimensional complex manifold and $\alpha \in H^{1,1}_{BC}(X,\mathbb{R})$ a Bott-Chern class, represented by closed real (1,1)-forms modulo $\partial\overline{\partial}$ exact forms. Set

$$\operatorname{Vol}(\alpha) = \sup_{T = \alpha + i\partial \overline{\partial} \varphi > 0} \int_X T_{ac}^n, \quad T \ge 0 \text{ current.}$$

Then

$$\operatorname{Vol}(\alpha) \ge \sup_{u \in \{\alpha\}, \ u \in C^{\infty}} \int_{X(u,0)} u^n$$

where

$$X(u,0) = 0$$
-index set of $u = \{x \in X ; u(x) \text{ positive definite}\}.$

Conjecture

Let X be a compact n-dimensional complex manifold and $\alpha \in H^{1,1}_{BC}(X,\mathbb{R})$ a Bott-Chern class, represented by closed real (1,1)-forms modulo $\partial\overline{\partial}$ exact forms. Set

$$\operatorname{Vol}(\alpha) = \sup_{T=\alpha+i\partial\overline{\partial}\omega>0} \int_X T_{ac}^n, \quad T\geq 0 \text{ current.}$$

Then

$$\operatorname{Vol}(\alpha) \ge \sup_{u \in \{\alpha\}, \ u \in C^{\infty}} \int_{X(u,0)} u^n$$

where

$$X(u,0) = 0$$
-index set of $u = \{x \in X : u(x) \text{ positive definite}\}.$

Conjectural corollary (fundamental volume estimate)

Let X be compact Kähler, dim X = n, and $\alpha, \beta \in H^{1,1}(X, \mathbb{R})$ be nef classes. Then

$$Vol(\alpha - \beta) \ge \alpha^n - n\alpha^{n-1} \cdot \beta.$$

The conjecture on Morse inequalities is known to be true when $\alpha = c_1(L)$ is the class of a line bundle ([D-1985]), and the corollary can be derived from this when α, β are integral classes (by [D-1993] and independently by [Trapani, 1993]).

The conjecture on Morse inequalities is known to be true when $\alpha = c_1(L)$ is the class of a line bundle ([D-1985]), and the corollary can be derived from this when α, β are integral classes (by [D-1993] and independently by [Trapani, 1993]).

Recently, the volume estimate for α , β transcendental has been established by D. Witt-Nyström when X is projective, and Xiao-Popovici even proved in general that $\operatorname{Vol}(\alpha-\beta)>0$ if $\alpha^n-n\alpha^{n-1}\cdot\beta>0$.

The conjecture on Morse inequalities is known to be true when $\alpha=c_1(L)$ is the class of a line bundle ([D-1985]), and the corollary can be derived from this when α,β are integral classes (by [D-1993] and independently by [Trapani, 1993]).

Recently, the volume estimate for α , β transcendental has been established by D. Witt-Nyström when X is projective, and Xiao-Popovici even proved in general that $\operatorname{Vol}(\alpha-\beta)>0$ if $\alpha^n-n\alpha^{n-1}\cdot\beta>0$.

Idea. In the general case, one can find a sequence of non holomorphic hermitian line bundles (L_m, h_m) such that

$$m\alpha = \Theta_{L_m,h_m} + \gamma_m^{2,0} + \overline{\gamma}_m^{0,2}, \quad \gamma_m \to 0.$$

The conjecture on Morse inequalities is known to be true when $\alpha=c_1(L)$ is the class of a line bundle ([D-1985]), and the corollary can be derived from this when α,β are integral classes (by [D-1993] and independently by [Trapani, 1993]).

Recently, the volume estimate for α , β transcendental has been established by D. Witt-Nyström when X is projective, and Xiao-Popovici even proved in general that $\operatorname{Vol}(\alpha-\beta)>0$ if $\alpha^n-n\alpha^{n-1}\cdot\beta>0$.

Idea. In the general case, one can find a sequence of non holomorphic hermitian line bundles (L_m, h_m) such that

$$m\alpha = \Theta_{L_m,h_m} + \gamma_m^{2,0} + \overline{\gamma}_m^{0,2}, \quad \gamma_m \to 0.$$

As U_{ε} is Stein, $\overline{\gamma}_{m}^{0,2} = \overline{\partial} v_{m}$, $v_{m} \to 0$, and $\operatorname{pr}_{1}^{*} L_{m}$ becomes a holomorphic line bundle with curvature form $\Theta_{\operatorname{pr}_{1}^{*} L_{m}} \simeq m \operatorname{pr}_{1}^{*} \alpha$.

The conjecture on Morse inequalities is known to be true when $\alpha=c_1(L)$ is the class of a line bundle ([D-1985]), and the corollary can be derived from this when α,β are integral classes (by [D-1993] and independently by [Trapani, 1993]).

Recently, the volume estimate for α , β transcendental has been established by D. Witt-Nyström when X is projective, and Xiao-Popovici even proved in general that $\operatorname{Vol}(\alpha-\beta)>0$ if $\alpha^n-n\alpha^{n-1}\cdot\beta>0$.

Idea. In the general case, one can find a sequence of non holomorphic hermitian line bundles (L_m, h_m) such that

$$m\alpha = \Theta_{L_m,h_m} + \gamma_m^{2,0} + \overline{\gamma}_m^{0,2}, \quad \gamma_m \to 0.$$

As U_{ε} is Stein, $\overline{\gamma}_{m}^{0,2}=\overline{\partial}v_{m}$, $v_{m}\to 0$, and $\operatorname{pr}_{1}^{*}L_{m}$ becomes a holomorphic line bundle with curvature form $\Theta_{\operatorname{pr}_{1}^{*}L_{m}}\simeq m\operatorname{pr}_{1}^{*}\alpha$.

Then apply L^2 direct image $(pr_1)_*^{L^2}$ and use Bergman estimates instead of dimension counts in Morse inequalities.

Thank you for your attention

