Semi-classical asymptotics for magnetic bottles

Françoise Truc

Université de Grenoble I, Institut Fourier, Laboratoire de Mathématiques, UMR 5582 (CNRS-UJF),

B.P. 74, 38402 St Martin d'Hères (France)

ABSTRACT. — In this paper we investigate the asymptotic behaviour of the counting function of the eigenvalues for a semi-classical Schrödinger operator with a magnetic field, for a fixed energy, when the small parameter h goes to zero. We require for the magnetic field assumptions of the type "magnetic bottles" and we use a method of subdivision of R^d in cubes, in order to apply Courant's minimax variational principle. This method was previously used by R.Courant in the case of the classical counting function for minus Laplacian .

1. Introduction

Let B(x) be a magnetic field in R^d , which means a closed real 2-form on R^d . For every x there exists two integers r(x) and k(x) such that d=2r(x)+k(x), and we can find an orthonormal basis $(dx_1,\ldots,dx_r,dy_1,\ldots,dy_r,dx_{r+1},\ldots,dx_{r+k})$ on R^d for which B has the following expression:

$$B(x) = \sum_{i=1}^{r(x)} b_i(x) dx_i \wedge dy_i \text{ with } b_1 \ge b_2 \ge \dots \ge b_r > 0.$$

The $b_i(x)$ are the modules of non zero eigenvalues for the antisymmetric endomorphism associated to B(x) and 2r(x) denotes its rank. In odd dimension in particular 0 is always an eigenvalue. We shall denote by $a = \sum_{i=1}^d a_i dx_i$ a magnetic potential for B, in other words a one-form related to B by : da = B.

It is moreover assumed that B satisfies the following conditions (*):

- $(B_1) \lim_{\|x\| \to \infty} \|B(x)\| = \infty.$
- (B_2) there exists C > 0 such that, for every x and x' verifying : $||x x'|| \le 1$, $||B(x)|| \le C||B(x')||$.

(B₃) Let
$$M(x)$$
 be: $M(x) = \max_{|\beta|=2} \left(\sup_{\|x-x'\| \le 1} \|D^{\beta} a(x')\| \right)$.
$$M(x) = o(\|B(x)\|^{\frac{3}{2}}) \text{ when } \|x\| \to \infty.$$

We are interested in the Schrödinger operator \widehat{H}_h associated to this magnetic field, which has the following expression:

$$\widehat{H}_h = \sum_{i=1}^d \left(\frac{h}{i} \frac{\partial}{\partial x_j} - a_j\right)^2.$$

This operator is essentially selfadjoint with compact resolvant on $L^2(\mathbb{R}^d)$ ([1]). Let us denote by $N_h(E)$ the counting function of its spectrum:

$$N_h(E) = \operatorname{card}\{\lambda_i(h); \lambda_i(h) \quad \text{eigenvalue of} \ \widehat{H_h} \ \text{and} \ \lambda_i(h) \leq E\}$$
 .

We clearly have $\widehat{H_h} = h^2 H_h$, where $H_h = \sum_{j=1}^d \left(\frac{1}{i} \frac{\partial}{\partial x_j} - \frac{a_j}{h}\right)^2$ is the Schrödinger operator associated to the magnetic field $\frac{B}{h}$. As a consequence, $N_h(E) = N(\frac{E}{h^2})$ for any fixed energy E, if we denote by N the counting function relative to H_h .

The behaviour of $N(\lambda)$, for a fixed h , and for the great values of λ is well known (cf. [3]):

$$N_{\frac{B}{h}}^{as}[\lambda(1-o(1))] \le N(\lambda) \le N_{\frac{B}{h}}^{as}[\lambda(1+o(1))]$$
.

In the general case, the expression for N_B^{as} is the following:

$$N_B^{as}(\lambda) = \sum_{r=1}^{\lfloor d/2 \rfloor} C_{k,r} \sum_{n, l \in \mathbb{Z}^+} \int_{A_r} \left(\lambda - \sum_{i=1}^r (2n_i + 1)b_i(x)\right)_+^{k/2} \prod_{i=1}^r b_i(x) dx .$$

We used the following notations:

$$A_r = \{x \in R^d; r(x) = r\}$$
$$C_{k,r} = \frac{\gamma_k}{(2\pi)^{k+r}}$$

 $\gamma_k = \text{volume of the unit ball of } R^k$.

Our aim in this paper is to determine an asymptotic formula of $N_h(E)$ with fixed energy E when h tends to zero. Using an adaptation of the method explained in [3], we prove the following result:

THEOREM. — Under the conditions (*), we have, for any energy E:

$$\frac{1}{h^d} N_{hB}^{as} [E(1-o(1))] \le N_h(E) \le \frac{1}{h^d} N_{hB}^{as} [E(1+o(1))] \quad (h \to 0) .$$

Remark 1. — The expression for N_B^{as} becomes more explicit when d=2. By the way if we set $T(\lambda)=\operatorname{card}\{n\geq 0; 2n+1\leq \lambda\}$ et z=(x,y), we get:

$$\frac{1}{h^d}N_{hB}^{as}(E) = \frac{1}{2\pi h} \int_{B^2} \left\|B(z)\right\| \, T\big(\frac{E}{hB(z)}\big) dx dy \ .$$

Remark 2. — It is possible to recover the conclusions of this theorem by studying the semi-group $\exp(-tH_h)$ (cf. [14]). The following asymptotic formula is obtained:

$$\operatorname{Tr}(\exp(-tH_h)) \sim \frac{1}{h^d} Z_{hB}(t), \ h \to 0,$$

where $Z_{hB}(t) = (4\pi t)^{-d/2} \int_{R^d} \prod_{i=1}^{r(x)} \frac{htb_i(x)}{\sinh htb_i(x)} dx$ is precisely the Laplace transform of the function $N_{hB}^{as}(\lambda)$. To see this let us compute, for simplicity, in the case where the rank of B is constant and k = 0. (see [14] for the general case.)

We have then:

$$N_B^{as}(\lambda) = \frac{1}{(2\pi)^r} \sum_{\substack{(n_1, \dots, n_s) \in Z_+^+}} \int_{x \in R^d, N_i(x) < \lambda} \prod_{i=1}^r b_i(x) dx$$

where
$$N_i(x) = \sum_{i=1}^r (2n_i + 1)b_i(x)$$
.

So the Laplace transform can be computed rather simply:

$$\int_0^\infty e^{-t\lambda} dN_B^{as}(\lambda) = \frac{1}{(2\pi)^r} \sum_{(n_1, \dots, n_r) \in Z_r^+} \int_{x \in R^d} e^{-tN_i(x)} \prod_{i=1}^r b_i(x) dx$$
$$= \frac{1}{(2\pi)^r} \int_{x \in R^d} \prod_{i=1}^r \sum_{n_i=0}^\infty e^{-t(2n_i+1)b_i(x)} \prod_{i=1}^r b_i(x) dx$$

and:

$$\int_0^\infty e^{-t\lambda} dN_B^{as}(\lambda) = \frac{1}{(2\pi)^r} \int_{x \in R^d} \prod_{i=1}^r \frac{b_i(x) e^{-tb_i(x)}}{1 - e^{-2tb_i(x)}} dx$$

and finally:

$$\int_0^\infty e^{-t\lambda} dN_B^{as}(\lambda) = \frac{1}{(4\pi t)^r} \int_{x \in R^d} \prod_{i=1}^r \frac{tb_i(x)}{\sinh tb_i(x)} dx .$$

However the method used in [14] requires stronger conditions for B, in order to make sure that $\exp(-tH_h)$ is a trace-class semi-group.

I am indebted to Colette Anné, Jean-Pierre Demailly and Alain Dufresnoy for useful discussions on this subject, and particularly to Yves Colin de Verdière for his constant attention. Finally I thank L.S.Frank for helpful corrections and suggestions.

2. Two necessary results for the proof

2.1. Schrödinger operator with a constant magnetic field in a cube and Dirichlet conditions. — Let us set

$$\nu_{B(x)}(\lambda) = C_{k,r} \sum_{(n_1, \dots, n_r) \in \mathbb{Z}_r^+} \left(\lambda - \sum_{i=1}^r (2n_i + 1)b_i(x) \right)_+^{k/2} \prod_{i=1}^r b_i(x) .$$

(In this definition, the numbers k et r depend on x.) The function $N_B^{as}(\lambda)$ has then the following expression:

$$N_B^{as}(\lambda) = \int_{R^d} \nu_{B(x)}(\lambda) dx .$$

In the case of a constant magnetic field, the function $\nu_B(\lambda)$ can be seen as a density of states, since it makes possible to estimate $N_{B,R}(\lambda)$, the counting function of the spectrum concerning Dirichlet problem for the Schrödinger operator with the constant field B in the cube $[0,R]^d$. We recall the precise estimate, given in [3]:

PROPOSITION. — There exists a constant c depending only on d such that, for any A with 0 < A < R/2, the following inequalities hold:

$$N_{B,R}(\lambda) \le R^d \nu_B(\lambda)$$

 $N_{B,R}(\lambda) \ge (R-A)^d \nu_B(\lambda - c/A^2)$.

2.2. Existence of a subdivision of \mathbb{R}^d in cubes "adaptated" to \mathbb{B} and to h.

LEMMA. — Under the assumptions (*), and for a fixed $\varepsilon > 0$, there exists for any h a subdivision of R^d in cubes $(\Omega_i)_{i \geq 0}$ of sides r_i , and numbers $(a_i)_{i \geq 1}$ $(0 < a_i \leq r_i/2)$ such that, if we set $M_i = \max_{\|\beta\|=2} \sup_{x \in \Omega_i} \|D^\beta a(x)\|$, the following inequalities hold, for any x in Ω_i and for any integer $i \geq 1$:

i)
$$r_i^2 M_i \le \varepsilon h \|B(x)\|^{1/2}$$

ii)
$$1/a_i^2 \le \max\left(\frac{4\varepsilon \|B(x)\|}{h}, \frac{1}{\varepsilon}\right)$$
.

Proof. — Let us consider first a subdivision of R^d in cubes (C_α) of sides 1. According with the assumption (B_3) , it is possible to put together in a cube called Ω_0 the cubes (C_α) such that there exists x in (C_α) verifying : $M_\alpha \geq \varepsilon^3 ||B(x)||^{\frac{3}{2}}$. This cube does not depend on h.

We subdivide the cubes (C_{α}) external to Ω_0 into small cubes of sides r_{α} with $1/r_{\alpha}$ an integer. We shall denote these small cubes by Ω_i . Two cases may occur concerning the cubes (C_{α}) , each one determines a special choice of r_{α} :

1)
$$M_{\alpha} > \varepsilon h \min_{x \in C_{\alpha}} ||B(x)||^{\frac{1}{2}}$$

In this case it is possible to choose r_{α} such that $1/r_{\alpha}$ is a integer and the following inequalities hold:

$$\frac{\varepsilon h}{4} \min_{x \in C_{\alpha}} \|B(x)\|^{\frac{1}{2}} \le r_{\alpha}^{2} M_{\alpha} \le \varepsilon h \min_{x \in C_{\alpha}} \|B(x)\|^{\frac{1}{2}}.$$

The inequality i) of the lemma is therefore satisfied, since $r_i = r_{\alpha}$ for the Ω_i contained in C_{α} , and since we have : $M_i \leq M_{\alpha}$. We choose now all the a_i equal in C_{α} to $a_{\alpha} = \sqrt{\varepsilon}r_{\alpha}$, which yields

$$1/a_i^2 = 1/(\varepsilon r_i^2) \le \frac{4M_\alpha}{h\varepsilon^2 \min_{x \in C_\alpha} \|B(x)\|^{\frac{1}{2}}} \le \frac{4\varepsilon \|B(x)\|}{h}.$$

This last inequality comes in fact as a result of the choice of Ω_0 .

2)
$$M_{\alpha} \leq \varepsilon h \min_{x \in C_{\alpha}} ||B(x)||^{\frac{1}{2}}$$
.

We set in this case $r_i=r_\alpha=1$, so that inequality i) is satisfied and that $1/a_i^2=1/\varepsilon$.

Remark. — The assumption (B_2) ensures that the real number $\min_{x \in C_\alpha} ||B(x)||^{\frac{1}{2}}$ is not zero.

In the following paragraph, ε is fixed. We shall be using the subdivision (Ω_i) associated to a fixed value of h for the moment.

3. Proof of the theorem

3.1. Minoration of $N_h(E)$.

We denote by ∇ the connexion d + ia/h, associated to the field B/h, and by ∇_i the connexion $d + ia_i/h$, associated to the field $B(x_i)/h$ for an arbitrarily fixed point x_i in Ω_i , and defined on the Sobolev spaces $H_0^1(\Omega_i)$.

We now use the isometric injection given by : $j:\bigoplus_{i\geq 1}H^1_0(\Omega_i)\hookrightarrow D(q_{B/h}),$ $j(\bigoplus f_i)=\sum_i f_i$, so we can introduce the following quadratic forms :

$$q_1(\bigoplus_{i\geq 1} f_i) = \sum_{i\geq 1} \int_{\Omega_i} |\nabla_i f_i|^2$$

$$q_{B/h}(f) = \int_{R^d} |\nabla f|^2 \quad \text{with } f = \sum_{i\geq 1} f_i .$$

It is possible to choose for the potential of $B(x_i)$ the Taylor series up to order 1 of a in x_i , so that we can write:

$$|(\nabla - \nabla_i) f_i(x)| = |\frac{i}{h} [a(x) - a(x_i) - da(x_i)(x - x_i)] f_i(x)| \le \frac{1}{h} ||x - x_i||^2 M_i ||f_i(x)||.$$

It results from that, and from the inequality i) of the lemma, the following inequality, for any η :

$$\int_{R^d} |\nabla f|^2 \le (1 + \eta^2) \ q_1(\bigoplus_{i>1} f_i) + (1 + 1/\eta^2) \ \varepsilon^2 \ \sum_{i>1} ||B(x_i)|| \int_{\Omega_i} |f_i|^2,$$

so that, by application of the minimax principle:

$$N(\lambda) \ge \sum_{i>1} N_{B(x_i)/h,r_i} \left[\frac{\lambda}{1+\eta^2} - \frac{\varepsilon^2}{1+\eta^2} (1+\frac{1}{\eta^2}) ||B(x_i)|| \right].$$

Let us choose η so that : $\varepsilon = \frac{\eta^2}{\sqrt{1+\eta^2}}$. Then we have :

$$\frac{\varepsilon^2}{1+\eta^2}(1+\frac{1}{\eta^2}) = \frac{\eta^2}{1+\eta^2},$$

whence:

$$N(\lambda) \ge \sum_{i \ge 1} N_{B(x_i)/h, r_i} \left[\frac{\lambda}{1 + \eta^2} - \frac{\eta^2}{1 + \eta^2} ||B(x_i)|| \right].$$

As a result of the statement in the case of a constant magnetic field in a cube (see Proposition 2.1), and of the inequality *ii*) of lemma 2.2 we can write consecutively:

$$N(\lambda) \geq \sum_{i \geq 1} (r_i - a_i)^d \nu_{B(x_i)/h} \left[\frac{1}{1 + \eta^2} (\lambda - \eta^2 ||B(x_i)||) - \frac{c}{a_i^2} \right],$$

$$N(\lambda) \ge \sum_{i>1} (r_i - a_i)^d \nu_{B(x_i)/h} \left[\frac{\lambda}{1+\eta^2} - \frac{\eta^2}{1+\eta^2} (1 + \frac{4ce_{\eta}}{h}) ||B(x_i)||) - \frac{ce_{\eta}}{\eta^2} \right].$$

(We have set : $e_{\eta} = \sqrt{1 + \eta^2}$.)

Considering the expression of $\nu_{B(x_i)/h}$, and the equivalence between $||B(x_i)||$ and the greatest eigenvalue b_1 of B at the point x_i , we notice that the preceding sum takes in account only the indices i which satisfy:

$$\frac{\lambda}{1+\eta^2} - \frac{\eta^2}{1+\eta^2} (1 + \frac{4ce_{\eta}}{h}) ||B(x_i)||) - \frac{ce_{\eta}}{\eta^2} \ge \frac{b_1}{h}.$$

We get therefore the following minoration:

$$N(\lambda) \ge \sum_{i>1} (r_i - a_i)^d \nu_{B(x_i)/h} \left[\frac{F\lambda - K}{hG + 1} \right]$$

with:

$$F = \frac{1}{1+\eta^2}$$

$$G = \frac{\eta^2}{1+\eta^2} \left(1 + \frac{4ce_{\eta}}{h}\right)$$

$$K = \frac{ce_{\eta}}{\eta^2}.$$

So we compute:

$$\frac{F}{hG+1} = \frac{1}{\eta^2(h+4ce_\eta)+1+\eta^2} \text{ whence } : \frac{F}{hG+1} = 1 - 0(h) - 0(\varepsilon) \ .$$

In the same way we have:

$$\frac{K}{hG+1} = c_{\varepsilon,h} = \frac{c}{\varepsilon} (1 - 0(h) - 0(\varepsilon)) .$$

Finally:

$$N(\lambda) \geq (1 - 0(\sqrt{arepsilon})) \sum_{i \geq 1} r_i^d \
u_{B(x_i)/h} ig[\lambda (1 - 0(h) - 0(arepsilon)) - c_{arepsilon,h} ig] \ .$$

Now we use the fact that x_i is an arbitrary number in Ω_i and we write $\lambda = \frac{E}{h^2}$, so we get :

$$N(\frac{E}{h^2}) \ge (1 - 0(\sqrt{\varepsilon})) \int_{x \notin \Omega_0} \nu_{B(x)/h} \left[\frac{E}{h^2} (1 - 0(h) - 0(\varepsilon)) - c_{\varepsilon,h} \right].$$

 Ω_0 takes part in this inequality only as an element of the subdivision, element which does not depend on h. For that reason we can allow h to go to 0 . Finally, using the following fact :

$$\int_{\Omega_0} \nu_{B(x)/h}(\frac{E}{h^2}) = 0 \left(\int_{R^d} \nu_{B(x)/h}(\frac{E}{h^2}) \right) \text{ when } h \to 0$$

we get the final minoration:

$$N_h(E) \ge \int_{R^d} \nu_{B(x)/h} \left[\frac{E}{h^2} (1 - 0(h) - 0(\varepsilon)) \right] .$$

3.2. Majoration of $N_h(E)$.

We are going to use now the covering of R^d by the $\widetilde{\Omega_i}$, which will be cubes centered on the Ω_i but of sides $r_i + a_i$.

We set: $\widetilde{\Omega_0} = \{x \in R^d; d(x,\Omega_0) \leq \sqrt{\varepsilon}/2\}$. From that we define: $a_0 = \sqrt{\varepsilon}$. We construct then a family of functions $\phi_i \in C_o^\infty(\widetilde{\Omega_i})$ verifying: $\sum \phi_i^2 = 1$ et $\forall x \in \widetilde{\Omega_i}, \ \|d\phi_i(x)\| \leq c/a_i$. $(c = \max_{x \in R^d} \#I(x), \text{ with } I(x) = \{i \geq 0; x \in \Omega_i\}$. c is a constant which depends only of d). The construction of such a family is explained in details in [3] or [9]. We define an injection from $D(q_{B/h})$ into $\bigoplus_{i \geq 0} H_0^1(\Omega_i)$ by the following formula: $f \to \bigoplus_{i \geq 0} (f\phi_i)$, and also a quadratic form $q_1(\bigoplus f_i)$ in the same way as before.

a) Link between $\nabla f \phi_i$ and ∇f . — We have :

$$\sum_{i\geq 0} |\nabla f \phi_i|^2 = \sum_{i\geq 0} |\phi_i \nabla f + f(d\phi_i)|^2 = \sum_{i\geq 0} |\phi_i \nabla f|^2 + |f|^2 \sum_{i\geq 0} |d\phi_i|^2.$$

Notice that the double product is zero due to the choice of the ϕ_i : $0 = d(\sum_{i \geq 0} \phi_i^2) = 2\sum_{i \geq 0} \phi_i d\phi_i$. By integration we get the following:

$$\int_{R^d} \sum_{i \ge 0} |\nabla f \phi_i|^2 \le \int_{R^d} |\nabla f|^2 + \int_{R^d} \sum_{i \ge 0} |d\phi_i|^2 |f|^2.$$

Moreover, the inequality ii) of the lemma gives:

$$\sum_{i \ge 0} |d\phi_i(x)|^2 \le \sum_{i \in I(x)} |d\phi_i(x)|^2 \le c[c^2/\varepsilon + 4c^2\varepsilon ||B(x)||/h]$$

and then

$$\int_{R^d} \sum_{i>0} |d\phi_i|^2 |f|^2 \le \frac{c^3}{\varepsilon} \int_{R^d} |f|^2 + 4c^3 \varepsilon \int_{R^d} \frac{\|B(x)\|}{h} |f|^2.$$

We are going to use the following property:

PROPERTY. — If B satisfies the assumption (B_3) , there exists a constant k which depends only on B and on d such that the following inequality holds:

$$\int_{B^d} \frac{\|B(x)\|}{h} |f|^2 \le k \int_{B^d} |\nabla f|^2 \ .$$

The proof of that result is given in the appendix; it uses a calculus explained in [10].

Finally we obtain:

$$\int_{R^d} \sum_{i>0} |\nabla f \phi_i|^2 \le \frac{c^3}{\varepsilon} \int_{R^d} |f|^2 + (1 + 4c^3 k\varepsilon) \int_{R^d} |\nabla f|^2.$$

b) Link between ∇ and ∇_i . — For any function f_i defined on $\widetilde{\Omega}_i$ we have : $|\nabla_i f_i|^2 \leq |(\nabla - \nabla_i) f_i|^2 + |\nabla f_i|^2 ,$

so we get, after integration and the use of the inequality i) of the lemma, in the same way as precedingly:

$$\sum_{i \geq 0} \int_{\widetilde{\Omega}_i} |\nabla f_i|^2 \geq \sum_{i \geq 0} \int_{\widetilde{\Omega}_i} |\nabla_i f_i|^2 - \varepsilon^2 \sum_{i \geq 1} ||B(x_i)|| \int_{\widetilde{\Omega}_i} |f_i|^2 - \frac{M_0^2 r_0^4}{h^2} \int_{\widetilde{\Omega}_0} |f|^2.$$

c) Using minimax principle for the new cubes. — Let us set $C=4kc^3$. From a) and b) we obtain the following minoration:

$$(1+C\varepsilon)\int_{R^d} |\nabla f|^2 \ge \sum_{i>1} \left(\int_{\widetilde{\Omega_i}} |\nabla_i f \phi_i|^2 - \varepsilon^2 ||B(x_i)|| \int_{\widetilde{\Omega_i}} |f \phi_i|^2 \right) - \frac{c^3}{\varepsilon} \int_{R^d} |f|^2 + A_0,$$

with:

$$A_0 = \int_{\widetilde{\Omega_0}} |\nabla_0 f_0|^2 - \frac{M_0^2 r_0^4}{h^2} \int_{\widetilde{\Omega_0}} |f|^2 .$$

We get then, by using the equality : $\sum_{i\geq 1}\int_{\widetilde{\Omega_i}}|f\phi_i|^2=\int_{R^d}|f|^2$ and the minimax principle :

$$N(\lambda) \le \sum_{i>1} N_{B(x_i)/h, r_i + a_i} [\lambda F + K + G || B(x_i) ||] + N_0$$

with

$$F = 1 + C\varepsilon$$

$$G = \varepsilon^2 (1 + C\varepsilon)$$

$$K = \frac{c^3}{\varepsilon} (1 + C\varepsilon)$$

$$N_0 = N_{B(x_0)/h, r_0 + a_0} \left[\lambda F + K + F \frac{M_0^2 r_0^4}{h^2} \right].$$

We obtain therefore the following majoration:

$$N(\lambda) \leq \sum_{i\geq 1} (r_i + a_i)^d \nu_{B(x_i)/h} \left[\frac{F\lambda + K}{1 - hG} \right] + (r_0 + a_0)^d \nu_{B(x_0)/h} \left[F(\lambda + \frac{M_0^2 r_0^4}{h^2}) + K \right].$$

Making analogous computations as in the preceding section we can write now:

$$N(\frac{E}{h^2}) \le (1 + 0(\sqrt{\varepsilon})) \left(\sum_{i \ge 1} r_i^d \nu_{B(x_i)/h} \left[\frac{E}{h^2} (1 + 0(h) + 0(\varepsilon)) + c_{\varepsilon,h} \right] + r_0^d \nu_0 \right),$$

with:

$$\nu_0 = \nu_{B(x_0)/h} \left[\frac{1}{h^2} (E + M_0^2 r_0^4) (1 + 0(\varepsilon)) + K \right]$$

and $c_{h,\varepsilon} = c^3 (1 + 0(h) + 0(\varepsilon))/\varepsilon$, so that :

$$\begin{split} N(\frac{E}{h^2}) & \geq (1 + 0(\sqrt{\varepsilon})) \int_{x \notin \Omega_0} \nu_{B(x)/h} \big[\frac{E}{h^2} (1 + 0(h) + 0(\varepsilon)) + c_{\varepsilon,h} \big] \\ & + \int_{\Omega_s} \nu_{B(x)/h} \big[\frac{1}{h^2} (E + M_0^2 r_0^4) (1 + 0(\varepsilon)) + K \big] \ . \end{split}$$

As before, we can allow now h to go to 0 and conclude :

$$N_h(E) \le \int_{B^d} \nu_{B(x)/h} \left[\frac{E}{h^2} (1 + 0(h) + 0(\varepsilon)) \right] .$$

3.3. Expression of $N_{B/h}^{as}$.

Let us set : $A_r = \{x \in \mathbb{R}^d; r(x) = r\}$. We have :

$$N_{B/h}^{as}(\lambda) = \sum_{r=1}^{[d/2]} C_{k,r} \sum_{\substack{(n_1, \dots, n_r) \in \mathbb{Z}_r^+ \\ h}} \int_{A_r} \left(\lambda - \sum_{i=1}^{r} (2n_i + 1) \frac{b_i(x)}{h}\right)_+^{k/2} \prod_{i=1}^r \frac{b_i(x)}{h} dx,$$

so to say:

$$N_{B/h}^{as}(\lambda) = \frac{1}{h^d} \sum_{r=1}^{[d/2]} C_{k,r} \sum_{(n_i, \dots, n_r) \in \mathbb{Z}^{\frac{1}{r}}} \int_{A_r} \left(h^2 \lambda - \sum (2n_i + 1) h b_i(x) \right)_+^{k/2} \prod_{i=1}^r h b_i(x) dx \; .$$

We have then:

$$N_{B/h}^{as}(\lambda) = \frac{1}{h^d} N_{hB}^{as}(h^2 \lambda) ,$$

and finally:

$$\frac{1}{h^d} N_{hB}^{as}[E(1-o(1))] \le N_h(E) \le \frac{1}{h^d} N_{hB}^{as}[E(1+o(1))].$$

Appendix

Proof of property 3.2.

Let δ be the application from $R^d \setminus B^{-1}(0)$ into the unit sphere S of $R^{d(d-1)/2}$ defined as follows: $\delta: x \to B/\|B\|$ (B can be seen as an application in $R^{d(d-1)/2}$). We first show that, if B satisfies the assumption (B_3), there exists a function ψ defined in R^d with limit zero at infinity and such that $\|d\delta\|^2 = \psi(x)\|B\|$. The proof consists on computing $\|d\delta\|$: for h in $R^{d(d-1)/2}$ we have:

$$(d\delta)(h) = -\frac{B(x)}{\|B(x)\|^3} \overrightarrow{dB_x(h)} \cdot \overrightarrow{B(x)} + \frac{dB_x(h)}{\|B(x)\|}$$

and we conclude by noticing that assumption (B_3) gives the following inequality: there exists a function ψ defined in R^d with limit zero at infinity and such that $||dB|| = \psi(x)||B||^{3/2}$.

Now we can construct a covering of the sphere S in the following way. We set m = d(d-1)/2 + 1, we choose m points A_1, \ldots, A_m of S composing a regular simplex and for $k = 1, \ldots, m$ we consider a smooth function χ_k on S such that:

- i) $\chi_k(M) = 1$ si $d(M, A_k) \leq d(M, A_j)$ pour $j = 1, \ldots, m$
- ii) Supp $\chi_k \subset \{M \in S; \overrightarrow{OM} \cdot \overrightarrow{OA_k} > 0\}$
- iii) $\|\chi_k\|_{\infty} = 1$

Let us set $\eta_k = \chi_k \circ \delta$, and $c_1 = \max_{k=1,\ldots,m} \max_{x \in S} \|\nabla \chi_k(x)\|$, where ∇ denotes the gradient in R^{m-1} . We have : $\|\nabla \eta_k(x)\| \le c_1 \|d\delta(x)\|$.

We denote by Π_j the operator $-i\frac{\partial}{\partial x_j}-\frac{a_j}{h}$ and set $B_k=\overrightarrow{B}\cdot\overrightarrow{OA_k}$. If we see B as a two-form, it means we chose 2 unit vectors e_k and u_k in R^d in order to have : $B_k=F(e_k,u_k)=\sum_{1< i< j\leq d}(\frac{\partial a_j}{\partial x_i}-\frac{\partial a_i}{\partial x_j})(e_k,u_k)$.

We notice now, according to a work of Simon, that if f is a function C^{∞} with compact support in S, the formal relation : $[\Pi_i, \Pi_j] = \frac{i}{\hbar} (\frac{\partial a_j}{\partial x_i} - \frac{\partial a_i}{\partial x_j})$ is justified to yield, by Schwarz inequality :

$$\left| \int_{R^d} \frac{1}{h} \left(\frac{\partial a_j}{\partial x_i} - \frac{\partial a_i}{\partial x_j} \right) |f|^2 \le \|\Pi_i f\|^2 + \|\Pi_j f\|^2$$

(see [1], p.852, th 2.9)

The preceding remark allows us to write the following inequality:

$$\int_{R^d} \sum_{k=1}^m \frac{B_k}{h} \eta_k^2 |f|^2 \le m \sum_{j=1}^d \int_{R^d} |\Pi_j(\eta_k f)|^2$$

and then, using the additional inequality : $\sum \eta_k^2 \leq m$

$$\int_{R^d} \sum_{k=1}^m \frac{B_k}{h} \eta_k^2 |f|^2 \le m \sum_{j=1}^d \int_{R^d} |\nabla_j(f)|^2 + c_1^2 \int_{R^d} ||d\delta||^2 |f|^2.$$

Finally we notice that : $\sum_{k=1}^{m} B_k \eta_k^2 \ge c_2 ||B||$, so we conclude :

$$(c_2 - hc_1^2 \max_{x \in R^d} \psi(x)) \int_{R^d} \frac{\|B\|}{h} |f|^2 \le m \int_{R^d} |\nabla f|^2.$$

References

- J. AVRON, I. HERBST, B. SIMON. Schrödinger operators with magnetic fields, Duke Math. J. 45 (1978), 847-883.
- [2] T. BOUCHE. Convergence de la métrique de Fubini-Study d'un fibré linéaire positif, Ann. Inst. Fourier **40** (1990), 117-130.
- [3] Y. COLIN DE VERDIÈRE. L'asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys. 105 (1986), 327-335.
- [4] Y. COLIN DE VERDIÈRE. Calcul du spectre de certaines nilvariétés compactes de dimension 3, Séminaire Grenoble Chambéry 2 (1983-84), exposé 5.
- [5] Y. COLIN DE VERDIÈRE. Minorations de sommes de valeurs propres et conjecture de Polya, Séminaire Grenoble Chambéry 3 (1984-85), exposé 6.
- [6] R. COURANT, D. HILBERT. Methoden der Mathematischen Physik I, Springer (1968), 373-391.
- [7] R. COURANT. Uber die Eigenwerte bei den Differentialgleichungen der mathematischen Physik, Math. Zeitschr. 7 (1920), 1-57.
- [8] R. COURANT. Uber die Anwendung der Variationsrechnung in der Theorie der Eigenschwingungen und über neue Klassen von Funktionalgleichungen, Acta Math. 49 (1926), 1-68.
- [9] J.-P. DEMAILLY. Champs magnétiques et inégalités de Morse pour la d''-cohomologie, Ann. Inst. Fourier **35** (1985), 189-229.
- [10] A. DUFRESNOY. Un exemple de champ magnétique dans R^{ν} , Duke Math. J. **50** (1983), 729-734.
- [11] L.S.FRANK. Sur la fonction spectrale d'un opérateur aux différences finies elliptique, CRAS 276,A (1973), 1521-1523.
- [12] B. Helffer. Semi-classical analysis for the Schrödinger operator and applications, Lect. notes in Math. (1336), Springer-Verlag, 1988.
- [13] H. MATSUMOTO. Semiclassical asymptotics of eigenvalue distributions for Schrödinger operators with magnetic fields, Comm. in Partial Diff. Eq. 19 (1994), 719–759.
- [14] F. MICHAU. Thèse de 3e cycle, Grenoble, 1982.
- [15] D. ROBERT. Autour de l'approximation semi-classique, Progress in Math. (Birkhauser), 1987.
- [16] H. TAMURA. Asymptotic distribution of eigenvalues for Schrödinger operators with magnetic fields, Nagoya Math. J. 105 (1987), 40-69.