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ABSTRACT . — In this paper we investigate the asymptotic behaviour
of the counting function of the eigenvalues for a semi-classical Schrodinger oper-
ator with a magnetic field, for a fixed energy, when the small parameter h goes
to zero. We require for the magnetic field assumptions of the type ”magnetic
bottles” and we use a method of subdivision of R? in cubes, in order to apply
Courant’s minimax variational principle. This method was previously used by
R.Courant in the case of the classical counting function for minus Laplacian .

1. Introduction

Let B(z) be a magnetic field in %, which means a closed real 2-form on R?.
For every 2 there exists two integers r(z) and k(z) such that d = 2r(z)+k(z), and
we can find an orthonormal basis (dzy,...,dz, dy,,...,dy,, dz,41,...,dz,4}) on
R? for which B has the following expression :

r(2)
B(z) = bi(z)dw; Ady; with by > by > -+ > b, >0 .
i=1

The b;(z) are the modules of non zero eigenvalues for the antisymmetric endo-

morphism associated to B(z) and 2r(z) denotes its rank. In odd dimension in
d

particular 0 is always an eigenvalue . We shall denote by a = > a;dz; a magnetic
i=1

potential for B, in other words a one-form related to B by : da = B.

It is moreover assumed that B satisfies the following conditions (x) :
(B) lim |IB@)] = .
llz]|—=oo

(By) there exists C' > 0 such that, for every z and z' verifying : ||z — 2’| < 1,
I1B(2)] < ClB(")].



(B3) Let M(z) be: M(z) = |%1|2£§<” Eul}ﬁq | DP a(z )||>

M(z) = o(||B(x)||?) when [|z|| = co.

We are interested in the Schrédinger operator IiI\h associated to this mag-

netic field, which has the following expression :
d
—~ h 0 2
Hh—]z_:@ 5e )

This operator is essentially selfadjoint with compact resolvant on L*(R?)

([1]). Let us denote by Nj(F) the counting function of its spectrum :
Nu(E) = card{X;(h); X;(h) eigenvalue of H), and Ai(h) < EY} .
—— d .
We clearly have H, = h*H},, where Hp, = > (lai— 22)?% is the Schrodinger
Ji=1

operator associated to the magnetic field 2. As a consequence, N, (E) = N ()
for any fixed energy F | if we denote by N the counting function relative to Hj,.

The behaviour of N(X), for a fixed A , and for the great values of A is well
known (cf. [3]):
A1 —oM)] < N < NEA(1+o(1))] .
In the general case, the expression for N3° is the following :

[4/2]

ZC’” 3 / an+1 ’““Hb

(n11 1nr EZ+

We used the following notations :
— {r € REsr(x) = 1)

_ Tk
Ck,r - (271-)]‘3+7’

v, = volume of the unit ball of R .

Our aim in this paper is to determine an asymptotic formula of Nj,(F) with fixed
energy F when h tends to zero. Using an adaptation of the method explained in

[3], we prove the following result :

THEOREM. — Under the conditions (x), we have, for any energy E :

NEIE( — o(1)] € Nu(B) < 2o NERIEQ+o()]  (h = 0).



Remark 1. — The expression for N3* becomes more explicit when d = 2.
By the way if we set T'(\) = card{n > 0;2n+ 1 < A} et z = (z,y), we get :

[ | E
AV () = g [ IBEIT (s ey

Remark 2. — 1t is possible to recover the conclusions of this theorem by
studying the semi-group exp(—tH},) (cf. [14]). The following asymptotic formula
is obtained : .

Tr(exp(—tHp)) ~ mZhB(t), h —0,

r(z)
where Z,p(t) = (4mt)=4/? Jra 11 %dm is precisely the Laplace transform
i=1

of the function N3 (A). To see this let us compute , for simplicity, in the case

where the rank of B is constant and & = 0. (see [14] for the general case .)

We have then :

as — 1
WO~ G > . Hb

n17 ,TL,‘ EZ+

where N;(z) = é: (2n; + 1)bi(z) .

So the Laplace transform can be computed rather simply :

/Oooe-”ngS(A):(Qi)r > / et Hb

(TL], ,TL,. €Z+

t(2n;+1)b H b
=1n;=0
and : )
0 b:(z)e z
/ —tAdN%s _ Z(T) — dz
0 reR i 11—6— i(z)
and finally :
~ —t)\dNas _
/0 reR: i smh tb

However the method used in [14] requires stronger conditions for B, in order

to make sure that exp(—tH},) is a trace-class semi-group.

I am indebted to Colette Anné, Jean-Pierre Demailly and Alain Dufresnoy
for useful discussions on this subject, and particularly to Yves Colin de Verdiére
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for his constant attention. Finally | thank L.S.Frank for helpful corrections and

suggestions.

2. Two necessary results for the proof

2.1. Schrodinger operator with a constant magnetic field in a cube and

Dirichlet conditions . — Let us set
r k/2
vy (A) =Crr Y ()\ - (2ni+ l)bi(m)> [Tbi=) -
(nl,...,nr)EZj' i=1 + i=1

(In this definition, the numbers k et r depend on z.) The function NE*(\) has

then the following expression :
NE(A) = / vy (V) da |
Rd

In the case of a constant magnetic field, the function vg(A) can be seen
as a density of states, since it makes possible to estimate Np r()), the counting
function of the spectrum concerning Dirichlet problem for the Schrédinger operator
with the constant field B in the cube [0, R]%. We recall the precise estimate, given
in [3] :

ProposiTION . — There exists a constant ¢ depending only on d such
that, for any A with 0 < A < R/2, the following inequalities hold :

NB,R()\) S RdI/B(A)
NB,R()\) Z (R— A)dVB(A - C/AZ) .

2.2. Existence of a subdivision of R? in cubes ”adaptated” to B and
to h.

LEMMA. — Under the assumptions (x), and for a fixed ¢ > 0 , there
exists for any h a subdivision of R® in cubes (€;)i>0 of sides r;, and numbers

(a;)i>1 (0 < a; < r;/2) such that, if we set M; = ”m”ax sup HDﬁa(m)H, the
- /8 =2 rEQ;
following inequalities hold, for any x in §2; and for any integer ¢ > 1 :

i) riM; < ehl|B()|'/?

. 45||B(m )|| 1
1/a2 < — ).
i) 1/a; max( 3 2



Proof. — 1Let us consider first a subdivision of R? in cubes (C,) of sides 1.
According with the assumption (Bs), it is possible to put together in a cube called
Qp the cubes (C,) such that there exists z in (C,) verifying : M, > €3HB(1)H%
This cube does not depend on h.

We subdivide the cubes (C,) external to €y into small cubes of sides r,
with 1/r, an integer. We shall denote these small cubes by ;. Two cases may
occur concerning the cubes (C,), each one determines a special choice of r,, :

1) M, > eh min ||B(z)||?

reC,
In this case it is possible to choose r, such that 1/r, is a integer and the

following inequalities hold :

h
T min [B@)[1¥ <M, < ch min [|B(@)][? .

The inequality i) of the lemma is therefore satisfied, since r; = r, for the Q;

contained in Cy, and since we have : M; < M,. We choose now all the «; equal
in Cy, to a, = \/er,, which yields

4M., 4e||B
1a? = 1/(er?) < ;< LBl
he* min ||B(z)||? h
r€C,

This last inequality comes in fact as a result of the choice of €.
2) M, < ch min ||B(z)|>.
reC,

We set in this case r; = r, = 1, so that inequality i) is satisfied and that
1/a? =1/e.

1

Remark. — The assumption (B;) ensures that the real number micn I|B(z)]2
reCa

is not zero.

In the following paragraph, € is fixed. We shall be using the subdivision

(€2;) associated to a fixed value of h for the moment.

3. Proof of the theorem
3.1. Minoration of N,(F).

We denote by V the connexion d + ia/h, associated to the field B/h , and
by V; the connexion d + ia;/h, associated to the field B(z;)/h for an arbitrarily
fixed point z; in Q;, and defined on the Sobolev spaces H{ (;).
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We now use the isometric injection given by : j : €@ HJ (Q;) — D(qB/n),
i>1
J(épfi) = Zf, , 80 we can introduce the following quadratic forms :

o @ f) = Z/ Vil

i>1 i>1

m(f) = [ VI with f= 301

i>1

It is possible to choose for the potential of B(z;) the Taylor series up to
order 1 of a in z;, so that we can write :

[(V = Vi) fi(2)] = I—[ (2) —a(z;) = da(z:)(z = z:)] fi(2)] < %Ilw—willeilfi(m)l-

It results from that, and from the inequality i) of the lemma, the following

inequality, for any 7 :

[ RISt a@m+ 01/ e Y 1B ||/|f2|2

i>1 i>1
so that, by application of the minimax principle :
A g? 1
Np 14+ =)||B(z:)]|] -
> Y Nt s~ Tz (0 25 1B

i>1

2
Let us choose 1 so that : ¢ = —2.—. Then we have :
K V1472

whence :

A n?
N(A) > § NB(.’E‘i)/h,7‘i[ 9 2 ||B(m2)||] .
= L+#n* 147

As a result of the statement in the case of a constant magnetic field in a

cube (see Proposition 2.1), and of the inequality ii) of lemma 2.2 we can write

consecutively :
1 c
N(A) > = ai)" vp(a, -0 IB(zi)l) - —
N(A) 2 i;(n a;) VB(I,)/h[lJrn2 (A=n7[IB(z:)D) azz] )
N> S0 = ) vy g — (14 20 ) - ol
< £ i i B(z;)/h 1+772 1+772

(We have set : e, = /1 +n%.)



Considering the expression of vp(,,) /1, and the equivalence between || B(z;)||

and the greatest eigenvalue by of B at the point z;, we notice that the preceding

sum takes in account only the indices 72 which satisfy :

A n* 4ce ce by
_ 1 MB(z)) — =2 > 2L
o T EIBE) - S
We get therefore the following minoration :
FA— K
d
N(A) = ;(m - ai) VB(xi)/h[m]
with : .
F =
1+ n?
2
7 dcey
= 1
G 1-|—772( + h )
. cey
So we compute :
F 1
= nce : =1-0(h) - .
hG+1  n?(h+4ce;) + 14 n? whence hG +1 1= 0(h) - 0(e)
In the same way we have :
K c
=c.p=—-(1-0(h) —
rey = e = (1= 0(A) ()

Finally :

Now we use the fact that z; is an arbitrary number in Q; and we write

A= E so we get :

N(hﬂé) > (1-0(ve)) / vn(o)/n 73 (1= 0(h) = 0()) = ee] -

fL‘eQO

&

Qo takes part in this inequality only as an element of the subdivision, ele-
ment which does not depend on h. For that reason we can allow h to go to 0 .
Finally, using the following fact :

B E
/ VB(w)/h(h_g) = 0(/ VB(m)/h(b—Z)) when h — 0
Qo g R )

we get the final minoration

V)2 [ vnoyn (1= 000 = 0)]



3.2. Majoration of N, (F).

We are going to use now the covering of R? by the flvi, which will be cubes
centered on the €; but of sides r; + «a;.

We set : Qg = {z € R%;d(z,9Q) < \/€/2}. From that we define : ay = /€.
We construct then a family of functions ¢; € C2°(€;) verifying : > ¢? = 1 et
Vo € Q;, ||doi(z)]] < ¢/a;. (c = max#[( ), with I(z) ={i > 0;2 € Q;}. cisa

TER
constant which depends only of d ). The construction of such a family is explained
in details in [3] or [9]. We define an injection from D(gp,;) into @ Hy () by the
i>0
following formula : f — @ (f¢;), and also a quadratic form ¢, (€ f;) in the same
i>0

way as before.

a) Link between V f¢; and V f. — We have :
STVl = Y16V + Fldon))* =Y [0V I+ 1112 1de]* .

120 120 120 120

Notice that the double product is zero due to the choice of the ¢; : 0 = d(Y ¢7) =

i>0
2> ¢idg;. By integration we get the following :
i>0
[ S vsal < [ 1907+ [ S laopir
R 550 R R 550
Moreover, the inequality ii) of the lemma gives :
Y ldgi(@)P < Y ldei(e)]® < ele/e + 4c’e|| B(a)||/h]
>0 i€I(x)
and then
g c? . . B
[ Swaoir < S [ gpace [ 12
Rd i>0 g JRd R4
We are going to use the following property :
PRrROPERTY. — If B satisfies the assumption (Bs), there exists a constant

k which depends only on B and on d such that the following inequality holds :

[ By [ g

The proof of that result is given in the appendix; it uses a calculus explained

n [10].



Finally we obtain :

[ wrer <S [ p+avacn [ vee.

120

b) Link between V and V;. — For any function f; defined on ﬁ; we have :
IVifil? < IV =V £l + VAP,
so we get, after integration and the use of the inequality i) of the lemma, in the

same way as precedingly :

S vz 3w - S [ e

>0 120

c¢) Using minimax principle for the new cubes. — Let us set C' = 4kc>.

(From a) and b) we obtain the following minoration :

(+ce) [ VI 2 3 / Vifoil? — | Blas H/ I ——/ A2+ Ao

i>1

Mg
Ao = /~ |V0f0|2 ;;TO /~ |f|2
Qo

We get then, by using the equality : >° [~ [féil* = [pa [f|* and the minimax
i>1 '

with :

principle :
N <D Npenrta, [N+ K + G B[] + No
i>1
with
F=1+4+Ce
G=¢e*(1+Ce)

CS
K ==(1+Ce)

M2 4
No = NB(Z‘O)/}L ro+ao [)\F+K + F ;: 0] ’

We obtain therefore the following majoration :

FA+ K M2 s
N < Z(ri+az‘)d VB(x,-)/h[m] +(ro+a0)* vp (g n [F(A+ ;: 0)‘”‘] :
i>1

Making analogous computations as in the preceding section we can write

now :

NG < (14 00A) (X vyl

i>1

b d
h—(l +0(h)+0(e)) + ca’h] + 7“01/0> ,



with : )
Yo = VB(z0)/h [h_Z(E + Myrg)(1+0(e)) + K]

and cp . = ¢*(1+0(h) +0(¢)) /e, so that :

N(}i) > (] + 0(\/5)) /reﬂ I/B(r)/h[}%(] + O(h) + 0(5)) + Ca,h]

1 .
4 [ vm g (B M) (14 0() + K]
Qo
As before, we can allow now A to go to 0 and conclude :

NE) < [ vz (14 0(0) +06))]

3.3. Expression of NB/h

Let us set : A, = {z € R% r(z) = r}. We have :
[d/2]

as bi(x) \k/2 7 bil2)
Ng () ZC}” Z / 2ni-|—1) 3 )+ 3 dz

(nla ,TL,. EZ+

.
—

so to say :
[4/2]

NEL(A hdZCw > /hQA > (2ni+1)hbi(x) ’“”th

(nla 7nr)€Z+
We have then :

1 as
NEmm(A) = h—th};(th) )
and finally :
1 .. 1 o ras
mNhB[E(l —o(1))] < Nu(£) < mNhB[E(l +o(1))] .
Appendix

Proof of property 3.2.

Let & be the application from R\ B='(0) into the unit sphere S of R44=1)/2
defined as follows : &§ : 2 — B/||B|| (B can be seen as an application in R44=1)/2),
We first show that, if B satisfies the assumption (Bj), there exists a function
defined in R? with limit zero at infinity and such that ||dd||* = ¢ (z)||B||. The

proof consists on computing ||d5|| : for hin RU?=1/2 we have :

h
ﬁ+\|B

(@0)(h) = HB( )H3
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and we conclude by noticing that assumption (Bs) gives the following inequality :
there exists a function 1 defined in R? with limit zero at infinity and such that
4B = ¥ ()[| B[/

Now we can construct a covering of the sphere S in the following way. We
set m =d(d—1)/2+ 1, we choose m points Ay,..., A, of S composing a regular

simplex and for k= 1,...,m we consider a smooth function y; on S such that :
i) xe(M) =1sid(M,Ay) <d(M,A;) pour j=1,...,m
i) Suppxr C {M € S;O_M-O—AZ >0
i) fxklloo = 1
Let us set nx = xx 04, and ¢ = max max||VXk( )||, where V denotes

k=1,.

the gradient in R™~'. We have : ||V, (z)]| S cl||d5( |-
We denote by II; the operator —zai - ﬁ and set By = B OA;C If we

see B as a two-form, it means we chose 2 unit Vectors er and uy in R?% in order to

have : By = F(eg,ur) = Y. (gi’ — 2% (e, up)
1<i<j<d !

We notice now, according to a work of Simon, that if f is a function C'*

with compact support in S, the formal relation :[I1;,11;] = + (g% - g;' ) is justified
77

to yield, by Schwarz inequality :

1 8aj 8(1, 2 2 2
- - <
] GG = Gl < I+ )

(see [1], p.852, th 2.9)

The preceding remark allows us to write the following inequality :

/ZB’“ 2|f|2<mZ/ )

and then, using the additional inequality : Y 77 <m
Bi o 2 < 2 dSII21FI12
Z nilf] mZ DIE+er | dalPLfP

m
Finally we notice that : > Bxni > cu|| B, so we conclude :
k=1

B
(o2 = et maxva)) [ Lygp <o [ wse.

r€R4
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