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The problem
|7’ () : open setin R4 (d > 2) T

o 0f) compact
s either Q or R\ Q is bounded.

® P: aparticle in ©2 in the presence of a magnetic field B.

® Classically: if |B(x)| — +o0 as z approaches 052, we expect
that P is confined and never visits the boundary

o |
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The problem
|7’ () : open setin R4 (d > 2) T

o 0f) compact
s either Q or R\ Q is bounded.

® P: aparticle in ©2 in the presence of a magnetic field B.

® Classically: if |B(x)| — +o0 as z approaches 052, we expect
that P is confined and never visits the boundary

® quantically: P never feels the boundary < B completely
determines the motion < no need for (BC)
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The problem
|7’ () : open setin R4 (d > 2) T

o 0f) compact
s either Q or R\ Q is bounded.

® P: aparticle in ©2 in the presence of a magnetic field B.

® Classically: if |B(x)| — +o0 as z approaches 052, we expect
that P is confined and never visits the boundary

® quantically: P never feels the boundary < B completely
determines the motion < no need for (BC)

® mathematically: find conditions on B(x) (as z — 012) s.t. the
magnetic operator H 4 is e.s.a on C:°(€).
These conditions will not depend on the gauge A, but only on

L the field B. J
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Related result :the scalar case
f ® Replace B by a scalar potential V/ T

® 7 conditionson V (as x — 0f2) s.t. the Schrodinger operator
H=-A+Vises.aonC>*(Q).

o |
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Related result :the scalar case

Replace B by a scalar potential V T

? conditions on V (as = — 0f12) s.t. the Schrddinger operator
H=-A+Vises.aonC>*(Q).

G.Nenciu and I.Nenciu, 08:
Optimal condition on V' near 952, {2 a bounded smooth domain

In particular If V(z) > (2)D(z)~% where D is the distance to

the boundary of Q2.then H = —A + V is e.s.a on C°(9).

|
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L.’

Related result :the scalar case

Replace B by a scalar potential V T

? conditions on V (as = — 0f12) s.t. the Schrddinger operator
H=-A+Vises.aonC>*(Q).

G.Nenciu and I.Nenciu, 08:
Optimal condition on V' near 952, {2 a bounded smooth domain

In particular If V(z) > (2)D(z)~% where D is the distance to

the boundary of Q2.then H = —A + V is e.s.a on C°(9).

Tools:
» Agmon-type results on exponential decay of eigenfunctions

o multidimensional Hardy inequalities.

the term % follows from Hardy inequalities. J
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Magnetic case

® Agmon-type estimates exist

® No separation between kinetic and potential energy — the Hardy
Inequalities cannot be used.

o |
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Magnetic case

Agmon-type estimates exist

No separation between kinetic and potential energy —> the Hardy
Inequalities cannot be used.

— need a lower bound on the magnetic quadratic form A 4
associated to the magnetic potential A.

continuity assumption on the direction of B(x) near 9} —>

hatw) = (1 - ) [ Blap luf? |da] — Cer [Jull®
Qn{z| |z|<R}

Vu € C5°(Q)

|
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Magnetic case

® Agmon-type estimates exist

® No separation between kinetic and potential energy — the Hardy
Inequalities cannot be used.

® — need a lower bound on the magnetic quadratic form A 4
associated to the magnetic potential A.

® continuity assumption on the direction of B(x) near 02 —

hatw) = (1 - ) [ Blap luf? |da] — Cer [Jull®
Qn{z| |z|<R}

Vu € C5°(Q)

Theorem  If moreover |B(x)|sp > (14 n)D(z)~? (MB)
(n > 0, D : the distance to 92)
Then H 4 is essentially self-adjoint

o |
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The domain (2

f () : open setin R? (d > 2) T

® di the "Riemannian” distance :

dr(v,y) = inf length(y)

Iy, : smooth curves v : [0,1] — Q s.t. v(0) =z, v(1) = v.
® () the metric completion of (2, dr)
o Q. =\ Q the metric boundary of Q.

o |

May 2009 — p. 6



The domain (2

f () : open setin R? (d > 2) T

® di the "Riemannian” distance :

dr(v,y) = inf length(y)

Iy, : smooth curves v : [0,1] — Q s.t. v(0) =z, v(1) = v.

°

() the metric completion of (€2, dr)

Qs = '\ Q the metric boundary of Q.

°

» Assumptions on (2
» (. Is assumed to be compact. ({2 regular)
» Either Q or R4\ Q is bounded.

® If Qis regular, 99 is compact. (99 = Q\ Q the top. boundary of Q)

o |
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An example whereof) is compact whilel,, is not compact

- N

® ¢, asequence of unit vectors in R? converging to e

o X = UneN[O, 1]en

L.. Q=R?\ X J
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® D(x) the distance to the boundary :

- N

D(z) = min dr(z,y) (z€Q)

® Property D is 1-Lipschitz and then a. e. differentiable in €2. At any
point z of differentiability of D, |[dD(z)| < 1.

o |
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® D(x) the distance to the boundary :

D(z) = min dr(z,y) (z€Q)

® Property D is 1-Lipschitz and then a. e. differentiable in €2. At any
point z of differentiability of D, |[dD(z)| < 1.

® Definition  Assume (2 regular.
A continuous function f : 2 — C is regular at the boundary if it
extends by continuity to €2.
® Notations
o ('°(Q): {complex-valued smooth functions with compact support
in Q}.
® |dx| the Lebesgue measure
® (u,v):= |, ut|dz| the L* scalar product

L ® ||u|| the L? norm of u J
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Magnetic field

® AFRY:={ real-valued k-linear antisymmetric forms on R%}.
® A=Y a;dz; asmooth real 1-form on Q (magnetic potential )

® magnetic field associated to A : the two-form B = dA.

B(x) = Z bik(x)dx; Ndzk, bjr(z) = 0jar(z) — Oka;(z) .

1<j<k<d

o |
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Magnetic field

® A\FR%:={ real-valued k-linear antisymmetric forms on R¢}.
» A= Z;.l:l a;dzr; a smooth real 1-form on Q2 (magnetic potential )

® magnetic field associated to A : the two-form B = dA.

B(x) = Z bik(x)dx; Ndzk, bjr(z) = 0jar(z) — Oka;(z) .

1<j<k<d
0 . . .
® V,=Vy/o., = 5. L4 (magnetic connection)
J

d
®» H,=-— Z V? (magnetic Schrddinger operator)
j=1

d
9 hA(u):/QZ|Vju|2|daz| u € C°(2) (magnetic Dirichlet integral)

j=1

o |
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The spectral norm

|7 ® B c A2RY — J an orthonormal basis of R¢ so that T
B:blgdﬂfl/\dl’2—|—bg4dl‘3/\d$4—|—"' with blg Zb34 Z >0

® the sequence by, b3y, -+ IS UNIqUEe

® the non-zero eigenvalues of the antisymmetric endomorphism B of
R? associated to B(x) are £ibo, tibsy, - -.
[d)2

]
Blsp = Y byj_1.2
j=1

o |
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L

The spectral norm

B € A2RY — 3 an orthonormal basis of R so that
B:blgdﬂfl/\dl’2—|—bg4dl‘3/\d$4—|—"' with blg Zb34 Z >0

the sequence b1, b3y, - - - IS UNique

the non-zero eigenvalues of the antisymmetric endomorphism B of
R? associated to B(x) are +ibyo, +ibzy, - - -

[d/2]

|B|Sp = Z b2] 1,29

| B|sp is one half of the trace norm of B = itis a norm
® d=2 = |B|yp =|B]
s d=3 =— |B|, the norm of the v. field B assoc. to B

| B|sp is the infimum of the spectrum of the Schrodinger operator with
constant magnetic field B in R<.

|
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The results

Consider H 4 with domain D(H 4) = C2°(12). T
Theorem (d = 2)
If 02 Is compact with a finite number of connected components and

|B(z)|sp > (D(x))"%, (x near 09)

then the Schrodinger operator H 4 Is essentially self-adjoint.
( still true for any gauge A’ such that dA" = dA = B).

o |
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The results

Consider H 4 with domain D(H 4) = C2°(12). T
Theorem (d = 2)
If 02 Is compact with a finite number of connected components and

|B(z)|sp > (D(x))"%, (x near 09)

then the Schrodinger operator H 4 Is essentially self-adjoint.

( still true for any gauge A’ such that dA" = dA = B).
Theorem (d > 2)

If Q2 is reqgular, if 3n > 0

B(2)lsp = (1+n) (D(2))"*,  (z near 99)

. . b,
and if the functions nx(z) = |Bj(k (i) are regular at the boundary €2,
x)|sp

(forany 1 < j < k <d), then same conclusion.

o |
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Remarks

|7 ® IfQ:={xcRY| f(x) > 0} with f: R? — R smooth, df (y) # 0 for T
y € 092, then f(x) ~ |df (x)|D(x) for x close to 02. And we can

replace D(x) by f(x)/|df (x)].

» About optimality
Proposition: For any 0 < a < v/3/2, there exists a magnetic field B
for which H4 (with dA = B) is not e.s.a. and such that

|B(z)|sp > (x near 0€2).

(D(2))

o |
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Remarks

|7 ® IfQ:={xcRY| f(x) > 0} with f: R? — R smooth, df (y) # 0 for T
y € 092, then f(x) ~ |df (x)|D(x) for x close to 02. And we can

replace D(x) by f(x)/|df (x)].

» About optimality
Proposition: For any 0 < a < v/3/2, there exists a magnetic field B
for which H4 (with dA = B) is not e.s.a. and such that

|B(z)|sp > (x near 0€2).

(D(2))

Consequence
The optimal constant in front of the leading term (D(z))~2isin [v/3/2,1].
— the situation for magnetic fields is different from the situation for

scalar potentials (for which the optimal constant is 3/4)

o |
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Sketch of the proof

-

® Technical lemmas
# Magnetic inequality
#® Local lower bound

® [ower bounds for the magnetic Dirichlet integrals
® d=2
# d > 2 (if the direction of B is regular)

$» Agmon-type estimates

o |
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Technical lemma

fMagnetic iInequality
For any u € C2°(€2), we have

ha(uw) > [(bioulu)| + [{bgau|u)| + - - -

. N
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Technical lemma
fMagneti(: iInequality
For any u € C2°(€2), we have
hA(U) > |<b12u|u>| + \<b34u\u>\ + .-

Proof
Commutator formula : [V;, V] = —i b, —

[{D12ulu)| = [([V1, Va]ulu)| < 2|(Viu[Vau)| < /(|V1U|2 +[Vaul*)|dz] .
Q

Then take the sum of similar inequalities replacing the indices 12 by
34, 56, --.

o |
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Consequence: Local lower bound

() : regular open set in R?, 2y € Q4 T
If B(x) # 0 near xy and the direction of B is regular near z, then, Ve > 0,

3 U nbhd of z( in R? so that, for any ¢ € C>°(U N Q),

ha(6) > (1o /U B(@)spl ()l

o |
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Consequence: Local lower bound

() : regular open set in R?, 2y € Q4 T
If B(x) # 0 near xy and the direction of B is regular near z, then, Ve > 0,

3 U nbhd of z( in R? so that, for any ¢ € C>°(U N Q),

() 2 (1) [ |B(@)lglo(e) Pldal
Proof
® n(x) reg. at the point o = we can choose U s.t.,, Vx € U N,

n(z) = n(zo)lrua < €4/ g1y

® We choose orth. coord. so that n(zg) = niodry A dzg
+nsgadxs N dzy + - - With Nok—1,2k = 0 and Zk Nok—12k = 1.

® Magnetic inequality = for ¢ € C*(QNU),
ha(6) > /U 1B(2) ap(rr2(@) + naa () + - )]p(x) 2|z

\— and n12(£€)—|—n34($)—|—--- > 1 —e. J
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Lower bounds for the magnetic Dirichlet integrals

Theorem d = 2 Assume that 92 C B(O, R). If B # 0 near 012, then there T
exists cg € R so that, Vu € C°(),

ha(u) > / 1BJul|dz| — crllull?
QNB(O,R)

o |
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Lower bounds for the magnetic Dirichlet integrals

Theorem d = 2 Assume that 92 C B(O, R). If B # 0 near 012, then there T
exists cg € R so that, Vu € C°(),

ha(u) > / 1BJul|dz| — crllull?
QNB(O,R)

Proof

9

© o 0

The sign of B is constant near each conn. component of 912.
Write Q C U, Q;, Q91 NdN =0, B> 00n s and B < 0 on 3.
Take a partition of unity ¢,, j = 1,2, 3,

Use IMS formula

2

ha(u) = 3 ha(é) — /

1=0 Q

2
(Z |d¢ﬂ> ul? |dz|
=0

apply (MI) in ; N Q for [ = 2,3 and the lower bound 0 for €2;.

|
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fTheorem d>2 T

Assume that 02 C B(O, R). If B = dA # 0 near 052 and if the n,;(x) are
regular at 0f2, then, for any € > 0, there exists C. r > 0 so that,
Vu € C(9),

haw) = (=) [ BlyJuflde] - Cor [ Juf?lda
Q

QNB(O,R)

o |
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fTheorem d>2 T

Assume that 02 C B(O, R). If B = dA # 0 near 052 and if the n,;(x) are
regular at 0f2, then, for any € > 0, there exists C. r > 0 so that,
Vu € C(9),

hatw) = (1 - ) [

Blepluf?ldal = Cer [ fulda].
QNB(O,R) Q

Proof

® Choose a finite covering of ., by opensets U;, [ =1,--- N of R? s.t
(LLB) are satisfied.

® Choose a partition of unity ¢;,1 =0, --- , N with
e Forl>1,¢,€ CXU;), ¢oisC®(Q)
® > ,07=1InQ, supd|ddi]* =M (%)
® Use (LLB) for! > 1, the bound (x) and IMS identity

o |
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Agmon-type estimates

Theorem T
Assume that 052 is compact, and that ¢ € R such that, Vu € C2°(€),
ha(u) - / D(z)"*u(@)[*|dz| = cllul® . ()
{ze | D(x)<1}

Then, for E << 0, if v is a weak L?(€Q)-solution of (H4 — E)v = 0,
v vanishes identically and H 4 is essentially self-adjoint.

o |
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Agmon-type estimates

Theorem T
Assume that 052 is compact, and that ¢ € R such that, Vu € C2°(€),
ha(u) - / D(z)"*u(@)[*|dz| = cllul® . ()
{ze | D(x)<1}

Then, for E << 0, if v is a weak L?(€Q)-solution of (H4 — E)v = 0,
v vanishes identically and H 4 is essentially self-adjoint.
Proof

® |emma Let v be a weak solution of (H4 — F)v =0, and let f be a
real-valued Lipschitz function with compact support. Then

(fol(Ha — E)(fv)) = (v | |df (2)[*v) . (x* %)

® Apply the formula (x % %) to an appropriate f.

o |
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The function f

-

® Consider0<p< zand1< R < +oo.
® Define f = F(D) with

( Oforu <pandforu>R+1
2(u — p) for p < u < 2p

F(u)=< ufor2p<u<l1
lforl1<u<R

\ R+1—-—uforR<u<R+1

|
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® |df|? = F'(D)* almost everywhere.

f ® Apply inequality (xx) tou = fo —= T
(Ha = E)(fo) | o) > | o da| + el fol2
2p<D(x)<1

o |
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|df|? = F’(D)? almost everywhere.

Apply inequality (xx)to u = fv = T
(Ha = E)(fo) | o) > | 0[2|da] + e fol
2p<D(x)<1

On the other hand, use the explicit values of df and the equality
(x * %) to get:

(Ha = E)(fo) | fo) < 4 [ < prayen, [0/ 1da] + -+

"'fngD(x)g 0| |da|+ fRSD(w)gR—l—l 0| |da] -

=¢de2§e/ wﬁmw+/ o]?|da]
p<D(z)<2p R<D(z)<R+1

Take p — 0and R — +o0

|
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End of proof, remarks

|7 ® |[tis enough to show that dc € R such that, Vu € C°(2), T
ha(u) 2/ D (@)~ |u(z)*|dz| — cllu)?,
QNB(O,R)

under the assumpt of Thms d = 2 and d > 2. This is a consequence
of lower bounds for MDI

o |
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End of proof, remarks

|7 ® |[tis enough to show that dc € R such that, Vu € C°(2), T
ha(u) 2/ D ()| 72 |u(z)*|dz| — cl|ul?,
QNB(O,R)
under the assumpt of Thms d = 2 and d > 2. This is a consequence

of lower bounds for MDI

® Essential self-adjointness depends only on the boundary behavior
X a smooth manifold with a smooth density |dz| . If L;, j = 1,2 are
symm. ell. diff. op. of degree m on L?(X, |dx|) so that L, e.s.a. and
Lo — Ly = M compactly supported, then L, is e.s.a..

— To prove self-adjointness in 2, nothing to prove at co in R¢

o |
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End of proof, remarks

f ® |[tis enough to show that dc € R such that, Vu € C°(2), T
ha(u) 2/ D (@)~ |u(z)*|dz| — cllu)?,
QNB(O,R)

under the assumpt of Thms d = 2 and d > 2. This is a consequence
of lower bounds for MDI

® Essential self-adjointness depends only on the boundary behavior
X a smooth manifold with a smooth density |dz| . If L;, j = 1,2 are
symm. ell. diff. op. of degree m on L?(X, |dx|) so that L, e.s.a. and
Lo — Ly = M compactly supported, then L, is e.s.a..

— To prove self-adjointness in 2, nothing to prove at co in R¢

® Essential self-adjointness is independent of the choice of a gauge
If Ao, = Ay +dF, F € C°(X,R), then H,, e.s.a. = H4, e.s.a.
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About optimality

fA non e.s.a. Schrodinger operator with large magnetic field near of) T

® Theorem
Consider

o Q={(z,y) eR?| 2 +y*=r? <1}
o A=oalzdy—ydz)/(r—1) ,0<a<+3/2.
The operator H 4 is not essentially self-adjoint.

o |
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About optimality

fA non e.s.a. Schrodinger operator with large magnetic field near of) T

® Theorem
Consider

o Q={(z,y) eR?| 2?+y*=7r? <1}
o A=oalzdy—ydz)/(r—1) ,0<a<+3/2.
The operator H 4 is not essentially self-adjoint.

Proof

® The corresponding magnetic field B writes B(x,y) = %dm Ndy ,

|B(x)| ~ a/(D(z))? (near the boundary)

9
’HA:_(?_Q_EQ_%(W@ a’r?
9

or2  ror r—189+(r—1)2'
—> H 4 splitsasasum ), Hyu ,, Where Hy 5, acts on functions

L e f (7). J
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L I

-

Look at the m = 0 component

Reduce the measure |rdrdf| to 2wdr by a change of function:

— for any function u(r) = r~1/20(r),

d2
Hau = r1/2 (_ﬁ + V(r)) v, where V(r) =
r

1 2,.2

a‘r
B 2+ 2 -
Ar (r—1)

|
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L I

Look at the m = 0 component

Reduce the measure |rdrdf| to 2wdr by a change of function:
— for any function u(r) = r~1/2u(r),

Hau=r"12 (—d—2 + V('r')) v, where V(r) = — L + ofr .
dr? 42 (r—1)2

0 < a<+/3/2 = Te> 0 with

Vir) < (Z — e) (r—1)"2% near r=1

— the operator H = —% + V(r) is in the limit circle case at r = 1

(Theorem X.10 (Reed-Simon))

Let v(r) be an L? solution of (H — E)v =0
then u(r) = r—1/2vu(r) is an L? solution of (H4 — E)u = 0 in €.

|
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Example 1 :Polytopes

f ® () : apolytope given by Q2 = ﬂgNzl{x | Li(z) < 0}, T

d
® [;'s are the affine real-valued functions L;(z) = Z ni;T; + a; .
j=1

® Assume that,fori =1, ---,d, Z;.l:l n?j =landn;; #0

o |
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.

o

o

Example 1 :Polytopes

() : a polytope given by Q = n;, {x | Li(z) < 0},

-

d
L;'s are the affine real-valued functions L;(z) = Z ni;T; + a; .
j=1

Assume that, for: =1, --- ,d, Z;.l:l n?j =landn;; #0

Theorem The operator H 4 in £ with

1 1 . . .
A= ( + + - ) dx, IS essentially self-adjoint.
ni1Lli  mnoiLls

Proof

d

B = (%+%+>d%1/\d$2+2b3d$3/\d$2 ,and
1 2 =3

D = minlSiSN |Lz|

— B = bidx1 N dxo + Z?:S bjdxj A dxo With by > D2,

— apply (MI) and Agmon-type estimates.

|
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Example 2 :“toroidal domains”

|7 ® 90 : asmooth compact manifold of co-dimension 1 T

® j: 00 — R?the injection of 0Q into R%.  (H. Hopf) :
there exists a nowhere vanishing tangent vector field to 052 (or
1-form) < the Euler characteristic of 02 vanishes ( €2 is toroidal).

o |
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Example 2 :“toroidal domains”

|7 ® 90 : asmooth compact manifold of co-dimension 1 T

® j: 00 — R?the injection of 0Q into R%.  (H. Hopf) :
there exists a nowhere vanishing tangent vector field to 052 (or
1-form) < the Euler characteristic of 02 vanishes ( €2 is toroidal).

» Theorem
® Assume € is toroidal.

® Ay :asmooth 1-form on Q s. t. the 1-form on 9 : w = j*(Ap)
does not vanish

o Definenearo: A= A,/D% «a>1,
(ora =1and Yy € 99, |w(y)| > 1.)

o Then H 4 is essentially self-adjoint.

® Remark The assumption on 99 is fullfilled if Q c R? is bounded by a
2-torus. It is the case for tokamacs.

o |
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Proof

fCheck: T

® The reqgularity of the magnetic field ( to be checked locally near 0f2.)
In local coordinates

® Ay = aydr, + B with 3 = axdzy + - - -
o w== ]*(AO) — CLQ(O,x,)dZCQ + ...

. SOB:d(@> ::CldAo—ozdxl/\ﬁ.

e a+1

o — the direction of B is equivalent as x; — 07 to that of dz; A w
which is non vanishing and continuous on Q.

® The lower bound |Bls, > (1 +n)D~* near df). The norm of B near
the boundary is given, as = — y by |B(x)|sp ~ |w(y)|/ DT .

—> Apply the Theorem d > 2.

o |
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® Remark 1 From the calculation before, it follows that w and o are
iInvariant by any gauge transform in 9f2.

o |
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® Remark 1 From the calculation before, it follows that w and o are
iInvariant by any gauge transform in 9f2.

® Remark 2 If d = 3, magnetic field < vector field in €.
The assumptions = this vector field is asymptotic to —aV+ /D1

o V : the vector field associated to w
o V<1 :deduced from V by a rotation of &7 /2
—> B Is very large near 0f) and parallel to 0.

Point of view of classical mechanics: the trajectories of the charged
particle are spiraling around the field lines and do not cross the
boundary.

Open problem : precise statement.

o |

May 2009 — p. 27



Exemple 3 : Non toroidal domains

f » Remark 1l T

Now any 1-form on X = 02 may have some zeroes.

® Definition
A 1-form w on a compact manifold X is generic if w has a finite
number of zeroes and dw does not vanish at the zeroes of w.

o |
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Exemple 3 : Non toroidal domains

f » Remark 1l T

Now any 1-form on X = 02 may have some zeroes.

® Definition
A 1-form w on a compact manifold X is generic if w has a finite
number of zeroes and dw does not vanish at the zeroes of w.

® Theorem
s Q c R? with a smooth compact boundary X = 0fQ.

® Ay asmooth 1-formin R?s. t. w = j%(Ap) is generic. and at

each zero m of w, |dw(m)|sp > 1.
Then, if A is a 1-form in Q such that near X, A = Aq/D?,

B = dA is confining in €.

®» Remark 2
The field B is more singular than in the toroidal case.

o |
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Exemple 4. Singular points : monopoles
QO=R>\0 meZ\0
® NMonopole of degree m: the magnetic field B,,, = (m/2)p* (o) T
® p:R3\ 0 — S? :the radial projection

» o :the area form on S2.
m xdy N\ dz + ydz N\ dx + zdx N\ dy

In coordinates B,,, =
2 (2 + 9% + z2)3/2

o |
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Exemple 4. Singular points : monopoles
Q=R3\0 meZ\0

® NMonopole of degree m: the magnetic field B,,, = (m/2)p* (o) T
® p:R?\ 0— S? :the radial projection

» o :the area form on S2.
m xdy N\ dz + ydz N\ dx + zdx N\ dy

2 (2 + 9% + z2)3/2

In coordinates B,,, =

®» Remark
B,,| > @r” where the constant is sharp.

® The flux of B,, through S? is equal to 2mm quantization condition
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Exemple 4. Singular points : monopoles

Q=R3\0 mezZ\0

o

9

°

© o o o @

Monopole of degree m: the magnetic field B,, = (m/2)p* (o) T
® p:R?\ 0— S? :the radial projection

» o :the area form on S2.
m xdy N\ dz + ydz N\ dx + zdx N\ dy

2 (2 + 9% + z2)3/2

In coordinates B,,, =

Remark

B,,| > @r” where the constant is sharp.

The flux of B,, through S? is equal to 2rm quantization condition

L,,: complex line bundle, V,,, : Herm. connexion on Q with curv. B,,,.
0 290 1

H,=—-———--—+ =K, , (K,, the angular Schr. op. on 5?)
or2 ror r?

Theorem H,, (the monopole of degree m) is e.s.a. < |m| > 2.
Proof  AT* the lowest eigenvalue of K,,.
® H,ises.a < A" > 3/4.(Weyl's theory for Sturm-Liouville equ.

)
& N =|ml|/2 J
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Exemple 4. Singular points : multipoles
® Denote, for z € R3, B, the monopole of degree 2 with center .

® P (a%) . a homogeneous linear diff. op. of degree n on R? with T
constant coefficients.

® Definition Bp = P(B;).—o IS called a multipole of degree n.

|
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Exemple 4. Singular points : multipoles

Denote, for z € R3, B, the monopole of degree 2 with center z.

P (£) : ahomogeneous linear diff. op. of degree n on R? with T

constant coefficients.

Definition Bp = P(B;).—o IS called a multipole of degree n.
(P =V ofdegree 1)=— By = Ly By =d (1(V)By) .
A multipole of degree 1 is called a dipole.
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Exemple 4. Singular points : multipoles

Denote, for z € R3, B, the monopole of degree 2 with center z.

P (£) : ahomogeneous linear diff. op. of degree n on R? with T

constant coefficients.

Definition Bp = P(B.).—o IS called a multipole of degree n.

(P =V ofdegree 1)— By = Ly By =d («(V)By) .

A multipole of degree 1 is called a dipole.

Theorem |If By = dAy isadipole , H4,, Is essentially self-adjoint.

Proof

o By homogeneous of degree —3
— enough to show that B, does not vanish.

® we cantake V =0/0z.

o B ~d  zdyNdz+ydzANdz+ (2 —t)dz ANdy
VT dtm0 (@22 (2 1)2) |

3xzdyAdz+3yzdzAdr+(22° —x? —y?)dzAdy

® = Byjp. =

(x2+y2+z2)5/2
» The form B; /5. does not vanish in €.
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