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The problem

Ω : open set in Rd (d ≥ 2)

∂Ω compact

either Ω or Rd \ Ω is bounded.

P: a particle in Ω in the presence of a magnetic field B.

Classically: if |B(x)| → +∞ as x approaches ∂Ω, we expect
that P is confined and never visits the boundary
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either Ω or Rd \ Ω is bounded.

P: a particle in Ω in the presence of a magnetic field B.

Classically: if |B(x)| → +∞ as x approaches ∂Ω, we expect
that P is confined and never visits the boundary

quantically: P never feels the boundary ⇔ B completely

determines the motion ⇔ no need for (BC)
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The problem

Ω : open set in Rd (d ≥ 2)

∂Ω compact

either Ω or Rd \ Ω is bounded.

P: a particle in Ω in the presence of a magnetic field B.

Classically: if |B(x)| → +∞ as x approaches ∂Ω, we expect
that P is confined and never visits the boundary

quantically: P never feels the boundary ⇔ B completely

determines the motion ⇔ no need for (BC)

mathematically: find conditions on B(x) (as x → ∂Ω) s.t. the

magnetic operator HA is e.s.a on C∞

o (Ω).

These conditions will not depend on the gauge A, but only on

the field B.
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Related result :the scalar case

Replace B by a scalar potential V

? conditions on V (as x → ∂Ω) s.t. the Schrödinger operator

H = −∆ + V is e.s.a on C∞

o (Ω).
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Related result :the scalar case

Replace B by a scalar potential V

? conditions on V (as x → ∂Ω) s.t. the Schrödinger operator

H = −∆ + V is e.s.a on C∞

o (Ω).

G.Nenciu and I.Nenciu, 08:

Optimal condition on V near ∂Ω, Ω a bounded smooth domain

In particular If V (x) ≥ (3

4
)D(x)−2 where D is the distance to

the boundary of Ω.then H = −∆ + V is e.s.a on C∞

o (Ω).
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Related result :the scalar case

Replace B by a scalar potential V

? conditions on V (as x → ∂Ω) s.t. the Schrödinger operator

H = −∆ + V is e.s.a on C∞

o (Ω).

G.Nenciu and I.Nenciu, 08:

Optimal condition on V near ∂Ω, Ω a bounded smooth domain

In particular If V (x) ≥ (3

4
)D(x)−2 where D is the distance to

the boundary of Ω.then H = −∆ + V is e.s.a on C∞

o (Ω).

Tools:

Agmon-type results on exponential decay of eigenfunctions

multidimensional Hardy inequalities.

the term 3

4
follows from Hardy inequalities.
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Magnetic case

Agmon-type estimates exist

No separation between kinetic and potential energy =⇒ the Hardy
inequalities cannot be used.
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Magnetic case

Agmon-type estimates exist

No separation between kinetic and potential energy =⇒ the Hardy
inequalities cannot be used.

=⇒ need a lower bound on the magnetic quadratic form hA

associated to the magnetic potential A.

continuity assumption on the direction of B(x) near ∂Ω =⇒

hA(u) ≥ (1 − ǫ)

∫

Ω∩{x| |x|≤R}

|B|sp |u|2 |dx| − Cǫ,R ‖u‖2 .

∀u ∈ C∞
o (Ω)
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Magnetic case

Agmon-type estimates exist

No separation between kinetic and potential energy =⇒ the Hardy
inequalities cannot be used.

=⇒ need a lower bound on the magnetic quadratic form hA

associated to the magnetic potential A.

continuity assumption on the direction of B(x) near ∂Ω =⇒

hA(u) ≥ (1 − ǫ)

∫

Ω∩{x| |x|≤R}

|B|sp |u|2 |dx| − Cǫ,R ‖u‖2 .

∀u ∈ C∞
o (Ω)

Theorem If moreover |B(x)|sp ≥ (1 + η)D(x)−2 (MB)
(η > 0, D : the distance to ∂Ω)

Then HA is essentially self-adjoint
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The domainΩ

Ω : open set in Rd (d ≥ 2)

dR the "Riemannian" distance :

dR(x, y) = inf
γ∈Γx,y

length(γ)

Γx,y : smooth curves γ : [0, 1] → Ω s.t. γ(0) = x, γ(1) = y.

Ω̂ the metric completion of (Ω, dR)

Ω∞ = Ω̂ \ Ω the metric boundary of Ω.
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The domainΩ

Ω : open set in Rd (d ≥ 2)

dR the "Riemannian" distance :

dR(x, y) = inf
γ∈Γx,y

length(γ)

Γx,y : smooth curves γ : [0, 1] → Ω s.t. γ(0) = x, γ(1) = y.

Ω̂ the metric completion of (Ω, dR)

Ω∞ = Ω̂ \ Ω the metric boundary of Ω.

Assumptions on Ω

Ω∞ is assumed to be compact. (Ω regular )

Either Ω or Rd \ Ω is bounded.

If Ω is regular, ∂Ω is compact. ( ∂Ω = Ω̄ \ Ω the top. boundary of Ω )
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An example where∂Ω is compact whileΩ∞ is not compact

en a sequence of unit vectors in R
2 converging to e0

X = ∪n∈N[0, 1]en

Ω = R2 \ X
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D(x) the distance to the boundary :

D(x) = min
y∈Ω∞

dR(x, y) (x ∈ Ω)

Property D is 1-Lipschitz and then a. e. differentiable in Ω. At any
point x of differentiability of D, |dD(x)| ≤ 1.
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D(x) the distance to the boundary :

D(x) = min
y∈Ω∞

dR(x, y) (x ∈ Ω)

Property D is 1-Lipschitz and then a. e. differentiable in Ω. At any
point x of differentiability of D, |dD(x)| ≤ 1.

Definition Assume Ω regular.
A continuous function f : Ω → C is regular at the boundary if it
extends by continuity to Ω̂.

Notations

C∞
o (Ω): {complex-valued smooth functions with compact support

in Ω}.

|dx| the Lebesgue measure

〈u, v〉 :=
∫
Ω

uv̄|dx| the L2 scalar product

‖u‖ the L2 norm of u
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Magnetic field

∧kRd:={ real-valued k-linear antisymmetric forms on Rd}.

A =
∑d

j=1 ajdxj a smooth real 1-form on Ω (magnetic potential )

magnetic field associated to A : the two-form B = dA.

B(x) =
∑

1≤j<k≤d

bjk(x)dxj ∧ dxk, bjk(x) = ∂jak(x) − ∂kaj(x) .
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Magnetic field

∧kRd:={ real-valued k-linear antisymmetric forms on Rd}.

A =
∑d

j=1 ajdxj a smooth real 1-form on Ω (magnetic potential )

magnetic field associated to A : the two-form B = dA.

B(x) =
∑

1≤j<k≤d

bjk(x)dxj ∧ dxk, bjk(x) = ∂jak(x) − ∂kaj(x) .

∇j = ∇∂/∂xj
=

∂

∂xj
− iaj (magnetic connection)

HA = −
d∑

j=1

∇2
j (magnetic Schrödinger operator)

hA(u) =

∫

Ω

d∑

j=1

|∇ju|2|dx| u ∈ C∞
o (Ω) (magnetic Dirichlet integral)
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The spectral norm

B ∈ ∧2Rd =⇒ ∃ an orthonormal basis of Rd so that
B = b12dx1 ∧ dx2 + b34dx3 ∧ dx4 + · · · with b12 ≥ b34 ≥ · · · > 0

the sequence b12, b34, · · · is unique

the non-zero eigenvalues of the antisymmetric endomorphism B̃ of
R

d associated to B(x) are ±ib12,±ib34, · · · .

|B|sp :=

[d/2]∑

j=1

b2j−1,2j
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The spectral norm

B ∈ ∧2Rd =⇒ ∃ an orthonormal basis of Rd so that
B = b12dx1 ∧ dx2 + b34dx3 ∧ dx4 + · · · with b12 ≥ b34 ≥ · · · > 0

the sequence b12, b34, · · · is unique

the non-zero eigenvalues of the antisymmetric endomorphism B̃ of
R

d associated to B(x) are ±ib12,±ib34, · · · .

|B|sp :=

[d/2]∑

j=1

b2j−1,2j

|B|sp is one half of the trace norm of B̃ =⇒ it is a norm

d = 2 =⇒ |B|sp = |B|
d = 3 =⇒ |B|sp the norm of the v. field ~B assoc. to B

|B|sp is the infimum of the spectrum of the Schrödinger operator with
constant magnetic field B in R

d.
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The results

Consider HA with domain D(HA) = C∞
o (Ω).

Theorem (d = 2)
If ∂Ω is compact with a finite number of connected components and

|B(x)|sp ≥ (D(x))−2 , (x near ∂Ω)

then the Schrödinger operator HA is essentially self-adjoint.
( still true for any gauge A′ such that dA′ = dA = B).
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The results

Consider HA with domain D(HA) = C∞
o (Ω).

Theorem (d = 2)
If ∂Ω is compact with a finite number of connected components and

|B(x)|sp ≥ (D(x))−2 , (x near ∂Ω)

then the Schrödinger operator HA is essentially self-adjoint.
( still true for any gauge A′ such that dA′ = dA = B).
Theorem (d > 2)
If Ω is regular, if ∃η > 0

|B(x)|sp ≥ (1 + η) (D(x))−2 , (x near ∂Ω)

and if the functions njk(x) =
bjk(x)

|B(x)|sp
are regular at the boundary Ω∞

(for any 1 ≤ j < k ≤ d), then same conclusion.
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Remarks

If Ω := {x ∈ Rd | f(x) > 0} with f : Rd → R smooth, df(y) 6= 0 for
y ∈ ∂Ω, then f(x) ∼ |df(x)|D(x) for x close to ∂Ω. And we can
replace D(x) by f(x)/|df(x)|.

About optimality
Proposition: For any 0 < α <

√
3/2, there exists a magnetic field B

for which HA (with dA = B) is not e.s.a. and such that

|B(x)|sp ≥ α

(D(x))2
(x near ∂Ω).
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Remarks

If Ω := {x ∈ Rd | f(x) > 0} with f : Rd → R smooth, df(y) 6= 0 for
y ∈ ∂Ω, then f(x) ∼ |df(x)|D(x) for x close to ∂Ω. And we can
replace D(x) by f(x)/|df(x)|.

About optimality
Proposition: For any 0 < α <

√
3/2, there exists a magnetic field B

for which HA (with dA = B) is not e.s.a. and such that

|B(x)|sp ≥ α

(D(x))2
(x near ∂Ω).

Consequence
The optimal constant in front of the leading term (D(x))−2 is in [

√
3/2, 1].

=⇒ the situation for magnetic fields is different from the situation for
scalar potentials (for which the optimal constant is 3/4)
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Sketch of the proof

Technical lemmas

Magnetic inequality

Local lower bound

Lower bounds for the magnetic Dirichlet integrals

d = 2

d > 2 (if the direction of B is regular)

Agmon-type estimates
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Technical lemma

Magnetic inequality
For any u ∈ C∞

o (Ω), we have

hA(u) ≥ |〈b12u|u〉| + |〈b34u|u〉| + · · · .
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Technical lemma

Magnetic inequality
For any u ∈ C∞

o (Ω), we have

hA(u) ≥ |〈b12u|u〉| + |〈b34u|u〉| + · · · .

Proof
Commutator formula : [∇j ,∇k] = −i bjk =⇒

|〈b12u|u〉| = |〈[∇1,∇2]u|u〉| ≤ 2|〈∇1u|∇2u〉| ≤
∫

Ω

(|∇1u|2 + |∇2u|2)|dx| .

Then take the sum of similar inequalities replacing the indices 12 by
34, 56, · · · .
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Consequence: Local lower bound
Ω : regular open set in R

d, x0 ∈ Ω∞

If B(x) 6= 0 near x0 and the direction of B is regular near x0 then, ∀ǫ > 0,
∃ U nbhd of x0 in Rd so that, for any φ ∈ C∞

o (U ∩ Ω),

hA(φ) ≥ (1 − ǫ)

∫

U

|B(x)|sp|φ(x)|2|dx| ,
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Consequence: Local lower bound
Ω : regular open set in R

d, x0 ∈ Ω∞

If B(x) 6= 0 near x0 and the direction of B is regular near x0 then, ∀ǫ > 0,
∃ U nbhd of x0 in Rd so that, for any φ ∈ C∞

o (U ∩ Ω),

hA(φ) ≥ (1 − ǫ)

∫

U

|B(x)|sp|φ(x)|2|dx| ,

Proof

n(x) reg. at the point x0 =⇒ we can choose U s.t., ∀x ∈ U ∩ Ω,

|n(x) − n(x0)|Eucl ≤ ǫ
√

2
d(d−1)

We choose orth. coord. so that n(x0) = n12dx1 ∧ dx2

+n34dx3 ∧ dx4 + · · · with n2k−1,2k ≥ 0 and
∑

k n2k−1,2k = 1.

Magnetic inequality =⇒ for φ ∈ C∞
o (Ω ∩ U),

hA(φ) ≥
∫

U

|B(x)|sp(n12(x) + n34(x) + · · ·)|φ(x)|2|dx|

and n12(x) + n34(x) + · · · ≥ 1 − ǫ.
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Lower bounds for the magnetic Dirichlet integrals

Theorem d = 2 Assume that ∂Ω ⊂ B(O, R). If B 6= 0 near ∂Ω, then there
exists cR ∈ R so that, ∀u ∈ C∞

o (Ω),

hA(u) ≥
∫

Ω∩B(O,R)

|B||u|2|dx| − cR‖u‖2 .
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Lower bounds for the magnetic Dirichlet integrals

Theorem d = 2 Assume that ∂Ω ⊂ B(O, R). If B 6= 0 near ∂Ω, then there
exists cR ∈ R so that, ∀u ∈ C∞

o (Ω),

hA(u) ≥
∫

Ω∩B(O,R)

|B||u|2|dx| − cR‖u‖2 .

Proof

The sign of B is constant near each conn. component of ∂Ω.

Write Ω̄ ⊂ ∪3
l=1Ωl, Ω1 ∩ ∂Ω = ∅, B > 0 on Ω2 and B < 0 on Ω3.

Take a partition of unity φj , j = 1, 2, 3,

Use IMS formula

hA(u) =
2∑

l=0

hA(φlu) −
∫

Ω

(
2∑

l=0

|dφl|2
)
|u|2 |dx| ,

apply (MI) in Ωl ∩ Ω for l = 2, 3 and the lower bound 0 for Ω1.
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Theorem d > 2

Assume that ∂Ω ⊂ B(O, R). If B = dA 6= 0 near ∂Ω and if the njk(x) are
regular at ∂Ω, then, for any ǫ > 0, there exists Cǫ,R > 0 so that,
∀u ∈ C∞

o (Ω),

hA(u) ≥ (1 − ǫ)

∫

Ω∩B(O,R)

|B|sp|u|2|dx| − Cǫ,R

∫

Ω

|u|2|dx| .
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Theorem d > 2

Assume that ∂Ω ⊂ B(O, R). If B = dA 6= 0 near ∂Ω and if the njk(x) are
regular at ∂Ω, then, for any ǫ > 0, there exists Cǫ,R > 0 so that,
∀u ∈ C∞

o (Ω),

hA(u) ≥ (1 − ǫ)

∫

Ω∩B(O,R)

|B|sp|u|2|dx| − Cǫ,R

∫

Ω

|u|2|dx| .

Proof

Choose a finite covering of Ω∞ by open sets Ul, l = 1, · · ·N of Rd s.t
(LLB) are satisfied.

Choose a partition of unity φl, l = 0, · · · , N with

For l ≥ 1, φl ∈ C∞
o (Ul), φ0 is C∞

o (Ω)
∑

l φ
2
l ≡ 1 in Ω, sup

∑
l |dφl|2 = M (∗)

Use (LLB) for l ≥ 1 , the bound (∗) and IMS identity
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Agmon-type estimates

Theorem
Assume that ∂Ω is compact, and that ∃c ∈ R such that, ∀u ∈ C∞

o (Ω),

hA(u) −
∫

{x∈Ω | D(x)≤1}

D(x)−2|u(x)|2|dx| ≥ c‖u‖2 . (∗∗)

Then, for E << 0, if v is a weak L2(Ω)-solution of (HA − E)v = 0,
v vanishes identically and HA is essentially self-adjoint.
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Agmon-type estimates

Theorem
Assume that ∂Ω is compact, and that ∃c ∈ R such that, ∀u ∈ C∞

o (Ω),

hA(u) −
∫

{x∈Ω | D(x)≤1}

D(x)−2|u(x)|2|dx| ≥ c‖u‖2 . (∗∗)

Then, for E << 0, if v is a weak L2(Ω)-solution of (HA − E)v = 0,
v vanishes identically and HA is essentially self-adjoint.
Proof

Lemma Let v be a weak solution of (HA − E)v = 0, and let f be a
real-valued Lipschitz function with compact support. Then

〈fv|(HA − E)(fv)〉 = 〈v | |df(x)|2v〉 . (∗ ∗ ∗)

Apply the formula (∗ ∗ ∗) to an appropriate f .
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The function f

Consider 0 < ρ < 1
2 and 1 < R < +∞.

Define f = F (D) with

F (u) =






0 for u ≤ ρ and for u ≥ R + 1

2(u − ρ) for ρ ≤ u ≤ 2ρ

u for 2ρ ≤ u ≤ 1

1 for 1 ≤ u ≤ R

R + 1 − u for R ≤ u ≤ R + 1
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|df |2 = F ′(D)2 almost everywhere.

Apply inequality (∗∗) to u = fv =⇒

〈(HA − E)(fv) | fv〉 ≥
∫

2ρ≤D(x)≤1

|v|2|dx| + c‖fv‖2 .
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|df |2 = F ′(D)2 almost everywhere.

Apply inequality (∗∗) to u = fv =⇒

〈(HA − E)(fv) | fv〉 ≥
∫

2ρ≤D(x)≤1

|v|2|dx| + c‖fv‖2 .

On the other hand, use the explicit values of df and the equality
(∗ ∗ ∗) to get:

〈(HA − E)(fv) | fv〉 ≤ 4
∫

ρ≤D(x)≤2ρ
|v|2|dx| + · · ·

· · ·
∫
2ρ≤D(x)≤1

|v|2|dx|+
∫

R≤D(x)≤R+1
|v|2|dx| .

=⇒ c‖fv‖2 ≤ 4

∫

ρ≤D(x)≤2ρ

|v|2|dx| +
∫

R≤D(x)≤R+1

|v|2|dx| .

Take ρ → 0 and R → +∞
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End of proof, remarks

It is enough to show that ∃c ∈ R such that, ∀u ∈ C∞
o (Ω),

hA(u) ≥
∫

Ω∩B(O,R)

|D(x)|−2|u(x)|2|dx| − c‖u‖2,

under the assumpt of Thms d = 2 and d > 2. This is a consequence
of lower bounds for MDI
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End of proof, remarks

It is enough to show that ∃c ∈ R such that, ∀u ∈ C∞
o (Ω),

hA(u) ≥
∫

Ω∩B(O,R)

|D(x)|−2|u(x)|2|dx| − c‖u‖2,

under the assumpt of Thms d = 2 and d > 2. This is a consequence
of lower bounds for MDI

Essential self-adjointness depends only on the boundary behavior
X a smooth manifold with a smooth density |dx| . If Lj , j = 1, 2 are
symm. ell. diff. op. of degree m on L2(X, |dx|) so that L1 e.s.a. and
L2 − L1 = M compactly supported, then L2 is e.s.a..

=⇒ To prove self-adjointness in Ω, nothing to prove at ∞ in R
d
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End of proof, remarks

It is enough to show that ∃c ∈ R such that, ∀u ∈ C∞
o (Ω),

hA(u) ≥
∫

Ω∩B(O,R)

|D(x)|−2|u(x)|2|dx| − c‖u‖2,

under the assumpt of Thms d = 2 and d > 2. This is a consequence
of lower bounds for MDI

Essential self-adjointness depends only on the boundary behavior
X a smooth manifold with a smooth density |dx| . If Lj , j = 1, 2 are
symm. ell. diff. op. of degree m on L2(X, |dx|) so that L1 e.s.a. and
L2 − L1 = M compactly supported, then L2 is e.s.a..

=⇒ To prove self-adjointness in Ω, nothing to prove at ∞ in R
d

Essential self-adjointness is independent of the choice of a gauge
If A2 = A1 + dF , F ∈ C∞(X, R), then HA1

e.s.a. =⇒ HA2
e.s.a.
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About optimality

A non e.s.a. Schrödinger operator with large magnetic field near ∂Ω

Theorem
Consider

Ω = {(x, y) ∈ R2| x2 + y2 = r2 < 1}
A = α(xdy − ydx)/(r − 1) , 0 < α <

√
3/2.

The operator HA is not essentially self-adjoint.
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About optimality

A non e.s.a. Schrödinger operator with large magnetic field near ∂Ω

Theorem
Consider

Ω = {(x, y) ∈ R2| x2 + y2 = r2 < 1}
A = α(xdy − ydx)/(r − 1) , 0 < α <

√
3/2.

The operator HA is not essentially self-adjoint.

Proof

The corresponding magnetic field B writes B(x, y) = α(r−2)
(r−1)2 dx ∧ dy ,

|B(x)| ∼ α/(D(x))2 (near the boundary)

HA = − ∂2

∂r2
− 1

r

∂

∂r
− 2iαr

r − 1

∂

∂θ
+

α2r2

(r − 1)2
.

=⇒ HA splits as a sum
∑

m∈Z
HA,m where HA,m acts on functions

eimθf(r).
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Look at the m = 0 component

Reduce the measure |rdrdθ| to 2πdr by a change of function:
=⇒ for any function u(r) = r−1/2v(r),

HAu = r−1/2

(
− d2

dr2
+ V (r)

)
v, where V (r) = − 1

4r2
+

α2r2

(r − 1)2
.
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Look at the m = 0 component

Reduce the measure |rdrdθ| to 2πdr by a change of function:
=⇒ for any function u(r) = r−1/2v(r),

HAu = r−1/2

(
− d2

dr2
+ V (r)

)
v, where V (r) = − 1

4r2
+

α2r2

(r − 1)2
.

0 < α <
√

3/2 =⇒ ∃ǫ > 0 with

V (r) ≤
(

3

4
− ǫ

)
(r − 1)−2 near r = 1

=⇒ the operator H = − d2

dr2 + V (r) is in the limit circle case at r = 1

(Theorem X.10 (Reed-Simon))

Let v(r) be an L2 solution of (H − E)v = 0

then u(r) = r−1/2v(r) is an L2 solution of (HA − E)u = 0 in Ω.
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Example 1 :Polytopes

Ω : a polytope given by Ω = ∩N
i=1{x | Li(x) < 0} ,

Li’s are the affine real-valued functions Li(x) =
d∑

j=1

nijxj + ai .

Assume that, for i = 1, · · · , d,
∑d

j=1 n2
ij = 1 and ni1 6= 0
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Example 1 :Polytopes

Ω : a polytope given by Ω = ∩N
i=1{x | Li(x) < 0} ,

Li’s are the affine real-valued functions Li(x) =
d∑

j=1

nijxj + ai .

Assume that, for i = 1, · · · , d,
∑d

j=1 n2
ij = 1 and ni1 6= 0

Theorem The operator HA in Ω with

A =

(
1

n11L1
+

1

n21L2
+ · · ·

)
dx2 is essentially self-adjoint.

Proof

B =

(
1

L2
1

+
1

L2
2

+ · · ·
)

dx1 ∧ dx2 +

d∑

j=3

bjdxj ∧ dx2 , and

D = min1≤i≤N |Li|.
=⇒ B = b1dx1 ∧ dx2 +

∑d
j=3 bjdxj ∧ dx2 with b1 ≥ D−2.

=⇒ apply (MI) and Agmon-type estimates.
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Example 2 :“toroidal domains”

∂Ω : a smooth compact manifold of co-dimension 1

j : ∂Ω → R
d the injection of ∂Ω into R

d. (H. Hopf) :
there exists a nowhere vanishing tangent vector field to ∂Ω (or
1-form) ⇔ the Euler characteristic of ∂Ω vanishes ( Ω is toroidal).
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Example 2 :“toroidal domains”

∂Ω : a smooth compact manifold of co-dimension 1

j : ∂Ω → R
d the injection of ∂Ω into R

d. (H. Hopf) :
there exists a nowhere vanishing tangent vector field to ∂Ω (or
1-form) ⇔ the Euler characteristic of ∂Ω vanishes ( Ω is toroidal).

Theorem

Assume Ω is toroidal.

A0 : a smooth 1-form on Ω̄ s. t. the 1-form on ∂Ω : ω = j⋆(A0)

does not vanish

Define near ∂Ω : A = A0/D
α, α > 1,

(or α = 1 and ∀y ∈ ∂Ω, |ω(y)| > 1.)

Then HA is essentially self-adjoint.

Remark The assumption on ∂Ω is fullfilled if Ω ⊂ R3 is bounded by a
2-torus. It is the case for tokamacs.
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Proof

Check:

The regularity of the magnetic field ( to be checked locally near ∂Ω.)
In local coordinates

A0 = a1dx1 + β with β = a2dx2 + · · ·
ω == j⋆(A0) = a2(0, x

′)dx2 + · · ·

so B = d

(
A0

xα
1

)
=

x1dA0 − αdx1 ∧ β

xα+1
1

.

=⇒ the direction of B is equivalent as x1 → 0+ to that of dx1 ∧ ω

which is non vanishing and continuous on Ω̄.

The lower bound |B|sp ≥ (1 + η)D−2 near ∂Ω. The norm of B near
the boundary is given, as x → y by |B(x)|sp ∼ |ω(y)|/Dα+1 .

=⇒ Apply the Theorem d > 2.
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Remark 1 From the calculation before, it follows that ω and α are
invariant by any gauge transform in ∂Ω.
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Remark 1 From the calculation before, it follows that ω and α are
invariant by any gauge transform in ∂Ω.

Remark 2 If d = 3, magnetic field ⇔ vector field in Ω.
The assumptions =⇒ this vector field is asymptotic to −αV ⊥/Dα+1

V : the vector field associated to ω

V ⊥ : deduced from V by a rotation of ±π/2

=⇒ B is very large near ∂Ω and parallel to ∂Ω.

Point of view of classical mechanics: the trajectories of the charged
particle are spiraling around the field lines and do not cross the
boundary.
Open problem : precise statement.
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Exemple 3 : Non toroidal domains

Remark 1
Now any 1-form on X = ∂Ω may have some zeroes.

Definition
A 1-form ω on a compact manifold X is generic if ω has a finite
number of zeroes and dω does not vanish at the zeroes of ω.
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Exemple 3 : Non toroidal domains

Remark 1
Now any 1-form on X = ∂Ω may have some zeroes.

Definition
A 1-form ω on a compact manifold X is generic if ω has a finite
number of zeroes and dω does not vanish at the zeroes of ω.

Theorem

Ω ⊂ R
d with a smooth compact boundary X = ∂Ω.

A0 a smooth 1-form in R
d s. t. ω = j⋆

X(A0) is generic. and at
each zero m of ω, |dω(m)|sp > 1 .

Then, if A is a 1-form in Ω such that near X , A = A0/D
2,

B = dA is confining in Ω.

Remark 2
The field B is more singular than in the toroidal case.
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Exemple 4. Singular points : monopoles

Ω = R3 \ 0 m ∈ Z \ 0

Monopole of degree m: the magnetic field Bm = (m/2)p⋆(σ)

p : R3 \ 0 → S2 :the radial projection

σ : the area form on S2.

In coordinates Bm =
m

2

xdy ∧ dz + ydz ∧ dx + zdx ∧ dy

(x2 + y2 + z2)
3/2

.
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Exemple 4. Singular points : monopoles

Ω = R3 \ 0 m ∈ Z \ 0

Monopole of degree m: the magnetic field Bm = (m/2)p⋆(σ)

p : R3 \ 0 → S2 :the radial projection

σ : the area form on S2.

In coordinates Bm =
m

2

xdy ∧ dz + ydz ∧ dx + zdx ∧ dy

(x2 + y2 + z2)
3/2

.

Remark
|Bm| ≥ |m|

2 r−2 where the constant is sharp.

The flux of Bm through S2 is equal to 2πm quantization condition
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Exemple 4. Singular points : monopoles

Ω = R3 \ 0 m ∈ Z \ 0

Monopole of degree m: the magnetic field Bm = (m/2)p⋆(σ)

p : R3 \ 0 → S2 :the radial projection

σ : the area form on S2.

In coordinates Bm =
m

2

xdy ∧ dz + ydz ∧ dx + zdx ∧ dy

(x2 + y2 + z2)
3/2

.

Remark
|Bm| ≥ |m|

2 r−2 where the constant is sharp.

The flux of Bm through S2 is equal to 2πm quantization condition

Lm: complex line bundle, ∇m : Herm. connexion on Ω with curv. Bm.

Hm = − ∂2

∂r2
− 2

r

∂

∂r
+

1

r2
Km , ( Km the angular Schr. op. on S2)

Theorem Hm (the monopole of degree m) is e.s.a. ⇔ |m| ≥ 2.

Proof λm
1 the lowest eigenvalue of Km.

Hm is e.s.a. ⇔ λm
1 ≥ 3/4.( Weyl’s theory for Sturm-Liouville equ.)

λm
1 = |m|/2
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Exemple 4. Singular points : multipoles

Denote, for x ∈ R3, Bx the monopole of degree 2 with center x.

P
(

∂
∂x

)
: a homogeneous linear diff. op. of degree n on R3 with

constant coefficients.

Definition BP = P (Bx)x=0 is called a multipole of degree n.
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Exemple 4. Singular points : multipoles

Denote, for x ∈ R3, Bx the monopole of degree 2 with center x.

P
(

∂
∂x

)
: a homogeneous linear diff. op. of degree n on R3 with

constant coefficients.

Definition BP = P (Bx)x=0 is called a multipole of degree n.

(P = V of degree 1)=⇒ BV = LV B0 = d (ι(V )B0) .

A multipole of degree 1 is called a dipole.
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Exemple 4. Singular points : multipoles

Denote, for x ∈ R3, Bx the monopole of degree 2 with center x.

P
(

∂
∂x

)
: a homogeneous linear diff. op. of degree n on R3 with

constant coefficients.

Definition BP = P (Bx)x=0 is called a multipole of degree n.

(P = V of degree 1)=⇒ BV = LV B0 = d (ι(V )B0) .

A multipole of degree 1 is called a dipole.

Theorem If BV = dAV is a dipole , HAV is essentially self-adjoint.

Proof

BV homogeneous of degree −3

=⇒ enough to show that BV does not vanish.

we can take V = ∂/∂z.

B∂/∂z =
d

dt |t=0

xdy ∧ dz + ydz ∧ dx + (z − t)dx ∧ dy

(x2 + y2 + (z − t)2)
3/2

,

=⇒ B∂/∂z = 3xzdy∧dz+3yzdz∧dx+(2z2−x2−y2)dx∧dy
(x2+y2+z2)5/2

.

The form B∂/∂z does not vanish in Ω.
May 2009 – p. 30


	
ormalsize Summary
	 
ormalsize The problem
	 
ormalsize The problem
	 
ormalsize The problem

	 
ormalsize Related result :the scalar case
	 
ormalsize Related result :the scalar case
	 
ormalsize Related result :the scalar case

	 �ootnotesize Magnetic case
	 �ootnotesize Magnetic case
	 �ootnotesize Magnetic case

	 �ootnotesize The domain $Omega $
	 �ootnotesize The domain $Omega $

	�ootnotesize An example where $pa Omega $ is compact while $Omega _infty $ is not compact 
	�ootnotesize Magnetic field
	�ootnotesize Magnetic field

	�ootnotesize The spectral norm
	�ootnotesize The spectral norm

	�ootnotesize The results
	�ootnotesize The results

	 �ootnotesize Remarks
	 �ootnotesize Remarks

	 �ootnotesize Sketch of the proof
	 �ootnotesize Technical lemma 
	 �ootnotesize Technical lemma 

	 
	 

	 �ootnotesize Lower bounds for the magnetic Dirichlet integrals 
	 �ootnotesize Lower bounds for the magnetic Dirichlet integrals 

	 
	 

	 �ootnotesize Agmon-type estimates
	 �ootnotesize Agmon-type estimates

	�ootnotesize The function $f$
	�ootnotesize End of proof, remarks
	�ootnotesize End of proof, remarks
	�ootnotesize End of proof, remarks

	�ootnotesize About optimality
	�ootnotesize About optimality

	�ootnotesize 
	�ootnotesize 

	 �ootnotesize Example 1~:Polytopes
	 �ootnotesize Example 1~:Polytopes

	 �ootnotesize Example 2~:``toroidal domains''
	 �ootnotesize Example 2~:``toroidal domains''

	 �ootnotesize stberry Proof
	 �ootnotesize 
	 �ootnotesize 

	 �ootnotesize Exemple 3~: Non toroidal domains 
	 �ootnotesize Exemple 3~: Non toroidal domains 

	 �ootnotesize Exemple 4. Singular points : monopoles
	 �ootnotesize Exemple 4. Singular points : monopoles
	 �ootnotesize Exemple 4. Singular points : monopoles

	 �ootnotesize Exemple 4. Singular points : multipoles
	 �ootnotesize Exemple 4. Singular points : multipoles
	 �ootnotesize Exemple 4. Singular points : multipoles


