CONFINING QUANTUM PARTICLES WITH A PURELY MAGNETIC FIELD

Françoise Truc

Institut Fourier, Grenoble

May 2009 – p. 1

Summary

- The problem
- The scalar case
- The results
- Agmon-type estimates
- Lower bound for the Dirichlet integral
- Examples

Joint work with Yves Colin de Verdière, Institut Fourier, Grenoble

The problem

- Ω: open set in $ℝ^d$ (d ≥ 2)
 - $\partial \Omega$ compact
 - either Ω or $\mathbb{R}^d \setminus \Omega$ is bounded.
- **P**: a particle in Ω in the presence of a magnetic field **B**.
- Classically: if $|B(x)| → +\infty$ as x approaches ∂Ω, we expect that P is confined and never visits the boundary

The problem

- Ω: open set in $ℝ^d$ (d ≥ 2)
 - $\partial \Omega$ compact
 - either Ω or $\mathbb{R}^d \setminus \Omega$ is bounded.
- **P**: a particle in Ω in the presence of a magnetic field **B**.
- Classically: if $|B(x)| → +\infty$ as x approaches ∂Ω, we expect that P is confined and never visits the boundary
- quantically: P never feels the boundary $\Leftrightarrow B$ completely
 determines the motion \Leftrightarrow no need for (BC)

The problem

- Ω : open set in \mathbb{R}^d ($d \geq 2$)
 - $\partial \Omega$ compact
 - either Ω or $\mathbb{R}^d \setminus \Omega$ is bounded.
- **P**: a particle in Ω in the presence of a magnetic field **B**.
- Classically: if $|B(x)| → +\infty$ as x approaches ∂Ω, we expect that P is confined and never visits the boundary
- quantically: P never feels the boundary $\Leftrightarrow B$ completely determines the motion \Leftrightarrow no need for (BC)
- mathematically: find conditions on B(x) (as x → ∂Ω) s.t. the magnetic operator H_A is e.s.a on C_o[∞](Ω).
 These conditions will not depend on the gauge A, but only on the field B.

Related result :the scalar case

- Replace B by a scalar potential V
- Productions on V (as $x → \partial \Omega$) s.t. the Schrödinger operator
 $H = -\Delta + V$ is e.s.a on $C_o^{\infty}(\Omega)$.

Related result :the scalar case

- Replace B by a scalar potential V
- Conditions on V (as $x → \partial \Omega$) s.t. the Schrödinger operator
 $H = -\Delta + V$ is e.s.a on $C_o^{\infty}(\Omega)$.
- G.Nenciu and I.Nenciu, 08:
 Optimal condition on V near $\partial\Omega$, Ω a bounded smooth domain
- In particular If $V(x) \ge (\frac{3}{4})D(x)^{-2}$ where *D* is the distance to the boundary of Ω .then $H = -\Delta + V$ is e.s.a on $C_o^{\infty}(\Omega)$.

Related result :the scalar case

- Replace B by a scalar potential V
- Conditions on V (as $x → \partial \Omega$) s.t. the Schrödinger operator
 $H = -\Delta + V$ is e.s.a on $C_o^{\infty}(\Omega)$.
- G.Nenciu and I.Nenciu, 08:
 Optimal condition on V near $\partial\Omega$, Ω a bounded smooth domain
- In particular If $V(x) \ge (\frac{3}{4})D(x)^{-2}$ where *D* is the distance to the boundary of Ω .then $H = -\Delta + V$ is e.s.a on $C_o^{\infty}(\Omega)$.
- Tools:
 - Agmon-type results on exponential decay of eigenfunctions
 - multidimensional Hardy inequalities.
- the term $\frac{3}{4}$ follows from Hardy inequalities.

Magnetic case

- Agmon-type estimates exist
- No separation between kinetic and potential energy \implies the Hardy inequalities cannot be used.

Magnetic case

- Agmon-type estimates exist
- Instant set the set of the magnetic quadratic form h_A associated to the magnetic potential A.
- continuity assumption on the direction of B(x) near $\partial \Omega \Longrightarrow$

$$h_A(u) \ge (1-\epsilon) \int_{\Omega \cap \{x \mid |x| \le R\}} |B|_{\text{sp}} |u|^2 |dx| - C_{\epsilon,R} ||u||^2$$

 $\forall u \in C_o^\infty(\Omega)$

Magnetic case

- Agmon-type estimates exist
- No separation between kinetic and potential energy \implies the Hardy inequalities cannot be used.
- Instant set the set of the magnetic quadratic form h_A associated to the magnetic potential A.
- continuity assumption on the direction of B(x) near $\partial\Omega \Longrightarrow$

$$h_A(u) \ge (1-\epsilon) \int_{\Omega \cap \{x \mid |x| \le R\}} |B|_{\text{sp}} |u|^2 |dx| - C_{\epsilon,R} ||u||^2.$$

 $\forall u \in C^\infty_o(\Omega)$

TheoremIf moreover $|B(x)|_{sp} \ge (1 + \eta)D(x)^{-2}$ (MB) $(\eta > 0, D :$ the distance to $\partial\Omega$)Then H_A is essentially self-adjoint

The domain Ω

- Ω : open set in \mathbb{R}^d ($d \ge 2$)
- \checkmark d_R the "Riemannian" distance :

$$d_R(x,y) = \inf_{\gamma \in \Gamma_{x,y}} \operatorname{length}(\gamma)$$

 $\Gamma_{x,y}$: smooth curves $\gamma: [0,1] \rightarrow \Omega$ s.t. $\gamma(0) = x, \ \gamma(1) = y$.

- $\widehat{\Omega}$ the metric completion of (Ω, d_R)

The domain Ω

 Ω : open set in \mathbb{R}^d ($d \ge 2$)

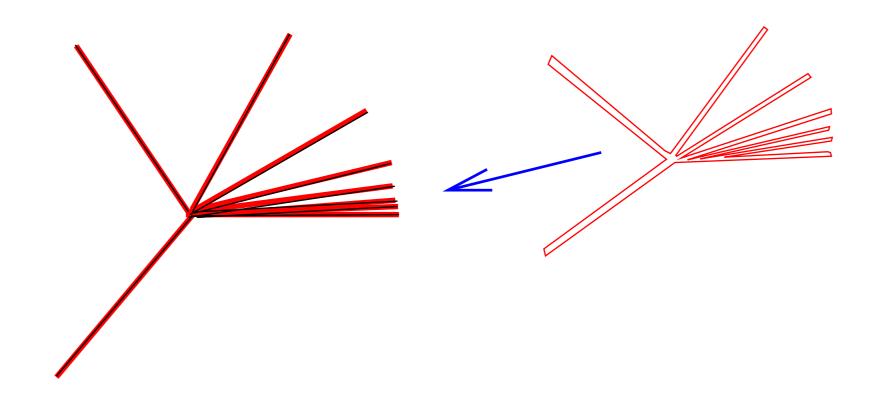
 \bullet d_R the "Riemannian" distance :

$$d_R(x,y) = \inf_{\gamma \in \Gamma_{x,y}} \operatorname{length}(\gamma)$$

 $\Gamma_{x,y}$: smooth curves $\gamma: [0,1] \rightarrow \Omega$ s.t. $\gamma(0) = x, \ \gamma(1) = y$.

- $\widehat{\Omega}$ the metric completion of (Ω, d_R)
- - Ω_{∞} is assumed to be compact. (Ω regular)
 - Either Ω or $\mathbb{R}^d \setminus \Omega$ is bounded.
- If Ω is regular, $\partial \Omega$ is compact. ($\partial \Omega = \overline{\Omega} \setminus \Omega$ the top. boundary of Ω)

An example where $\partial \Omega$ is compact while Ω_{∞} is not compact



• e_n a sequence of unit vectors in \mathbb{R}^2 converging to e_0

•
$$X = \bigcup_{n \in \mathbb{N}} [0, 1] e_n$$

- • $\Omega = \mathbb{R}^2 \setminus X$

May 2009 – p. 7

D(x) the distance to the boundary :

$$D(x) = \min_{y \in \Omega_{\infty}} d_R(x, y) \quad (x \in \Omega)$$

■ Property *D* is 1-Lipschitz and then a. e. differentiable in Ω. At any point *x* of differentiability of *D*, $|dD(x)| \le 1$.

D(x) the distance to the boundary :

$$D(x) = \min_{y \in \Omega_{\infty}} d_R(x, y) \quad (x \in \Omega)$$

- Property *D* is 1-Lipschitz and then a. e. differentiable in Ω. At any point *x* of differentiability of *D*, |dD(x)| ≤ 1.
- Definition Assume Ω regular.
 A continuous function $f: \Omega \to \mathbb{C}$ is regular at the boundary if it extends by continuity to $\widehat{\Omega}$.
- Notations
 - $C_o^{\infty}(\Omega)$: {complex-valued smooth functions with compact support in Ω }.
 - |dx| the Lebesgue measure
 - $\langle u,v\rangle:=\int_{\Omega}u\bar{v}|dx|$ the L^2 scalar product
 - ||u|| the L^2 norm of u

Magnetic field

- ▶ $\wedge^k \mathbb{R}^d := \{ \text{ real-valued } k \text{-linear antisymmetric forms on } \mathbb{R}^d \}.$
- $A = \sum_{j=1}^{d} a_j dx_j$ a smooth real 1-form on Ω (magnetic potential)
- **•** magnetic field associated to A: the two-form B = dA.

$$\boldsymbol{B}(x) = \sum_{1 \le j < k \le d} \boldsymbol{b}_{jk}(x) dx_j \wedge dx_k, \quad \boldsymbol{b}_{jk}(x) = \partial_j a_k(x) - \partial_k a_j(x) \ .$$

Magnetic field

▶ $\wedge^k \mathbb{R}^d := \{ \text{ real-valued } k \text{-linear antisymmetric forms on } \mathbb{R}^d \}.$

• $A = \sum_{j=1}^{d} a_j dx_j$ a smooth real 1-form on Ω (magnetic potential)

• magnetic field associated to A: the two-form B = dA.

$$B(x) = \sum_{1 \le j < k \le d} \frac{b_{jk}(x) dx_j \wedge dx_k}{b_{jk}(x)}, \quad \frac{b_{jk}(x)}{b_{jk}(x)} = \partial_j a_k(x) - \partial_k a_j(x).$$

•
$$\nabla_j = \nabla_{\partial/\partial x_j} = \frac{\partial}{\partial x_j} - ia_j$$
 (magnetic connection)

•
$$H_A = -\sum_{j=1}^{\infty}
abla_j^2$$
 (magnetic Schrödinger operator)

Л

• $h_A(u) = \int_{\Omega} \sum_{j=1}^{d} |\nabla_j u|^2 |dx|$ $u \in C_o^{\infty}(\Omega)$ (magnetic Dirichlet integral)

The spectral norm

- $\begin{array}{ll} \blacksquare & B \in \wedge^2 \mathbb{R}^d \Longrightarrow \exists \text{ an orthonormal basis of } \mathbb{R}^d \text{ so that} \\ & B = b_{12} dx_1 \wedge dx_2 + b_{34} dx_3 \wedge dx_4 + \cdots \text{ with } b_{12} \geq b_{34} \geq \cdots > 0 \end{array}$
- the sequence b_{12}, b_{34}, \cdots is unique
- the non-zero eigenvalues of the antisymmetric endomorphism \tilde{B} of \mathbb{R}^d associated to B(x) are $\pm ib_{12}, \pm ib_{34}, \cdots$.

$$|B|_{
m sp} := \sum_{j=1}^{[d/2]} b_{2j-1,2j}$$

The spectral norm

- $\begin{array}{ll} \blacksquare & B \in \wedge^2 \mathbb{R}^d \Longrightarrow \exists \text{ an orthonormal basis of } \mathbb{R}^d \text{ so that} \\ & B = b_{12} dx_1 \wedge dx_2 + b_{34} dx_3 \wedge dx_4 + \cdots \text{ with } b_{12} \geq b_{34} \geq \cdots > 0 \end{array}$
- **•** the sequence b_{12}, b_{34}, \cdots is unique

$$|B|_{
m sp} := \sum_{j=1}^{[d/2]} b_{2j-1,2j}$$

- $|B|_{sp}$ is one half of the trace norm of $\tilde{B} \Longrightarrow$ it is a norm
 - $d = 2 \implies |\mathbf{B}|_{sp} = |\mathbf{B}|$
 - $d = 3 \implies |B|_{sp}$ the norm of the v. field \vec{B} assoc. to B
- $|B|_{sp}$ is the infimum of the spectrum of the Schrödinger operator with constant magnetic field *B* in \mathbb{R}^d .

The results

Consider H_A with domain $\mathcal{D}(H_A) = C_o^{\infty}(\Omega)$. Theorem (d = 2)

If $\partial \Omega$ is compact with a finite number of connected components and

$$|B(x)|_{\rm sp} \ge (D(x))^{-2}$$
, (x near $\partial\Omega$)

then the Schrödinger operator H_A is essentially self-adjoint. (still true for any gauge A' such that dA' = dA = B).

The results

Consider H_A with domain $\mathcal{D}(H_A) = C_o^{\infty}(\Omega)$. Theorem (d = 2)

If $\partial \Omega$ is compact with a finite number of connected components and

$$|\mathbf{B}(x)|_{\mathrm{sp}} \ge (D(x))^{-2}$$
, $(x \operatorname{near} \partial \Omega)$

then the Schrödinger operator H_A is essentially self-adjoint. (still true for any gauge A' such that dA' = dA = B). Theorem (d > 2) If Ω is regular, if $\exists \eta > 0$

$$|\mathbf{B}(x)|_{\rm sp} \ge (1+\eta) (D(x))^{-2} , \quad (x \text{ near } \partial\Omega)$$

and if the functions $n_{jk}(x) = \frac{b_{jk}(x)}{|B(x)|_{sp}}$ are regular at the boundary Ω_{∞} (for any $1 \le j < k \le d$), then same conclusion.

Remarks

- If $\Omega := \{x \in \mathbb{R}^d \mid f(x) > 0\}$ with $f : \mathbb{R}^d \to \mathbb{R}$ smooth, $df(y) \neq 0$ for $y \in \partial \Omega$, then $f(x) \sim |df(x)|D(x)$ for x close to $\partial \Omega$. And we can replace D(x) by f(x)/|df(x)|.
- About optimality

Proposition: For any $0 < \alpha < \sqrt{3}/2$, there exists a magnetic field *B* for which H_A (with dA = B) is not e.s.a. and such that

$$|\mathbf{B}(x)|_{\mathrm{sp}} \ge \frac{\alpha}{(D(x))^2}$$
 (x near $\partial\Omega$).

Remarks

- If $\Omega := \{x \in \mathbb{R}^d \mid f(x) > 0\}$ with $f : \mathbb{R}^d \to \mathbb{R}$ smooth, $df(y) \neq 0$ for $y \in \partial \Omega$, then $f(x) \sim |df(x)|D(x)$ for x close to $\partial \Omega$. And we can replace D(x) by f(x)/|df(x)|.
- About optimality

Proposition: For any $0 < \alpha < \sqrt{3}/2$, there exists a magnetic field *B* for which H_A (with dA = B) is not e.s.a. and such that

$$|\mathbf{B}(x)|_{\mathrm{sp}} \ge \frac{\alpha}{(D(x))^2} \quad (x \operatorname{near} \partial\Omega).$$

Consequence

The optimal constant in front of the leading term $(D(x))^{-2}$ is in $[\sqrt{3}/2, 1]$. \implies the situation for magnetic fields is different from the situation for scalar potentials (for which the optimal constant is 3/4)

Sketch of the proof

- Technical lemmas
 - Magnetic inequality
 - Local lower bound
- Lower bounds for the magnetic Dirichlet integrals
 - *d* = 2
 - d > 2 (if the direction of **B** is regular)
- Agmon-type estimates

Technical lemma

Magnetic inequality For any $u \in C_o^{\infty}(\Omega)$, we have

 $h_A(u) \ge |\langle \mathbf{b_{12}} u | u \rangle| + |\langle \mathbf{b_{34}} u | u \rangle| + \cdots$

Technical lemma

Magnetic inequality For any $u \in C_o^{\infty}(\Omega)$, we have

$$h_A(u) \ge |\langle \mathbf{b_{12}}u|u\rangle| + |\langle \mathbf{b_{34}}u|u\rangle| + \cdots$$

Proof

Commutator formula : $[\nabla_j, \nabla_k] = -i \ b_{jk} \implies$

$$|\langle \boldsymbol{b_{12}} u | u \rangle| = |\langle [\nabla_1, \nabla_2] u | u \rangle| \le 2|\langle \nabla_1 u | \nabla_2 u \rangle| \le \int_{\Omega} (|\nabla_1 u|^2 + |\nabla_2 u|^2)|dx|$$

Then take the sum of similar inequalities replacing the indices 12 by $34, 56, \cdots$.

Consequence: Local lower bound

 $\overline{\Omega}$: regular open set in \mathbb{R}^d , $x_0\in\Omega_\infty$

If $B(x) \neq 0$ near x_0 and the direction of B is regular near x_0 then, $\forall \epsilon > 0$, $\exists U$ nbhd of x_0 in \mathbb{R}^d so that, for any $\phi \in C_o^{\infty}(U \cap \Omega)$,

$$h_A(\phi) \ge (1-\epsilon) \int_U |\mathbf{B}(x)|_{\mathrm{sp}} |\phi(x)|^2 |dx| ,$$

Consequence: Local lower bound

 Ω : regular open set in \mathbb{R}^d , $x_0 \in \Omega_\infty$

If $B(x) \neq 0$ near x_0 and the direction of B is regular near x_0 then, $\forall \epsilon > 0$, $\exists U$ nbhd of x_0 in \mathbb{R}^d so that, for any $\phi \in C_o^{\infty}(U \cap \Omega)$,

$$h_A(\phi) \ge (1-\epsilon) \int_U |\mathbf{B}(x)|_{\mathrm{sp}} |\phi(x)|^2 |dx| ,$$

Proof

- n(x) reg. at the point $x_0 \Longrightarrow$ we can choose U s.t., $\forall x \in U \cap \Omega$, $|n(x) - n(x_0)|_{\text{Eucl}} \le \epsilon \sqrt{\frac{2}{d(d-1)}}$
- We choose orth. coord. so that $n(x_0) = n_{12}dx_1 \wedge dx_2$ $+n_{34}dx_3 \wedge dx_4 + \cdots$ with $n_{2k-1,2k} \ge 0$ and $\sum_k n_{2k-1,2k} = 1$.

Magnetic inequality
$$\implies$$
 for $\phi \in C_o^\infty(\Omega \cap U)$,
$$h_A(\phi) \ge \int_U |\mathbf{B}(x)|_{\mathrm{sp}}(n_{12}(x) + n_{34}(x) + \cdots)|\phi(x)|^2 |dx|$$

and $n_{12}(x) + n_{34}(x) + \dots \ge 1 - \epsilon$.

Lower bounds for the magnetic Dirichlet integrals

Theorem d = 2 Assume that $\partial \Omega \subset B(O, R)$. If $B \neq 0$ near $\partial \Omega$, then there exists $c_R \in \mathbb{R}$ so that, $\forall u \in C_o^{\infty}(\Omega)$,

$$h_A(u) \ge \int_{\Omega \cap B(O,R)} |\mathbf{B}| |u|^2 |dx| - c_R ||u||^2.$$

Lower bounds for the magnetic Dirichlet integrals

Theorem d = 2 Assume that $\partial \Omega \subset B(O, R)$. If $B \neq 0$ near $\partial \Omega$, then there exists $c_R \in \mathbb{R}$ so that, $\forall u \in C_o^{\infty}(\Omega)$,

$$h_A(u) \ge \int_{\Omega \cap B(O,R)} |\mathbf{B}| |u|^2 |dx| - c_R ||u||^2.$$

Proof

- The sign of *B* is constant near each conn. component of $\partial \Omega$.
- $I Write \ \bar{\Omega} \subset \cup_{l=1}^{3} \Omega_{l}, \ \Omega_{1} \cap \partial \Omega = \emptyset, \ B > 0 \ on \ \Omega_{2} \ and \ B < 0 \ on \ \Omega_{3}.$
- **•** Take a partition of unity ϕ_j , j = 1, 2, 3,
- Use IMS formula

$$h_A(u) = \sum_{l=0}^2 h_A(\phi_l u) - \int_{\Omega} \left(\sum_{l=0}^2 |d\phi_l|^2 \right) |u|^2 |dx| ,$$

apply (MI) in $\Omega_l \cap \Omega$ for l = 2, 3 and the lower bound 0 for Ω_1 .

Theorem d > 2

Assume that $\partial \Omega \subset B(O, R)$. If $B = dA \neq 0$ near $\partial \Omega$ and if the $n_{jk}(x)$ are regular at $\partial \Omega$, then, for any $\epsilon > 0$, there exists $C_{\epsilon,R} > 0$ so that, $\forall u \in C_o^{\infty}(\Omega)$,

$$h_A(u) \ge (1-\epsilon) \int_{\Omega \cap B(O,R)} |\mathbf{B}|_{\mathrm{sp}} |u|^2 |dx| - C_{\epsilon,R} \int_{\Omega} |u|^2 |dx| \, .$$

Theorem d > 2

Assume that $\partial \Omega \subset B(O, R)$. If $B = dA \neq 0$ near $\partial \Omega$ and if the $n_{jk}(x)$ are regular at $\partial \Omega$, then, for any $\epsilon > 0$, there exists $C_{\epsilon,R} > 0$ so that, $\forall u \in C_o^{\infty}(\Omega)$,

$$h_A(u) \ge (1-\epsilon) \int_{\Omega \cap B(O,R)} |\mathbf{B}|_{\mathrm{sp}} |u|^2 |dx| - C_{\epsilon,R} \int_{\Omega} |u|^2 |dx|$$

Proof

- Solution Choose a finite covering of Ω_{∞} by open sets U_l , $l = 1, \dots N$ of \mathbb{R}^d s.t (LLB) are satisfied.
- Solution Choose a partition of unity $\phi_l, l = 0, \cdots, N$ with
 - For $l \ge 1$, $\phi_l \in C_o^{\infty}(U_l)$, ϕ_0 is $C_o^{\infty}(\Omega)$
 - $\sum_{l} \phi_{l}^{2} \equiv 1 \text{ in } \Omega$, $\sup \sum_{l} |d\phi_{l}|^{2} = M$ (*)

Use (LLB) for $l \ge 1$, the bound (*) and IMS identity

Agmon-type estimates

-Theorem

Assume that $\partial \Omega$ is compact, and that $\exists c \in \mathbb{R}$ such that, $\forall u \in C_o^{\infty}(\Omega)$,

$$h_A(u) - \int_{\{x \in \Omega \mid D(x) \le 1\}} D(x)^{-2} |u(x)|^2 |dx| \ge c ||u||^2 . \quad (**)$$

Then, for $E \ll 0$, if v is a weak $L^2(\Omega)$ -solution of $(H_A - E)v = 0$, v vanishes identically and H_A is essentially self-adjoint.

Agmon-type estimates

-Theorem

Assume that $\partial \Omega$ is compact, and that $\exists c \in \mathbb{R}$ such that, $\forall u \in C_o^{\infty}(\Omega)$,

$$h_A(u) - \int_{\{x \in \Omega \mid D(x) \le 1\}} D(x)^{-2} |u(x)|^2 |dx| \ge c ||u||^2 . \quad (**)$$

Then, for $E \ll 0$, if v is a weak $L^2(\Omega)$ -solution of $(H_A - E)v = 0$, v vanishes identically and H_A is essentially self-adjoint. Proof

Lemma Let v be a weak solution of $(H_A - E)v = 0$, and let f be a real-valued Lipschitz function with compact support. Then

$$\langle fv|(H_A - E)(fv)\rangle = \langle v \mid |df(x)|^2v\rangle$$
. (***)

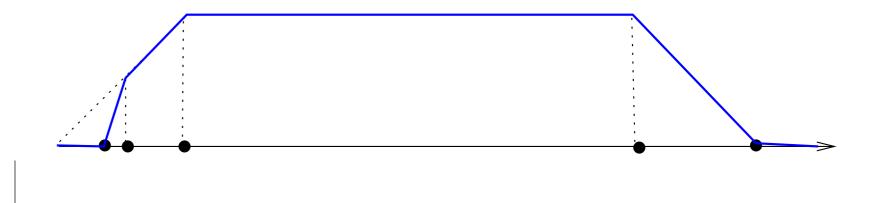
Apply the formula (* * *) to an appropriate f.

The function f

• Consider
$$0 < \rho < \frac{1}{2}$$
 and $1 < R < +\infty$.

Define f = F(D) with

$$F(u) = \begin{cases} 0 \text{ for } u \leq \rho \text{ and for } u \geq R+1 \\ 2(u-\rho) \text{ for } \rho \leq u \leq 2\rho \\ u \text{ for } 2\rho \leq u \leq 1 \\ 1 \text{ for } 1 \leq u \leq R \\ R+1-u \text{ for } R \leq u \leq R+1 \end{cases}$$



 $|df|^2 = F'(D)^2 \text{ almost everywhere.}$

$$\langle (H_A - E)(fv) | fv \rangle \ge \int_{2\rho \le D(x) \le 1} |v|^2 |dx| + c ||fv||^2.$$

- $|df|^2 = F'(D)^2$ almost everywhere.

$$\langle (H_A - E)(fv) | fv \rangle \ge \int_{2\rho \le D(x) \le 1} |v|^2 |dx| + c ||fv||^2.$$

On the other hand, use the explicit values of df and the equality (* * *) to get:

$$\langle (H_A - E)(fv) | fv \rangle \leq 4 \int_{\rho \leq D(x) \leq 2\rho} |v|^2 |dx| + \cdots \\ \cdots \int_{2\rho \leq D(x) \leq 1} |v|^2 |dx| + \int_{R \leq D(x) \leq R+1} |v|^2 |dx| .$$

•
$$\Rightarrow c \|fv\|^2 \le 4 \int_{\rho \le D(x) \le 2\rho} |v|^2 |dx| + \int_{R \le D(x) \le R+1} |v|^2 |dx|$$
.
• Take $\rho \to 0$ and $R \to +\infty$

End of proof, remarks

It is enough to show that $\exists c \in \mathbb{R}$ such that, $\forall u \in C_o^{\infty}(\Omega)$,

$$h_A(u) \ge \int_{\Omega \cap B(O,R)} |D(x)|^{-2} |u(x)|^2 |dx| - c ||u||^2,$$

under the assumpt of Thms d = 2 and d > 2. This is a consequence of lower bounds for MDI

End of proof, remarks

It is enough to show that $\exists c \in \mathbb{R}$ such that, $\forall u \in C_o^{\infty}(\Omega)$,

$$h_A(u) \ge \int_{\Omega \cap B(O,R)} |D(x)|^{-2} |u(x)|^2 |dx| - c ||u||^2,$$

under the assumpt of Thms d = 2 and d > 2. This is a consequence of lower bounds for MDI

Sential self-adjointness depends only on the boundary behavior X a smooth manifold with a smooth density |dx|. If L_j , j = 1, 2 are symm. ell. diff. op. of degree m on $L^2(X, |dx|)$ so that L_1 e.s.a. and $L_2 - L_1 = M$ compactly supported, then L_2 is e.s.a.

 \Longrightarrow To prove self-adjointness in Ω , nothing to prove at ∞ in \mathbb{R}^d

End of proof, remarks

It is enough to show that $\exists c \in \mathbb{R}$ such that, $\forall u \in C_o^{\infty}(\Omega)$,

$$h_A(u) \ge \int_{\Omega \cap B(O,R)} |D(x)|^{-2} |u(x)|^2 |dx| - c ||u||^2,$$

under the assumpt of Thms d = 2 and d > 2. This is a consequence of lower bounds for MDI

Sestial self-adjointness depends only on the boundary behavior X a smooth manifold with a smooth density |dx|. If L_j , j = 1, 2 are symm. ell. diff. op. of degree m on $L^2(X, |dx|)$ so that L_1 e.s.a. and $L_2 - L_1 = M$ compactly supported, then L_2 is e.s.a.

 \implies To prove self-adjointness in Ω , nothing to prove at ∞ in \mathbb{R}^d

Solution Essential self-adjointness is independent of the choice of a gauge of $A_2 = A_1 + dF$, $F \in C^{\infty}(X, \mathbb{R})$, then H_{A_1} e.s.a. $\Longrightarrow H_{A_2}$ e.s.a.

About optimality

A non e.s.a. Schrödinger operator with large magnetic field near $\partial \Omega$

Theorem

Consider

•
$$\Omega = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = r^2 < 1\}$$

• $A=\alpha(xdy-ydx)/(r-1)$, $0<\alpha<\sqrt{3}/2.$

The operator H_A is not essentially self-adjoint.

About optimality

A non e.s.a. Schrödinger operator with large magnetic field near $\partial \Omega$

Theorem

Consider

•
$$\Omega = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = r^2 < 1\}$$

The operator H_A is not essentially self-adjoint.

Proof

- The corresponding magnetic field B writes $B(x,y) = \frac{\alpha(r-2)}{(r-1)^2} dx \wedge dy$,
- $|B(x)| \sim \alpha/(D(x))^2$ (near the boundary)

■ ⇒ H_A splits as a sum $\sum_{m \in \mathbb{Z}} H_{A,m}$ where $H_{A,m}$ acts on functions $e^{im\theta} f(r)$.

- $I ext{Look at the } m = 0 \text{ component}$
- Reduce the measure $|rdrd\theta|$ to $2\pi dr$ by a change of function:
 for any function $u(r) = r^{-1/2}v(r)$, $H_A u = r^{-1/2} \left(-\frac{d^2}{dr^2} + V(r) \right) v$, where $V(r) = -\frac{1}{4r^2} + \frac{\alpha^2 r^2}{(r-1)^2}$.

- **D** Look at the m = 0 component
- Reduce the measure $|rdrd\theta|$ to $2\pi dr$ by a change of function:
 for any function $u(r) = r^{-1/2}v(r)$, $H_A u = r^{-1/2} \left(-\frac{d^2}{dr^2} + V(r) \right) v$, where $V(r) = -\frac{1}{4r^2} + \frac{\alpha^2 r^2}{(r-1)^2}$.
- $0 < \alpha < \sqrt{3/2} \implies \exists \epsilon > 0$ with $V(r) \le \left(\frac{3}{4} - \epsilon\right)(r-1)^{-2}$ near r = 1 \implies the operator $H = -\frac{d^2}{dr^2} + V(r)$ is in the limit circle case at r = 1(Theorem X.10 (Reed-Simon))
- Let v(r) be an L^2 solution of (H E)v = 0then $u(r) = r^{-1/2}v(r)$ is an L^2 solution of $(H_A - E)u = 0$ in Ω .

Example 1 : Polytopes

• Ω : a polytope given by $\Omega = \bigcap_{i=1}^{N} \{x \mid L_i(x) < 0\}$,

• L_i 's are the affine real-valued functions $L_i(x) = \sum_{j=1}^{n} n_{ij} x_j + a_i$.

• Assume that, for $i = 1, \dots, d$, $\sum_{j=1}^{d} n_{ij}^2 = 1$ and $n_{i1} \neq 0$

Example 1 : Polytopes

• Ω : a polytope given by $\Omega = \bigcap_{i=1}^{N} \{x \mid L_i(x) < 0\}$,

• L_i 's are the affine real-valued functions $L_i(x) = \sum_{j=1}^{n} n_{ij} x_j + a_i$.

• Assume that, for
$$i = 1, \dots, d$$
, $\sum_{j=1}^{d} n_{ij}^2 = 1$ and $n_{i1} \neq 0$

• Theorem The operator
$$H_A$$
 in Ω with
 $A = \left(\frac{1}{n_{11}L_1} + \frac{1}{n_{21}L_2} + \cdots\right) dx_2$ is essentially self-adjoint.

Proof

$$\begin{split} B &= \left(\frac{1}{L_1^2} + \frac{1}{L_2^2} + \cdots\right) dx_1 \wedge dx_2 + \sum_{j=3}^d b_j dx_j \wedge dx_2 \text{ , and} \\ D &= \min_{1 \leq i \leq N} |L_i|. \\ \implies B &= b_1 dx_1 \wedge dx_2 + \sum_{j=3}^d b_j dx_j \wedge dx_2 \text{ with } b_1 \geq D^{-2}. \\ \implies \text{apply (MI) and Agmon-type estimates.} \end{split}$$

Example 2 : "toroidal domains"

- $\mathbf{P} \ \partial \Omega \ :$ a smooth compact manifold of co-dimension 1
- J: ∂Ω → ℝ^d the injection of ∂Ω into ℝ^d. (H. Hopf):
 there exists a nowhere vanishing tangent vector field to ∂Ω (or
 1-form) ⇔ the Euler characteristic of ∂Ω vanishes (Ω is toroidal).

Example 2 : "toroidal domains"

- $\partial \Omega$: a smooth compact manifold of co-dimension 1
- J: $\partial \Omega \to \mathbb{R}^d$ the injection of $\partial \Omega$ into \mathbb{R}^d . (H. Hopf): there exists a nowhere vanishing tangent vector field to $\partial \Omega$ (or 1-form) ⇔ the Euler characteristic of $\partial \Omega$ vanishes (Ω is toroidal).

Theorem

- Assume Ω is toroidal.
- A_0 : a smooth 1-form on $\overline{\Omega}$ s. t. the 1-form on $\partial \Omega$: $\omega = j^*(A_0)$ does not vanish
- Define near $\partial \Omega$: $A = A_0/D^{\alpha}$, $\alpha > 1$, (or $\alpha = 1$ and $\forall y \in \partial \Omega$, $|\omega(y)| > 1$.)
- Then H_A is essentially self-adjoint.
- **Proof** Remark The assumption on $\partial \Omega$ is fullfilled if $\Omega \subset \mathbb{R}^3$ is bounded by a 2-torus. It is the case for tokamacs.

Proof

Check:

The regularity of the magnetic field (to be checked locally near $\partial \Omega$.)
In local coordinates

•
$$A_0 = a_1 dx_1 + \beta$$
 with $\beta = a_2 dx_2 + \cdots$
• $\omega == j^*(A_0) = a_2(0, x') dx_2 + \cdots$
• $a_1 (A_0) = x_1 dA_0 - \alpha dx_1 \wedge \beta$

• so
$$B = d\left(\frac{A_0}{x_1^{\alpha}}\right) = \frac{x_1 a A_0 - \alpha a x_1 \wedge \beta}{x_1^{\alpha+1}}$$
.

- \implies the direction of *B* is equivalent as $x_1 \rightarrow 0^+$ to that of $dx_1 \wedge \omega$ which is non vanishing and continuous on $\overline{\Omega}$.
- The lower bound $|B|_{sp} \ge (1+\eta)D^{-2}$ near $\partial\Omega$. The norm of *B* near the boundary is given, as $x \to y$ by $|B(x)|_{sp} \sim |\omega(y)|/D^{\alpha+1}$.
- \implies Apply the Theorem d > 2.

Solution Remark 1 From the calculation before, it follows that ω and α are invariant by any gauge transform in $\partial \Omega$.

- **Remark 1** From the calculation before, it follows that ω and α are invariant by any gauge transform in $\partial\Omega$.
- Remark 2 If d = 3, magnetic field \Leftrightarrow vector field in Ω . The assumptions \Longrightarrow this vector field is asymptotic to $-\alpha V^{\perp}/D^{\alpha+1}$
 - \checkmark V : the vector field associated to ω
 - V^{\perp} : deduced from V by a rotation of $\pm \pi/2$
 - \implies *B* is very large near $\partial \Omega$ and parallel to $\partial \Omega$.

Point of view of classical mechanics: the trajectories of the charged particle are spiraling around the field lines and do not cross the boundary.

Open problem : precise statement.

Exemple 3 : Non toroidal domains

Remark 1

Now any 1-form on $X = \partial \Omega$ may have some zeroes.

Definition

A 1-form ω on a compact manifold X is generic if ω has a finite number of zeroes and $d\omega$ does not vanish at the zeroes of ω .

Exemple 3 : Non toroidal domains

Remark 1

Now any 1-form on $X = \partial \Omega$ may have some zeroes.

Definition

A 1-form ω on a compact manifold X is generic if ω has a finite number of zeroes and $d\omega$ does not vanish at the zeroes of ω .

Theorem

- $\Omega \subset \mathbb{R}^d$ with a smooth compact boundary $X = \partial \Omega$.
- A_0 a smooth 1-form in \mathbb{R}^d s. t. $\omega = j_X^*(A_0)$ is generic. and at each zero m of ω , $|d\omega(m)|_{sp} > 1$. Then, if A is a 1-form in Ω such that near X, $A = A_0/D^2$, B = dA is confining in Ω .

Remark 2

The field *B* is more singular than in the toroidal case.

Exemple 4. Singular points : monopoles

- $\Omega = \mathbb{R}^3 \setminus 0 \quad m \in \mathbb{Z} \setminus 0$
 - Monopole of degree m: the magnetic field $B_m = (m/2)p^*(\sigma)$
 - $p: \mathbb{R}^3 \setminus 0 \to S^2$:the radial projection
 - σ : the area form on S^2 . In coordinates $B_m = \frac{m}{2} \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$.

Exemple 4. Singular points : monopoles

 $\Omega = \mathbb{R}^3 \setminus 0 \quad m \in \mathbb{Z} \setminus 0$

Monopole of degree m: the magnetic field $B_m = (m/2)p^*(\sigma)$

- $p: \mathbb{R}^3 \setminus 0 \to S^2$:the radial projection
- σ : the area form on S^2 . In coordinates $B_m = \frac{m}{2} \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$.
- Remark

 $|B_m| \ge \frac{|m|}{2}r^{-2}$ where the constant is sharp.

The flux of B_m through S^2 is equal to $2\pi m$ quantization condition

Exemple 4. Singular points : monopoles

- $\Omega = \mathbb{R}^3 \setminus 0 \quad m \in \mathbb{Z} \setminus 0$
 - Monopole of degree m: the magnetic field $B_m = (m/2)p^*(\sigma)$
 - $p: \mathbb{R}^3 \setminus 0 \to S^2$:the radial projection
 - σ : the area form on S^2 . In coordinates $B_m = \frac{m}{2} \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$.
 - Remark $|B_m| \ge \frac{|m|}{2}r^{-2}$ where the constant is sharp.
 - The flux of B_m through S^2 is equal to $2\pi m$ quantization condition
 - \square L_m : complex line bundle, ∇_m : Herm. connexion on Ω with curv. B_m .

•
$$H_m = -\frac{\partial^2}{\partial r^2} - \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}K_m$$
, (K_m the angular Schr. op. on S^2)

- Theorem H_m (the monopole of degree m) is e.s.a. $\Leftrightarrow |m| \ge 2$.
- **Proof** λ_1^m the lowest eigenvalue of K_m .
 - H_m is e.s.a. $\Leftrightarrow \lambda_1^m \ge 3/4$.(Weyl's theory for Sturm-Liouville equ.) • $\lambda_1^m = |m|/2$

Exemple 4. Singular points : multipoles

- Denote, for $x \in \mathbb{R}^3$, \mathcal{B}_x the monopole of degree 2 with center x.
- P $\left(\frac{\partial}{\partial x}\right)$: a homogeneous linear diff. op. of degree *n* on ℝ³ with constant coefficients.
- **Definition** $B_P = P(\mathcal{B}_x)_{x=0}$ is called a multipole of degree n.

Exemple 4. Singular points : multipoles

- Denote, for $x \in \mathbb{R}^3$, \mathcal{B}_x the monopole of degree 2 with center x.
- P $\left(\frac{\partial}{\partial x}\right)$: a homogeneous linear diff. op. of degree *n* on ℝ³ with constant coefficients.
- **Definition** $B_P = P(\mathcal{B}_x)_{x=0}$ is called a multipole of degree n.

• (P = V of degree 1) ⇒ $B_V = \mathcal{L}_V \mathcal{B}_0 = d(\iota(V)\mathcal{B}_0)$. A multipole of degree 1 is called a dipole.

Exemple 4. Singular points : multipoles

- Denote, for $x \in \mathbb{R}^3$, \mathcal{B}_x the monopole of degree 2 with center x.
- P $\left(\frac{\partial}{\partial x}\right)$: a homogeneous linear diff. op. of degree *n* on ℝ³ with constant coefficients.
- **Definition** $B_P = P(\mathcal{B}_x)_{x=0}$ is called a multipole of degree n.

• (P = V of degree 1) ⇒
$$B_V = \mathcal{L}_V \mathcal{B}_0 = d(\iota(V)\mathcal{B}_0)$$
 .
 A multipole of degree 1 is called a dipole.

• Theorem If $B_V = dA_V$ is a dipole, H_{A_V} is essentially self-adjoint.

Proof

■ B_V homogeneous of degree -3⇒ enough to show that B_V does not vanish.

• we can take
$$V = \partial/\partial z$$
.

•
$$B_{\partial/\partial z} = \frac{d}{dt} x dy \wedge dz + y dz \wedge dx + (z-t) dx \wedge dy$$

• $(x^2 + y^2 + (z-t)^2)^{3/2}$,
• $\Rightarrow B_{\partial/\partial z} = \frac{3xz dy \wedge dz + 3yz dz \wedge dx + (2z^2 - x^2 - y^2) dx \wedge dy}{(x^2 + y^2 + z^2)^{5/2}}$.

• The form $B_{\partial/\partial z}$ does not vanish in Ω .