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The setup

Γ = (VΓ, EΓ) : a connected graph

VΓ : the set of vertices, EΓ : the set of edges

We write x ∼ y for {x, y} ∈ EΓ.

q ≥ 2 :fixed integer. Γ is asymptotic to a hom. tree of degree q + 1

⇔ ∃ a finite sub-graph Γ0 of Γ s.t.

Γ′ := Γ \ Γ0 is a disjoint union of a finite number of trees
Tl, l = 1, · · · , L, rooted at a vertex xl linked to Γ0

all vertices of Tl different from xl are of degree q + 1.

The trees Tl, l = 1, · · · , L, are called the ends of Γ.
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The setup

Γ = (VΓ, EΓ) : a connected graph

VΓ : the set of vertices, EΓ : the set of edges

We write x ∼ y for {x, y} ∈ EΓ.

q ≥ 2 :fixed integer. Γ is asymptotic to a hom. tree of degree q + 1

⇔ ∃ a finite sub-graph Γ0 of Γ s.t.

Γ′ := Γ \ Γ0 is a disjoint union of a finite number of trees
Tl, l = 1, · · · , L, rooted at a vertex xl linked to Γ0

all vertices of Tl different from xl are of degree q + 1.

The trees Tl, l = 1, · · · , L, are called the ends of Γ.

∂Γ0 = the boundary of Γ0 : the set of edges of Γ connecting a vertex
of Γ0 to a vertex of Γ′, (one of the xl’s).
|x|Γ0 : the distance of x ∈ VΓ′ to Γ0.
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The adjacency operator

C(Γ) = {f : VΓ −→ C}
C0(Γ) : the subspace of functions with finite support.

l2(Γ) = {f ∈ C(Γ);
∑

x∈VΓ

|f |2(x) < ∞}. 〈f, g〉 = ∑
x∈VΓ

f(x).g (x) .
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The adjacency operator

C(Γ) = {f : VΓ −→ C}
C0(Γ) : the subspace of functions with finite support.

l2(Γ) = {f ∈ C(Γ);
∑

x∈VΓ

|f |2(x) < ∞}. 〈f, g〉 = ∑
x∈VΓ

f(x).g (x) .

On C0(Γ), we define the adjacency operator AΓ by
(AΓf) (x) =

∑
y∼x f (y)

AΓ is bounded on l2(Γ) ⇔ the degree of the vertices of Γ is
bounded. ( which is the case here.)

In that case, the operator AΓ is self-adjoint.
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The adjacency operator

C(Γ) = {f : VΓ −→ C}
C0(Γ) : the subspace of functions with finite support.

l2(Γ) = {f ∈ C(Γ);
∑

x∈VΓ

|f |2(x) < ∞}. 〈f, g〉 = ∑
x∈VΓ

f(x).g (x) .

On C0(Γ), we define the adjacency operator AΓ by
(AΓf) (x) =

∑
y∼x f (y)

AΓ is bounded on l2(Γ) ⇔ the degree of the vertices of Γ is
bounded. ( which is the case here.)

In that case, the operator AΓ is self-adjoint.

Our goal : get an explicit spectral decomposition of the adjacency
operator AΓ.

get a S. D. for a Schrödinger operator with a compactly supported
potential on a hom. tree

get a similar S. D. for the adjacency operator AΓ via a
combinatorial result 5/10/2012 – p. 4



The points at infinity on the treeTq

Tq = (Vq, Eq) : homogeneous tree of degree q + 1

choose an origin O ( a root)

|x| : the combinatorial distance of the vertex x to O .

ΩO : the set of infinite simple paths starting from O.

a sequence yn ∈ Vq tends to ω ∈ ΩO iff for n large enough, yn
belongs to the path ω and is going to infinity along that path.
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The points at infinity on the treeTq

Tq = (Vq, Eq) : homogeneous tree of degree q + 1

choose an origin O ( a root)

|x| : the combinatorial distance of the vertex x to O .

ΩO : the set of infinite simple paths starting from O.

a sequence yn ∈ Vq tends to ω ∈ ΩO iff for n large enough, yn
belongs to the path ω and is going to infinity along that path.

dσO : canonical probability measure on ΩO

Busemann function x → bω(x) := |xω| − d(x, xω).
( xω the last point lying on ω in the geodesic path joining O to x)

level sets of bω : horocycles associated to ω.
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The points at infinity on the treeTq

Tq = (Vq, Eq) : homogeneous tree of degree q + 1

choose an origin O ( a root)

|x| : the combinatorial distance of the vertex x to O .

ΩO : the set of infinite simple paths starting from O.

a sequence yn ∈ Vq tends to ω ∈ ΩO iff for n large enough, yn
belongs to the path ω and is going to infinity along that path.

dσO : canonical probability measure on ΩO

Busemann function x → bω(x) := |xω| − d(x, xω).
( xω the last point lying on ω in the geodesic path joining O to x)

level sets of bω : horocycles associated to ω.

Theorem A0 : the adjacency operator on Tq. The spectrum of A0 is the
interval Iq = [−2

√
q,+2

√
q]. Set e0(x, ω, s) := q(1/2−is)bω(x) , and

λs = q
1
2+is + q

1
2−is . Then ∀s ∈ S0, A0e0(ω, s) = λse0(ω, s).
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The spectral Riemann surface

S := /τZ× iR, τ = 2π/ log q

s → λs holomorphic function defined on S by λs = q
1
2+is + q

1
2−is.

S+ := {s ∈ S | ℑs > 0} is mapped bijectively onto C \ Iq.

S0 := R/τZ : the circle ℑs = 0.

the circle S0 is a double covering of Iq.
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The spectral Riemann surface

S := /τZ× iR, τ = 2π/ log q

s → λs holomorphic function defined on S by λs = q
1
2+is + q

1
2−is.

S+ := {s ∈ S | ℑs > 0} is mapped bijectively onto C \ Iq.

S0 := R/τZ : the circle ℑs = 0.

the circle S0 is a double covering of Iq.

G0 : the Green’s function on Tq.

Theorem

The Green’s function of the tree Tq is given, for s ∈ S+ by

G0(λs, x, y) =
q(−

1
2
+is)d(x,y)

q
1
2
−is−q−

1
2
+is

.

G0 extends merom. to S with two poles −i/2 and −i/2 + τ/2.

for any x ∈ Vq and any y belonging to the path ω,

G0(λs, x, y) = C(s)q(−
1
2+is)|y|q(

1
2−is)bω(x),
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The density of states

φ : R → R given continuous function

φ(AΓ): operator on l2(Γ), (associated matrix [φ(AΓ)](x, x
′))

Consider for any x ∈ VΓ, the linear form on C(R,R)

Lx(φ) = [φ(AΓ)](x, x) .

Lx is positive and verifies Lx(1) = 1, so we have Lx(φ) =
∫
R
φdex

where dex is a probability measure on R, supported by the spectrum
of AΓ.
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The density of states

φ : R → R given continuous function

φ(AΓ): operator on l2(Γ), (associated matrix [φ(AΓ)](x, x
′))

Consider for any x ∈ VΓ, the linear form on C(R,R)

Lx(φ) = [φ(AΓ)](x, x) .

Lx is positive and verifies Lx(1) = 1, so we have Lx(φ) =
∫
R
φdex

where dex is a probability measure on R, supported by the spectrum
of AΓ.

Theorem The spectral measure dex of Tq is independent of the
vertex x and is given by

dex(λ) := de(λ) =
(q + 1)

√
4q − λ2

2π ((q + 1)2 − λ2)
dλ
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The Fourier-Helgason transform

Definition The Fourier-Helgason transform FH : f → f̂(ω, s) of
f ∈ C0(Tq), where ω ∈ ΩO and s ∈ S, is given by

f̂(ω, s) =
∑

x∈Vq
f(x)q(1/2+is)bω(x) .

Remark If s ∈ S0, then
f̂(ω, s) = 〈e0(ω, s), f〉 =

∑
x∈VΓ

f (x) e0(x, ω, s) .

Completeness of the set {e0(ω, s), s ∈ S0, ω ∈ Ω} :
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The Fourier-Helgason transform

Definition The Fourier-Helgason transform FH : f → f̂(ω, s) of
f ∈ C0(Tq), where ω ∈ ΩO and s ∈ S, is given by

f̂(ω, s) =
∑

x∈Vq
f(x)q(1/2+is)bω(x) .

Remark If s ∈ S0, then
f̂(ω, s) = 〈e0(ω, s), f〉 =

∑
x∈VΓ

f (x) e0(x, ω, s) .

Completeness of the set {e0(ω, s), s ∈ S0, ω ∈ Ω} :

Theorem (inversion formula)

For any f ∈ C0(Tq), we have
f(x) =

∫
S0

∫
Ω
e0(x, ω, s)f̂(ω, s)dσO(ω)dµ(s)

where dµ(s) = (q+1) log q
π

sin2(s log q)
q+q−1−2 cos(2s log q) |ds| .

FH extends to a u. map from l2(Tq) into L2(Ω× S0, dσO ⊗ dµ).

its range is the subsp. of the f. F of L2(Ω× S0, dσO ⊗ dµ) s.t.∫
Ω
e0(x, ω, s)F (ω, s)dσO(ω) =

∫
Ω
e0(x, ω,−s)F (ω,−s)dσO(ω) .

Spectral resolution of A0: if φ : R → R is continuous,
φ(A0) = (FH)

−1
φ(λs)FH .
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Scattering on Tq between A0 and the Schrödinger operator A = A0 +W

the Hermitian matrix (also denoted W ) assoc. to this potential is
supported by K ×K ( K : a finite part of Vq)

K is chosen minimal, so that: K = {x ∈ Vq | ∃y ∈ Vq with Wx,y 6= 0} .

A is a finite rank perturbation of A0 .
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Scattering on Tq between A0 and the Schrödinger operator A = A0 +W

the Hermitian matrix (also denoted W ) assoc. to this potential is
supported by K ×K ( K : a finite part of Vq)

K is chosen minimal, so that: K = {x ∈ Vq | ∃y ∈ Vq with Wx,y 6= 0} .

A is a finite rank perturbation of A0 .

Proposition l2(Tq) = Hac ⊕Hpp

Hac is the isometric image of l2(Tq) by the wave operator
Ω+ = s− limt→−∞ eitAe−itA0 . We have
A|Hac

= Ω+A0(Ω
+)⋆ =⇒ the corresponding part of the S.D. is

isomorphic to that of A0 which is an a. c. spectrum on Iq.

The space Hpp is finite dimensional, admits an o.b. of l2 eigenf.
associated to a finite set of eigenv. ( Some of them can be embedded in

the continuous spectrum Iq .)
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Formal derivation of the Lippmann-Schwinger equation

We look for generalised eigenfunctions of A.

they are particular solutions of
(λs −A)e(., ω, s) = 0 ,

(meaning not l2 solutions, but only point-wise solutions.)
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Formal derivation of the Lippmann-Schwinger equation

We look for generalised eigenfunctions of A.

they are particular solutions of
(λs −A)e(., ω, s) = 0 ,

(meaning not l2 solutions, but only point-wise solutions.)

If e(ω, s) is the image of e0(ω, s) by Ω+ in some sense (they are not in l2!),
then we should have formally e0(ω, s) = limt→−∞eitA0e−itAe(ω, s)

= limt→−∞[e(ω, s)− i

∫ t

0

eiuA0We−iuAe(ω, s)du]

= e(ω, s)− ilimε→0

∫ −∞

0

eiuA0We−iuλseεue(ω, s)du

= e(ω, s) + limε→0[(A0 − (λs + iε))−1We](ω, s) .

So e(ω, s) should obey the following "Lippmann-Schwinger-type" equation

e(ω, s) = e0(ω, s) +G0(λs)We(ω, s) .
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χ ∈ C0(Tq) be a compactly supported real-valued function s. t.
Wχ = χW = W

If e(ω, s) obeys (LSE) and a(ω, s) = χe(ω, s), then a obeys (MLSE):
a(ω, s) = χe0(ω, s) + χG0(λs)Wa(ω, s) .

Ks : the finite rank op. on l2(Tq) defined by Ks = χG0(λs)W . The
map s → Ks extends holom. to ℑs > − 1

2

analytic Fredholm theorem =⇒ ∃ a finite subset Ê of S0, defined
by Ê =: {s ∈ S0; ker(Id−Ks) 6= 0}, so that (MLSE) has a unique
solution a(ω, s) ∈ C0(Tq) whenever s /∈ Ê .
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χ ∈ C0(Tq) be a compactly supported real-valued function s. t.
Wχ = χW = W

If e(ω, s) obeys (LSE) and a(ω, s) = χe(ω, s), then a obeys (MLSE):
a(ω, s) = χe0(ω, s) + χG0(λs)Wa(ω, s) .

Ks : the finite rank op. on l2(Tq) defined by Ks = χG0(λs)W . The
map s → Ks extends holom. to ℑs > − 1

2

analytic Fredholm theorem =⇒ ∃ a finite subset Ê of S0, defined
by Ê =: {s ∈ S0; ker(Id−Ks) 6= 0}, so that (MLSE) has a unique
solution a(ω, s) ∈ C0(Tq) whenever s /∈ Ê .

For s /∈ Ê , the function e(ω, s) = e0(ω, s) +G0(λs)Wa(ω, s)

is the unique solution of (LSE).
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The setÊ and the pure point spectrum

Propositions

The set Ê is independent of the choice of χ with Wχ = χW = W .

If (A− λ)f = 0 with λ ∈ Iq and f ∈ l2(Tq), then Supp(f) ⊂ K̂

K̂ : the smallest subset of Vq s. t. Supp(W ) ⊂ K̂ × K̂ and all
connected components of Tq \ K̂ are infinite.

Consequence #{σpp(A) ∩ Iq} ≤ #K̂.

If s ∈ S0, (A− λs)f = 0 and f ∈ l2(Tq) \ 0, then s ∈ Ê .

Conversely, if s ∈ Ê ⊂ S0, ∃f 6= 0 s. t. (A− λs)f = 0 and
f(x) = O

(
q−|x|/2

)
.

5/10/2012 – p. 12



The setÊ and the pure point spectrum

Propositions

The set Ê is independent of the choice of χ with Wχ = χW = W .

If (A− λ)f = 0 with λ ∈ Iq and f ∈ l2(Tq), then Supp(f) ⊂ K̂

K̂ : the smallest subset of Vq s. t. Supp(W ) ⊂ K̂ × K̂ and all
connected components of Tq \ K̂ are infinite.

Consequence #{σpp(A) ∩ Iq} ≤ #K̂.

If s ∈ S0, (A− λs)f = 0 and f ∈ l2(Tq) \ 0, then s ∈ Ê .

Conversely, if s ∈ Ê ⊂ S0, ∃f 6= 0 s. t. (A− λs)f = 0 and
f(x) = O

(
q−|x|/2

)
.

Theorem The pure point spectrum σpp(A) of A splits into 3 parts
σpp(A) = σ−

pp(A) ∪ σ+
pp(A) ∪ σ0

pp(A)

where σ−
pp(A) = σpp(A)∩]−∞,−2

√
q[, σ+

pp(A) = σpp(A)∩]2√q,+∞[, and

σ0
pp(A) = σpp(A) ∩ Iq .

We have #σ±
pp(A) ≤ #Supp(W ) and #σ0

pp(A) ≤ #K̂.
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The deformed Fourier-Helgason transform

Definition The deformed Fourier-Helgason transform FHsc of
f ∈ C0(Tq) is the function f̂sc on Ω× (S0 \ Ê) defined by

f̂sc(ω, s) = 〈e(ω, s), f〉 =
∑

x∈VΓ

f (x) e(x, ω, s) .

Remark Since Ks = K−s, the subset Ê is invariant by s → −s and
consequently is the inverse image by s → λs of a subset of Iq which
we denote by E .
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The deformed Fourier-Helgason transform

Definition The deformed Fourier-Helgason transform FHsc of
f ∈ C0(Tq) is the function f̂sc on Ω× (S0 \ Ê) defined by

f̂sc(ω, s) = 〈e(ω, s), f〉 =
∑

x∈VΓ

f (x) e(x, ω, s) .

Remark Since Ks = K−s, the subset Ê is invariant by s → −s and
consequently is the inverse image by s → λs of a subset of Iq which
we denote by E .

Theorem (inversion formula)

f ∈ C0(Tq) , J ⊂ Iq \ E any closed interval

denote by Ĵ the inverse image of J by s → λs,

then the following inverse transform holds
PJf(x) =

∫
Ĵ

∫
Ω
e(x, ω, s)f̂sc(ω, s)dσO(ω)dµ(s) .

Moreover f → f̂sc extends to an isometry from Hac onto
L2
even(Ω× S0, dσO ⊗ dµ).
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Correlation of scattered plane waves

Motivation: passive imaging in seismology (M. Campillo’s seismology
group in Grenoble).
For a scattering problem in Rd the point-to-point correlations of the plane waves can

be computed in terms of the Green’s function (Y. C.d.V, ’09): for a fixed spectral
parameter, plane waves are viewed as random waves parametrised
by the direction of their incoming part.
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Correlation of scattered plane waves

Motivation: passive imaging in seismology (M. Campillo’s seismology
group in Grenoble).
For a scattering problem in Rd the point-to-point correlations of the plane waves can

be computed in terms of the Green’s function (Y. C.d.V, ’09): for a fixed spectral
parameter, plane waves are viewed as random waves parametrised
by the direction of their incoming part.

Consider the plane wave e(x, ω, s(λ)) as a random wave

Define the point-to-point correlation Csc
λ (x, y) of such a random wave

in the usual way:

Csc
λ (x, y) =

∫

Ω

e(x, ω, s(λ))e(y, ω, s(λ)) dσ(ω) .

Theorem For any λ ∈ Iq and any vertices x, y

Csc
λ (x, y) = −2(q2 + 2q + 1− λ2)

(q + 1)
√

4q − λ2
ℑG(λ+ i0, x, y) .
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The S-matrix and the asymptotics of the deformed plane waves

The Lippmann-Schwinger eigenfunctions e(x, ω, s) are especially useful to
describe the so-called S−matrix (S = (Ω−)∗Ω+).

For any f and g ∈ C0(Tq)

(f, (S − I)g) = −2πi
∫
S0×S0

∫
Ω×Ω

T (ω, s;ω′, s′)f̂(ω, s)δ(λs − λs′)ĝ(ω
′, s′)dΣ

dΣ = dσO(ω)dµ(s)dσO(ω
′)dµ(s′)

T (ω, s;ω′, s′) = 〈e(ω′, s′),We0(ω, s)〉 =∑
(x,y) e(x, ω

′, s′)W (x, y)e0(y, ω, s) .
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The Lippmann-Schwinger eigenfunctions e(x, ω, s) are especially useful to
describe the so-called S−matrix (S = (Ω−)∗Ω+).
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(f, (S − I)g) = −2πi
∫
S0×S0

∫
Ω×Ω

T (ω, s;ω′, s′)f̂(ω, s)δ(λs − λs′)ĝ(ω
′, s′)dΣ

dΣ = dσO(ω)dµ(s)dσO(ω
′)dµ(s′)

T (ω, s;ω′, s′) = 〈e(ω′, s′),We0(ω, s)〉 =∑
(x,y) e(x, ω

′, s′)W (x, y)e0(y, ω, s) .

This can be written symbolically as

S(ω, s;ω′, s′) = δ(s− s′)− 2πiT (ω, s;ω′, s′)δ(λs − λs′) .
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The S-matrix and the asymptotics of the deformed plane waves

The Lippmann-Schwinger eigenfunctions e(x, ω, s) are especially useful to
describe the so-called S−matrix (S = (Ω−)∗Ω+).

For any f and g ∈ C0(Tq)

(f, (S − I)g) = −2πi
∫
S0×S0

∫
Ω×Ω

T (ω, s;ω′, s′)f̂(ω, s)δ(λs − λs′)ĝ(ω
′, s′)dΣ

dΣ = dσO(ω)dµ(s)dσO(ω
′)dµ(s′)

T (ω, s;ω′, s′) = 〈e(ω′, s′),We0(ω, s)〉 =∑
(x,y) e(x, ω

′, s′)W (x, y)e0(y, ω, s) .

This can be written symbolically as

S(ω, s;ω′, s′) = δ(s− s′)− 2πiT (ω, s;ω′, s′)δ(λs − λs′) .

There exist “transmission coefficients” τ(s, ω, ω′) so that

e(x;ω, s) = e0(x;ω, s) + τ(s, ω, ω′)q(−
1
2+is)|x|

for any x close enough to ω′ , τ(s, ω, ω′) = −C(s)
2iπ S(ω′,−s;ω, s)

with C(s)−1 = q
1
2−is − q−

1
2+is . 5/10/2012 – p. 15



Computation of the transmission coefficients in terms of the Dirichlet-to
Neumann operator

The functions bω(y) and bω′(y) are equal if ω and ω′ belong to the
same end of Tq \K.

=⇒ the function ω′ → τ(s, ω, ω′) is constant in each end of Tq \K
=⇒ the tr. coeff. τ(s, ω, ω′) can be written as a function τ(s, ω, l).
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Computation of the transmission coefficients in terms of the Dirichlet-to
Neumann operator

The functions bω(y) and bω′(y) are equal if ω and ω′ belong to the
same end of Tq \K.

=⇒ the function ω′ → τ(s, ω, ω′) is constant in each end of Tq \K
=⇒ the tr. coeff. τ(s, ω, ω′) can be written as a function τ(s, ω, l).

Moreover the reduced Lippmann-Schwinger equation depends only
on the restriction of e0 to K

=⇒ the function ω → τ(s, ω, l) is also constant in each end of Tq \K.

Finally, we get an L× L matrix depending on s, denoted by

S̃(s) = (S(l′,−s, l, s))l,l′ = − 2iπ

C(s)
(τ(s, l, l′))l,l′

.
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Theorem
Consider n : the integer so that Bn−2 is the smallest ball containing the
finite graph K.
Set Γ = Bn, ∂Γ = {xl′ , 1 ≤ l′ ≤ L}.
Set Ân : the restriction of A to Bn ( Ân = (Ax,y)(x,y)∈Bn

)

define In in the same way,
set B = Ân − λsIn

Consider DN s: the corresponding Dirichlet-to Neumann operator .
Then DN s and the transmission vector−−−→
τ(s, l) := (τ(s, l, 1), · · · , τ(s, l, l′), · · · , τ(s, l, L)) exist for any

s /∈ E0 = {s ∈ S0 , λs ∈ σ(Ân−1)}

and

(τ(s, l, l′)) = −α−2n

[
1

C(s)

(
DN s + q1/2+isI

)−1

+A
]
,

with Ân−1 = (Ax,y)(x,y)∈Bn−1
, A = (Al,l′) = (αd(xl,xl′ )), α = q−1/2+is .
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The Dirichlet-to Neumann operatorDN on a finite graph

Γ = (V,E) : a connected finite graph
∂Γ : a subset of V called the "boundary of Γ".
B = (bi,j) : RV → RV : a sym. matrix assoc. to Γ, namely

bi,j = 0 if i 6= j and {i, j} /∈ E.

Set V0 = V \ ∂Γ, define B0 : RV0 → RV0 as the restriction of B to the functions which
vanish on ∂Γ .
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B = (bi,j) : RV → RV : a sym. matrix assoc. to Γ, namely

bi,j = 0 if i 6= j and {i, j} /∈ E.

Set V0 = V \ ∂Γ, define B0 : RV0 → RV0 as the restriction of B to the functions which
vanish on ∂Γ .

Lemma
Assume B0 invertible. Then, ∀f ∈ C(∂Γ), ∃ a unique solution F ∈ C(Γ) of the Dirichlet
problem

(Df ) : F|∂Γ = f and BF (l) = 0 if l ∈ V0 .
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The Dirichlet-to Neumann operatorDN on a finite graph

Γ = (V,E) : a connected finite graph
∂Γ : a subset of V called the "boundary of Γ".
B = (bi,j) : RV → RV : a sym. matrix assoc. to Γ, namely

bi,j = 0 if i 6= j and {i, j} /∈ E.

Set V0 = V \ ∂Γ, define B0 : RV0 → RV0 as the restriction of B to the functions which
vanish on ∂Γ .

Lemma
Assume B0 invertible. Then, ∀f ∈ C(∂Γ), ∃ a unique solution F ∈ C(Γ) of the Dirichlet
problem

(Df ) : F|∂Γ = f and BF (l) = 0 if l ∈ V0 .

The Dirichlet-to Neumann operator DN associated to B is the linear operator from C(∂Γ) to
C(∂Γ) defined as follows:
if l ∈ ∂Γ,

DN (f)(l) =
m∑

i=1

bl,iF (i)(= BF (l)) .
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The spectral theory for a graph asymptotic to an homogeneoustree

Some combinatorics
Theorem 1
If Γ is asymptotic to a homogeneous tree of degree q + 1, then Γ is isomorphic to a
connected component of a graph Γ̂ which can be obtained from Tq by adding and removing
a finite number of edges.
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The spectral theory for a graph asymptotic to an homogeneoustree

Some combinatorics
Theorem 1
If Γ is asymptotic to a homogeneous tree of degree q + 1, then Γ is isomorphic to a
connected component of a graph Γ̂ which can be obtained from Tq by adding and removing
a finite number of edges.
Tools

a combinatorial analogue of the reg. total curvature of a Riem. surface S

ν(Γ) =
∑

x∈VΓ

(q + 1− d(x)) + 2b1 ,

d(x) : the degree of x, b1 : the first Betti number of Γ

Lemma 1 If, for r ≥ 2, Br = {x ∈ VΓ | |x|Γ0 ≤ r}, then

ν(Γ) = (q − 1)m−M + 2 ,

( m : number of inner vertices of Br , M :number of boundary vertices)
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Lemma 2
F : a finite tree whose all vertices are of degree q + 1 except the ends which are of
degree 1.
M number of ends, m the number of inner vertices.
We have

M = 2 + (q − 1)m . (1)

Conversely, for each choice of (m,M) satisfying Equation (1), there exists such a tree
F .
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Lemma 2
F : a finite tree whose all vertices are of degree q + 1 except the ends which are of
degree 1.
M number of ends, m the number of inner vertices.
We have

M = 2 + (q − 1)m . (1)

Conversely, for each choice of (m,M) satisfying Equation (1), there exists such a tree
F .

Some modifications of Γ in order to get a new graph Γ̂ with ν(Γ̂) = 0.
Lemma 3
If Γ′ = M1(Γ) is defined by adding to Γ a vertex and an edge connecting that vertex to
a vertex of Γ0, then

ν(Γ′) = ν(Γ) + q − 1 .

If Γ′ = M2(Γ) is defined by adding to Γ a tree whose root x is of degree q and all other
vertices of degree q + 1 and connecting x by an edge to a vertex of Γ0, Γ′ is
asymptotic to an homogeneous tree of degree q + 1 and

ν(Γ′) = ν(Γ)− 1 .
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The spectral theory ofΓ

Theorem (1)=⇒ existence of a Hilbert space H so that

l2(Γ̂) = l2(Γ)⊕H

this decomposition is invariant by A
Γ̂

.

Moreover A
Γ̂

is a finite rank perturbation of A0 = ATq
. =⇒ this gives the spectral

theory of AΓ by using the results of the preceding section .
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The spectral theory ofΓ

Theorem (1)=⇒ existence of a Hilbert space H so that

l2(Γ̂) = l2(Γ)⊕H

this decomposition is invariant by A
Γ̂

.

Moreover A
Γ̂

is a finite rank perturbation of A0 = ATq
. =⇒ this gives the spectral

theory of AΓ by using the results of the preceding section .

Lemma 4 Let A
Γ̂
= ATq

+W with Support(W ) ⊂ K ×K and K finite. Let Γ be an

unbounded connected component of Γ̂ and ω a point at infinity of Γ. Then, for any
s /∈ Ê , we have

support(e(.; s, ω)) ⊂ VΓ .

Conversely, if ω′ is a point at infinity of Γ̂ which is not a point at infinity of Γ then

support(e(.; s, ω′)) ∩ VΓ = ∅ .

Theorem 2 The Hilbert space l2(Γ) splits into a finite dimensional part Hpp and an
absolutely continuous part Hac. This decomposition is preserved by AΓ. If f ∈ C0(Γ)

and, for ω ∈ Ω, f̂sc(s, ω) = 〈f |e(.; s, ω)〉, then the map f → f̂sc extends to an
isometry from Hac onto L2

even(S0 × Ω, dσ0 ⊗ dµ) which intertwines the action of AΓ

with the multiplication by λs.
5/10/2012 – p. 21


	
ormalsize Summary
	 �ootnotesize The setup 
	 �ootnotesize The setup 

	 �ootnotesize The adjacency operator
	 �ootnotesize The adjacency operator
	 �ootnotesize The adjacency operator

	 �ootnotesize The points at infinity on the tree $T _q$
	 �ootnotesize The points at infinity on the tree $T _q$
	 �ootnotesize The points at infinity on the tree $T _q$

	 �ootnotesize The spectral Riemann surface
	 �ootnotesize The spectral Riemann surface

	�ootnotesize The density of states 
	�ootnotesize The density of states 

	�ootnotesize The Fourier-Helgason transform
	�ootnotesize The Fourier-Helgason transform

	 �ootnotesize 
	 �ootnotesize 

	 �ootnotesize Formal derivation of the Lippmann-Schwinger equation
	 �ootnotesize Formal derivation of the Lippmann-Schwinger equation

	 
	 

	 �ootnotesize The set $hat {cal E}$ and the pure point spectrum 
	 �ootnotesize The set $hat {cal E}$ and the pure point spectrum 

	�ootnotesize The deformed Fourier-Helgason transform
	�ootnotesize The deformed Fourier-Helgason transform

	�ootnotesize Correlation of scattered plane waves
	�ootnotesize Correlation of scattered plane waves

	�ootnotesize The S-matrix and the asymptotics of the deformed plane waves
	�ootnotesize The S-matrix and the asymptotics of the deformed plane waves
	�ootnotesize The S-matrix and the asymptotics of the deformed plane waves

	�ootnotesize 
	�ootnotesize 

	�ootnotesize 
	�ootnotesize The Dirichlet-to Neumann operator $cal {DN}$ on a finite graph
	�ootnotesize The Dirichlet-to Neumann operator $cal {DN}$ on a finite graph
	�ootnotesize The Dirichlet-to Neumann operator $cal {DN}$ on a finite graph

	�ootnotesize The spectral theory for a graph asymptotic to an homogeneous tree
	�ootnotesize The spectral theory for a graph asymptotic to an homogeneous tree

	 
	 

	scriptsize The spectral theory of $gG $
	scriptsize The spectral theory of $gG $


