Scattering theory for graphs isomorphic to a homogeneous tree at infinity

Françoise Truc

Institut Fourier, Grenoble

Summary

- The setup: graphs asymptotic to a homogeneous tree
- The case of a homogeneous tree \mathbb{T}_q
 - the spectral decomposition of the adjacency matrix
 - the Fourier-Helgason transform
- A scattering problem for a Schrödinger operator with a compactly supported non local potential
 - Existence and unicity of the generalised eigenfunctions
 - The deformed Fourier-Helgason transform
 - Correlation of scattered plane waves
 - The S-matrix and the asymptotics of the sc. pl. waves
 - Computation of the transmission coefficients
- The spectral theory for a graph asymptotic to \mathbb{T}_q

Joint work with Y. Colin de Verdière, Grenoble

The setup

- - V_{Γ} : the set of vertices, E_{Γ} : the set of edges
 - We write $x \sim y$ for $\{x, y\} \in E_{\Gamma}$.
- - $\Gamma' := \Gamma \setminus \Gamma_0$ is a disjoint union of a finite number of trees $T_l, \ l = 1, \cdots, L$, rooted at a vertex x_l linked to Γ_0
 - all vertices of T_l different from x_l are of degree q + 1.
 - The trees T_l , $l = 1, \dots, L$, are called the ends of Γ .

The setup

- - V_{Γ} : the set of vertices, E_{Γ} : the set of edges
 - We write $x \sim y$ for $\{x, y\} \in E_{\Gamma}$.
- - $\Gamma' := \Gamma \setminus \Gamma_0$ is a disjoint union of a finite number of trees $T_l, \ l = 1, \cdots, L$, rooted at a vertex x_l linked to Γ_0
 - all vertices of T_l different from x_l are of degree q + 1.
 - The trees T_l , $l = 1, \dots, L$, are called the ends of Γ .
- ∂Γ₀ = the boundary of Γ₀ : the set of edges of Γ connecting a vertex of Γ₀ to a vertex of Γ', (one of the x_l's).
 |x|_{Γ0} : the distance of x ∈ V_{Γ'} to Γ₀.

The adjacency operator

- \square $C_0(\Gamma)$: the subspace of functions with finite support.

$$l^2(\Gamma) = \{ f \in C(\Gamma); \sum_{x \in V_{\Gamma}} |f|^2(x) < \infty \}. \ \langle f, g \rangle = \sum_{x \in V_{\Gamma}} \overline{f(x)}.g(x) \ .$$

The adjacency operator

- $C(\Gamma) = \{ f : V_{\Gamma} \longrightarrow \mathbb{C} \}$
- $C_0(\Gamma)$: the subspace of functions with finite support.

$$l^2(\Gamma) = \{ f \in C(\Gamma); \sum_{x \in V_{\Gamma}} |f|^2(x) < \infty \}. \langle f, g \rangle = \sum_{x \in V_{\Gamma}} \overline{f(x)}.g(x) .$$

- On $C_0(\Gamma)$, we define the adjacency operator A_{Γ} by $(A_{\Gamma}f)(x) = \sum_{y \sim x} f(y)$
 - A_{Γ} is bounded on $l^2(\Gamma) \Leftrightarrow$ the degree of the vertices of Γ is bounded. (which is the case here.)
 - In that case, the operator A_{Γ} is self-adjoint.

The adjacency operator

- $C(\Gamma) = \{ f : V_{\Gamma} \longrightarrow \mathbb{C} \}$
- $C_0(\Gamma)$: the subspace of functions with finite support.

$$l^2(\Gamma) = \{ f \in C(\Gamma); \sum_{x \in V_{\Gamma}} |f|^2(x) < \infty \}. \langle f, g \rangle = \sum_{x \in V_{\Gamma}} \overline{f(x)}.g(x) .$$

- On $C_0(\Gamma)$, we define the adjacency operator A_{Γ} by $(A_{\Gamma}f)(x) = \sum_{y \sim x} f(y)$
 - A_{Γ} is bounded on $l^2(\Gamma) \Leftrightarrow$ the degree of the vertices of Γ is bounded. (which is the case here.)
 - In that case, the operator A_{Γ} is self-adjoint.
- Our goal : get an explicit spectral decomposition of the adjacency operator A_{Γ} .
 - get a S. D. for a Schrödinger operator with a compactly supported potential on a hom. tree
 - get a similar S. D. for the adjacency operator A_{Γ} via a combinatorial result

5/10/2012 - p. 4

The points at infinity on the tree \mathbb{T}_q

- $\ \, {\mathbb T}_q=(V_q,E_q) : {\rm homogeneous \ tree \ of \ degree \ } q+1$
 - choose an origin O (a root)
 - |x|: the combinatorial distance of the vertex x to O.
- \square Ω_O : the set of infinite simple paths starting from O.
 - a sequence $y_n \in V_q$ tends to $\omega \in \Omega_O$ iff for *n* large enough, y_n belongs to the path ω and is going to infinity along that path.

The points at infinity on the tree \mathbb{T}_q

- $T_q = (V_q, E_q)$: homogeneous tree of degree q + 1
 - choose an origin O (a root)
 - |x|: the combinatorial distance of the vertex x to O.
- \square Ω_O : the set of infinite simple paths starting from O.
 - a sequence $y_n \in V_q$ tends to $\omega \in \Omega_O$ iff for *n* large enough, y_n belongs to the path ω and is going to infinity along that path.
- $\mathbf{I} \mathbf{I} \mathbf{I} \sigma_{O}$: canonical probability measure on Ω_{O}
- Busemann function $x \to b_{\omega}(x) := |x_{\omega}| d(x, x_{\omega})$.
 (x_{ω} the last point lying on ω in the geodesic path joining O to x)
- level sets of b_{ω} : horocycles associated to ω .

The points at infinity on the tree \mathbb{T}_q

- $\ \, {\mathbb T}_q=(V_q,E_q) : {\rm homogeneous \ tree \ of \ degree \ } q+1$
 - choose an origin O (a root)
 - |x|: the combinatorial distance of the vertex x to O.
- \square Ω_O : the set of infinite simple paths starting from O.
 - a sequence $y_n \in V_q$ tends to $\omega \in \Omega_O$ iff for *n* large enough, y_n belongs to the path ω and is going to infinity along that path.
- $\mathbf{I} \mathbf{I} \mathbf{I} \sigma_{O}$: canonical probability measure on Ω_{O}
- Busemann function $x \to b_{\omega}(x) := |x_{\omega}| d(x, x_{\omega})$.
 (x_{ω} the last point lying on ω in the geodesic path joining O to x)
- Ievel sets of b_{ω} : horocycles associated to ω .

Theorem A_0 : the adjacency operator on \mathbb{T}_q . The spectrum of A_0 is the interval $I_q = [-2\sqrt{q}, +2\sqrt{q}]$. Set $e_0(x, \omega, s) := q^{(1/2-is)b_\omega(x)}$, and $\lambda_s = q^{\frac{1}{2}+is} + q^{\frac{1}{2}-is}$. Then $\forall s \in S^0$, $A_0 e_0(\omega, s) = \lambda_s e_0(\omega, s)$.

The spectral Riemann surface

$$\ \, {\it S}:=/\tau\mathbb{Z}\times i\mathbb{R},\,\tau=2\pi/\log q$$

• $s \to \lambda_s$ holomorphic function defined on S by $\lambda_s = q^{\frac{1}{2}+is} + q^{\frac{1}{2}-is}$.

• $S^+ := \{s \in S \mid \Im s > 0\}$ is mapped bijectively onto $\mathbb{C} \setminus I_q$.

•
$$S^0 := \mathbb{R}/\tau\mathbb{Z}$$
: the circle $\Im s = 0$.

the circle S^0 is a double covering of I_q .

The spectral Riemann surface

• $s \to \lambda_s$ holomorphic function defined on S by $\lambda_s = q^{\frac{1}{2}+is} + q^{\frac{1}{2}-is}$.

• $S^+ := \{s \in S \mid \Im s > 0\}$ is mapped bijectively onto $\mathbb{C} \setminus I_q$.

•
$$S^0 := \mathbb{R}/\tau\mathbb{Z}$$
: the circle $\Im s = 0$.

the circle S^0 is a double covering of I_q .

 G_0 : the Green's function on \mathbb{T}_q .

Theorem

- The Green's function of the tree \mathbb{T}_q is given, for $s \in S^+$ by $G_0(\lambda_s, x, y) = \frac{q^{(-\frac{1}{2}+is)d(x,y)}}{q^{\frac{1}{2}-is}-q^{-\frac{1}{2}+is}}$.
- G_0 extends merom. to S with two poles -i/2 and $-i/2 + \tau/2$.
- for any $x \in V_q$ and any y belonging to the path ω ,

$$G_0(\lambda_s, x, y) = C(s)q^{(-\frac{1}{2}+is)|y|}q^{(\frac{1}{2}-is)b_{\omega}(x)},$$

The density of states

- $\phi: \mathbb{R} \to \mathbb{R}$ given continuous function
- Consider for any $x \in V_{\Gamma}$, the linear form on $C(\mathbb{R},\mathbb{R})$

$$L_x(\phi) = [\phi(A_{\Gamma})](x, x) .$$

 L_x is positive and verifies $L_x(1) = 1$, so we have $L_x(\phi) = \int_{\mathbb{R}} \phi de_x$ where de_x is a probability measure on \mathbb{R} , supported by the spectrum of A_{Γ} .

The density of states

- $\phi : \mathbb{R} \to \mathbb{R}$ given continuous function
- Consider for any $x \in V_{\Gamma}$, the linear form on $C(\mathbb{R}, \mathbb{R})$

$$L_x(\phi) = [\phi(A_{\Gamma})](x, x) .$$

 L_x is positive and verifies $L_x(1) = 1$, so we have $L_x(\phi) = \int_{\mathbb{R}} \phi de_x$ where de_x is a probability measure on \mathbb{R} , supported by the spectrum of A_{Γ} .

P Theorem The spectral measure de_x of \mathbb{T}_q is independent of the vertex x and is given by

$$de_x(\lambda) := de(\lambda) = \frac{(q+1)\sqrt{4q-\lambda^2}}{2\pi\left((q+1)^2 - \lambda^2\right)} d\lambda$$

The Fourier-Helgason transform

- Definition The Fourier-Helgason transform $\mathcal{FH}: f \to \hat{f}(\omega, s)$ of $f \in C_0(\mathbb{T}_q)$, where $\omega \in \Omega_O$ and $s \in S$, is given by $\hat{f}(\omega, s) = \sum_{x \in V_q} f(x)q^{(1/2+is)b_\omega(x)}$.
- Semark If $s \in S^0$, then $\hat{f}(\omega, s) = \langle e_0(\omega, s), f \rangle = \sum_{x \in V_{\Gamma}} f(x) \overline{e_0(x, \omega, s)} .$ Completeness of the set $\{e_0(\omega, s), s \in S^0, \omega \in \Omega\}$:

The Fourier-Helgason transform

- Definition The Fourier-Helgason transform $\mathcal{FH}: f \to \hat{f}(\omega, s)$ of $f \in C_0(\mathbb{T}_q)$, where $\omega \in \Omega_O$ and $s \in S$, is given by $\hat{f}(\omega, s) = \sum_{x \in V_q} f(x)q^{(1/2+is)b_\omega(x)}$.
- Semark If s ∈ S⁰, then $\hat{f}(\omega,s) = \langle e_0(\omega,s), f \rangle = \sum_{x \in V_{\Gamma}} f(x) \overline{e_0(x,\omega,s)}.$ Completeness of the set {e₀(ω,s), s ∈ S⁰, ω ∈ Ω}:

Theorem (inversion formula)

- For any $f \in C_0(\mathbb{T}_q)$, we have $f(x) = \int_{S^0} \int_{\Omega} e_0(x, \omega, s) \hat{f}(\omega, s) d\sigma_O(\omega) d\mu(s)$ where $d\mu(s) = \frac{(q+1)\log q}{\pi} \frac{\sin^2(s\log q)}{q+q^{-1}-2\cos(2s\log q)} |ds|$.
- \mathcal{FH} extends to a u. map from $l^2(\mathbb{T}_q)$ into $L^2(\Omega \times S^0, d\sigma_O \otimes d\mu)$.
- its range is the subsp. of the f. F of $L^2(\Omega \times S^0, d\sigma_O \otimes d\mu)$ s.t. $\int_{\Omega} e_0(x, \omega, s) F(\omega, s) d\sigma_O(\omega) = \int_{\Omega} e_0(x, \omega, -s) F(\omega, -s) d\sigma_O(\omega)$.
- Spectral resolution of A_0 : if $\phi : \mathbb{R} \to \mathbb{R}$ is continuous, $\phi(A_0) = (\mathcal{FH})^{-1} \phi(\lambda_s) \mathcal{FH}$.

5/10/2012 - p. 8

Scattering on \mathbb{T}_q between A_0 and the Schrödinger operator $A = A_0 + W$

- Ithe Hermitian matrix (also denoted W) assoc. to this potential is supported by $K \times K$ (K : a finite part of V_q)
- K is chosen minimal, so that: $K = \{x \in V_q \mid \exists y \in V_q \text{ with } W_{x,y} \neq 0\}$.
- \blacksquare A is a finite rank perturbation of A_0 .

Scattering on \mathbb{T}_q between A_0 and the Schrödinger operator $A = A_0 + W$

- Ithe Hermitian matrix (also denoted W) assoc. to this potential is supported by $K \times K$ (K : a finite part of V_q)
- K is chosen minimal, so that: $K = \{x \in V_q \mid \exists y \in V_q \text{ with } W_{x,y} \neq 0\}$.
- A is a finite rank perturbation of A_0 .
- Proposition $l^2(\mathbb{T}_q) = \mathcal{H}_{\mathrm{ac}} \oplus \mathcal{H}_{\mathrm{pp}}$
 - \mathcal{H}_{ac} is the isometric image of $l^2(\mathbb{T}_q)$ by the wave operator $\Omega^+ = s - \lim_{t \to -\infty} e^{itA} e^{-itA_0}$. We have $A_{|\mathcal{H}_{ac}} = \Omega^+ A_0(\Omega^+)^* \implies$ the corresponding part of the S.D. is isomorphic to that of A_0 which is an a. c. spectrum on I_q .
 - The space \mathcal{H}_{pp} is finite dimensional, admits an o.b. of l^2 eigenf. associated to a finite set of eigenv. (Some of them can be embedded in the continuous spectrum I_q .)

Formal derivation of the Lippmann-Schwinger equation

- We look for generalised eigenfunctions of A.
- they are particular solutions of

 $(\lambda_s - A)e(., \omega, s) = 0 ,$

(meaning not l^2 solutions, but only point-wise solutions.)

Formal derivation of the Lippmann-Schwinger equation

- We look for generalised eigenfunctions of A.
- It they are particular solutions of $(\lambda_s A)e(., \omega, s) = 0,$ (meaning not l^2 solutions, but only point-wise solutions.)

If $e(\omega, s)$ is the image of $e_0(\omega, s)$ by Ω^+ in some sense (they are not in l^2 !), then we should have formally $e_0(\omega, s) = \lim_{t \to -\infty} e^{itA_0} e^{-itA} e(\omega, s)$ $= \lim_{t \to -\infty} [e(\omega, s) - i \int_0^t e^{iuA_0} W e^{-iuA} e(\omega, s) du]$ $= e(\omega, s) - i \lim_{\varepsilon \to 0} \int_0^{-\infty} e^{iuA_0} W e^{-iu\lambda_s} e^{\varepsilon u} e(\omega, s) du$ $= e(\omega, s) + \lim_{\varepsilon \to 0} [(A_0 - (\lambda_s + i\varepsilon))^{-1} W e](\omega, s)$.

So $e(\omega, s)$ should obey the following "Lippmann-Schwinger-type" equation

 $e(\omega, s) = e_0(\omega, s) + G_0(\lambda_s) W e(\omega, s) .$

- If $e(\omega, s)$ obeys (LSE) and $a(\omega, s) = \chi e(\omega, s)$, then a obeys (MLSE): $a(\omega, s) = \chi e_0(\omega, s) + \chi G_0(\lambda_s) W a(\omega, s)$.
 - K_s : the finite rank op. on $l^2(\mathbb{T}_q)$ defined by $K_s = \chi G_0(\lambda_s) W$. The map $s \to K_s$ extends holom. to $\Im s > -\frac{1}{2}$
 - analytic Fredholm theorem $\implies \exists$ a finite subset $\hat{\mathcal{E}}$ of S^0 , defined by $\hat{\mathcal{E}} =: \{s \in S^0; \ker(\mathrm{Id} - K_s) \neq 0\}$, so that (MLSE) has a unique solution $a(\omega, s) \in C_0(\mathbb{T}_q)$ whenever $s \notin \hat{\mathcal{E}}$.

- If $e(\omega, s)$ obeys (LSE) and $a(\omega, s) = \chi e(\omega, s)$, then a obeys (MLSE): $a(\omega, s) = \chi e_0(\omega, s) + \chi G_0(\lambda_s) W a(\omega, s)$.
 - K_s : the finite rank op. on $l^2(\mathbb{T}_q)$ defined by $K_s = \chi G_0(\lambda_s) W$. The map $s \to K_s$ extends holom. to $\Im s > -\frac{1}{2}$
 - analytic Fredholm theorem $\implies \exists$ a finite subset $\hat{\mathcal{E}}$ of S^0 , defined by $\hat{\mathcal{E}} =: \{s \in S^0; \ker(\mathrm{Id} - K_s) \neq 0\}$, so that (MLSE) has a unique solution $a(\omega, s) \in C_0(\mathbb{T}_q)$ whenever $s \notin \hat{\mathcal{E}}$.
 - For $s \notin \hat{\mathcal{E}}$, the function $e(\omega, s) = e_0(\omega, s) + G_0(\lambda_s)Wa(\omega, s)$ is the unique solution of (LSE).

The set $\hat{\mathcal{E}}$ and the pure point spectrum

Propositions

- **•** The set $\hat{\mathcal{E}}$ is independent of the choice of χ with $W\chi = \chi W = W$.
- If $(A \lambda)f = 0$ with $\lambda \in I_q$ and $f \in l^2(\mathbb{T}_q)$, then Supp $(f) \subset \hat{K}$ \hat{K} : the smallest subset of V_q s. t. Supp $(W) \subset \hat{K} \times \hat{K}$ and all connected components of $\mathbb{T}_q \setminus \hat{K}$ are infinite.
- Consequence $\#\{\sigma_{pp}(A) \cap I_q\} \le \#\hat{K}.$
- If $s \in S^0$, $(A \lambda_s)f = 0$ and $f \in l^2(\mathbb{T}_q) \setminus 0$, then $s \in \hat{\mathcal{E}}$.
- Conversely, if *s* ∈ $\hat{\mathcal{E}}$ ⊂ *S*⁰, $\exists f \neq 0$ s. t. $(A \lambda_s)f = 0$ and
 $f(x) = O\left(q^{-|x|/2}\right).$

The set $\hat{\mathcal{E}}$ and the pure point spectrum

Propositions

- **•** The set $\hat{\mathcal{E}}$ is independent of the choice of χ with $W\chi = \chi W = W$.
- If $(A \lambda)f = 0$ with $\lambda \in I_q$ and $f \in l^2(\mathbb{T}_q)$, then $\operatorname{Supp}(f) \subset \hat{K}$ \hat{K} : the smallest subset of V_q s. t. $\operatorname{Supp}(W) \subset \hat{K} \times \hat{K}$ and all connected components of $\mathbb{T}_q \setminus \hat{K}$ are infinite.
- **●** Consequence $\#\{\sigma_{pp}(A) \cap I_q\} \le \#\hat{K}.$
- If $s \in S^0$, $(A \lambda_s)f = 0$ and $f \in l^2(\mathbb{T}_q) \setminus 0$, then $s \in \hat{\mathcal{E}}$.
- Conversely, if *s* ∈ $\hat{\mathcal{E}}$ ⊂ *S*⁰, $\exists f \neq 0$ s. t. $(A \lambda_s)f = 0$ and
 $f(x) = O\left(q^{-|x|/2}\right).$

Theorem The pure point spectrum $\sigma_{pp}(A)$ of A splits into 3 parts $\sigma_{pp}(A) = \sigma_{pp}^{-}(A) \cup \sigma_{pp}^{+}(A) \cup \sigma_{pp}^{0}(A)$ where $\sigma_{pp}^{-}(A) = \sigma_{pp}(A) \cap] - \infty, -2\sqrt{q}[, \sigma_{pp}^{+}(A) = \sigma_{pp}(A) \cap] 2\sqrt{q}, +\infty[, and \sigma_{pp}^{0}(A) = \sigma_{pp}(A) \cap I_{q}.$ We have $\#\sigma_{pp}^{\pm}(A) \leq \#Supp(W)$ and $\#\sigma_{pp}^{0}(A) \leq \#\hat{K}.$

The deformed Fourier-Helgason transform

• Definition The deformed Fourier-Helgason transform \mathcal{FH}_{sc} of $f \in C_0(\mathbb{T}_q)$ is the function \hat{f}_{sc} on $\Omega \times (S^0 \setminus \hat{\mathcal{E}})$ defined by

$$\hat{f}_{\rm sc}(\omega,s) = \langle e(\omega,s), f \rangle = \sum_{x \in V_{\Gamma}} f(x) \overline{e(x,\omega,s)} .$$

Remark Since $K_s = K_{-s}$, the subset $\hat{\mathcal{E}}$ is invariant by $s \to -s$ and consequently is the inverse image by $s \to \lambda_s$ of a subset of I_q which we denote by \mathcal{E} .

The deformed Fourier-Helgason transform

• Definition The deformed Fourier-Helgason transform \mathcal{FH}_{sc} of $f \in C_0(\mathbb{T}_q)$ is the function \hat{f}_{sc} on $\Omega \times (S^0 \setminus \hat{\mathcal{E}})$ defined by

$$\hat{f}_{\rm sc}(\omega,s) = \langle e(\omega,s), f \rangle = \sum_{x \in V_{\Gamma}} f(x) \overline{e(x,\omega,s)} .$$

- Remark Since $K_s = K_{-s}$, the subset $\hat{\mathcal{E}}$ is invariant by $s \to -s$ and consequently is the inverse image by $s \to \lambda_s$ of a subset of I_q which we denote by \mathcal{E} .
- Theorem (inversion formula)
 - $f \in C_0(\mathbb{T}_q)$, $J \subset I_q \setminus \mathcal{E}$ any closed interval
 - denote by \hat{J} the inverse image of J by $s \to \lambda_s$,
 - then the following inverse transform holds $P_J f(x) = \int_{\hat{J}} \int_{\Omega} e(x, \omega, s) \hat{f}_{sc}(\omega, s) d\sigma_O(\omega) d\mu(s)$.
 - Moreover $f \to \hat{f}_{sc}$ extends to an isometry from \mathcal{H}_{ac} onto $L^2_{even}(\Omega \times S^0, d\sigma_O \otimes d\mu).$

5/10/2012 - p. 13

Correlation of scattered plane waves

Motivation: passive imaging in seismology (M. Campillo's seismology group in Grenoble).

For a scattering problem in \mathbb{R}^d the point-to-point correlations of the plane waves can be computed in terms of the Green's function (Y. C.d.V, '09): for a fixed spectral parameter, plane waves are viewed as random waves parametrised by the direction of their incoming part.

Correlation of scattered plane waves

Motivation: passive imaging in seismology (M. Campillo's seismology group in Grenoble).

For a scattering problem in \mathbb{R}^d the point-to-point correlations of the plane waves can be computed in terms of the Green's function (Y. C.d.V, '09): for a fixed spectral parameter, plane waves are viewed as random waves parametrised by the direction of their incoming part.

- Consider the plane wave $e(x, \omega, s(\lambda))$ as a random wave
- Define the point-to-point correlation $C_{\lambda}^{sc}(x, y)$ of such a random wave in the usual way:

$$C^{sc}_{\lambda}(x,y) = \int_{\Omega} \overline{e(x,\omega,s(\lambda))} e(y,\omega,s(\lambda)) \ d\sigma(\omega) \ .$$

Theorem For any $\lambda \in I_q$ and any vertices x, y

$$C_{\lambda}^{sc}(x,y) = -\frac{2(q^2 + 2q + 1 - \lambda^2)}{(q+1)\sqrt{4q - \lambda^2}} \Im G(\lambda + i0, x, y) \cdot \frac{1}{5/10/2012 - 3} \Im G(\lambda + i0, y) \cdot \frac{1}{5/10/2012 - 3} \Im G(\lambda + i0, y) \cdot \frac{1}{5/10/2012 - 3} \Im G(\lambda + i0, y) \cdot \frac{1}{5/10/2012 - 3} \Im G(\lambda + i0, y) \cdot \frac{1}{5/10/2012 - 3} \Im G(\lambda + i0, y) \cdot \frac{1}{5/10/2012 -$$

- p. 14

The S-matrix and the asymptotics of the deformed plane waves

The Lippmann-Schwinger eigenfunctions $e(x, \omega, s)$ are especially useful todescribe the so-called S-matrix ($S = (\Omega^{-})^* \Omega^+$).

For any
$$f$$
 and $g \in C_0(\mathbb{T}_q)$

$$(f, (S - I)g) = -2\pi i \int_{S^0 \times S^0} \int_{\Omega \times \Omega} T(\omega, s; \omega', s') \overline{\hat{f}(\omega, s)} \delta(\lambda_s - \lambda_{s'}) \hat{g}(\omega', s') d\Sigma$$

$$d\Sigma = d\sigma_O(\omega) d\mu(s) d\sigma_O(\omega') d\mu(s')$$

•
$$T(\omega, s; \omega', s') = \langle e(\omega', s'), We_0(\omega, s) \rangle =$$

 $\sum_{(x,y)} e(x, \omega', s') \overline{W(x, y)} e_0(y, \omega, s)$.

The S-matrix and the asymptotics of the deformed plane waves

The Lippmann-Schwinger eigenfunctions $e(x, \omega, s)$ are especially useful todescribe the so-called S-matrix ($S = (\Omega^{-})^* \Omega^+$).

For any f and
$$g \in C_0(\mathbb{T}_q)$$

$$(f, (S - I)g) = -2\pi i \int_{S^0 \times S^0} \int_{\Omega \times \Omega} T(\omega, s; \omega', s') \overline{\widehat{f}(\omega, s)} \delta(\lambda_s - \lambda_{s'}) \widehat{g}(\omega', s') d\Sigma$$

$$d\Sigma = d\sigma_O(\omega) d\mu(s) d\sigma_O(\omega') d\mu(s')$$

$$T(\omega, s; \omega', s') = \langle e(\omega', s'), We_0(\omega, s) \rangle = \sum_{(x,y)} e(x, \omega', s') \overline{W(x, y)} e_0(y, \omega, s) .$$

This can be written symbolically as

$$S(\omega, s; \omega', s') = \delta(s - s') - 2\pi i T(\omega, s; \omega', s') \delta(\lambda_s - \lambda_{s'}) .$$

The S-matrix and the asymptotics of the deformed plane waves

The Lippmann-Schwinger eigenfunctions $e(x, \omega, s)$ are especially useful todescribe the so-called S-matrix ($S = (\Omega^{-})^* \Omega^+$).

For any f and
$$g \in C_0(\mathbb{T}_q)$$

$$(f, (S - I)g) = -2\pi i \int_{S^0 \times S^0} \int_{\Omega \times \Omega} T(\omega, s; \omega', s') \overline{\widehat{f}(\omega, s)} \delta(\lambda_s - \lambda_{s'}) \widehat{g}(\omega', s') d\Sigma$$

$$d\Sigma = d\sigma_O(\omega) d\mu(s) d\sigma_O(\omega') d\mu(s')$$

$$T(\omega, s; \omega', s') = \langle e(\omega', s'), We_0(\omega, s) \rangle = \sum_{(x,y)} e(x, \omega', s') \overline{W(x, y)} e_0(y, \omega, s).$$

This can be written symbolically as

$$S(\omega, s; \omega', s') = \delta(s - s') - 2\pi i T(\omega, s; \omega', s') \delta(\lambda_s - \lambda_{s'}) .$$

There exist "transmission coefficients" $\tau(s, \omega, \omega')$ so that

$$e(x;\omega,s) = e_0(x;\omega,s) + \tau(s,\omega,\omega')q^{(-\frac{1}{2}+is)|x|}$$

for any x close enough to ω' , $\tau(s, \omega, \omega') = -\frac{C(s)}{2i\pi}S(\omega', -s; \omega, s)$ with $C(s)^{-1} = q^{\frac{1}{2}-is} - q^{-\frac{1}{2}+is}$. Computation of the transmission coefficients in terms of the Dirichlet-to Neumann operator

- The functions $b_{\omega}(y)$ and $b_{\omega'}(y)$ are equal if ω and ω' belong to the same end of $\mathbb{T}_q \setminus K$.
- \blacksquare \Longrightarrow the function $\omega' \to \tau(s, \omega, \omega')$ is constant in each end of $\mathbb{T}_q \setminus K$
- ▶ ⇒ the tr. coeff. $\tau(s, \omega, \omega')$ can be written as a function $\tau(s, \omega, l)$.

Computation of the transmission coefficients in terms of the Dirichlet-to Neumann operator

- The functions $b_{\omega}(y)$ and $b_{\omega'}(y)$ are equal if ω and ω' belong to the same end of $\mathbb{T}_q \setminus K$.
- \blacksquare \Longrightarrow the function $\omega' \to \tau(s, \omega, \omega')$ is constant in each end of $\mathbb{T}_q \setminus K$
- ▶ ⇒ the tr. coeff. $\tau(s, \omega, \omega')$ can be written as a function $\tau(s, \omega, l)$.
- Moreover the reduced Lippmann-Schwinger equation depends only on the restriction of e_0 to K
- \blacksquare \Longrightarrow the function $\omega \to \tau(s, \omega, l)$ is also constant in each end of $\mathbb{T}_q \setminus K$.
- Finally, we get an $L \times L$ matrix depending on s, denoted by

$$\tilde{S}(s) = (S(l', -s, l, s))_{l,l'} = -\frac{2i\pi}{C(s)} \left(\tau(s, l, l')\right)_{l,l'}$$

Theorem

Consider *n* : the integer so that B_{n-2} is the smallest ball containing the finite graph *K*.

Set
$$\Gamma = B_n$$
, $\partial \Gamma = \{x_{l'}, 1 \leq l' \leq L\}$.
Set $\widehat{A_n}$: the restriction of A to B_n ($\widehat{A_n} = (A_{x,y})_{(x,y)\in B_n}$)
define I_n in the same way,
set $B = \widehat{A_n} - \lambda_s I_n$

Consider \mathcal{DN}_s : the corresponding Dirichlet-to Neumann operator . Then \mathcal{DN}_s and the transmission vector $\overrightarrow{\tau(s,l)} := (\tau(s,l,1), \cdots, \tau(s,l,l'), \cdots, \tau(s,l,L))$ exist for any

$$s \notin \mathcal{E}_0 = \{ s \in S^0 , \lambda_s \in \sigma(\widehat{A}_{n-1}) \}$$

and

$$(\tau(s,l,l')) = -\alpha^{-2n} \left[\frac{1}{C(s)} \left(\mathcal{DN}_s + q^{1/2+is}I \right)^{-1} + \mathcal{A} \right] ,$$

$$- \text{with } \widehat{A}_{n-1} = (A_{x,y})_{(x,y)\in B_{n-1}} \text{, } \mathcal{A} = (\mathcal{A}_{l,l'}) = (\alpha^{d(x_l,x_{l'})}), \quad \alpha = q^{-1/2 + is} \text{.}$$

The Dirichlet-to Neumann operator \mathcal{DN} on a finite graph

 $-\Gamma = (V, E)$: a connected finite graph $\partial \Gamma$: a subset of V called the "boundary of Γ ". $B = (b_{i,j})$: $\mathbb{R}^V \to \mathbb{R}^V$: a sym. matrix assoc. to Γ , namely

 $b_{i,j} = 0$ if $i \neq j$ and $\{i, j\} \notin E$.

Set $V_0 = V \setminus \partial \Gamma$, define $B_0 : \mathbb{R}^{V_0} \to \mathbb{R}^{V_0}$ as the restriction of B to the functions which vanish on $\partial \Gamma$.

The Dirichlet-to Neumann operator \mathcal{DN} on a finite graph

 $-\Gamma = (V, E)$: a connected finite graph $\partial \Gamma$: a subset of V called the "boundary of Γ ". $B = (b_{i,j})$: $\mathbb{R}^V \to \mathbb{R}^V$: a sym. matrix assoc. to Γ , namely

 $b_{i,j} = 0$ if $i \neq j$ and $\{i, j\} \notin E$.

Set $V_0 = V \setminus \partial \Gamma$, define $B_0 : \mathbb{R}^{V_0} \to \mathbb{R}^{V_0}$ as the restriction of B to the functions which vanish on $\partial \Gamma$.

Lemma

Assume B_0 invertible. Then, $\forall f \in C(\partial \Gamma)$, \exists a unique solution $F \in C(\Gamma)$ of the Dirichlet problem

 (D_f) : $F_{|\partial\Gamma} = f$ and BF(l) = 0 if $l \in V_0$.

The Dirichlet-to Neumann operator \mathcal{DN} on a finite graph

 $-\Gamma = (V, E)$: a connected finite graph $\partial\Gamma$: a subset of V called the "boundary of Γ ". $B = (b_{i,j})$: $\mathbb{R}^V \to \mathbb{R}^V$: a sym. matrix assoc. to Γ , namely

 $b_{i,j} = 0$ if $i \neq j$ and $\{i, j\} \notin E$.

Set $V_0 = V \setminus \partial \Gamma$, define $B_0 : \mathbb{R}^{V_0} \to \mathbb{R}^{V_0}$ as the restriction of B to the functions which vanish on $\partial \Gamma$.

Lemma

Assume B_0 invertible. Then, $\forall f \in C(\partial \Gamma)$, \exists a unique solution $F \in C(\Gamma)$ of the Dirichlet problem

 (D_f) : $F_{\mid \partial \Gamma} = f$ and BF(l) = 0 if $l \in V_0$.

The Dirichlet-to Neumann operator \mathcal{DN} associated to *B* is the linear operator from $C(\partial\Gamma)$ to $C(\partial\Gamma)$ defined as follows: if $l \in \partial\Gamma$,

$$\mathcal{DN}(f)(l) = \sum_{i=1}^{m} b_{l,i} F(i) (= BF(l)) .$$

5/10/2012 - p. 18

The spectral theory for a graph asymptotic to an homogeneous tree

Some combinatorics

Theorem 1

If Γ is asymptotic to a homogeneous tree of degree q + 1, then Γ is isomorphic to a connected component of a graph $\hat{\Gamma}$ which can be obtained from \mathbb{T}_q by adding and removing a finite number of edges.

The spectral theory for a graph asymptotic to an homogeneous tree

Some combinatorics

Theorem 1

If Γ is asymptotic to a homogeneous tree of degree q + 1, then Γ is isomorphic to a connected component of a graph $\hat{\Gamma}$ which can be obtained from \mathbb{T}_q by adding and removing a finite number of edges.

Tools

a combinatorial analogue of the reg. total curvature of a Riem. surface S

$$\nu(\Gamma) = \sum_{x \in V_{\Gamma}} (q+1-d(x)) + 2b_1 ,$$

d(x) : the degree of x, b_1 : the first Betti number of Γ

Lemma 1 If, for $r \ge 2$, $B_r = \{x \in V_{\Gamma} \mid |x|_{\Gamma_0} \le r\}$, then

 $\nu(\Gamma) = (q-1)m - M + 2 ,$

(m: number of inner vertices of B_r , M: number of boundary vertices)

Lemma 2

F: a finite tree whose all vertices are of degree q + 1 except the ends which are of degree 1.

 ${\cal M}$ number of ends, ${\boldsymbol m}$ the number of inner vertices.

We have

```
M = 2 + (q - 1)m. (1)
```

Conversely, for each choice of (m, M) satisfying Equation (1), there exists such a tree F.

Lemma 2

F : a finite tree whose all vertices are of degree q+1 except the ends which are of degree 1.

 ${\cal M}$ number of ends, m the number of inner vertices.

We have

$$M = 2 + (q - 1)m$$
. (1)

Conversely, for each choice of (m, M) satisfying Equation (1), there exists such a tree F.

Some modifications of Γ in order to get a new graph $\hat{\Gamma}$ with $\nu(\hat{\Gamma}) = 0$.

Lemma 3

If $\Gamma' = M_1(\Gamma)$ is defined by adding to Γ a vertex and an edge connecting that vertex to a vertex of Γ_0 , then

 $\nu(\Gamma') = \nu(\Gamma) + q - 1 .$

If $\Gamma' = M_2(\Gamma)$ is defined by adding to Γ a tree whose root x is of degree q and all other vertices of degree q + 1 and connecting x by an edge to a vertex of Γ_0 , Γ' is asymptotic to an homogeneous tree of degree q + 1 and

$$\nu(\Gamma') = \nu(\Gamma) - 1 .$$

The spectral theory of Γ

- **P** Theorem (1) \implies existence of a Hilbert space \mathcal{H} so that
 - $l^2(\hat{\Gamma}) = l^2(\Gamma) \oplus \mathcal{H}$
 - this decomposition is invariant by $A_{\hat{\Gamma}}$.
- Moreover $A_{\hat{\Gamma}}$ is a finite rank perturbation of $A_0 = A_{\mathbb{T}_q}$. \Longrightarrow this gives the spectral theory of A_{Γ} by using the results of the preceding section .

The spectral theory of Γ

f Theorem (1) \implies existence of a Hilbert space \mathcal{H} so that

 $l^2(\hat{\Gamma}) = l^2(\Gamma) \oplus \mathcal{H}$

- this decomposition is invariant by $A_{\hat{\Gamma}}$.
- Moreover $A_{\hat{\Gamma}}$ is a finite rank perturbation of $A_0 = A_{\mathbb{T}_q}$. \implies this gives the spectral theory of A_{Γ} by using the results of the preceding section.
- Lemma 4 Let $A_{\hat{\Gamma}} = A_{\mathbb{T}_q} + W$ with $\operatorname{Support}(W) \subset K \times K$ and K finite. Let Γ be an unbounded connected component of $\hat{\Gamma}$ and ω a point at infinity of Γ . Then, for any $s \notin \hat{\mathcal{E}}$, we have

support
$$(e(.;s,\omega)) \subset V_{\Gamma}$$
.

Conversely, if ω' is a point at infinity of $\hat{\Gamma}$ which is not a point at infinity of Γ then

support
$$(e(.; s, \omega')) \cap V_{\Gamma} = \emptyset$$
.

■ Theorem 2 The Hilbert space $l^2(\Gamma)$ splits into a finite dimensional part \mathcal{H}_{pp} and an absolutely continuous part \mathcal{H}_{ac} . This decomposition is preserved by A_{Γ} . If $f \in C_0(\Gamma)$ and, for $\omega \in \Omega$, $\hat{f}_{sc}(s, \omega) = \langle f | e(.; s, \omega) \rangle$, then the map $f \to \hat{f}_{sc}$ extends to an isometry from \mathcal{H}_{ac} onto $L^2_{even}(S_0 \times \Omega, d\sigma_0 \otimes d\mu)$ which intertwines the action of A_{Γ} with the multiplication by λ_s .

5/10/2012 - p. 21