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Aim

the spectral analysis of the Laplacian associated to a
graph is strongly related to the geometry of the graph.
graphs are discretized versions of manifolds.
for a manifold with cusps, adding a magnetic field can
drastically destroy the essential spectrum of the Laplacian.
Our aim: go along this line in a discrete setting.
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Graph

A graph is a triple G := (E ,V,m), where V is a countable set
(the vertices), E : V × V → R+ is symmetric, and
m : V → (0,∞) is a weight.
G is simple⇐⇒ m = 1 and E : V × V → {0,1}.
Given x ,y ∈ V, (x ,y) is an edge (or x and y are neighbors,
or x ∼ y )⇐⇒ E(x ,y) > 0.
there is a loop at x ∈ V ⇐⇒ E(x ,x) > 0.
A graph is connected⇐⇒ for all x ,y ∈ V, there exists a
path γ joining x and y .
In the sequel, we assume that:
All graphs are locally finite, connected with no loops.
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The magnetic Laplacian

C(V) := {f : V → C}
Cc(V) : functions with finite support.

`2(V,m) :=

{
f ∈ C(V),

∑
x∈V

m(x)|f (x)|2 <∞

}

scalar product 〈f ,g〉 :=
∑

x∈V m(x)f (x)g(x).
magnetic potential θ : V × V → R/2πZ
θx ,y := θ(x ,y) = −θy ,x and θ(x ,y) := 0 if E(x ,y) = 0.
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The magnetic Laplacian (continued)

Hermitian form :

QG,θ(f ) :=
1
2

∑
x ,y∈V

E(x ,y)
∣∣∣f (x)− eiθx,y f (y)

∣∣∣2 ,
for all f ∈ Cc(V).
The magnetic Laplacian : the unique non-negative
self-adjoint operator ∆G,θ satisfying
〈f ,∆G,θf 〉`2(V,m) = QG,θ(f ), for all f ∈ Cc(V).
= Friedrichs extension of ∆G,θ|Cc(V)

(∆G,θf )(x) =
1

m(x)

∑
y∈V
E(x ,y)

(
f (x)− eiθx,y f (y)

)
,

for all f ∈ Cc(V).
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Degree

degree of x ∈ V:

degG(x) :=
1

m(x)

∑
y∈V
E(x ,y),

0 ≤ 〈f ,∆G,θf 〉 ≤ 〈f ,2 degG(·)f 〉, for all f ∈ Cc(V). (1)

〈δ̃x ,∆G,θ δ̃x〉 = degG(x), (where δ̃x (y) := m−1/2(x)δx ,y for
any x ,y ∈ V), so ∆G,θ bounded⇐⇒ supx∈V degG(x) finite.

D
(

deg
1/2
G (·)

)
⊂ D

(
∆

1/2
G,θ

)
, (2)

where D
(

deg
1/2
G (·)

)
:=
{

f ∈ `2(V,m), degG(·)f ∈ `2(V,m)
}

.
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Degree (continued)

D
(

deg
1/2
G (·)

)
= D

(
∆

1/2
G,θ

)
(3)

is wrong in general. If θ = 0, (3) is equivalent to a sparseness
condition ( for ex: planar simple graphs).

If (3) holds true, then

σess(∆G,θ) = ∅ ⇔ (∆G,θ+1)−1 is compact⇔ lim
|x |→∞

degG(x) =∞,

where |x | := ρG(x0,x) for a given x0 ∈ V.
If moreover the graph is sparse, then

lim
n→∞

λn (∆G,θ)

λn
(
degG(·)

) = 1
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Degree (end)

The technique does not apply when the graph is a discrete
cusp (thin at infinity).Our aim :

establish new behaviors for the asymptotic of eigenvalues
for the magnetic Laplacian in that case
prove that the form-domain of the non-magnetic Laplacian
can be different from that of the magnetic Laplacian
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Holonomy of a magnetic potential

gauge transform U : unitary map on `2(V,m) defined by

(Uf )(x) = ux f (x), ux = eiσx .

.
U acts on the quadratic forms QG,θ by
U∗(QG,θ)(f ) = QG,θ(Uf ), for all f ∈ Cc(V).
The magnetic potential U?(θ) is defined by:

U?(QG,θ) = QG,U?(θ).

More explicitly, we get:

U?(θ)xy = θx ,y + σy − σx .
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Holonomy

Z1(G):the space of cycles of G
It is is a free Z−module with a basis of geometric cycles
γ = (x0,x1) + (x1,x2) + . . .+ (xN−1,xN) with, for
i = 0, · · · ,N − 1, E(xi ,xi+1) 6= 0, and xN = x0.
Holonomy map Holθ : Z1(G)→ R/2πZ

Holθ ((x0,x1) + (x1,x2) + · · ·+ (xN ,x0)) := θx0,x1 +· · ·+θxN ,x0 .

The map θ 7→ Holθ is surjective onto HomZ(Z1(G),R/2πZ).
Holθ1 = Holθ2 if and only if there exists a gauge transform U so
that U?(θ2) = θ1.
In consequence Holθ1 = Holθ2 if and only if the magnetic
Laplacians ∆G,θ1 and ∆G,θ2 are unitarily equivalent.
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Holonomy (end)

Let G := (E ,V,m) be a connected graph such that 1 ∈ ker∆G,0.
Let θ be a magnetic potential. Then ker∆G,θ 6= {0} if and only if
Holθ = 0.

Remark
The hypothesis 1 ∈ ker∆G,0 is trivially satisfied if G is a finite
graph.
In general, it is satisfied if and only if:
(∗) 1 belongs to the closure of Cc(V) with respect to the norm
(‖ · ‖2 + QG,0(·))1/2. A sufficient condition to guarantee (∗) is

G is of finite volume, i.e., such that
∑

x∈V m(x) <∞,
∆G,0 is essentially self-adjoint on Cc(V).
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A coupling constant effect

Let G := (E ,V,m) be a connected graph of finite volume, i.e.,
such that

∑
x∈V m(x) <∞ and let θ be a magnetic potential

such that Holθ 6= 0. Assume that the function 1 is in ker ∆G,θ.
Then there is ν ∈ R such that

ker ∆G,λθ 6= {0} ⇔ λ = 0 in R/νZ.
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Modified Cartesian product: motivation

A hyperbolic manifold of finite volume is the union of a
compact part and of a cusp. The cusp part can be seen as
the product of (1,∞)×M, where (M,gM) is a Riemannian
manifold, endowed with the metric,

y−1(dy2 + gM).

On the cusp part, the infimum of the radius of injectivity is
0.
To analyze the Laplacian on this product one separates the
variables and obtain a decomposition which is not of the
type of a Cartesian product.
=⇒ we define a modified Cartesian product.
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Modified Cartesian product

definition
Given G1 := (E1,V1,m1) and G2 := (E2,V2,m2) and I ⊂ V2, we
define the product of G1 by G2 through I by G := (E ,V,m), where

V := V1 × V2

m(x ,y) := m1(x)×m2(y),

E ((x ,y),(x ′,y ′)) :=
E1(x ,x ′)× δy ,y ′

(∑
z∈I δy ,z

)
+ δx ,x ′ × E2(y ,y ′),

θ ((x ,y),(x ′,y ′)) := θ1(x ,x ′)× δy ,y ′ + δx ,x ′ × θ2(y ,y ′), for all
x ,x ′ ∈ V1 and y ,y ′ ∈ V2.

We denote G by G1 ×I G2.
If I is empty, the graph is disconnected.
If |I| = 1, G1 ×I G2 is the graph G1 decorated by G2.
If I = V2 and m = 1, we notice that G1 ×I G2 = G1 × G2.
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Definition
Given G1 := (E1,V1,m1) and G2 := (E2,V2,m2), the (weighted)
Cartesian product G = G1 × G2 is G := (E ,V,m), where
V := V1 × V2, and

m(x ,y) := m1(x)×m2(y),
E ((x ,y),(x ′,y ′)) := E1(x ,x ′)× δy ,y ′m2(y) + m1(x)δx ,x ′ × E2(y ,y ′),
θ ((x ,y),(x ′,y ′)) := θ1(x ,x ′)× δy ,y ′ + δx ,x ′ × θ2(y ,y ′),

The terminology is motivated by the following decomposition:

∆G,θ = ∆G1,θ1 ⊗ 1 + 1⊗∆G2,θ2 ,

where `2(V,m) ' `2(V1,m1)⊗ `2(V2,m2). The spectral theory of
∆G,θ is well-understood since

eit∆G,θ = eit∆G1,θ1 ⊗ eit∆G2,θ2 , for t ∈ R.
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Modified Cartesian product:example
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Discrete cusps

If G = G1 ×I G2 then
degG(·) = degG1

(·)⊗ 1I(·)
m2(·) + 1

m1(·) ⊗ degG2
(·)

∆G,θ = ∆G1,θ1 ⊗
1I(·)
m2(·) + 1

m1(·) ⊗∆G2,θ2 .

If m is non-trivial, ∆G,θ is usually not unitarily equivalent to
the Laplacian obtained with the Cartesian product.

Definition
Set G1 := (E1,V1,m1), G2 := (E2,V2,m2), and I ⊂ V2.
G = G1 ×I G2 is a discrete cusp if

(H1) m1(x) tend to 0 as |x | → ∞,
(H2) G2 is finite,
(H3) ∆G1,θ1 is bounded (or equivalently supx∈V1

degG1
(x) <∞).

Degree of x ∈ V :degG(x) := 1
m(x)

∑
y∈V E(x ,y)
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Radius of injectivity

Definition
Given G := (E ,V,m), the weighted length of an edge (x ,y) ∈ E
is defined by:

LG
(
(x ,y)

)
:=

√
min

(
m(x),m(y)

)
E(x ,y)

.

Given x ,y ∈ V, the weighted distance from x to y is defined by:

ρLG (x ,y) := inf
γ

|γ|−1∑
i=0

LG
(
γ(i),γ(i + 1)

)
,

where γ is a path joining x to y and with the convention that
ρLG (x ,x) := 0 for all x ∈ V.
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Radius of injectivity(continued)

Definition
Given G := (E ,V,m),

the girth at x ∈ V of G w.r.t. the weighted length LG is

girth(x) := inf{LG(γ),γ simple cycle containing x},

convention: the girth is +∞ if there is no such cycle.

girth(G) := inf
x∈V

girth(x).

The radius of injectivity of G with respect to LG ( rad(G) ) is
half the girth.
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Radius of injectivity(end)

Proposition 1

Consider G1 := (E1,V1,m1) and G2 := (E2,V2,m2) and I ⊂ V2
such that G := G1 ×I G2 is a discrete cusp. We have:

1) rad(G1) > 0.
2) If rad(G2) <∞, then rad(G) = 0.

Proposition 2

Consider G1 := (E1,V1,m1) and G2 := (E2,V2,m2) and I ⊂ V2
such that (H1), (H2), and (H3) are satisfied. Then
rad(G1 × G2) > 0.
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Radius of injectivity(end)
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Absence of essential spectrum

Proposition

Set G1 := (E1,V1,m1), G2 := (E2,V2,m2), and G := G1 ×I G2, with
|I| > 0. Assume that (H1), (H2), and Holθ2 6= 0 hold true. Then
∆G,θ has a compact resolvent, and

Nλ
(

m−1
1 (·)⊗∆G2,θ2

)
≥ Nλ(∆G,θ), for all λ ≥ 0.

Proof:
∆G,θ ≥ 1

m1(·) ⊗∆G2,θ2 in the form sense on Cc(V).

(H2) +Holθ2 6= 0+ key Lemma =⇒ 0 is not in the spectrum
of (∆G2,θ2).
Hence the spectrum of the r.h.s. is purely discrete.
min-max Principle =⇒ ∆G,θ has a compact resolvent.
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The asymptotic of the eigenvalues

Proposition(key-stone)

Set G1 := (E1,V1,m1), G2 := (E2,V2,m2), and I ⊂ V2 non-empty.
Assume that G := G1 ×I G2 is a discrete cusp . We set

M := sup
x∈V1

degG1
(x)× max

y∈V2
(1/m2(y)) <∞. (4)

We have:

1
m1(·)

⊗ degG2
(·) ≤ degG(·) ≤ 1

m1(·)
⊗ degG2

(·) + M, (5)

1
m1(·)

⊗∆G2,θ2 ≤ ∆G,θ ≤ 2M +
1

m1(·)
⊗∆G2,θ2 , (6)

in the form sense on Cc(V).
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The asymptotic of the eigenvalues(continued)

Theorem
Set G1 := (E1,V1,m1), G2 := (E2,V2,m2), and I ⊂ V2 non-empty.
Assume that G := G1 ×I G2 is a discrete cusp. We have

D(∆
1/2
G,θ ) = D

(
m−1/2

1 (·)⊗∆
1/2
G2,θ2

)
.

∆G,θ has a compact resolvent if and only if Holθ2 6= 0.

If Holθ2 6= 0, then D(∆
1/2
G,θ ) = D

(
deg

1/2
G (·)

)
,

lim
n→∞

λn (∆G,θ)

λn

(
m−1

1 (·)⊗∆G2,θ2

) = 1, and (7)

Nλ−2M

(
m−1

1 (·)⊗∆G2,θ2

)
≤ Nλ(∆G,θ) ≤ Nλ

(
m−1

1 (·)⊗∆G2,θ2

)
,

(8)

for all λ ≥ 0.
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The asymptotic of the eigenvalues(corollary)

Aim : comparing the asymptotic with that of the degree.
New phenomenon: we can obtain a constant different from 1 in
the asymptotic.

Corollary
Consider a discrete cusp G := G1 ×I G2. Suppose that degG2

is
constant on V2 and take θ2 such that Holθ2 6= 0. Then, for all
a ∈ [1,+∞[ , there exists G̃1 := (Ẽ1,V1,m̃1) such that

G̃ := G̃1 ×I G2 is a discrete cusp.
E1 and Ẽ1 have the same zero set.
degG̃1

(x) ≤ degG1
(x) for all x ∈ V1.

∆G̃,θ is with compact resolvent, and

limλ→∞
Nλ
(

∆G̃,θ

)
Nλ(degG̃(·))

= a.
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The asymptotic of the eigenvalues(a specific example)

G1 := (E1,V1,m1),
V1 := N, m1(n) := e−n, E1(n,n + 1) := e−(2n+1)/2,

G2 := (E2,V2,1): a s.c. finite graph s. t. |V2| = N (N ≥ 3).
Set θ1 := 0 , θ2 s. t. Holθ2 6= 0, and
G := (E ,V,m) = G1 ×V2 G2.

Then ∃ν > 0 s. t. ∀κ ∈ R/νZ
σess(∆G,κθ) = ∅ ⇔ D

(
∆

1/2
G,κθ

)
= D

(
deg

1/2
G (·)

)
⇔ κ 6= 0 in R/νZ

Moreover:
When κ 6= 0 in R/νZ, we have:

lim
λ→∞

Nλ (∆G,κθ)

Nλ
(
degG(·)

) = 1,
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The asymptotic of the eigenvalues(a specific example)

When κ = 0 in R/νZ,

σac (∆G,κθ) =
[
e1/2 + e−1/2 − 2,e1/2 + e−1/2 + 2

]
,

with multiplicity 1 and

lim
λ→∞

Nλ
(
∆G,κθP⊥ac,κ

)
Nλ
(
degG(·)

) =
n − 1

n
,

where Pac,κ denotes the projection onto the a.c. part of ∆G,κθ.
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The asymptotic of the eigenvalues(a specific example)

Heuristic:
switching on the magnetic field is not a gentle perturbation
(the form domain of the operator is changed).
second case: the constant (n − 1)/n encodes the fact that
a part of the wave packet diffuses. the particle, which is
localized in the a.c. part of the operator, escapes from
every compact set.
first case: (active magnetic potential) the spectrum of ∆G,κθ
is purely discrete. The particle cannot diffuse anymore.
The particle is trapped by the magnetic field.
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