The magnetic Laplacian acting on discrete cusps

Françoise Truc

Joint work with Sylvain Golénia (Bordeaux).
27/11/2017

Plan of the talk

(9) Introduction

- Aim
- Definitions
- Holonomy
(2) Discrete cusps
- modified Cartesian product
- Discrete cusps
- Radius of injectivity
(3) main results
- Absence of essential spectrum
- The asymptotic of the eigenvalues

Aim

- the spectral analysis of the Laplacian associated to a graph is strongly related to the geometry of the graph.
- graphs are discretized versions of manifolds.
- for a manifold with cusps, adding a magnetic field can drastically destroy the essential spectrum of the Laplacian.
- Our aim: go along this line in a discrete setting.

Aim

- the spectral analysis of the Laplacian associated to a graph is strongly related to the geometry of the graph.
- graphs are discretized versions of manifolds.
- for a manifold with cusps, adding a magnetic field can drastically destroy the essential spectrum of the Laplacian.
- Our aim: go along this line in a discrete setting.

Aim

- the spectral analysis of the Laplacian associated to a graph is strongly related to the geometry of the graph.
- graphs are discretized versions of manifolds.
- for a manifold with cusps, adding a magnetic field can drastically destroy the essential spectrum of the Laplacian.
- Our aim: go along this line in a discrete setting.

Aim

- the spectral analysis of the Laplacian associated to a graph is strongly related to the geometry of the graph.
- graphs are discretized versions of manifolds.
- for a manifold with cusps, adding a magnetic field can drastically destroy the essential spectrum of the Laplacian.
- Our aim: go along this line in a discrete setting.

Graph

- A graph is a triple $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, where \mathcal{V} is a countable set (the vertices), $\mathcal{E}: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}_{+}$is symmetric, and $m: \mathcal{V} \rightarrow(0, \infty)$ is a weight.
- \mathcal{G} is simple $\Longleftrightarrow m=1$ and $\mathcal{E}: \mathcal{V} \times \mathcal{V} \rightarrow\{0,1\}$.
- Given $x, y \in \mathcal{V},(x, y)$ is an edge (or x and y are neighbors,

- there is a loop at $x \in \mathcal{V} \Longleftrightarrow \mathcal{E}(x, x)>0$.
- A graph is connected \Longleftrightarrow for all $x, y \in \mathcal{V}$, there exists a path γ joining x and y.
- In the sequel, we assume that:

All graphs are locally finite, connected with no loops.

Graph

- A graph is a triple $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, where \mathcal{V} is a countable set (the vertices), $\mathcal{E}: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}_{+}$is symmetric, and $m: \mathcal{V} \rightarrow(0, \infty)$ is a weight.
- \mathcal{G} is simple $\Longleftrightarrow m=1$ and $\mathcal{E}: \mathcal{V} \times \mathcal{V} \rightarrow\{0,1\}$.
- Given $x, y \in \mathcal{V},(x, y)$ is an edge (or x and y are neighbors,
or $x \sim y) \Longleftrightarrow \mathcal{E}(x, y)>0$.
- there is a loop at $x \in \mathcal{V} \Longleftrightarrow \mathcal{E}(x, x)>0$.
- A graph is connected \Longleftrightarrow for all $x, y \in \mathcal{V}$, there exists a path γ joining x and y.
- In the sequel, we assume that:

All graphs are locally finite, connected with no loops.

Graph

- A graph is a triple $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, where \mathcal{V} is a countable set (the vertices), $\mathcal{E}: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}_{+}$is symmetric, and $m: \mathcal{V} \rightarrow(0, \infty)$ is a weight.
- \mathcal{G} is simple $\Longleftrightarrow m=1$ and $\mathcal{E}: \mathcal{V} \times \mathcal{V} \rightarrow\{0,1\}$.
- Given $x, y \in \mathcal{V},(x, y)$ is an edge (or x and y are neighbors, or $x \sim y) \Longleftrightarrow \mathcal{E}(x, y)>0$.
- there is a loop at $x \in \mathcal{V} \Longleftrightarrow \mathcal{E}(x, x)>0$.
- A graph is connected \Longleftrightarrow for all $x, y \in \mathcal{V}$, there exists a path γ joining x and y.
- In the sequel, we assume that:

All graphs are locally finite, connected with no loops.

Graph

- A graph is a triple $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, where \mathcal{V} is a countable set (the vertices), $\mathcal{E}: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}_{+}$is symmetric, and $m: \mathcal{V} \rightarrow(0, \infty)$ is a weight.
- \mathcal{G} is simple $\Longleftrightarrow m=1$ and $\mathcal{E}: \mathcal{V} \times \mathcal{V} \rightarrow\{0,1\}$.
- Given $x, y \in \mathcal{V},(x, y)$ is an edge (or x and y are neighbors, or $x \sim y) \Longleftrightarrow \mathcal{E}(x, y)>0$.
- there is a loop at $x \in \mathcal{V} \Longleftrightarrow \mathcal{E}(x, x)>0$.
- A graph is connected \Longleftrightarrow for all $x, y \in \mathcal{V}$, there exists a path γ joining x and y.
- In the sequel, we assume that: All graphs are locally finite, connected with no loops.

The magnetic Laplacian

- $C(\mathcal{V}):=\{f: \mathcal{V} \rightarrow \mathbb{C}\}$
- $C_{C}(\mathcal{V})$: functions with finite support.

- scalar product $\langle f, g\rangle:=\sum_{x \in \mathcal{V}} m(x) \overline{f(x)} g(x)$.
- magnetic potential $\theta: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ $\theta_{x, y}:=\theta(x, y)=-\theta_{y, x}$ and $\theta(x, y):=0$ if $\mathcal{E}(x, y)=0$.

The magnetic Laplacian

- $C(\mathcal{V}):=\{f: \mathcal{V} \rightarrow \mathbb{C}\}$
- $C_{c}(\mathcal{V})$: functions with finite support.

$$
\ell^{2}(\mathcal{V}, m):=\left\{f \in C(\mathcal{V}), \sum_{x \in \mathcal{V}} m(x)|f(x)|^{2}<\infty\right\}
$$

- scalar product $\langle f, g\rangle:=\sum_{x \in \mathcal{V}} m(x) \overline{f(x)} g(x)$.
- magnetic potential $\theta: \nu \times \mathcal{V} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ $\theta_{x, y}:=\theta(x, y)=-\theta_{y, x}$ and $\theta(x, y):=0$ if $\mathcal{E}(x, y)=0$.

The magnetic Laplacian

- $C(\mathcal{V}):=\{f: \mathcal{V} \rightarrow \mathbb{C}\}$
- $C_{c}(\mathcal{V})$: functions with finite support.
-

$$
\ell^{2}(\mathcal{V}, m):=\left\{f \in C(\mathcal{V}), \sum_{x \in \mathcal{V}} m(x)|f(x)|^{2}<\infty\right\}
$$

- scalar product $\langle f, g\rangle:=\sum_{x \in \mathcal{V}} m(x) \overline{f(x)} g(x)$.
- magnetic potential $\theta: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$

$$
\theta_{x, y}:=\theta(x, y)=-\theta_{y, x} \text { and } \theta(x, y):=0 \text { if } \mathcal{E}(x, y)=0
$$

The magnetic Laplacian (continued)

- Hermitian form :

$$
Q_{\mathcal{G}, \theta}(f):=\frac{1}{2} \sum_{x, y \in \mathcal{V}} \mathcal{E}(x, y)\left|f(x)-e^{i \theta_{x, y} f(y)}\right|^{2},
$$

for all $f \in \mathcal{C}_{C}(\mathcal{V})$.
The magnetic Laplacian : the unique non-negative self-adjoint operator $\Delta_{\mathcal{G}, \theta}$ satisfying $\left\langle f, \Delta_{\mathcal{G}, \theta} f\right\rangle_{\ell^{2}(\mathcal{V}, m)}=Q_{\mathcal{G}, \theta}(f)$, for all $f \in \mathcal{C}_{C}(\mathcal{\nu})$.
$=$ Friedrichs extension of $\Delta_{\mathcal{G}, \theta} \mid \mathcal{C}_{c}(\nu)$

for all $f \in \mathcal{C}_{C}(\mathcal{V})$.

The magnetic Laplacian (continued)

- Hermitian form :

$$
Q_{\mathcal{G}, \theta}(f):=\frac{1}{2} \sum_{x, y \in \mathcal{V}} \mathcal{E}(x, y)\left|f(x)-e^{i \theta_{x, y}} f(y)\right|^{2}
$$

for all $f \in \mathcal{C}_{C}(\mathcal{V})$.

- The magnetic Laplacian : the unique non-negative self-adjoint operator $\Delta_{\mathcal{G}, \theta}$ satisfying
$\left\langle f, \Delta_{\mathcal{G}, \theta} f\right\rangle_{\ell^{2}(\mathcal{V}, m)}=Q_{\mathcal{G}, \theta}(f)$, for all $f \in \mathcal{C}_{C}(\mathcal{V})$.
- = Friedrichs extension of $\left.\Delta_{\mathcal{G}, \theta}\right|_{\mathcal{C}_{c}(\mathcal{V})}$

$$
\left(\Delta_{\mathcal{G}, \theta} f\right)(x)=\frac{1}{m(x)} \sum_{y \in \mathcal{V}} \mathcal{E}(x, y)\left(f(x)-e^{i \theta_{x, y}} f(y)\right)
$$

for all $f \in \mathcal{C}_{C}(\mathcal{V})$.

Degree

degree of $x \in \mathcal{V}$:

$$
\operatorname{deg}_{\mathcal{G}}(x):=\frac{1}{m(x)} \sum_{y \in \mathcal{V}} \mathcal{E}(x, y)
$$

$$
0 \leq\left\langle f, \Delta_{\mathcal{G}, \theta} f\right\rangle \leq\left\langle f, 2 \operatorname{deg}_{\mathcal{G}}(\cdot) f\right\rangle, \text { for all } f \in \mathcal{C}_{C}(\mathcal{V}) .
$$

- $\left\langle\tilde{\delta}_{x}, \Delta_{\mathcal{G}, \theta} \tilde{\delta}_{x}\right\rangle=\operatorname{deg}_{\mathcal{G}}(x)$, (where $\tilde{\delta}_{x}(y):=m^{-1 / 2}(x) \delta_{x, y}$ for any $x, y \in \mathcal{V}$), so $\Delta_{\mathcal{G}, \theta}$ bounded $\Longleftrightarrow \sup _{x \in \mathcal{V}} \operatorname{deg}_{\mathcal{G}}(x)$ finite.

$$
\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right) \subset \mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right),
$$

Degree

degree of $x \in \mathcal{V}$:

$$
\operatorname{deg}_{\mathcal{G}}(x):=\frac{1}{m(x)} \sum_{y \in \mathcal{V}} \mathcal{E}(x, y)
$$

$$
\begin{equation*}
0 \leq\left\langle f, \Delta_{\mathcal{G}, \theta} f\right\rangle \leq\left\langle f, 2 \operatorname{deg}_{\mathcal{G}}(\cdot) f\right\rangle, \text { for all } f \in \mathcal{C}_{C}(\mathcal{V}) \tag{1}
\end{equation*}
$$

- $\left\langle\tilde{\delta}_{x}, \Delta_{\mathcal{G}, \theta} \tilde{\delta}_{x}\right\rangle=\operatorname{deg}_{\mathcal{G}}(x)$, (where $\tilde{\delta}_{x}(y):=m^{-1 / 2}(x) \delta_{x, y}$ for any $x, y \in \mathcal{V})$, so $\Delta_{\mathcal{G}, \theta}$ bounded $\Longleftrightarrow \sup _{x \in \mathcal{V}} \operatorname{deg}_{\mathcal{G}}(x)$ finite.

Degree

degree of $x \in \mathcal{V}$:

$$
\operatorname{deg}_{\mathcal{G}}(x):=\frac{1}{m(x)} \sum_{y \in \mathcal{V}} \mathcal{E}(x, y)
$$

$$
\begin{equation*}
0 \leq\left\langle f, \Delta_{\mathcal{G}, \theta} f\right\rangle \leq\left\langle f, 2 \operatorname{deg}_{\mathcal{G}}(\cdot) f\right\rangle, \text { for all } f \in \mathcal{C}_{C}(\mathcal{V}) . \tag{1}
\end{equation*}
$$

- $\left\langle\tilde{\delta}_{x}, \Delta_{\mathcal{G}, \theta} \tilde{\delta}_{x}\right\rangle=\operatorname{deg}_{\mathcal{G}}(x)$, (where $\tilde{\delta}_{x}(y):=m^{-1 / 2}(x) \delta_{x, y}$ for any $x, y \in \mathcal{V})$, so $\Delta_{\mathcal{G}, \theta}$ bounded $\Longleftrightarrow \sup _{x \in \mathcal{V}} \operatorname{deg}_{\mathcal{G}}(x)$ finite.

$$
\begin{equation*}
\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right) \subset \mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right), \tag{2}
\end{equation*}
$$

where $\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right):=\left\{f \in \ell^{2}(\mathcal{V}, m), \operatorname{deg}_{\mathcal{G}}(\cdot) f \in \ell^{2}(\mathcal{V}, m)\right\}_{\underline{\underline{\underline{\underline{E}}}}}$

Degree (continued)

$$
\begin{equation*}
\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right)=\mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right) \tag{3}
\end{equation*}
$$

is wrong in general. If $\theta=0,(3)$ is equivalent to a sparseness
condition (for ex: planar simple graphs).
If (3) holds true, then
$\sigma_{\text {ess }}\left(\Delta_{G, \theta}\right)=\emptyset \Leftrightarrow\left(\Delta_{g, \theta}+1\right)^{-1}$ is compact $\Leftrightarrow \lim \operatorname{deg}_{\mathcal{G}}(x)=\infty$,
where $|x|:=\rho_{\mathcal{G}}\left(x_{0}, x\right)$ for a given $x_{0} \in \mathcal{V}$.
If moreover the graph is sparse, then

Degree (continued)

$$
\begin{equation*}
\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right)=\mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right) \tag{3}
\end{equation*}
$$

is wrong in general. If $\theta=0$, (3) is equivalent to a sparseness condition (for ex: planar simple graphs).

If (3) holds true, then

where $|x|:=\rho_{\mathcal{G}}\left(x_{0}, x\right)$ for a given $x_{0} \in \mathcal{V}$
If moreover the graph is sparse, then

Degree (continued)

$$
\begin{equation*}
\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right)=\mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right) \tag{3}
\end{equation*}
$$

is wrong in general. If $\theta=0$, (3) is equivalent to a sparseness condition (for ex: planar simple graphs).

If (3) holds true, then
$\sigma_{\text {ess }}\left(\Delta_{\mathcal{G}, \theta}\right)=\emptyset \Leftrightarrow\left(\Delta_{\mathcal{G}, \theta}+1\right)^{-1}$ is compact $\Leftrightarrow \lim _{|x| \rightarrow \infty} \operatorname{deg}_{\mathcal{G}}(x)=\infty$,
where $|x|:=\rho_{\mathcal{G}}\left(x_{0}, x\right)$ for a given $x_{0} \in \mathcal{V}$.
If moreover the graph is sparse, then

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{n}\left(\Delta_{\mathcal{G}, \theta}\right)}{\lambda_{n}\left(\operatorname{deg}_{\mathcal{G}}(\cdot)\right)}=1
$$

Degree (end)

The technique does not apply when the graph is a discrete cusp (thin at infinity).
> establish new behaviors for the asymptotic of eigenvalues for the magnetic Laplacian in that case prove that the form-domain of the non-magnetic Laplacian can be different from that of the magnetic Laplacian

Degree (end)

The technique does not apply when the graph is a discrete cusp (thin at infinity). Our aim :

- establish new behaviors for the asymptotic of eigenvalues for the magnetic Laplacian in that case
- prove that the form-domain of the non-magnetic Laplacian can be different from that of the magnetic Laplacian

References

(i) M.Bonnefont, S.Golénia, and M.Keller: Eigenvalue asymptotics for Schrödinger operators on sparse graphs, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 5, 1969-1998.
S.Golénia and S.Moroianu: Spectral analysis of magnetic Laplacians on conformally cusp manifolds, Ann. Henri Poincaré 9 (2008), no. 1, 131-179.

睩 A.Morame and F.Truc: Magnetic bottles on geometrically finite hyperbolic surfaces, J. Geom. Phys. 59 (2009), no. 7, 1079-1085.

Holonomy of a magnetic potential

- gauge transform U : unitary map on $\ell^{2}(\mathcal{V}, m)$ defined by

$$
(U f)(x)=u_{x} f(x), \quad u_{x}=e^{\mathrm{i} \sigma_{x}}
$$

- U acts on the quadratic forms $Q_{\mathcal{G}, \theta}$ by $U^{*}\left(Q_{\mathcal{G}, \theta}\right)(f)=Q_{\mathcal{G}, \theta}(U f)$, for all $f \in \mathcal{C}_{C}(\mathcal{V})$.
- The magnetic potential $U^{\star}(\theta)$ is defined by:

More explicitly, we get:

Holonomy of a magnetic potential

- gauge transform U : unitary map on $\ell^{2}(\mathcal{V}, m)$ defined by

$$
(U f)(x)=u_{x} f(x), \quad u_{x}=e^{\mathrm{i} \sigma_{x}}
$$

- U acts on the quadratic forms $Q_{\mathcal{G}, \theta}$ by $U^{*}\left(Q_{\mathcal{G}, \theta}\right)(f)=Q_{\mathcal{G}, \theta}(U f)$, for all $f \in \mathcal{C}_{C}(\mathcal{V})$.
- The magnetic potential $U^{*}(\theta)$ is defined by:

More explicitly, we get:

Holonomy of a magnetic potential

- gauge transform U : unitary map on $\ell^{2}(\mathcal{V}, m)$ defined by

$$
(U f)(x)=u_{x} f(x), \quad u_{x}=e^{\mathrm{i} \sigma_{x}}
$$

- U acts on the quadratic forms $Q_{\mathcal{G}, \theta}$ by
$U^{*}\left(Q_{\mathcal{G}, \theta}\right)(f)=Q_{\mathcal{G}, \theta}(U f)$, for all $f \in \mathcal{C}_{C}(\mathcal{V})$.
- The magnetic potential $U^{\star}(\theta)$ is defined by:

$$
U^{\star}\left(Q_{\mathcal{G}, \theta}\right)=Q_{\mathcal{G}, U^{\star}(\theta)}
$$

More explicitly, we get:

$$
U^{\star}(\theta)_{x y}=\theta_{x, y}+\sigma_{y}-\sigma_{x}
$$

Holonomy

- $Z_{1}(\mathcal{G})$:the space of cycles of \mathcal{G}
- It is is a free \mathbb{Z}-module with a basis of geometric cycles $\gamma=\left(x_{0}, x_{1}\right)+\left(x_{1}, x_{2}\right)+\ldots+\left(x_{N-1}, x_{N}\right)$ with, for $i=0, \cdots, N-1, \mathcal{E}\left(x_{i}, x_{i+1}\right) \neq 0$, and $x_{N}=x_{0}$. $\operatorname{Hol}_{\theta}\left(\left(x_{0}, x_{1}\right)+\left(x_{1}, x_{2}\right)+\cdots+\left(x_{N}, x_{0}\right)\right)$

The map $\theta \mapsto \operatorname{Hol}_{\theta}$ is surjective onto $\operatorname{Hom}_{\mathbb{Z}}\left(Z_{1}(\mathcal{G}), \mathbb{R} / 2 \pi \mathbb{Z}\right)$. $\operatorname{Hol}_{\theta_{1}}=\operatorname{Hol}_{\theta_{2}}$ if and only if there exists a gauge transform U so that $U^{*}\left(\theta_{2}\right)=\theta_{1}$
In consequence $\operatorname{Hol}_{\theta_{1}}=\operatorname{Hol}_{\theta_{2}}$ if and only if the magnetic Laplacians $\Delta_{\mathcal{G}, \theta_{1}}$ and $\Delta_{\mathcal{G}, \theta_{2}}$ are unitarily equivalent.

Holonomy

- $Z_{1}(\mathcal{G})$:the space of cycles of \mathcal{G}
- It is is a free \mathbb{Z}-module with a basis of geometric cycles $\gamma=\left(x_{0}, x_{1}\right)+\left(x_{1}, x_{2}\right)+\ldots+\left(x_{N-1}, x_{N}\right)$ with, for $i=0, \cdots, N-1, \mathcal{E}\left(x_{i}, x_{i+1}\right) \neq 0$, and $x_{N}=x_{0}$.
- Holonomy map $\operatorname{Hol}_{\theta}: Z_{1}(\mathcal{G}) \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$
$\operatorname{Hol}_{\theta}\left(\left(x_{0}, x_{1}\right)+\left(x_{1}, x_{2}\right)+\cdots+\left(x_{N}, x_{0}\right)\right):=\theta_{x_{0}, x_{1}}+\cdots+\theta_{x_{N}, x_{0}}$.

> The map $\theta \mapsto \operatorname{Hol}_{\theta}$ is surjective onto $\operatorname{Hom}_{\mathbb{Z}}\left(Z_{1}(\mathcal{G}), \mathbb{R} / 2 \pi \mathbb{Z}\right)$.
> $\operatorname{Hol}_{\theta_{1}}=\operatorname{Hol}_{\theta_{2}}$ if and only if there exists a gauge transform U so that $U^{\star}\left(\theta_{2}\right)=\theta_{1}$
> In consequence $\operatorname{Hol}_{\theta_{1}}=\operatorname{Hol}_{\theta_{2}}$ if and only if the magnetic Laplacians $\Delta_{\mathcal{G}, \theta_{1}}$ and $\Delta_{\mathcal{G}, \theta_{2}}$ are unitarily equivalent.

Holonomy

- $Z_{1}(\mathcal{G})$:the space of cycles of \mathcal{G}
- It is is a free \mathbb{Z}-module with a basis of geometric cycles

$$
\begin{aligned}
& \gamma=\left(x_{0}, x_{1}\right)+\left(x_{1}, x_{2}\right)+\ldots+\left(x_{N-1}, x_{N}\right) \text { with, for } \\
& i=0, \cdots, N-1, \mathcal{E}\left(x_{i}, x_{i+1}\right) \neq 0, \text { and } x_{N}=x_{0} .
\end{aligned}
$$

- Holonomy map $\operatorname{Hol}_{\theta}: Z_{1}(\mathcal{G}) \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$
$\operatorname{Hol}_{\theta}\left(\left(x_{0}, x_{1}\right)+\left(x_{1}, x_{2}\right)+\cdots+\left(x_{N}, x_{0}\right)\right):=\theta_{x_{0}, x_{1}}+\cdots+\theta_{x_{N}, x_{0}}$.

The map $\theta \mapsto \operatorname{Hol}_{\theta}$ is surjective onto $\operatorname{Hom}_{\mathbb{Z}}\left(Z_{1}(\mathcal{G}), \mathbb{R} / 2 \pi \mathbb{Z}\right)$. $\operatorname{Hol}_{\theta_{1}}=\operatorname{Hol}_{\theta_{2}}$ if and only if there exists a gauge transform U so that $U^{\star}\left(\theta_{2}\right)=\theta_{1}$.
In consequence $\operatorname{Hol}_{\theta_{1}}=\operatorname{Hol}_{\theta_{2}}$ if and only if the magnetic Laplacians $\Delta_{\mathcal{G}, \theta_{1}}$ and $\Delta_{\mathcal{G}, \theta_{2}}$ are unitarily equivalent.

Holonomy (end)

Let $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$ be a connected graph such that $1 \in \operatorname{ker} \Delta_{\mathcal{G}, 0}$. Let θ be a magnetic potential. Then $\operatorname{ker} \Delta_{\mathcal{G}, \theta} \neq\{0\}$ if and only if $\operatorname{Hol}_{\theta}=0$.

Remark

The hypothesis $1 \in \operatorname{ker} \Delta_{\mathcal{G}, 0}$ is trivially satisfied if \mathcal{G} is a finite graph.
In general, it is satisfied if and only if:
$(*) 1$ belongs to the closure of $\mathcal{C}_{c}(\mathcal{V})$ with respect to the norm
$\left(\|\cdot\|^{2}+Q_{\mathcal{G}, 0}(\cdot)\right)^{1 / 2}$. A sufficient condition to guarantee $(*)$ is

- \mathcal{G} is of finite volume, i.e., such that $\sum_{x \in \mathcal{V}} m(x)<\infty$,
- $\Delta_{\mathcal{G}, 0}$ is essentially self-adjoint on $\mathcal{C}_{C}(\mathcal{V})$.

Holonomy (end)

Let $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$ be a connected graph such that $1 \in \operatorname{ker} \Delta_{\mathcal{G}, 0}$. Let θ be a magnetic potential. Then $\operatorname{ker} \Delta_{\mathcal{G}, \theta} \neq\{0\}$ if and only if $\mathrm{Hol}_{\theta}=0$.

Remark

The hypothesis $1 \in \operatorname{ker} \Delta_{\mathcal{G}, 0}$ is trivially satisfied if \mathcal{G} is a finite graph.
In general, it is satisfied if and only if:
$(*) 1$ belongs to the closure of $\mathcal{C}_{\mathcal{C}}(\mathcal{V})$ with respect to the norm $\left(\|\cdot\|^{2}+Q_{\mathcal{G}, 0}(\cdot)\right)^{1 / 2}$.

Holonomy (end)

Let $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$ be a connected graph such that $1 \in \operatorname{ker} \Delta_{\mathcal{G}, 0}$. Let θ be a magnetic potential. Then $\operatorname{ker} \Delta_{\mathcal{G}, \theta} \neq\{0\}$ if and only if $\operatorname{Hol}_{\theta}=0$.

Remark

The hypothesis $1 \in \operatorname{ker} \Delta_{\mathcal{G}, 0}$ is trivially satisfied if \mathcal{G} is a finite graph.
In general, it is satisfied if and only if:
$(*) 1$ belongs to the closure of $\mathcal{C}_{C}(\mathcal{V})$ with respect to the norm $\left(\|\cdot\|^{2}+Q_{\mathcal{G}, 0}(\cdot)\right)^{1 / 2}$. A sufficient condition to guarantee $(*)$ is

- \mathcal{G} is of finite volume, i.e., such that $\sum_{x \in \mathcal{V}} m(x)<\infty$,
- $\Delta_{\mathcal{G}, 0}$ is essentially self-adjoint on $\mathcal{C}_{C}(\mathcal{V})$.

A coupling constant effect

Let $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$ be a connected graph of finite volume, i.e., such that $\sum_{x \in \mathcal{V}} m(x)<\infty$ and let θ be a magnetic potential such that $\operatorname{Hol}_{\theta} \neq 0$. Assume that the function 1 is in $\operatorname{ker} \Delta_{\mathcal{G}, \theta}$. Then there is $\nu \in \mathbb{R}$ such that

$$
\operatorname{ker} \Delta_{\mathcal{G}, \lambda \theta} \neq\{0\} \Leftrightarrow \lambda=0 \text { in } \mathbb{R} / \nu \mathbb{Z}
$$

Modified Cartesian product: motivation

- A hyperbolic manifold of finite volume is the union of a compact part and of a cusp. The cusp part can be seen as the product of $(1, \infty) \times M$, where $\left(M, g_{M}\right)$ is a Riemannian manifold, endowed with the metric,

- On the cusp part, the infimum of the radius of injectivity is 0.
- To analyze the Laplacian on this product one separates the variables and obtain a decomposition which is not of the type of a Cartesian product.
- \Longrightarrow we define a modified Cartesian product.

Modified Cartesian product: motivation

- A hyperbolic manifold of finite volume is the union of a compact part and of a cusp. The cusp part can be seen as the product of $(1, \infty) \times M$, where $\left(M, g_{M}\right)$ is a Riemannian manifold, endowed with the metric,

$$
y^{-1}\left(d y^{2}+g_{M}\right) .
$$

- On the cusp part, the infimum of the radius of injectivity is 0.
- To analyze the Laplacian on this product one separates the variables and obtain a decomposition which is not of the type of a Cartesian product.
- \Longrightarrow we define a modified Cartesian product.

Modified Cartesian product: motivation

- A hyperbolic manifold of finite volume is the union of a compact part and of a cusp. The cusp part can be seen as the product of $(1, \infty) \times M$, where $\left(M, g_{M}\right)$ is a Riemannian manifold, endowed with the metric,

$$
y^{-1}\left(d y^{2}+g_{M}\right) .
$$

- On the cusp part, the infimum of the radius of injectivity is 0.
- To analyze the Laplacian on this product one separates the variables and obtain a decomposition which is not of the type of a Cartesian product.

Modified Cartesian product: motivation

- A hyperbolic manifold of finite volume is the union of a compact part and of a cusp. The cusp part can be seen as the product of $(1, \infty) \times M$, where $\left(M, g_{M}\right)$ is a Riemannian manifold, endowed with the metric,

$$
y^{-1}\left(d y^{2}+g_{M}\right) .
$$

- On the cusp part, the infimum of the radius of injectivity is 0.
- To analyze the Laplacian on this product one separates the variables and obtain a decomposition which is not of the type of a Cartesian product.
- \Longrightarrow we define a modified Cartesian product.

Modified Cartesian product

definition

Given $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$ and $\mathcal{I} \subset \mathcal{V}_{2}$, we define the product of \mathcal{G}_{1} by \mathcal{G}_{2} through \mathcal{I} by $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, where

- $\mathcal{V}:=\mathcal{V}_{1} \times \mathcal{V}_{2}$
- $m(x, y):=m_{1}(x) \times m_{2}(y)$,
- $\mathcal{E}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=$ $\mathcal{E}_{1}\left(x, x^{\prime}\right) \times \delta_{y, y^{\prime}}\left(\sum_{z \in \mathcal{I}} \delta_{y, z}\right)+\delta_{x, x^{\prime}} \times \mathcal{E}_{2}\left(y, y^{\prime}\right)$,
- $\theta\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=\theta_{1}\left(x, x^{\prime}\right) \times \delta_{y, y^{\prime}}+\delta_{x, x^{\prime}} \times \theta_{2}\left(y, y^{\prime}\right)$, for all $x, x^{\prime} \in \mathcal{V}_{1}$ and $y, y^{\prime} \in \mathcal{V}_{2}$.

We denote \mathcal{G} by $\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$.

- If \mathcal{I} is empty, the graph is disconnected.
- If $|\mathcal{I}|=1, \mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is the graph \mathcal{G}_{1} decorated by \mathcal{G}_{2}.

Modified Cartesian product

definition

Given $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$ and $\mathcal{I} \subset \mathcal{V}_{2}$, we define the product of \mathcal{G}_{1} by \mathcal{G}_{2} through \mathcal{I} by $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, where

- $\mathcal{V}:=\mathcal{V}_{1} \times \mathcal{V}_{2}$
- $m(x, y):=m_{1}(x) \times m_{2}(y)$,
- $\mathcal{E}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=$ $\mathcal{E}_{1}\left(x, x^{\prime}\right) \times \delta_{y, y^{\prime}}\left(\sum_{z \in \mathcal{I}} \delta_{y, z}\right)+\delta_{x, x^{\prime}} \times \mathcal{E}_{2}\left(y, y^{\prime}\right)$,
- $\theta\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right):=\theta_{1}\left(x, x^{\prime}\right) \times \delta_{y, y^{\prime}}+\delta_{x, x^{\prime}} \times \theta_{2}\left(y, y^{\prime}\right)$, for all $x, x^{\prime} \in \mathcal{V}_{1}$ and $y, y^{\prime} \in \mathcal{V}_{2}$.

We denote \mathcal{G} by $\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$.

- If \mathcal{I} is empty, the graph is disconnected.
- If $|\mathcal{I}|=1, \mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is the graph \mathcal{G}_{1} decorated by \mathcal{G}_{2}.
- If $\mathcal{I}=\mathcal{V}_{2}$ and $m=1$, we notice that $\mathcal{G}_{1} \times \mathcal{I} \mathcal{G}_{2}=\mathcal{G}_{1} \times \mathcal{G}_{2}$.

Definition

Given $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, the (weighted) Cartesian product $\mathcal{G}=\mathcal{G}_{1} \times \mathcal{G}_{2}$ is $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, where $\mathcal{V}:=\mathcal{V}_{1} \times \mathcal{V}_{2}$, and

$$
\left\{\begin{aligned}
m(x, y): & :=m_{1}(x) \times m_{2}(y), \\
\mathcal{E}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right): & \mathcal{E}_{1}\left(x, x^{\prime}\right) \times \delta_{y, y^{\prime}} m_{2}(y)+m_{1}(x) \delta_{x, x^{\prime}} \times \mathcal{E}_{2}\left(y, y^{\prime}\right), \\
\theta\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right): & :=\theta_{1}\left(x, x^{\prime}\right) \times \delta_{y, y^{\prime}}+\delta_{x, x^{\prime}} \times \theta_{2}\left(y, y^{\prime}\right),
\end{aligned}\right.
$$

The terminology is motivated by the following decomposition:

$$
\Delta_{\mathcal{G}, \theta}=\Delta_{\mathcal{G}_{1}, \theta_{1}} \otimes 1+1 \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}},
$$

where $\ell^{2}(\mathcal{V}, m) \simeq \ell^{2}\left(\mathcal{V}_{1}, m_{1}\right) \otimes \ell^{2}\left(\mathcal{V}_{2}, m_{2}\right)$. The spectral theory of $\Delta_{\mathcal{G}, \theta}$ is well-understood since

$$
e^{i t \Delta_{\mathcal{G}, \theta}}=e^{i t \Delta_{\mathcal{G}_{1}, \theta_{1}}} \otimes e^{i t \Delta_{\mathcal{G}_{2}, \theta_{2}}}, \text { for } t \in \mathbb{R}
$$

Modified Cartesian product:example

The graph of \mathbb{Z}
The graph of $\mathbb{Z} / 3 \mathbb{Z}$

The graph of $\mathbb{Z} \times_{\mathcal{I}} \mathbb{Z} / 3 \mathbb{Z}$, with $|\mathcal{I}|=1$

The graph of $\mathbb{Z} \times \mathcal{I} \mathbb{Z} / 3 \mathbb{Z}$, with $|\mathcal{I}|=2$

Discrete cusps

If $\mathcal{G}=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ then

- $\operatorname{deg}_{\mathcal{G}}(\cdot)=\operatorname{deg}_{\mathcal{G}_{1}}(\cdot) \otimes \frac{1_{\tau}(\cdot)}{m_{2}(\cdot)}+\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}(\cdot)$
- $\Delta_{\mathcal{G}, \theta}=\Delta_{\mathcal{G}_{1}, \theta_{1}} \otimes \frac{1_{I}(\cdot)}{m_{2}(\cdot)}+\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}$.
- If m is non-trivial, $\Delta_{\mathcal{G}, \theta}$ is usually not unitarily equivalent to the Laplacian obtained with the Cartesian product.

Definition

Set \mathcal{G}_{1}
$\mathcal{G}=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp if
(H1) $m_{1}(x)$ tend to 0 as $|x| \rightarrow \infty$,
(H2) \mathcal{G}_{2} is finite,
$(H 3) \Delta_{\mathcal{G}_{1}, \theta_{1}}$ is bounded (or equivalently $\left.\sup _{x \in v_{1}} \operatorname{deg}_{\mathcal{G}_{1}}(x)<\infty\right)$.

Discrete cusps

If $\mathcal{G}=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ then
$-\operatorname{deg}_{\mathcal{G}}(\cdot)=\operatorname{deg}_{\mathcal{G}_{1}}(\cdot) \otimes \frac{1_{\mathcal{I}}(\cdot)}{m_{2}(\cdot)}+\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}(\cdot)$

- $\Delta_{\mathcal{G}, \theta}=\Delta_{\mathcal{G}_{1}, \theta_{1}} \otimes \frac{1_{\mathcal{I}}(\cdot)}{m_{2}(\cdot)}+\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}$.
- If m is non-trivial, $\Delta_{\mathcal{G}, \theta}$ is usually not unitarily equivalent to the Laplacian obtained with the Cartesian product.

Definition

Set $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right), \mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, and $\mathcal{I} \subset \mathcal{V}_{2}$.
$\mathcal{G}=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp if
(H1) $m_{1}(x)$ tend to 0 as $|x| \rightarrow \infty$,
$(\mathrm{H} 2) \mathcal{G}_{2}$ is finite,
(H3) $\Delta_{\mathcal{G}_{1}, \theta_{1}}$ is bounded (or equivalently $\left.\sup _{x \in \mathcal{V}_{1}} \operatorname{deg}_{\mathcal{G}_{1}}(x)<\infty\right)$.

Discrete cusps

If $\mathcal{G}=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ then
$-\operatorname{deg}_{\mathcal{G}}(\cdot)=\operatorname{deg}_{\mathcal{G}_{1}}(\cdot) \otimes \frac{1_{\mathcal{I}}(\cdot)}{m_{2}(\cdot)}+\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}(\cdot)$

- $\Delta_{\mathcal{G}, \theta}=\Delta_{\mathcal{G}_{1}, \theta_{1}} \otimes \frac{1_{\mathcal{I}}(\cdot)}{m_{2}(\cdot)}+\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}$.
- If m is non-trivial, $\Delta_{\mathcal{G}, \theta}$ is usually not unitarily equivalent to the Laplacian obtained with the Cartesian product.

Definition

Set $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right), \mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, and $\mathcal{I} \subset \mathcal{V}_{2}$.
$\mathcal{G}=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp if
(H1) $m_{1}(x)$ tend to 0 as $|x| \rightarrow \infty$,
$(\mathrm{H} 2) \mathcal{G}_{2}$ is finite,
(H3) $\Delta_{\mathcal{G}_{1}, \theta_{1}}$ is bounded (or equivalently $\sup _{x \in \mathcal{V}_{1}} \operatorname{deg}_{\mathcal{G}_{1}}(x)<\infty$).
Degree of $x \in \mathcal{V}: \operatorname{deg}_{\mathcal{G}}(x):=\frac{1}{m(x)} \sum_{y \in \mathcal{V}} \mathcal{E}(x, y)$

Radius of injectivity

Definition

Given $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$, the weighted length of an edge $(x, y) \in \mathcal{E}$ is defined by:

$$
L_{\mathcal{G}}((x, y)):=\sqrt{\frac{\min (m(x), m(y))}{\mathcal{E}(x, y)}} .
$$

Given $x, y \in \mathcal{V}$, the weighted distance from x to y is defined by:

$$
\rho_{L_{\mathcal{G}}}(x, y):=\inf _{\gamma} \sum_{i=0}^{|\gamma|-1} L_{\mathcal{G}}(\gamma(i), \gamma(i+1)),
$$

where γ is a path joining x to y and with the convention that $\rho_{L_{\mathcal{G}}}(x, x):=0$ for all $x \in \mathcal{V}$.

Radius of injectivity(continued)

Definition

Given $\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)$,

- the girth at $x \in \mathcal{V}$ of \mathcal{G} w.r.t. the weighted length $L_{\mathcal{G}}$ is

$$
\operatorname{girth}(x):=\inf \left\{L_{\mathcal{G}}(\gamma), \gamma \text { simple cycle containing } x\right\}
$$

- convention: the girth is $+\infty$ if there is no such cycle.
-

$$
\operatorname{girth}(\mathcal{G}):=\inf _{x \in \mathcal{V}} \operatorname{girth}(x)
$$

- The radius of injectivity of \mathcal{G} with respect to $L_{\mathcal{G}}(\operatorname{rad}(\mathcal{G}))$ is half the girth.

Radius of injectivity(end)

Proposition 1

Consider $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$ and $\mathcal{I} \subset \mathcal{V}_{2}$ such that $\mathcal{G}:=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp. We have:
(1) $\operatorname{rad}\left(\mathcal{G}_{1}\right)>0$.
(2) If $\operatorname{rad}\left(\mathcal{G}_{2}\right)<\infty$, then $\operatorname{rad}(\mathcal{G})=0$.

Proposition 2

Consider $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$ and $\mathcal{I} \subset \mathcal{V}_{2}$ such that $\left(\mathrm{H}_{1}\right),(\mathrm{H} 2)$, and $(\mathrm{H} 3)$ are satisfied. Then $\operatorname{rad}\left(\mathcal{G}_{1}\right.$

Radius of injectivity(end)

Proposition 1

Consider $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$ and $\mathcal{I} \subset \mathcal{V}_{2}$ such that $\mathcal{G}:=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp. We have:
(1) $\operatorname{rad}\left(\mathcal{G}_{1}\right)>0$.
(2) If $\operatorname{rad}\left(\mathcal{G}_{2}\right)<\infty$, then $\operatorname{rad}(\mathcal{G})=0$.

Proposition 2

Consider $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$ and $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$ and $\mathcal{I} \subset \mathcal{V}_{2}$ such that (H1), (H2), and (H3) are satisfied. Then $\operatorname{rad}\left(\mathcal{G}_{1} \times \mathcal{G}_{2}\right)>0$.

Absence of essential spectrum

Proposition

Set $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right), \mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, and $\mathcal{G}:=\mathcal{G}_{1} \times_{\mathcal{I}} \mathcal{G}_{2}$, with $|\mathcal{I}|>0$. Assume that $(\mathrm{H} 1),(\mathrm{H} 2)$, and $\operatorname{Hol}_{\theta_{2}} \neq 0$ hold true. Then
$\Delta_{\mathcal{G}, \theta}$ has a compact resolvent, and

$$
\mathcal{N}_{\lambda}\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right) \geq \mathcal{N}_{\lambda}\left(\Delta_{\mathcal{G}, \theta}\right), \text { for all } \lambda \geq 0 .
$$

Proof:

- $\Delta_{\mathcal{G}, \theta} \geq \frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}$ in the form sense on $\mathcal{C}_{C}(\mathcal{V})$.
- $(\mathrm{H} 2)+\operatorname{Hol}_{\theta_{2}} \neq 0+$ key Lemma $\Longrightarrow 0$ is not in the spectrum of $\left(\Delta_{\mathcal{G}_{2}, \theta_{2}}\right)$.
- Hence the spectrum of the r.h.s. is purely discrete.
- min-max Principle $\Longrightarrow \Delta_{\mathcal{G}, \theta}$ has a compact resolvent.

The asymptotic of the eigenvalues

Proposition(key-stone)

Set $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right), \mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, and $\mathcal{I} \subset \mathcal{V}_{2}$ non-empty. Assume that $\mathcal{G}:=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp. We set

$$
\begin{equation*}
M:=\sup _{x \in \mathcal{V}_{1}} \operatorname{deg}_{\mathcal{G}_{1}}(x) \times \max _{y \in \mathcal{V}_{2}}\left(1 / m_{2}(y)\right)<\infty \tag{4}
\end{equation*}
$$

We have:

$$
\begin{gather*}
\frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}(\cdot) \leq \operatorname{deg}_{\mathcal{G}}(\cdot) \leq \frac{1}{m_{1}(\cdot)} \otimes \operatorname{deg}_{\mathcal{G}_{2}}(\cdot)+M \tag{5}\\
\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}} \leq \Delta_{\mathcal{G}, \theta} \leq 2 M+\frac{1}{m_{1}(\cdot)} \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}} \tag{6}
\end{gather*}
$$

in the form sense_on $\mathcal{C}(\mathcal{V})$

The asymptotic of the eigenvalues(continued)

Theorem

Set $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right), \mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, m_{2}\right)$, and $\mathcal{I} \subset \mathcal{V}_{2}$ non-empty. Assume that $\mathcal{G}:=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp. We have

- $\mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right)=\mathcal{D}\left(m_{1}^{-1 / 2}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}^{1 / 2}\right)$.
- $\Delta_{\mathcal{G}, \theta}$ has a compact resolvent if and only if $\operatorname{Hol}_{\theta_{2}} \neq 0$.
- If $\operatorname{Hol}_{\theta_{2}} \neq 0$, then $\mathcal{D}\left(\Delta_{\mathcal{G}, \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\lambda_{n}\left(\Delta_{\mathcal{G}, \theta}\right)}{\lambda_{n}\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right)}=1, \text { and } \tag{7}
\end{equation*}
$$

$$
\mathcal{N}_{\lambda-2 M}\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right) \leq \mathcal{N}_{\lambda}\left(\Delta_{\mathcal{G}, \theta}\right) \leq \mathcal{N}_{\lambda}\left(m_{1}^{-1}(\cdot) \otimes \Delta_{\mathcal{G}_{2}, \theta_{2}}\right)
$$

The asymptotic of the eigenvalues(corollary)

Aim : comparing the asymptotic with that of the degree. New phenomenon: we can obtain a constant different from 1 in the asymptotic.

Corollary

Consider a discrete cusp $\mathcal{G}:=\mathcal{G}_{1} \times{ }_{\mathcal{I}} \mathcal{G}_{2}$. Suppose that $\operatorname{deg}_{\mathcal{G}_{2}}$ is constant on \mathcal{V}_{2} and take θ_{2} such that $\operatorname{Hol}_{\theta_{2}} \neq 0$. Then, for all $a \in\left[1,+\infty\left[\right.\right.$, there exists $\widetilde{\mathcal{G}}_{1}:=\left(\widetilde{\mathcal{E}}_{1}, \mathcal{V}_{1}, \tilde{m}_{1}\right)$ such that

- $\widetilde{\mathcal{G}}:=\widetilde{\mathcal{G}}_{1} \times_{\mathcal{I}} \mathcal{G}_{2}$ is a discrete cusp.
- \mathcal{E}_{1} and $\widetilde{\mathcal{E}}_{1}$ have the same zero set.
- $\operatorname{deg}_{\widetilde{\mathcal{G}}_{1}}(x) \leq \operatorname{deg}_{\mathcal{G}_{1}}(x)$ for all $x \in \mathcal{V}_{1}$.
- $\Delta_{\widetilde{\mathcal{G}}, \theta}$ is with compact resolvent, and

$$
\lim _{\lambda \rightarrow \infty} \frac{\mathcal{N}_{\lambda}\left(\Delta_{\tilde{\mathcal{G}}, \theta}\right)}{\mathcal{N}_{\lambda}\left(\operatorname{deg}_{\tilde{\mathcal{G}}}(\cdot)\right)}=a
$$

The asymptotic of the eigenvalues(a specific example)

- $\mathcal{G}_{1}:=\left(\mathcal{E}_{1}, \mathcal{V}_{1}, m_{1}\right)$,

$$
\mathcal{V}_{1}:=\mathbb{N}, \quad m_{1}(n):=e^{-n}, \mathcal{E}_{1}(n, n+1):=e^{-(2 n+1) / 2}
$$

- $\mathcal{G}_{2}:=\left(\mathcal{E}_{2}, \mathcal{V}_{2}, 1\right)$: a s.c. finite graph s. t. $\left|\mathcal{V}_{2}\right|=N(N \geq 3)$.
- Set $\theta_{1}:=0, \theta_{2}$ s. t. $\operatorname{Hol}_{\theta_{2}} \neq 0$, and

$$
\mathcal{G}:=(\mathcal{E}, \mathcal{V}, m)=\mathcal{G}_{1} \times \mathcal{V}_{2} \mathcal{G}_{2} .
$$

Then $\exists \nu>0$ s. t. $\forall \kappa \in \mathbb{R} / \nu \mathbb{Z}$
$\sigma_{\text {ess }}\left(\Delta_{\mathcal{G}, \kappa \theta}\right)=\emptyset \Leftrightarrow \mathcal{D}\left(\Delta_{\mathcal{G}, \kappa \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}_{\mathcal{G}}^{1 / 2}(\cdot)\right) \Leftrightarrow \kappa \neq 0$ in $\mathbb{R} / \nu \mathbb{Z}$ Moreover:

- When $\kappa \neq 0$ in $\mathbb{R} / \nu \mathbb{Z}$, we have:

$$
\lim _{\lambda \rightarrow \infty} \frac{\mathcal{N}_{\lambda}\left(\Delta_{\mathcal{G}, \kappa \theta}\right)}{\mathcal{N}_{\lambda}\left(\operatorname{deg}_{\mathcal{G}}(\cdot)\right)}=1
$$

The asymptotic of the eigenvalues(a specific example)

- When $\kappa=0$ in $\mathbb{R} / \nu \mathbb{Z}$,

$$
\sigma_{\mathrm{ac}}\left(\Delta_{\mathcal{G}, \kappa \theta}\right)=\left[e^{1 / 2}+e^{-1 / 2}-2, e^{1 / 2}+e^{-1 / 2}+2\right]
$$

with multiplicity 1 and

$$
\lim _{\lambda \rightarrow \infty} \frac{\mathcal{N}_{\lambda}\left(\Delta_{\mathcal{G}, \kappa \theta} P_{\mathrm{ac}, \kappa \kappa}^{\perp}\right)}{\mathcal{N}_{\lambda}\left(\operatorname{deg}_{\mathcal{G}}(\cdot)\right)}=\frac{n-1}{n}
$$

where $P_{\mathrm{ac}, \kappa}$ denotes the projection onto the a.c. part of $\Delta_{\mathcal{G}, \kappa \theta}$.

The asymptotic of the eigenvalues(a specific example)

Heuristic:

- switching on the magnetic field is not a gentle perturbation (the form domain of the operator is changed).
- second case: the constant $(n-1) / n$ encodes the fact that
a part of the wave packet diffuses. the particle, which is
localized in the a.c. part of the operator, escapes from
every compact set.
- first case: (active magnetic potential) the spectrum of $\Delta_{\mathcal{G}, \kappa \theta}$ is purely discrete. The particle cannot diffuse anymore.
The particle is trapped by the magnetic field.

The asymptotic of the eigenvalues(a specific example)

Heuristic:

- switching on the magnetic field is not a gentle perturbation (the form domain of the operator is changed).
- second case: the constant $(n-1) / n$ encodes the fact that a part of the wave packet diffuses. the particle, which is localized in the a.c. part of the operator, escapes from every compact set.
- first case: (active magnetic potential) the spectrum of $\Delta_{g, k}$ is purely discrete. The particle cannot diffuse anymore. The particle is trapped by the magnetic field.

The asymptotic of the eigenvalues(a specific example)

Heuristic:

- switching on the magnetic field is not a gentle perturbation (the form domain of the operator is changed).
- second case: the constant $(n-1) / n$ encodes the fact that a part of the wave packet diffuses. the particle, which is localized in the a.c. part of the operator, escapes from every compact set.
- first case: (active magnetic potential) the spectrum of $\Delta_{\mathcal{G}, \kappa \theta}$ is purely discrete. The particle cannot diffuse anymore. The particle is trapped by the magnetic field.

The asymptotic of the eigenvalues(a specific example)

Heuristic:

- switching on the magnetic field is not a gentle perturbation (the form domain of the operator is changed).
- second case: the constant $(n-1) / n$ encodes the fact that a part of the wave packet diffuses. the particle, which is localized in the a.c. part of the operator, escapes from every compact set.
- first case: (active magnetic potential) the spectrum of $\Delta_{\mathcal{G}, \kappa \theta}$ is purely discrete. The particle cannot diffuse anymore. The particle is trapped by the magnetic field.

A specific example

The magnetic field traps the particle by spinning it, whereas its absence lets the particle diffuse.

