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Summary

|7 e The setup: graphs asymptotic to a homogeneous tree T

e The case of a homogeneous tree T,
» the spectral decomposition of the adjacency matrix
» the Fourier-Helgason transform
e A scattering problem for a Schrodinger operator with a compactly
supported non local potential
» Existence and unicity of the generalised eigenfunctions
The deformed Fourier-Helgason transform
Correlation of scattered plane waves
The S-matrix and the asymptotics of the sc. pl. waves

o o o o

Computation of the transmission coefficients

—

he spectral theory for a graph asymptotic to T,

Joint work with Y. Colin de Verdi ere, Grenoble
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The setup

|7 ® ' = (Vp, Er): aconnected graph T

o Vr :the set of vertices, Er : the set of edges
o We write x ~ y for {x,y} € Er.

® ¢ > 2 fixed integer. I' is asymptotic to a hom. tree of degree ¢q + 1
< d a finite sub-graph I'g of I s.t.

e I":=T\T}is adisjoint union of a finite number of trees
T;, l=1,---, L, rooted at a vertex x; linked to I'

o all vertices of T; different from z; are of degree ¢ + 1.

o ThetreesT;, =1, ---,L, are called the ends of I.
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The setup

|7 ® ' = (Vp, Er): aconnected graph T

o Vr :the set of vertices, Er : the set of edges
o We write x ~ y for {x,y} € Er.

® ¢ > 2 fixed integer. I' is asymptotic to a hom. tree of degree ¢q + 1
< d a finite sub-graph I'g of I s.t.

e I":=T\T}is adisjoint union of a finite number of trees
T;, l=1,---, L, rooted at a vertex x; linked to I'

o all vertices of T; different from z; are of degree ¢ + 1.

o ThetreesT;, =1, ---,L, are called the ends of I.

® 0Oy =the boundary of I'y : the set of edges of I' connecting a vertex
of I'y to a vertex of IV, (one of the x;’s).
|z|p, : the distance of x € Vp/ to Ty.
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A graph asymptotic to a regular tree.

-

|

10/09/2013 — p. 4



The adjacency operator

f.. CT)={f:Vpr — C} —‘

® ()(T): the subspace of functions with finite support.

® PI)={feC); X [fF(z) <o} {f.9) = en fx)g(x) .

xeVr
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The adjacency operator

|7.. cr)y={f:Vpr — C} —‘

® ()(T): the subspace of functions with finite support.

® PI)={feC); X [fF(z) <o} {f.9) = en fx)g(x) .

xeVr

® On Cy(I'), we define the adjacency operator Ar by
(Arf) (®) = 2_yu | ()

® Ar is bounded on [?(T") & the degree of the vertices of I is
bounded. ( which is the case here.)

# Inthat case, the operator Ar is self-adjoint.

o |
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The adjacency operator

|7.. cr)y={f:Vpr — C} —‘

® ()(T): the subspace of functions with finite support.

® PI)={feC); X [fF(z) <o} {f.9) = en fx)g(x) .

xeVr

® On Cy(I'), we define the adjacency operator Ar by
(Arf) (z) =20 f (W)
® Ar is bounded on [?(T") & the degree of the vertices of I is
bounded. ( which is the case here.)
# Inthat case, the operator Ar is self-adjoint.

® Our goal : get an explicit spectral decomposition of the adjacency
operator Ar.

# getaS. D. for a Schrodinger operator with a compactly supported
potential on a hom. tree

o getasimilar S. D. for the adjacency operator Ar via a
combinatorial result 10/09/2013 — p. 5



The points at infinity on the tree T

|7 ® T,=(V,, E,) : homogeneous tree of degree ¢ + 1 T
# choose an origin O ( a root)
» |z| : the combinatorial distance of the vertex x to O .
® () : the set of infinite simple paths starting from O.

# asequence y, €V, tends to w € () Iff for n large enough, y,,
belongs to the path w and is going to infinity along that path.
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The points at infinity on the tree T

T, = (V,, E,) : homogeneous tree of degree ¢ + 1
# choose an origin O ( a root)
» |z| : the combinatorial distance of the vertex x to O .

Qo : the set of infinite simple paths starting from O.

# asequence y, €V, tends to w € () Iff for n large enough, y,,
belongs to the path w and is going to infinity along that path.

doo . canonical probability measure on Q2o

Busemann function z — b, (x) := |z, | — d(z, x,,).
( ., the last point lying on w in the geodesic path joining O to x)

level sets of b, : horocycles associated to w.

|
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The points at infinity on the tree T

® T,=(V,, E,) : homogeneous tree of degree ¢ + 1
# choose an origin O ( a root)
» |z| : the combinatorial distance of the vertex x to O .

® () : the set of infinite simple paths starting from O.

# asequence y, €V, tends to w € () Iff for n large enough, y,,
belongs to the path w and is going to infinity along that path.

°

doo . canonical probability measure on Q2o

°

Busemann function z — b, (x) := |z, | — d(z, x,,).
( ., the last point lying on w in the geodesic path joining O to x)

® |evel sets of b, : horocycles associated to w.
Theorem A, : the adjacency operator on T,. The spectrum of A is the

interval I, = |—2,/q, +2,/q]. Seteg(z,w, s) := q(1/2=1s)bu(2)  gnd
\s = q27% + g2  Then Vs € S°, Ageg(w, s) = Asep(w, s).
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The Busemann function




The spectral Riemann surface

|7.. S = /17 x iR, T =27 /logq —‘
® s — )\, holomorphic function defined on S by A\, = gz +is 4+ g2 %,
e ST:={seS|Js> 0} is mapped bijectively onto C \ I,,.
e SY:=R/7Z: the circle s = 0.

the circle S is a double covering of I,,.

o |
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The spectral Riemann surface

|7-. S = /77 x iR, T = 27w/ log q | —‘

® s — )\, holomorphic function defined on S by A\, = gz +is 4+ g2 %,
e ST:={seS|Js> 0} is mapped bijectively onto C \ I,,.
e SY:=R/7Z: the circle s = 0.

the circle S is a double covering of I,,.

Gy : the Green’s function on T,,.

» Theorem

» The Green’s function of the tree T, is given, for s € S by
(— 5 +is)d(z,y)

GO(A&SE?y) — ql

qi—is_q—%—l—is :

® (G extends merom. to S with two poles —i/2 and —i/2 + 7/2.

» forany x € V, and any y belonging to the path w,

GO()\S7 L, y) — C(S)q(_%—i_isﬂy'q(%_i's)bw (37),

o |
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The Riemann surface
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The density of states
Definition
® ¢:R — R given continuous function T
® ¢(Ar): operator on [?(T"), (associated matrix [¢(Ar)](z, z"))
» Consider for any z € Vr, the linear form on C'(R, R)

Lo (¢) = [¢(Ar))(z, x) .

L, is positive and verifies L, (1) = 1, so we have L,(¢) = [, ¢de,
where de, Is a probability measure on R, supported by the
spectrum of Ar.

|
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The density of states
® Definition
|7 # ¢ :R — R given continuous function T
® ¢(Ar): operator on [?(T"), (associated matrix [¢(Ar)](z, z"))
» Consider for any z € Vr, the linear form on C'(R, R)

Lo (¢) = [¢(Ar))(z, x) .

L, is positive and verifies L, (1) = 1, so we have L,(¢) = [, ¢de,
where de, Is a probability measure on R, supported by the
spectrum of Ar.

® Theorem The spectral measure de, of T, Is independent of the
vertex x and is given by

o (g +1)\/4q — N2
des(N) = de(N) = 5 Mo gy

o |
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The Fourier-Helgason transform

f ® Definition The Fourier-Helgason transform FH : f — f(w, s) of T
f e Co(T,), where w € Qp and s € S, is given by

Flw,s) = Soey, Fa)g/2H0u@
® Remark If s € S°, then

f(was) — <60(w78)7f> — er\/p / (CIZ) 60(377(")78) :

Completeness of the set {eg(w, s), s € 5%, w e Q} :

o |
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The Fourier-Helgason transform

Definition The Fourier-Helgason transform FH : f — f(w, s) of T
f e Co(T,), where w € Qp and s € S, is given by

Flw,s) = Soey, Fa)g/2H0u@
Remark If s € S9, then

f(was) — <60(w78)7f> — ZxEVp / (.CIZ) 60(377(")78) :

Completeness of the set {eg(w, s), s € 5%, w e Q} :

Theorem (inversion formula)
e Forany f € Cy(T,), we have

A

F(@) = [0 Jy 0,0, 5)f(w, 8)doo(w)du(s)

_ (g+1)logg sin? (s log q)
where du(s) = T T T 2 oos(25 08 O ds| .

® JFH extends to a u. map from [*(T,) into L*(Q x S°,doo ® du).

» its range is the subsp. of the f. F' of L?(Q x SY, dop ® du) s.t.
Joeo(z,w,s)F(w,s)doo(w) = |, eo(x,w, —s)F(w, —s)doo(w) .

o Spectral resolution of Ay: if ¢ : R — R Is continuous, J
d(Ao) = (FH) " ¢(A)FH .

10/09/2013 — p. 11



Scattering on T, between A, and the Schrodinger operator A = Ay + W

® the Hermitian matrix (also denoted W) assoc. to this potential is T
supported by K x K ( K : afinite part of V)

® K is chosen minimal, sothat: K = {z €V, | Jy € V, with W, , # 0} .

® Ais afinite rank perturbation of A .

|
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Scattering on T, between A, and the Schrodinger operator A = Ay + W

® the Hermitian matrix (also denoted W) assoc. to this potential is T
supported by K x K ( K : afinite part of V)

°

K is chosen minimal, so that: K = {x € V| Jy € V,, with W, , # 0} .

°

A Is a finite rank perturbation of Ay .

® Proposition I*(Ty) = Hac ® Hpp
® 'H,. is the isometric image of [*(T,) by the wave operator
OF =5 —lim,_. . et4e 40 We have
A, = QT A(QT)* = the corresponding part of the S.D. is
iIsomorphic to that of Ay which is an a. c. spectrum on I,.
® The space H,,, is finite dimensional, admits an o.b. of /* eigenf.
associated to a finite set of eigenv. ( Some of them can be embedded in

the continuous spectrum I,,.)

o |
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Formal derivation of the Lippmann-Schwinger equation
® We look for generalised eigenfunctions of A.

® they are particular solutions of
(As — A)e(.,w,s) =0,
(meaning not {2 solutions, but only point-wise solutions.)

o |
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Formal derivation of the Lippmann-Schwinger equation
® We look for generalised eigenfunctions of A.
|7 ® they are particular solutions of T
(As — A)e(.,w,s) =0,
(meaning not {2 solutions, but only point-wise solutions.)

If e(w, s) is the image of ey(w, s) by QT in some sense (they are not in [?!),
then we should have formally  eg(w,s) = lim,_._ e’ e e(w, 5)

t
= lim; . _ole(w, s) — z/ e e A (W, 5)dul
0

—00
e(w,s) — ilims_@/ e AT e T A oo (1 ) du
0

e(w, s) + lim._o[(Ag — (As + i) ' Wel(w, s) .

So e(w, s) should obey the following "Lippmann-Schwinger-type" equation

e(w,s) = eg(w, s) + Go(As)We(w,s) .

o |
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® y € (Cy(T,) be a compactly supported real-valued function s. t.

Wx =xW=W —‘
® |[fe(w,s) obeys (LSE) and a(w, s) = xe(w, s), then a obeys (MLSE):

a(wa S) — XGO(wa S) + XGO()\S)WCL(W, S) :

® K : the finite rank op. on [*(T,) defined by K; = xGo(\s)W. The
map s — K, extends holom. to s > —2

s analytic Fredholm theorem = 3 a finite subset £ of S°, defined
by £ =: {s € 5% ker(Id — K,) # 0}, so that (MLSE) has a unique
solution a(w, s) € Co(T,) whenever s ¢ £ .

|
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® y € (Cy(T,) be a compactly supported real-valued function s. t.

Wx =xW=W —‘
® |[fe(w,s) obeys (LSE) and a(w, s) = xe(w, s), then a obeys (MLSE):

a(wa S) — XGO(wa S) + XGO()\S)WCL(LU, S) :

® K : the finite rank op. on [*(T,) defined by K; = xGo(\s)W. The
map s — K, extends holom. to s > —2

s analytic Fredholm theorem = 3 a finite subset £ of S°, defined
by £ =: {s € 5% ker(Id — K,) # 0}, so that (MLSE) has a unique
solution a(w, s) € Co(T,) whenever s ¢ £ .

For s ¢ £, the function e(w, s) = ep(w, $) + Go(As)Wa(w, s)
IS the unique solution of (LSE).

|
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The set€ and the pure point spectrum

fProposmons T

The set £ is independent of the choice of y with Wy = YW = W.

® If (A—)\)f=0with\eI,and f € I>(T,), then Supp(f) C K
K : the smallest subset of V, s. t. Supp(W) ¢ K x K and all
connected components of T, \ K are infinite.

® Consequence #{opp(A) NI} < #K.
® IfsecS (A—),)f=0and fel?T,)\0, thenseé.
® Conversely,ifse £ c S 3f£0s.t. (A—\,)f=0and

f(z) =0 (¢~1*V?).

o |
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The set€ and the pure point spectrum

fProposmons T

The set £ is independent of the choice of y with Wy = YW = W.

® If (A—)\)f=0with\eI,and f € I>(T,), then Supp(f) C K
K : the smallest subset of V, s. t. Supp(W) ¢ K x K and all
connected components of T, \ K are infinite.

°

Consequence #{o,,(A) N1} < #K.
® IfsecS (A—),)f=0and fel?T,)\0, thenseé.

® Conversely,ifse £ c S 3f£0s.t. (A—\,)f=0and
f(z) =0 (¢71"V2).
Theorem The pure point spectrum o,,,(A) of A splits into 3 parts
opp(A) =0 (A)Uat (A)Uay, (A)
where o (A) = opp(A)N] — 00, =2,/q[, 0, (A) = 0pp(A)N]2,/q, +00], and
opp(A) = opp(A) N1,

LWe have #o2 (A) < #Supp(W) and #09 (A) < #K. J

10/09/2013 — p. 15



The deformed Fourier-Helgason transform

® Definition The deformed Fourier-Helgason transform FH,. of T
f € Co(T,) is the function f,. on Q x (S°\ ) defined by
foolw, s) = Z f(x)e(x,w,s) .
eV

® Remark Since K, = K_,, the subset £ is invariant by s — —s and
consequently is the inverse image by s — \; of a subset of I, which
we denote by £.

|
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The deformed Fourier-Helgason transform

Definition The deformed Fourier-Helgason transform FHg. of T
f € Co(T,) is the function f,. on Q x (S°\ ) defined by
fsc(was) Z f ZC w, S .
eV

Remark Since K, = K_., the subset &€ is invariant by s — —s and
consequently is the inverse image by s — \; of a subset of I, which
we denote by £.

Theorem (inversion formula)

K

K

K

feCy(T,) ,JClI,\E& anyclosed interval

denote by .J the inverse image of J by s — s,

then the following inverse transform holds

Pif(x) = [; Jge(z, w, $) fse(w, 8)doo(w)du(s) .
Moreover f — fSC extends to an isometry from H,. onto
L2 (22 x 8% doo @ dp).

even

|
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Correlation of scattered plane waves

f ® Motivation: passive imaging in seismology (M. Campillo’s seismologyj
group in Grenoble).
For a scattering problem in R the point-to-point correlations of the plane waves can
be computed in terms of the Green’s function (Y. C.d.V, '09). for a fixed spectral
parameter, plane waves are viewed as random waves parametrised
by the direction of their incoming part.

o |
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Correlation of scattered plane waves

Motivation: passive imaging in seismology (M. Campillo’s seismologyj
group in Grenoble).

For a scattering problem in R the point-to-point correlations of the plane waves can

be computed in terms of the Green’s function (Y. C.d.V, '09). for a fixed spectral
parameter, plane waves are viewed as random waves parametrised

by the direction of their incoming part.

Consider the plane wave e(x,w, s(\)) as a random wave

Define the point-to-point correlation C{¢(x, y) of such a random wave
In the usual way:

<ﬁ%%wziéamw»u»a%%s@»mﬂm.

Theorem For any A € I, and any vertices z,y

20a% +2g+1 — \?
Cie(a,y) = — 2L T2+ ) $G(A+i0,2,y) .

(g +1)\/4q — N2 10/09/2013 — p. 17



The spectral theory for a graph asymptotic to an homogeneousee

Some combinatorics
Theorem 1
If I" is asymptotic to a homogeneous tree of degree g + 1, then I is isomorphic to a

connected component of a graph I" which can be obtained from T, by adding and removing
a finite number of edges.

o |
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The spectral theory for a graph asymptotic to an homogeneousee

Some combinatorics

Theorem 1

If I" is asymptotic to a homogeneous tree of degree g + 1, then I is isomorphic to a
connected component of a graph I" which can be obtained from T, by adding and removing
a finite number of edges.

Tools

® a2 combinatorial analogue of the reg. total curvature of a Riem. surface S

y(0) = 3" (g+1—d(@)) + 261,
xeVr

d(x) : the degree of x, b; : the first Betti number of "
® lLemmallf forr > 1, B, = {x € V¢ | |z|r, <7}, then

v(T) = (q— 1)m — M +2,
( m : number of inner vertices of B,., M : number of boundary vertices)

o |
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Example (g = 2,v = 1)

o |
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®» Lemma?
F' . afinite tree whose all vertices are of degree g + 1 except the ends which are of

degree 1.
M number of ends, m the number of inner vertices.

We have
M=24+((@q@—1)m. (1)

Conversely, for each choice of (m, M) satisfying (1), there exists such a tree F.

o |
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®» Lemma?

F' . afinite tree whose all vertices are of degree g + 1 except the ends which are of —‘
degree 1.

M number of ends, m the number of inner vertices.

We have

M=24+((@q@—1)m. (1)
Conversely, for each choice of (m, M) satisfying (1), there exists such a tree F.

0.

Some modifications of T in order to get a new graph I" with v(I")
Lemma 3

If ¥ = M;(T") is defined by adding to I" a vertex and an edge connecting that vertex to
a vertex of I'g, then

v(I')=v()+q—1.

If I¥ = M5 (T") is defined by adding to T" a tree whose root z is of degree ¢ and all other
vertices of degree g + 1 and connecting x by an edge to a vertex of I'g, I'V is
asymptotic to an homogeneous tree of degree ¢ + 1 and

v(I")y=v()—1.

|
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Proof of Theorem 1

- N

® write v(I') = N" — (¢ — 1)N" with N" > 0and N" > 0.

® perform N’ times the move M; and N” times the move My —
we arrive to a graph I" with v(T") = 0.

o |
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Proof of Theorem 1

write v(I') = N” — (¢ — 1)N" with N’ > 0and N” > 0. T
perform N’ times the move M; and N” times the move M; —

we arrive to a graph I" with v(T") = 0.

remove from I the (N’ + N") edges not in Er, one of whose

verticesisinIy .

The new graph T is clearly asymptotic to a regular tree of
degree (¢ + 1) and I' is a connected component of I,

use lemma 2 to get a tree T, from T, by removing and adding a
finite number of edges to T".

|
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The construction in the proof of Theorem 1

¢g=3v=—-1,N=N"=3)" » | -
\ N, / _
--@ ' -

o |

10/09/2013 — p. 22



Changing a graph withv = 0 into a tree T,

the dashed edges are the new edges, the continuous one are the old edges

- N

— =
—_—
— =
—_—

|
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The spectral theory ofI’

f ® Theorem 1 — existence of a Hilbert space 7 so that —‘
® PM=0rP0O)eH
$ this decomposition is invariant by Az..
$ Ay is afinite rank perturbation of Ag = Ar,.
—> to get the spectral theory of Ar by using the preceding results, we just need

o |
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The spectral theory ofI’

f ® Theorem 1 — existence of a Hilbert space 7 so that —‘
® PM=0rP0O)eH
$ this decomposition is invariant by Az..
$ Ay is afinite rank perturbation of Ag = Ar,.
—> to get the spectral theory of Ar by using the preceding results, we just need

® Lemmad4let Ay = Ay, + W with Support(W) C K x K and K finite. Let " be an
unbounded connected component of I" and w a point at infinity of I". Then, for any
s ¢ £, we have

support(e(.;s,w)) C Vr .

Conversely, if ’ is a point at infinity of I" which is not a point at infinity of I then
support(e(.;s,w' )N VR = 0.

® Theorem 2 The Hilbert space (?(T") splits into a finite dimensional part H,, and an
absolutely continuous part H,.. This decomposition is preserved by Ar. If f € Co(I")
and, forw € Q, foo(s,w) = (fle(.; s,w)), then the map f — fs. extends to an
L isometry from Hac onto L2, (So x 2, dog ® du) which intertwines the action of Ar J

with the multiplication by As.
10/09/2013 — p. 24
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