Scattering theory for graphs isomorphic to a homogeneous tree at infinity

Françoise Truc
Institut Fourier, Grenoble

Summary

- The setup: graphs asymptotic to a homogeneous tree
- The case of a homogeneous tree \mathbb{T}_{q}
- the spectral decomposition of the adjacency matrix
- the Fourier-Helgason transform
- A scattering problem for a Schrödinger operator with a compactly supported non local potential
- Existence and unicity of the generalised eigenfunctions
- The deformed Fourier-Helgason transform
- Correlation of scattered plane waves
- The S-matrix and the asymptotics of the sc. pl. waves
- Computation of the transmission coefficients
- The spectral theory for a graph asymptotic to \mathbb{T}_{q}

Joint work with Y. Colin de Verdière, Grenoble

The setup

- $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$: a connected graph
- V_{Γ} : the set of vertices, E_{Γ} : the set of edges
- We write $x \sim y$ for $\{x, y\} \in E_{\Gamma}$.
- $q \geq 2$:fixed integer. Γ is asymptotic to a hom. tree of degree $q+1$
$\Leftrightarrow \exists$ a finite sub-graph Γ_{0} of Γ s.t.
- $\Gamma^{\prime}:=\Gamma \backslash \Gamma_{0}$ is a disjoint union of a finite number of trees $T_{l}, l=1, \cdots, L$, rooted at a vertex x_{l} linked to Γ_{0}
- all vertices of T_{l} different from x_{l} are of degree $q+1$.
- The trees $T_{l}, l=1, \cdots, L$, are called the ends of Γ.

The setup

- $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$: a connected graph
- V_{Γ} : the set of vertices, E_{Γ} : the set of edges
- We write $x \sim y$ for $\{x, y\} \in E_{\Gamma}$.
- $q \geq 2$:fixed integer. Γ is asymptotic to a hom. tree of degree $q+1$
$\Leftrightarrow \exists$ a finite sub-graph Γ_{0} of Γ s.t.
- $\Gamma^{\prime}:=\Gamma \backslash \Gamma_{0}$ is a disjoint union of a finite number of trees $T_{l}, l=1, \cdots, L$, rooted at a vertex x_{l} linked to Γ_{0}
- all vertices of T_{l} different from x_{l} are of degree $q+1$.
- The trees $T_{l}, l=1, \cdots, L$, are called the ends of Γ.
- $\partial \Gamma_{0}=$ the boundary of Γ_{0} : the set of edges of Γ connecting a vertex of Γ_{0} to a vertex of Γ^{\prime}, (one of the x_{l} 's).
$|x|_{\Gamma_{0}}$: the distance of $x \in V_{\Gamma^{\prime}}$ to Γ_{0}.

A graph asymptotic to a regular tree.

The adjacency operator

- $C(\Gamma)=\left\{f: V_{\Gamma} \longrightarrow \mathbb{C}\right\}$
- $C_{0}(\Gamma)$: the subspace of functions with finite support.
- $l^{2}(\Gamma)=\left\{f \in C(\Gamma) ; \sum_{x \in V_{\Gamma}}|f|^{2}(x)<\infty\right\} .\langle f, g\rangle=\sum_{x \in V_{\Gamma}} \overline{f(x)} \cdot g(x)$.

The adjacency operator

- $C(\Gamma)=\left\{f: V_{\Gamma} \longrightarrow \mathbb{C}\right\}$
- $C_{0}(\Gamma)$: the subspace of functions with finite support.
- $l^{2}(\Gamma)=\left\{f \in C(\Gamma) ; \sum_{x \in V_{\Gamma}}|f|^{2}(x)<\infty\right\} .\langle f, g\rangle=\sum_{x \in V_{\Gamma}} \overline{f(x)} \cdot g(x)$.
- On $C_{0}(\Gamma)$, we define the adjacency operator A_{Γ} by $\left(A_{\Gamma} f\right)(x)=\sum_{y \sim x} f(y)$
- A_{Γ} is bounded on $l^{2}(\Gamma) \Leftrightarrow$ the degree of the vertices of Γ is bounded. (which is the case here.)
- In that case, the operator A_{Γ} is self-adjoint.

The adjacency operator

- $C(\Gamma)=\left\{f: V_{\Gamma} \longrightarrow \mathbb{C}\right\}$
- $C_{0}(\Gamma)$: the subspace of functions with finite support.
- $l^{2}(\Gamma)=\left\{f \in C(\Gamma) ; \sum_{x \in V_{\Gamma}}|f|^{2}(x)<\infty\right\} .\langle f, g\rangle=\sum_{x \in V_{\Gamma}} \overline{f(x)} \cdot g(x)$.
- On $C_{0}(\Gamma)$, we define the adjacency operator A_{Γ} by $\left(A_{\Gamma} f\right)(x)=\sum_{y \sim x} f(y)$
- A_{Γ} is bounded on $l^{2}(\Gamma) \Leftrightarrow$ the degree of the vertices of Γ is bounded. (which is the case here.)
- In that case, the operator A_{Γ} is self-adjoint.
- Our goal : get an explicit spectral decomposition of the adjacency operator A_{Γ}.
- get a S. D. for a Schrödinger operator with a compactly supported potential on a hom. tree
- get a similar S. D. for the adjacency operator A_{Γ} via a combinatorial result

The points at infinity on the tree \mathbb{T}_{q}

- $\mathbb{T}_{q}=\left(V_{q}, E_{q}\right)$: homogeneous tree of degree $q+1$
- choose an origin O (a root)
- $|x|$: the combinatorial distance of the vertex x to O.
- Ω_{O} : the set of infinite simple paths starting from O.
- a sequence $y_{n} \in V_{q}$ tends to $\omega \in \Omega_{O}$ iff for n large enough, y_{n} belongs to the path ω and is going to infinity along that path.

The points at infinity on the tree \mathbb{T}_{q}

- $\mathbb{T}_{q}=\left(V_{q}, E_{q}\right)$: homogeneous tree of degree $q+1$
- choose an origin O (a root)
- $|x|$: the combinatorial distance of the vertex x to O.
- Ω_{O} : the set of infinite simple paths starting from O.
- a sequence $y_{n} \in V_{q}$ tends to $\omega \in \Omega_{O}$ iff for n large enough, y_{n} belongs to the path ω and is going to infinity along that path.
- $d \sigma_{O}$: canonical probability measure on Ω_{O}
- Busemann function $x \rightarrow b_{\omega}(x):=\left|x_{\omega}\right|-d\left(x, x_{\omega}\right)$.
(x_{ω} the last point lying on ω in the geodesic path joining O to x)
- level sets of b_{ω} : horocycles associated to ω.

The points at infinity on the tree \mathbb{T}_{q}

- $\mathbb{T}_{q}=\left(V_{q}, E_{q}\right)$: homogeneous tree of degree $q+1$
- choose an origin O (a root)
- $|x|$: the combinatorial distance of the vertex x to O.
- Ω_{O} : the set of infinite simple paths starting from O.
- a sequence $y_{n} \in V_{q}$ tends to $\omega \in \Omega_{O}$ iff for n large enough, y_{n} belongs to the path ω and is going to infinity along that path.
- $d \sigma_{O}$: canonical probability measure on Ω_{O}
- Busemann function $x \rightarrow b_{\omega}(x):=\left|x_{\omega}\right|-d\left(x, x_{\omega}\right)$.
(x_{ω} the last point lying on ω in the geodesic path joining O to x)
- level sets of b_{ω} : horocycles associated to ω.

Theorem A_{0} : the adjacency operator on \mathbb{T}_{q}. The spectrum of A_{0} is the interval $I_{q}=[-2 \sqrt{q},+2 \sqrt{q}]$. Set $e_{0}(x, \omega, s):=q^{(1 / 2-i s) b_{\omega}(x)}$, and $\lambda_{s}=q^{\frac{1}{2}+i s}+q^{\frac{1}{2}-i s}$. Then $\forall s \in S^{0}, \quad A_{0} e_{0}(\omega, s)=\lambda_{s} e_{0}(\omega, s)$.

The Busemann function

The spectral Riemann surface

- $S:=/ \tau \mathbb{Z} \times i \mathbb{R}, \tau=2 \pi / \log q$
- $s \rightarrow \lambda_{s}$ holomorphic function defined on S by $\lambda_{s}=q^{\frac{1}{2}+i s}+q^{\frac{1}{2}-i s}$.
- $S^{+}:=\{s \in S \mid \Im s>0\}$ is mapped bijectively onto $\mathbb{C} \backslash I_{q}$.
- $S^{0}:=\mathbb{R} / \tau \mathbb{Z}$: the circle $\Im s=0$.
the circle S^{0} is a double covering of I_{q}.

The spectral Riemann surface

- $S:=/ \tau \mathbb{Z} \times i \mathbb{R}, \tau=2 \pi / \log q$
- $s \rightarrow \lambda_{s}$ holomorphic function defined on S by $\lambda_{s}=q^{\frac{1}{2}+i s}+q^{\frac{1}{2}-i s}$.
- $S^{+}:=\{s \in S \mid \Im s>0\}$ is mapped bijectively onto $\mathbb{C} \backslash I_{q}$.
- $S^{0}:=\mathbb{R} / \tau \mathbb{Z}$: the circle $\Im s=0$.
the circle S^{0} is a double covering of I_{q}.
$G_{0}:$ the Green's function on \mathbb{T}_{q}.
- Theorem
- The Green's function of the tree \mathbb{T}_{q} is given, for $s \in S^{+}$by

$$
G_{0}\left(\lambda_{s}, x, y\right)=\frac{q^{\left(-\frac{1}{2}+i s\right) d(x, y)}}{q^{\frac{1}{2}-i s}-q^{-\frac{1}{2}+i s}} .
$$

- G_{0} extends merom. to S with two poles $-i / 2$ and $-i / 2+\tau / 2$.
- for any $x \in V_{q}$ and any y belonging to the path ω,

$$
G_{0}\left(\lambda_{s}, x, y\right)=C(s) q^{\left(-\frac{1}{2}+i s\right)|y|} q^{\left(\frac{1}{2}-i s\right) b_{\omega}(x)}
$$

The Riemann surface

The density of states

- Definition
- $\phi: \mathbb{R} \rightarrow \mathbb{R}$ given continuous function
- $\phi\left(A_{\Gamma}\right)$: operator on $l^{2}(\Gamma)$, (associated matrix $\left.\left[\phi\left(A_{\Gamma}\right)\right]\left(x, x^{\prime}\right)\right)$
- Consider for any $x \in V_{\Gamma}$, the linear form on $C(\mathbb{R}, \mathbb{R})$

$$
L_{x}(\phi)=\left[\phi\left(A_{\Gamma}\right)\right](x, x) .
$$

L_{x} is positive and verifies $L_{x}(1)=1$, so we have $L_{x}(\phi)=\int_{\mathbb{R}} \phi d e_{x}$ where $d e_{x}$ is a probability measure on \mathbb{R}, supported by the spectrum of A_{Γ}.

The density of states

- Definition
- $\phi: \mathbb{R} \rightarrow \mathbb{R}$ given continuous function
- $\phi\left(A_{\Gamma}\right)$: operator on $l^{2}(\Gamma)$, (associated matrix $\left.\left[\phi\left(A_{\Gamma}\right)\right]\left(x, x^{\prime}\right)\right)$
- Consider for any $x \in V_{\Gamma}$, the linear form on $C(\mathbb{R}, \mathbb{R})$

$$
L_{x}(\phi)=\left[\phi\left(A_{\Gamma}\right)\right](x, x)
$$

L_{x} is positive and verifies $L_{x}(1)=1$, so we have $L_{x}(\phi)=\int_{\mathbb{R}} \phi d e_{x}$ where $d e_{x}$ is a probability measure on \mathbb{R}, supported by the spectrum of A_{Γ}.

- Theorem The spectral measure $d e_{x}$ of \mathbb{T}_{q} is independent of the vertex x and is given by

$$
d e_{x}(\lambda):=d e(\lambda)=\frac{(q+1) \sqrt{4 q-\lambda^{2}}}{2 \pi\left((q+1)^{2}-\lambda^{2}\right)} d \lambda
$$

The Fourier-Helgason transform

- Definition The Fourier-Helgason transform $\mathcal{F H}: f \rightarrow \hat{f}(\omega, s)$ of $f \in C_{0}\left(\mathbb{T}_{q}\right)$, where $\omega \in \Omega_{O}$ and $s \in S$, is given by

$$
\hat{f}(\omega, s)=\sum_{x \in V_{q}} f(x) q^{(1 / 2+i s) b_{\omega}(x)} .
$$

- Remark If $s \in S^{0}$, then
$\hat{f}(\omega, s)=\left\langle e_{0}(\omega, s), f\right\rangle=\sum_{x \in V_{\Gamma}} f(x) \overline{e_{0}(x, \omega, s)}$.
Completeness of the set $\left\{e_{0}(\omega, s), s \in S^{0}, \omega \in \Omega\right\}$:

The Fourier-Helgason transform

- Definition The Fourier-Helgason transform $\mathcal{F H}: f \rightarrow \hat{f}(\omega, s)$ of $f \in C_{0}\left(\mathbb{T}_{q}\right)$, where $\omega \in \Omega_{O}$ and $s \in S$, is given by

$$
\hat{f}(\omega, s)=\sum_{x \in V_{q}} f(x) q^{(1 / 2+i s) b_{\omega}(x)} .
$$

- Remark If $s \in S^{0}$, then
$\hat{f}(\omega, s)=\left\langle e_{0}(\omega, s), f\right\rangle=\sum_{x \in V_{\Gamma}} f(x) \overline{e_{0}(x, \omega, s)}$.
Completeness of the set $\left\{e_{0}(\omega, s), s \in S^{0}, \omega \in \Omega\right\}$:
- Theorem (inversion formula)
- For any $f \in C_{0}\left(\mathbb{T}_{q}\right)$, we have

$$
\begin{aligned}
& f(x)=\int_{S^{0}} \int_{\Omega} e_{0}(x, \omega, s) \hat{f}(\omega, s) d \sigma_{O}(\omega) d \mu(s) \\
& \text { where } d \mu(s)=\frac{(q+1) \log q}{\pi} \frac{\sin ^{2}(s \log q)}{q+q^{-1}-2 \cos (2 s \log q)}|d s| .
\end{aligned}
$$

- $\mathcal{F H}$ extends to a u. map from $l^{2}\left(\mathbb{T}_{q}\right)$ into $L^{2}\left(\Omega \times S^{0}, d \sigma_{O} \otimes d \mu\right)$.
- its range is the subsp. of the f. F of $L^{2}\left(\Omega \times S^{0}, d \sigma_{O} \otimes d \mu\right)$ s.t. $\int_{\Omega} e_{0}(x, \omega, s) F(\omega, s) d \sigma_{O}(\omega)=\int_{\Omega} e_{0}(x, \omega,-s) F(\omega,-s) d \sigma_{O}(\omega)$.
- Spectral resolution of A_{0} : if $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $\phi\left(A_{0}\right)=(\mathcal{F H})^{-1} \phi\left(\lambda_{s}\right) \mathcal{F H}$.

Scattering on \mathbb{T}_{q} between A_{0} and the Schrödinger operator $A=A_{0}+W$

- the Hermitian matrix (also denoted W) assoc. to this potential is supported by $K \times K$ (K : a finite part of $\left.V_{q}\right)$
- K is chosen minimal, so that: $K=\left\{x \in V_{q} \mid \exists y \in V_{q}\right.$ with $\left.W_{x, y} \neq 0\right\}$.
- A is a finite rank perturbation of A_{0}.

Scattering on \mathbb{T}_{q} between A_{0} and the Schrödinger operator $A=A_{0}+W$

- the Hermitian matrix (also denoted W) assoc. to this potential is supported by $K \times K$ (K : a finite part of V_{q})
- K is chosen minimal, so that: $K=\left\{x \in V_{q} \mid \exists y \in V_{q}\right.$ with $\left.W_{x, y} \neq 0\right\}$.
- A is a finite rank perturbation of A_{0}.
- Proposition $l^{2}\left(\mathbb{T}_{q}\right)=\mathcal{H}_{\mathrm{ac}} \oplus \mathcal{H}_{\mathrm{pp}}$
- $\mathcal{H}_{\mathrm{ac}}$ is the isometric image of $l^{2}\left(\mathbb{T}_{q}\right)$ by the wave operator $\Omega^{+}=s-\lim _{t \rightarrow-\infty} e^{i t A} e^{-i t A_{0}}$. We have $A_{\mid \mathcal{H}_{\mathrm{ac}}}=\Omega^{+} A_{0}\left(\Omega^{+}\right)^{\star} \Longrightarrow$ the corresponding part of the S.D. is isomorphic to that of A_{0} which is an a. c. spectrum on I_{q}.
- The space $\mathcal{H}_{\mathrm{pp}}$ is finite dimensional, admits an o.b. of l^{2} eigenf. associated to a finite set of eigenv. (Some of them can be embedded in the continuous spectrum I_{q}.)

Formal derivation of the Lippmann-Schwinger equation

- We look for generalised eigenfunctions of A.
- they are particular solutions of
$\left(\lambda_{s}-A\right) e(., \omega, s)=0$,
(meaning not l^{2} solutions, but only point-wise solutions.)

Formal derivation of the Lippmann-Schwinger equation

- We look for generalised eigenfunctions of A.
- they are particular solutions of
$\left(\lambda_{s}-A\right) e(., \omega, s)=0$,
(meaning not l^{2} solutions, but only point-wise solutions.)
If $e(\omega, s)$ is the image of $e_{0}(\omega, s)$ by Ω^{+}in some sense (they are not in $l^{2}!$), then we should have formally $e_{0}(\omega, s)=\lim _{t \rightarrow-\infty} e^{i t A_{0}} e^{-i t A} e(\omega, s)$

$$
\begin{aligned}
&= \lim _{t \rightarrow-\infty}\left[e(\omega, s)-i \int_{0}^{t} e^{i u A_{0}} W e^{-i u A} e(\omega, s) d u\right] \\
&=e(\omega, s)-i \lim _{\varepsilon \rightarrow 0} \int_{0}^{-\infty} e^{i u A_{0}} W e^{-i u \lambda_{s}} e^{\varepsilon u} e(\omega, s) d u \\
&=e(\omega, s)+\lim _{\varepsilon \rightarrow 0}\left[\left(A_{0}-\left(\lambda_{s}+i \varepsilon\right)\right)^{-1} W e\right](\omega, s) .
\end{aligned}
$$

So $e(\omega, s)$ should obey the following "Lippmann-Schwinger-type" equation

$$
e(\omega, s)=e_{0}(\omega, s)+G_{0}\left(\lambda_{s}\right) W e(\omega, s) .
$$

- $\chi \in C_{0}\left(\mathbb{T}_{q}\right)$ be a compactly supported real-valued function s. t. $W \chi=\chi W=W$
- If $e(\omega, s)$ obeys (LSE) and $a(\omega, s)=\chi e(\omega, s)$, then a obeys (MLSE):
$a(\omega, s)=\chi e_{0}(\omega, s)+\chi G_{0}\left(\lambda_{s}\right) W a(\omega, s)$.
- K_{s} : the finite rank op. on $l^{2}\left(\mathbb{T}_{q}\right)$ defined by $K_{s}=\chi G_{0}\left(\lambda_{s}\right) W$. The map $s \rightarrow K_{s}$ extends holom. to $\Im s>-\frac{1}{2}$
- analytic Fredholm theorem $\Longrightarrow \exists$ a finite subset $\hat{\mathcal{E}}$ of S^{0}, defined by $\hat{\mathcal{E}}=:\left\{s \in S^{0} ; \operatorname{ker}\left(\operatorname{Id}-K_{s}\right) \neq 0\right\}$, so that (MLSE) has a unique solution $a(\omega, s) \in C_{0}\left(\mathbb{T}_{q}\right)$ whenever $s \notin \hat{\mathcal{E}}$.
- $\chi \in C_{0}\left(\mathbb{T}_{q}\right)$ be a compactly supported real-valued function s. t.

$$
W \chi=\chi W=W
$$

- If $e(\omega, s)$ obeys (LSE) and $a(\omega, s)=\chi e(\omega, s)$, then a obeys (MLSE):
$a(\omega, s)=\chi e_{0}(\omega, s)+\chi G_{0}\left(\lambda_{s}\right) W a(\omega, s)$.
- K_{s} : the finite rank op. on $l^{2}\left(\mathbb{T}_{q}\right)$ defined by $K_{s}=\chi G_{0}\left(\lambda_{s}\right) W$. The map $s \rightarrow K_{s}$ extends holom. to $\Im s>-\frac{1}{2}$
- analytic Fredholm theorem $\Longrightarrow \exists$ a finite subset $\hat{\mathcal{E}}$ of S^{0}, defined by $\hat{\mathcal{E}}=:\left\{s \in S^{0} ; \operatorname{ker}\left(\operatorname{Id}-K_{s}\right) \neq 0\right\}$, so that (MLSE) has a unique solution $a(\omega, s) \in C_{0}\left(\mathbb{T}_{q}\right)$ whenever $s \notin \hat{\mathcal{E}}$.

For $s \notin \hat{\mathcal{E}}$, the function $e(\omega, s)=e_{0}(\omega, s)+G_{0}\left(\lambda_{s}\right) W a(\omega, s)$
is the unique solution of (LSE).

The set $\hat{\mathcal{E}}$ and the pure point spectrum

Propositions

- The set $\hat{\mathcal{E}}$ is independent of the choice of χ with $W \chi=\chi W=W$.
- If $(A-\lambda) f=0$ with $\lambda \in I_{q}$ and $f \in l^{2}\left(\mathbb{T}_{q}\right)$, then $\operatorname{Supp}(f) \subset \hat{K}$ \hat{K} : the smallest subset of V_{q} s. t. $\operatorname{Supp}(W) \subset \hat{K} \times \hat{K}$ and all connected components of $\mathbb{T}_{q} \backslash \hat{K}$ are infinite.
- Consequence $\#\left\{\sigma_{\mathrm{pp}}(A) \cap I_{q}\right\} \leq \# \hat{K}$.
- If $s \in S^{0},\left(A-\lambda_{s}\right) f=0$ and $f \in l^{2}\left(\mathbb{T}_{q}\right) \backslash 0$, then $s \in \hat{\mathcal{E}}$.
- Conversely, if $s \in \hat{\mathcal{E}} \subset S^{0}, \exists f \neq 0$ s. t. $\left(A-\lambda_{s}\right) f=0$ and $f(x)=O\left(q^{-|x| / 2}\right)$.

The set $\hat{\mathcal{E}}$ and the pure point spectrum

Propositions

- The set $\hat{\mathcal{E}}$ is independent of the choice of χ with $W \chi=\chi W=W$.
- If $(A-\lambda) f=0$ with $\lambda \in I_{q}$ and $f \in l^{2}\left(\mathbb{T}_{q}\right)$, then $\operatorname{Supp}(f) \subset \hat{K}$ \hat{K} : the smallest subset of V_{q} s. t. $\operatorname{Supp}(W) \subset \hat{K} \times \hat{K}$ and all connected components of $\mathbb{T}_{q} \backslash \hat{K}$ are infinite.
- Consequence $\#\left\{\sigma_{\mathrm{pp}}(A) \cap I_{q}\right\} \leq \# \hat{K}$.
- If $s \in S^{0},\left(A-\lambda_{s}\right) f=0$ and $f \in l^{2}\left(\mathbb{T}_{q}\right) \backslash 0$, then $s \in \hat{\mathcal{E}}$.
- Conversely, if $s \in \hat{\mathcal{E}} \subset S^{0}, \exists f \neq 0$ s. t. $\left(A-\lambda_{s}\right) f=0$ and $f(x)=O\left(q^{-|x| / 2}\right)$.
Theorem The pure point spectrum $\sigma_{\mathrm{pp}}(A)$ of A splits into 3 parts $\sigma_{\mathrm{pp}}(A)=\sigma_{\mathrm{pp}}^{-}(A) \cup \sigma_{\mathrm{pp}}^{+}(A) \cup \sigma_{\mathrm{pp}}^{0}(A)$
where $\left.\sigma_{\mathrm{pp}}^{-}(A)=\sigma_{\mathrm{pp}}(A) \cap\right]-\infty,-2 \sqrt{q}\left[, \sigma_{\mathrm{pp}}^{+}(A)=\sigma_{\mathrm{pp}}(A) \cap\right] 2 \sqrt{q},+\infty[$, and
$\sigma_{\mathrm{pp}}^{0}(A)=\sigma_{\mathrm{pp}}(A) \cap I_{q}$.
We have $\# \sigma_{\mathrm{pp}}^{ \pm}(A) \leq \# \operatorname{Supp}(W)$ and $\# \sigma_{\mathrm{pp}}^{0}(A) \leq \# \hat{K}$.

The deformed Fourier-Helgason transform

- Definition The deformed Fourier-Helgason transform $\mathcal{F H}_{\text {sc }}$ of $f \in C_{0}\left(\mathbb{T}_{q}\right)$ is the function \hat{f}_{sc} on $\Omega \times\left(S^{0} \backslash \hat{\mathcal{E}}\right)$ defined by

$$
\hat{f}_{\mathrm{sc}}(\omega, s)=\langle e(\omega, s), f\rangle=\sum_{x \in V_{\Gamma}} f(x) \overline{e(x, \omega, s)} .
$$

- Remark Since $K_{s}=K_{-s}$, the subset $\hat{\mathcal{E}}$ is invariant by $s \rightarrow-s$ and consequently is the inverse image by $s \rightarrow \lambda_{s}$ of a subset of I_{q} which we denote by \mathcal{E}.

The deformed Fourier-Helgason transform

- Definition The deformed Fourier-Helgason transform $\mathcal{F H}_{\mathrm{sc}}$ of $f \in C_{0}\left(\mathbb{T}_{q}\right)$ is the function \hat{f}_{sc} on $\Omega \times\left(S^{0} \backslash \hat{\mathcal{E}}\right)$ defined by

$$
\hat{f}_{\mathrm{sc}}(\omega, s)=\langle e(\omega, s), f\rangle=\sum_{x \in V_{\Gamma}} f(x) \overline{e(x, \omega, s)} .
$$

- Remark Since $K_{s}=K_{-s}$, the subset $\hat{\mathcal{E}}$ is invariant by $s \rightarrow-s$ and consequently is the inverse image by $s \rightarrow \lambda_{s}$ of a subset of I_{q} which we denote by \mathcal{E}.
- Theorem (inversion formula)
- $f \in C_{0}\left(\mathbb{T}_{q}\right), J \subset I_{q} \backslash \mathcal{E}$ any closed interval
- denote by \hat{J} the inverse image of J by $s \rightarrow \lambda_{s}$,
- then the following inverse transform holds

$$
P_{J} f(x)=\int_{\hat{J}} \int_{\Omega} e(x, \omega, s) \hat{f}_{\mathrm{sc}}(\omega, s) d \sigma_{O}(\omega) d \mu(s) .
$$

- Moreover $f \rightarrow \hat{f}_{\mathrm{sc}}$ extends to an isometry from $\mathcal{H}_{\mathrm{ac}}$ onto $L_{\text {even }}^{2}\left(\Omega \times S^{0}, d \sigma_{O} \otimes d \mu\right)$.

Correlation of scattered plane waves

- Motivation: passive imaging in seismology (M. Campillo's seismology group in Grenoble).
For a scattering problem in \mathbb{R}^{d} the point-to-point correlations of the plane waves can be computed in terms of the Green's function (Y. C.d.V, '09): for a fixed spectral parameter, plane waves are viewed as random waves parametrised by the direction of their incoming part.

Correlation of scattered plane waves

- Motivation: passive imaging in seismology (M. Campillo's seismology group in Grenoble).
For a scattering problem in \mathbb{R}^{d} the point-to-point correlations of the plane waves can be computed in terms of the Green's function (Y. C.d.V, '09): for a fixed spectral parameter, plane waves are viewed as random waves parametrised by the direction of their incoming part.
- Consider the plane wave $e(x, \omega, s(\lambda))$ as a random wave
- Define the point-to-point correlation $C_{\lambda}^{s c}(x, y)$ of such a random wave in the usual way:

$$
C_{\lambda}^{s c}(x, y)=\int_{\Omega} \overline{e(x, \omega, s(\lambda))} e(y, \omega, s(\lambda)) d \sigma(\omega)
$$

- Theorem For any $\lambda \in I_{q}$ and any vertices x, y

$$
C_{\lambda}^{s c}(x, y)=-\frac{2\left(q^{2}+2 q+1-\lambda^{2}\right)}{(q+1) \sqrt{4 q-\lambda^{2}}} \Im G(\lambda+i 0, x, y) .
$$

The spectral theory for a graph asymptotic to an homogeneous tree

Some combinatorics
Theorem 1
If Γ is asymptotic to a homogeneous tree of degree $q+1$, then Γ is isomorphic to a connected component of a graph $\hat{\Gamma}$ which can be obtained from \mathbb{T}_{q} by adding and removing a finite number of edges.

The spectral theory for a graph asymptotic to an homogeneous tree

Some combinatorics
Theorem 1
If Γ is asymptotic to a homogeneous tree of degree $q+1$, then Γ is isomorphic to a connected component of a graph $\hat{\Gamma}$ which can be obtained from \mathbb{T}_{q} by adding and removing a finite number of edges.
Tools

- a combinatorial analogue of the reg. total curvature of a Riem. surface S

$$
\nu(\Gamma)=\sum_{x \in V_{\Gamma}}(q+1-d(x))+2 b_{1},
$$

$d(x)$: the degree of x, b_{1} : the first Betti number of Γ

- Lemma 1 If, for $r \geq 1, B_{r}=\left\{\left.x \in V_{\Gamma}| | x\right|_{\Gamma_{0}} \leq r\right\}$, then

$$
\nu(\Gamma)=(q-1) m-M+2,
$$

(m : number of inner vertices of $B_{r}, M:$ number of boundary vertices)

Example $(q=2, \nu=1)$

- Lemma 2
F : a finite tree whose all vertices are of degree $q+1$ except the ends which are of degree 1.
M number of ends, m the number of inner vertices.
We have

$$
\begin{equation*}
M=2+(q-1) m . \tag{1}
\end{equation*}
$$

Conversely, for each choice of (m, M) satisfying (1), there exists such a tree F.

- Lemma 2
F : a finite tree whose all vertices are of degree $q+1$ except the ends which are of degree 1.
M number of ends, m the number of inner vertices.
We have

$$
\begin{equation*}
M=2+(q-1) m \tag{1}
\end{equation*}
$$

Conversely, for each choice of (m, M) satisfying (1), there exists such a tree F.

- Some modifications of Γ in order to get a new graph $\hat{\Gamma}$ with $\nu(\hat{\Gamma})=0$.

Lemma 3
If $\Gamma^{\prime}=M_{1}(\Gamma)$ is defined by adding to Γ a vertex and an edge connecting that vertex to a vertex of Γ_{0}, then

$$
\nu\left(\Gamma^{\prime}\right)=\nu(\Gamma)+q-1 .
$$

If $\Gamma^{\prime}=M_{2}(\Gamma)$ is defined by adding to Γ a tree whose root x is of degree q and all other vertices of degree $q+1$ and connecting x by an edge to a vertex of $\Gamma_{0}, \Gamma^{\prime}$ is asymptotic to an homogeneous tree of degree $q+1$ and

$$
\nu\left(\Gamma^{\prime}\right)=\nu(\Gamma)-1
$$

Proof of Theorem 1

- write $\nu(\Gamma)=N^{\prime \prime}-(q-1) N^{\prime}$ with $N^{\prime} \geq 0$ and $N^{\prime \prime} \geq 0$.
- perform N^{\prime} times the move M_{1} and $N^{\prime \prime}$ times the move $M_{2} \Longrightarrow$ we arrive to a graph $\tilde{\Gamma}$ with $\nu(\tilde{\Gamma})=0$.

Proof of Theorem 1

- write $\nu(\Gamma)=N^{\prime \prime}-(q-1) N^{\prime}$ with $N^{\prime} \geq 0$ and $N^{\prime \prime} \geq 0$.
- perform N^{\prime} times the move M_{1} and $N^{\prime \prime}$ times the move $M_{2} \Longrightarrow$ we arrive to a graph $\tilde{\Gamma}$ with $\nu(\tilde{\Gamma})=0$.
- remove from $\tilde{\Gamma}$ the $\left(N^{\prime}+N^{\prime \prime}\right)$ edges not in E_{Γ}, one of whose vertices is in Γ_{0}.
- The new graph $\hat{\Gamma}$ is clearly asymptotic to a regular tree of degree $(q+1)$ and Γ is a connected component of $\hat{\Gamma}$.
- use lemma 2 to get a tree \mathbb{T}_{q} from $\hat{\Gamma}$, by removing and adding a finite number of edges to $\hat{\Gamma}$.

The construction in the proof of Theorem 1

Changing a graph with $\nu=0$ into a tree \mathbb{T}_{q}

the dashed edges are the new edges, the continuous one are the old edges

The spectral theory of Γ

- Theorem $1 \Longrightarrow$ existence of a Hilbert space \mathcal{H} so that
- $l^{2}(\hat{\Gamma})=l^{2}(\Gamma) \oplus \mathcal{H}$
- this decomposition is invariant by $A_{\hat{\Gamma}}$.
- $A_{\hat{\Gamma}}$ is a finite rank perturbation of $A_{0}=A_{\mathbb{T}_{q}}$.
\Longrightarrow to get the spectral theory of A_{Γ} by using the preceding results, we just need

The spectral theory of Γ

- Theorem $1 \Longrightarrow$ existence of a Hilbert space \mathcal{H} so that
- $l^{2}(\hat{\Gamma})=l^{2}(\Gamma) \oplus \mathcal{H}$
- this decomposition is invariant by $A_{\hat{\Gamma}}$.
- $A_{\hat{\Gamma}}$ is a finite rank perturbation of $A_{0}=A_{\mathbb{T}_{q}}$.
\Longrightarrow to get the spectral theory of A_{Γ} by using the preceding results, we just need
- Lemma 4 Let $A_{\hat{\Gamma}}=A_{\mathbb{T}_{q}}+W$ with $\operatorname{Support}(W) \subset K \times K$ and K finite. Let Γ be an unbounded connected component of $\hat{\Gamma}$ and ω a point at infinity of Γ. Then, for any $s \notin \hat{\mathcal{E}}$, we have

$$
\operatorname{support}(e(. ; s, \omega)) \subset V_{\Gamma}
$$

Conversely, if ω^{\prime} is a point at infinity of $\hat{\Gamma}$ which is not a point at infinity of Γ then

$$
\operatorname{support}\left(e\left(. ; s, \omega^{\prime}\right)\right) \cap V_{\Gamma}=\emptyset .
$$

- Theorem 2 The Hilbert space $l^{2}(\Gamma)$ splits into a finite dimensional part $\mathcal{H}_{\mathrm{pp}}$ and an absolutely continuous part $\mathcal{H}_{\mathrm{ac}}$. This decomposition is preserved by A_{Γ}. If $f \in C_{0}(\Gamma)$ and, for $\omega \in \Omega, \hat{f}_{s c}(s, \omega)=\langle f \mid e(. ; s, \omega)\rangle$, then the map $f \rightarrow \hat{f}_{s c}$ extends to an isometry from $\mathcal{H}_{\text {ac }}$ onto $L_{\text {even }}^{2}\left(S_{0} \times \Omega, d \sigma_{0} \otimes d \mu\right)$ which intertwines the action of A_{Γ} with the multiplication by λ_{s}.

