Scattering theory for graphs isomorphic to a homogeneous tree at infinity

Françoise Truc

Institut Fourier, Grenoble

Summary

- The setup: graphs asymptotic to a homogeneous tree
- The case of a homogeneous tree \mathbb{T}_q
 - the spectral decomposition of the adjacency matrix
 - the Fourier-Helgason transform
- A scattering problem for a Schrödinger operator with a compactly supported non local potential
 - Existence and unicity of the generalised eigenfunctions
 - The deformed Fourier-Helgason transform
 - Correlation of scattered plane waves
 - The S-matrix and the asymptotics of the sc. pl. waves
 - Computation of the transmission coefficients
- The spectral theory for a graph asymptotic to \mathbb{T}_q

Joint work with Y. Colin de Verdière, Grenoble

The setup

- $\Gamma = (V_{\Gamma}, E_{\Gamma})$: a connected graph
 - V_{Γ} : the set of vertices, E_{Γ} : the set of edges
 - We write $x \sim y$ for $\{x,y\} \in E_{\Gamma}$.
- $q \ge 2$:fixed integer. Γ is asymptotic to a hom. tree of degree q + 1⇔ ∃ a finite sub-graph Γ₀ of Γ s.t.
 - $\Gamma' := \Gamma \setminus \Gamma_0$ is a disjoint union of a finite number of trees $T_l, \ l = 1, \cdots, L$, rooted at a vertex x_l linked to Γ_0
 - all vertices of T_l different from x_l are of degree q+1.
 - The trees T_l , $l=1,\cdots,L$, are called the ends of Γ .

The setup

- $\Gamma = (V_{\Gamma}, E_{\Gamma})$: a connected graph
 - V_{Γ} : the set of vertices, E_{Γ} : the set of edges
 - We write $x \sim y$ for $\{x,y\} \in E_{\Gamma}$.
- $q \ge 2$:fixed integer. Γ is asymptotic to a hom. tree of degree q + 1⇔ ∃ a finite sub-graph Γ₀ of Γ s.t.
 - $\Gamma' := \Gamma \setminus \Gamma_0$ is a disjoint union of a finite number of trees $T_l, \ l = 1, \cdots, L$, rooted at a vertex x_l linked to Γ_0
 - all vertices of T_l different from x_l are of degree q+1.
 - The trees $T_l, l = 1, \dots, L$, are called the ends of Γ .
- ∂Γ₀ = the boundary of Γ₀ : the set of edges of Γ connecting a vertex of Γ₀ to a vertex of Γ¹, (one of the x_l 's).
 $|x|_{\Gamma_0} : \text{the distance of } x \in V_{\Gamma'} \text{ to } \Gamma_0.$

A graph asymptotic to a regular tree.

The adjacency operator

• $C_0(\Gamma)$: the subspace of functions with finite support.

The adjacency operator

- $C_0(\Gamma)$: the subspace of functions with finite support.
- On $C_0(\Gamma)$, we define the adjacency operator A_Γ by $(A_\Gamma f)(x) = \sum_{y \sim x} f(y)$
 - A_{Γ} is bounded on $l^2(\Gamma) \Leftrightarrow$ the degree of the vertices of Γ is bounded. (which is the case here.)
 - In that case, the operator A_{Γ} is self-adjoint.

The adjacency operator

- $C_0(\Gamma)$: the subspace of functions with finite support.
- On $C_0(\Gamma)$, we define the adjacency operator A_Γ by $(A_\Gamma f)(x) = \sum_{y \sim x} f(y)$
 - A_{Γ} is bounded on $l^2(\Gamma) \Leftrightarrow$ the degree of the vertices of Γ is bounded. (which is the case here.)
 - In that case, the operator A_{Γ} is self-adjoint.
- Our goal : get an explicit spectral decomposition of the adjacency operator A_{Γ} .
 - get a S. D. for a Schrödinger operator with a compactly supported potential on a hom. tree
 - get a similar S. D. for the adjacency operator A_{Γ} via a combinatorial result

The points at infinity on the tree \mathbb{T}_q

- lacksquare $\mathbb{T}_q = (V_q, E_q)$: homogeneous tree of degree q+1
 - choose an origin O (a root)
 - \bullet |x|: the combinatorial distance of the vertex x to O.
- $oldsymbol{D}$ Ω_O : the set of infinite simple paths starting from O.
 - a sequence $y_n \in V_q$ tends to $\omega \in \Omega_O$ iff for n large enough, y_n belongs to the path ω and is going to infinity along that path.

The points at infinity on the tree \mathbb{T}_q

- lacksquare $\mathbb{T}_q = (V_q, E_q)$: homogeneous tree of degree q+1
 - choose an origin O (a root)
 - \bullet |x|: the combinatorial distance of the vertex x to O.
- Ω_O : the set of infinite simple paths starting from O.
 - a sequence $y_n \in V_q$ tends to $\omega \in \Omega_O$ iff for n large enough, y_n belongs to the path ω and is going to infinity along that path.
- $m{P}$ $d\sigma_O$: canonical probability measure on Ω_O
- **Pusemann function** $x \to b_{\omega}(x) := |x_{\omega}| d(x, x_{\omega})$. (x_{ω} the last point lying on ω in the geodesic path joining O to x)
- **Proof** level sets of b_{ω} : horocycles associated to ω .

The points at infinity on the tree \mathbb{T}_q

- lacksquare $\mathbb{T}_q = (V_q, E_q)$: homogeneous tree of degree q+1
 - choose an origin O (a root)
 - \bullet |x|: the combinatorial distance of the vertex x to O.
- Ω_O : the set of infinite simple paths starting from O.
 - a sequence $y_n \in V_q$ tends to $\omega \in \Omega_O$ iff for n large enough, y_n belongs to the path ω and is going to infinity along that path.
- $m{P}$ $d\sigma_O$: canonical probability measure on Ω_O
- **Pusemann function** $x \to b_{\omega}(x) := |x_{\omega}| d(x, x_{\omega})$. (x_{ω} the last point lying on ω in the geodesic path joining O to x)
- **•** level sets of b_{ω} : horocycles associated to ω .

Theorem A_0 : the adjacency operator on \mathbb{T}_q . The spectrum of A_0 is the interval $I_q=[-2\sqrt{q},+2\sqrt{q}]$. Set $e_0(x,\omega,s):=q^{(1/2-is)b_\omega(x)}$, and $\lambda_s=q^{\frac{1}{2}+is}+q^{\frac{1}{2}-is}$. Then $\forall s\in S^0, \qquad A_0e_0(\omega,s)=\lambda_se_0(\omega,s).$

The Busemann function

The spectral Riemann surface

- $s \to \lambda_s$ holomorphic function defined on S by $\lambda_s = q^{\frac{1}{2} + is} + q^{\frac{1}{2} is}$.
- $S^+ := \{ s \in S \mid \Im s > 0 \}$ is mapped bijectively onto $\mathbb{C} \setminus I_q$.
- $S^0 := \mathbb{R}/\tau\mathbb{Z}$: the circle $\Im s = 0$.

the circle S^0 is a double covering of I_q .

The spectral Riemann surface

- $s \to \lambda_s$ holomorphic function defined on S by $\lambda_s = q^{\frac{1}{2} + is} + q^{\frac{1}{2} is}$.
- $S^+ := \{ s \in S \mid \Im s > 0 \}$ is mapped bijectively onto $\mathbb{C} \setminus I_q$.
- $S^0 := \mathbb{R}/\tau\mathbb{Z}$: the circle $\Im s = 0$.

the circle S^0 is a double covering of I_q .

 G_0 : the Green's function on \mathbb{T}_q .

Theorem

- The Green's function of the tree \mathbb{T}_q is given, for $s\in S^+$ by $G_0(\lambda_s,x,y)=\frac{q^{(-\frac{1}{2}+is)d(x,y)}}{q^{\frac{1}{2}-is}-q^{-\frac{1}{2}+is}}\ .$
- G_0 extends merom. to S with two poles -i/2 and $-i/2 + \tau/2$.
- for any $x \in V_q$ and any y belonging to the path ω ,

$$G_0(\lambda_s, x, y) = C(s)q^{(-\frac{1}{2}+is)|y|}q^{(\frac{1}{2}-is)b_{\omega}(x)},$$

The Riemann surface

The density of states

Definition

- $\phi: \mathbb{R} \to \mathbb{R}$ given continuous function
- $\phi(A_{\Gamma})$: operator on $l^2(\Gamma)$, (associated matrix $[\phi(A_{\Gamma})](x,x')$)
- Consider for any $x \in V_{\Gamma}$, the linear form on $C(\mathbb{R}, \mathbb{R})$

$$L_x(\phi) = [\phi(A_\Gamma)](x,x)$$
.

 L_x is positive and verifies $L_x(1)=1$, so we have $L_x(\phi)=\int_{\mathbb{R}}\phi de_x$ where de_x is a probability measure on \mathbb{R} , supported by the spectrum of A_{Γ} .

The density of states

Definition

- $\phi: \mathbb{R} \to \mathbb{R}$ given continuous function
- $\phi(A_{\Gamma})$: operator on $l^2(\Gamma)$, (associated matrix $[\phi(A_{\Gamma})](x,x')$)
- Consider for any $x \in V_{\Gamma}$, the linear form on $C(\mathbb{R}, \mathbb{R})$

$$L_x(\phi) = [\phi(A_{\Gamma})](x,x) .$$

 L_x is positive and verifies $L_x(1)=1$, so we have $L_x(\phi)=\int_{\mathbb{R}}\phi de_x$ where de_x is a probability measure on \mathbb{R} , supported by the spectrum of A_{Γ} .

● Theorem The spectral measure de_x of \mathbb{T}_q is independent of the vertex x and is given by

$$de_x(\lambda) := de(\lambda) = \frac{(q+1)\sqrt{4q-\lambda^2}}{2\pi\left((q+1)^2 - \lambda^2\right)}d\lambda$$

The Fourier-Helgason transform

- Definition The Fourier-Helgason transform $\mathcal{FH}: f \to \hat{f}(\omega,s)$ of $f \in C_0(\mathbb{T}_q)$, where $\omega \in \Omega_O$ and $s \in S$, is given by $\hat{f}(\omega,s) = \sum_{x \in V_q} f(x) q^{(1/2+is)b_\omega(x)}$.
- $\begin{array}{l} \bullet \quad \text{Remark If } s \in S^0 \text{, then} \\ \hat{f}(\omega,s) = \langle e_0(\omega,s), f \rangle = \sum_{x \in V_\Gamma} f\left(x\right) \overline{e_0(x,\omega,s)} \;. \\ \text{Completeness of the set } \{e_0(\omega,s), \; s \in S^0, \; \omega \in \Omega\} \; : \end{array}$

The Fourier-Helgason transform

- Definition The Fourier-Helgason transform $\mathcal{FH}: f \to \hat{f}(\omega,s)$ of $f \in C_0(\mathbb{T}_q)$, where $\omega \in \Omega_O$ and $s \in S$, is given by $\hat{f}(\omega,s) = \sum_{x \in V_q} f(x) q^{(1/2+is)b_\omega(x)}$.
- $\begin{array}{l} \blacksquare & \text{Remark If } s \in S^0 \text{, then} \\ \hat{f}(\omega,s) = \langle e_0(\omega,s), f \rangle = \sum_{x \in V_\Gamma} f\left(x\right) \overline{e_0(x,\omega,s)} \;. \\ & \text{Completeness of the set } \{e_0(\omega,s), \; s \in S^0, \; \omega \in \Omega\} \;: \end{array}$
- Theorem (inversion formula)
 - For any $f \in C_0(\mathbb{T}_q)$, we have $f(x) = \int_{S^0} \int_{\Omega} e_0(x,\omega,s) \hat{f}(\omega,s) d\sigma_O(\omega) d\mu(s)$ where $d\mu(s) = \frac{(q+1)\log q}{\pi} \frac{\sin^2(s\log q)}{q+q^{-1}-2\cos(2s\log q)} |ds|$.
 - \mathcal{FH} extends to a u. map from $l^2(\mathbb{T}_q)$ into $L^2(\Omega \times S^0, d\sigma_O \otimes d\mu)$.
 - its range is the subsp. of the f. F of $L^2(\Omega \times S^0, d\sigma_O \otimes d\mu)$ s.t. $\int_{\Omega} e_0(x, \omega, s) F(\omega, s) d\sigma_O(\omega) = \int_{\Omega} e_0(x, \omega, -s) F(\omega, -s) d\sigma_O(\omega) \; .$
 - Spectral resolution of A_0 : if $\phi : \mathbb{R} \to \mathbb{R}$ is continuous, $\phi(A_0) = (\mathcal{FH})^{-1}\phi(\lambda_s)\mathcal{FH}$.

Scattering on \mathbb{T}_q between A_0 and the Schrödinger operator $A=A_0+W$

- the Hermitian matrix (also denoted W) assoc. to this potential is supported by $K \times K$ (K: a finite part of V_q)
- K is chosen minimal, so that: $K = \{x \in V_q \mid \exists y \in V_q \text{ with } W_{x,y} \neq 0\}$.
- lacksquare A is a finite rank perturbation of A_0 .

Scattering on \mathbb{T}_q between A_0 and the Schrödinger operator $A=A_0+W$

- the Hermitian matrix (also denoted W) assoc. to this potential is supported by $K \times K$ (K: a finite part of V_q)
- K is chosen minimal, so that: $K = \{x \in V_q \mid \exists y \in V_q \text{ with } W_{x,y} \neq 0\}$.
- lacksquare A is a finite rank perturbation of A_0 .
- ullet Proposition $l^2(\mathbb{T}_q)=\mathcal{H}_{\mathrm{ac}}\oplus\mathcal{H}_{\mathrm{pp}}$
 - $\mathcal{H}_{\mathrm{ac}}$ is the isometric image of $l^2(\mathbb{T}_q)$ by the wave operator $\Omega^+ = s \lim_{t \to -\infty} e^{itA} e^{-itA_0}$. We have $A_{|\mathcal{H}_{\mathrm{ac}}} = \Omega^+ A_0(\Omega^+)^\star \implies$ the corresponding part of the S.D. is isomorphic to that of A_0 which is an a. c. spectrum on I_q .
 - The space \mathcal{H}_{pp} is finite dimensional, admits an o.b. of l^2 eigenf. associated to a finite set of eigenv. (Some of them can be embedded in the continuous spectrum I_q .)

Formal derivation of the Lippmann-Schwinger equation

- lacksquare We look for generalised eigenfunctions of A.
- they are particular solutions of

$$(\lambda_s - A)e(., \omega, s) = 0 ,$$

(meaning not l^2 solutions, but only point-wise solutions.)

Formal derivation of the Lippmann-Schwinger equation

- lacksquare We look for generalised eigenfunctions of A.
- they are particular solutions of

$$(\lambda_s - A)e(., \omega, s) = 0 ,$$

(meaning not l^2 solutions, but only point-wise solutions.)

If $e(\omega, s)$ is the image of $e_0(\omega, s)$ by Ω^+ in some sense (they are not in l^2 !), then we should have formally $e_0(\omega, s) = \lim_{t \to -\infty} e^{itA_0} e^{-itA} e(\omega, s)$

$$= \lim_{t \to -\infty} [e(\omega, s) - i \int_0^t e^{iuA_0} W e^{-iuA} e(\omega, s) du]$$

$$= e(\omega, s) - i \lim_{\varepsilon \to 0} \int_0^{-\infty} e^{iuA_0} W e^{-iu\lambda_s} e^{\varepsilon u} e(\omega, s) du$$

$$= e(\omega, s) + \lim_{\varepsilon \to 0} [(A_0 - (\lambda_s + i\varepsilon))^{-1} W e](\omega, s) .$$

So $e(\omega, s)$ should obey the following "Lippmann-Schwinger-type" equation

$$e(\omega, s) = e_0(\omega, s) + G_0(\lambda_s)We(\omega, s)$$
.

- $\chi \in C_0(\mathbb{T}_q)$ be a compactly supported real-valued function s. t. $W\chi = \chi W = W$
- If $e(\omega, s)$ obeys (LSE) and $a(\omega, s) = \chi e(\omega, s)$, then a obeys (MLSE): $a(\omega, s) = \chi e_0(\omega, s) + \chi G_0(\lambda_s) W a(\omega, s)$.
 - K_s : the finite rank op. on $l^2(\mathbb{T}_q)$ defined by $K_s=\chi G_0(\lambda_s)W$. The map $s\to K_s$ extends holom. to $\Im s>-\frac12$
 - analytic Fredholm theorem $\Longrightarrow \exists$ a finite subset $\hat{\mathcal{E}}$ of S^0 , defined by $\hat{\mathcal{E}} =: \{s \in S^0; \ker(\mathrm{Id} K_s) \neq 0\}$, so that (MLSE) has a unique solution $a(\omega, s) \in C_0(\mathbb{T}_q)$ whenever $s \notin \hat{\mathcal{E}}$.

- $\chi \in C_0(\mathbb{T}_q)$ be a compactly supported real-valued function s. t. $W\chi = \chi W = W$
- If $e(\omega, s)$ obeys (LSE) and $a(\omega, s) = \chi e(\omega, s)$, then a obeys (MLSE): $a(\omega, s) = \chi e_0(\omega, s) + \chi G_0(\lambda_s) W a(\omega, s)$.
 - K_s : the finite rank op. on $l^2(\mathbb{T}_q)$ defined by $K_s=\chi G_0(\lambda_s)W$. The map $s\to K_s$ extends holom. to $\Im s>-\frac12$
 - analytic Fredholm theorem $\Longrightarrow \exists$ a finite subset $\hat{\mathcal{E}}$ of S^0 , defined by $\hat{\mathcal{E}} =: \{s \in S^0; \ker(\mathrm{Id} K_s) \neq 0\}$, so that (MLSE) has a unique solution $a(\omega, s) \in C_0(\mathbb{T}_q)$ whenever $s \notin \hat{\mathcal{E}}$.

For $s \notin \hat{\mathcal{E}}$, the function $e(\omega, s) = e_0(\omega, s) + G_0(\lambda_s)Wa(\omega, s)$ is the unique solution of (LSE).

The set $\hat{\mathcal{E}}$ and the pure point spectrum

Propositions

- **●** The set $\hat{\mathcal{E}}$ is independent of the choice of χ with $W\chi = \chi W = W$.
- If $(A \lambda)f = 0$ with $\lambda \in I_q$ and $f \in l^2(\mathbb{T}_q)$, then $\mathrm{Supp}(f) \subset \hat{K}$ \hat{K} : the smallest subset of V_q s. t. $\mathrm{Supp}(W) \subset \hat{K} \times \hat{K}$ and all connected components of $\mathbb{T}_q \setminus \hat{K}$ are infinite.
- Consequence $\#\{\sigma_{\rm pp}(A)\cap I_q\} \leq \#\hat{K}$.
- If $s \in S^0$, $(A \lambda_s)f = 0$ and $f \in l^2(\mathbb{T}_q) \setminus 0$, then $s \in \hat{\mathcal{E}}$.
- Conversely, if $s \in \hat{\mathcal{E}} \subset S^0$, $\exists f \neq 0$ s. t. $(A \lambda_s)f = 0$ and $f(x) = O\left(q^{-|x|/2}\right)$.

The set $\hat{\mathcal{E}}$ and the pure point spectrum

Propositions

- **●** The set $\hat{\mathcal{E}}$ is independent of the choice of χ with $W\chi = \chi W = W$.
- If $(A \lambda)f = 0$ with $\lambda \in I_q$ and $f \in l^2(\mathbb{T}_q)$, then $\mathrm{Supp}(f) \subset \hat{K}$ \hat{K} : the smallest subset of V_q s. t. $\mathrm{Supp}(W) \subset \hat{K} \times \hat{K}$ and all connected components of $\mathbb{T}_q \setminus \hat{K}$ are infinite.
- Consequence $\#\{\sigma_{\rm pp}(A)\cap I_q\} \leq \#\hat{K}$.
- If $s \in S^0$, $(A \lambda_s)f = 0$ and $f \in l^2(\mathbb{T}_q) \setminus 0$, then $s \in \hat{\mathcal{E}}$.
- Conversely, if $s \in \hat{\mathcal{E}} \subset S^0$, $\exists f \neq 0$ s. t. $(A \lambda_s)f = 0$ and $f(x) = O\left(q^{-|x|/2}\right)$.

Theorem The pure point spectrum $\sigma_{\rm pp}(A)$ of A splits into 3 parts $\sigma_{\rm pp}(A) = \sigma_{\rm pp}^-(A) \cup \sigma_{\rm pp}^+(A) \cup \sigma_{\rm pp}^0(A)$ where $\sigma^-(A) = \sigma_{\rm pp}(A) \cap [-\infty, -2, \sqrt{a}[-\sigma^+(A)] = \sigma_{\rm pp}(A) \cap [2, \sqrt{a}] + \infty$

where
$$\sigma_{\mathrm{pp}}^-(A) = \sigma_{\mathrm{pp}}(A) \cap]-\infty, -2\sqrt{q}[$$
, $\sigma_{\mathrm{pp}}^+(A) = \sigma_{\mathrm{pp}}(A) \cap]2\sqrt{q}, +\infty[$, and $\sigma_{\mathrm{pp}}^0(A) = \sigma_{\mathrm{pp}}(A) \cap I_q.$

We have $\#\sigma_{pp}^{\pm}(A) \leq \#\operatorname{Supp}(W)$ and $\#\sigma_{pp}^{0}(A) \leq \#\hat{K}$.

The deformed Fourier-Helgason transform

• Definition The deformed Fourier-Helgason transform $\mathcal{FH}_{\mathrm{sc}}$ of $f \in C_0(\mathbb{T}_q)$ is the function \hat{f}_{sc} on $\Omega \times (S^0 \setminus \hat{\mathcal{E}})$ defined by

$$\hat{f}_{\mathrm{sc}}(\omega, s) = \langle e(\omega, s), f \rangle = \sum_{x \in V_{\Gamma}} f(x) \, \overline{e(x, \omega, s)} .$$

Permark Since $K_s = K_{-s}$, the subset $\hat{\mathcal{E}}$ is invariant by $s \to -s$ and consequently is the inverse image by $s \to \lambda_s$ of a subset of I_q which we denote by \mathcal{E} .

The deformed Fourier-Helgason transform

• Definition The deformed Fourier-Helgason transform $\mathcal{FH}_{\mathrm{sc}}$ of $f \in C_0(\mathbb{T}_q)$ is the function \hat{f}_{sc} on $\Omega \times (S^0 \setminus \hat{\mathcal{E}})$ defined by

$$\hat{f}_{\mathrm{sc}}(\omega, s) = \langle e(\omega, s), f \rangle = \sum_{x \in V_{\Gamma}} f(x) \, \overline{e(x, \omega, s)} .$$

- **Permark** Since $K_s = K_{-s}$, the subset $\hat{\mathcal{E}}$ is invariant by $s \to -s$ and consequently is the inverse image by $s \to \lambda_s$ of a subset of I_q which we denote by \mathcal{E} .
- Theorem (inversion formula)
 - $f \in C_0(\mathbb{T}_q)$, $J \subset I_q \setminus \mathcal{E}$ any closed interval
 - denote by \hat{J} the inverse image of J by $s \to \lambda_s$,
 - then the following inverse transform holds

$$P_J f(x) = \int_{\hat{J}} \int_{\Omega} e(x, \omega, s) \hat{f}_{sc}(\omega, s) d\sigma_O(\omega) d\mu(s) .$$

• Moreover $f \to \hat{f}_{sc}$ extends to an isometry from \mathcal{H}_{ac} onto $L^2_{even}(\Omega \times S^0, d\sigma_O \otimes d\mu)$.

Correlation of scattered plane waves

Motivation: passive imaging in seismology (M. Campillo's seismology group in Grenoble).

For a scattering problem in \mathbb{R}^d the point-to-point correlations of the plane waves can be computed in terms of the Green's function (Y. C.d.V, '09): for a fixed spectral parameter, plane waves are viewed as random waves parametrised by the direction of their incoming part.

Correlation of scattered plane waves

Motivation: passive imaging in seismology (M. Campillo's seismology group in Grenoble).

For a scattering problem in \mathbb{R}^d the point-to-point correlations of the plane waves can be computed in terms of the Green's function (Y. C.d.V, '09): for a fixed spectral parameter, plane waves are viewed as random waves parametrised by the direction of their incoming part.

- Consider the plane wave $e(x, \omega, s(\lambda))$ as a random wave
- Define the point-to-point correlation $C^{sc}_{\lambda}(x,y)$ of such a random wave in the usual way:

$$C_{\lambda}^{sc}(x,y) = \int_{\Omega} \overline{e(x,\omega,s(\lambda))} e(y,\omega,s(\lambda)) \ d\sigma(\omega) \ .$$

Theorem For any $\lambda \in I_q$ and any vertices x, y

The spectral theory for a graph asymptotic to an homogeneous tree

Some combinatorics Theorem 1

If Γ is asymptotic to a homogeneous tree of degree q+1, then Γ is isomorphic to a connected component of a graph $\hat{\Gamma}$ which can be obtained from \mathbb{T}_q by adding and removing a finite number of edges.

The spectral theory for a graph asymptotic to an homogeneous tree

Some combinatorics

Theorem 1

If Γ is asymptotic to a homogeneous tree of degree q+1, then Γ is isomorphic to a connected component of a graph $\hat{\Gamma}$ which can be obtained from \mathbb{T}_q by adding and removing a finite number of edges.

Tools

ullet a combinatorial analogue of the reg. total curvature of a Riem. surface S

$$\nu(\Gamma) = \sum_{x \in V_{\Gamma}} (q + 1 - d(x)) + 2b_1 ,$$

d(x): the degree of x, b_1 : the first Betti number of Γ

Lemma 1 If, for $r \ge 1$, $B_r = \{x \in V_{\Gamma} \mid |x|_{\Gamma_0} \le r\}$, then

$$\nu(\Gamma) = (q-1)m - M + 2 ,$$

(m : number of inner vertices of B_r , M : number of boundary vertices)

Example ($q = 2, \nu = 1$)

Lemma 2

 ${\cal F}$: a finite tree whose all vertices are of degree q+1 except the ends which are of degree 1.

 ${\cal M}$ number of ends, ${\cal m}$ the number of inner vertices.

We have

$$M = 2 + (q - 1)m . (1)$$

Conversely, for each choice of (m, M) satisfying (1), there exists such a tree F.

Lemma 2

F: a finite tree whose all vertices are of degree q+1 except the ends which are of degree 1.

 ${\cal M}$ number of ends, m the number of inner vertices.

We have

$$M = 2 + (q - 1)m$$
. (1)

Conversely, for each choice of (m, M) satisfying (1), there exists such a tree F.

Some modifications of Γ in order to get a new graph $\hat{\Gamma}$ with $\nu(\hat{\Gamma})=0$. Lemma 3

If $\Gamma' = M_1(\Gamma)$ is defined by adding to Γ a vertex and an edge connecting that vertex to a vertex of Γ_0 , then

$$\nu(\Gamma') = \nu(\Gamma) + q - 1 .$$

If $\Gamma' = M_2(\Gamma)$ is defined by adding to Γ a tree whose root x is of degree q and all other vertices of degree q+1 and connecting x by an edge to a vertex of Γ_0 , Γ' is asymptotic to an homogeneous tree of degree q+1 and

$$\nu(\Gamma') = \nu(\Gamma) - 1 .$$

Proof of Theorem 1

- write $\nu(\Gamma) = N'' (q-1)N'$ with $N' \ge 0$ and $N'' \ge 0$.
- perform N' times the move M_1 and N'' times the move $M_2 \Longrightarrow$ we arrive to a graph $\tilde{\Gamma}$ with $\nu(\tilde{\Gamma}) = 0$.

Proof of Theorem 1

- write $\nu(\Gamma) = N'' (q-1)N'$ with $N' \ge 0$ and $N'' \ge 0$.
- perform N' times the move M_1 and N'' times the move $M_2 \Longrightarrow$ we arrive to a graph $\tilde{\Gamma}$ with $\nu(\tilde{\Gamma}) = 0$.
- remove from $\tilde{\Gamma}$ the (N'+N'') edges not in E_{Γ} , one of whose vertices is in Γ_0 .
- **●** The new graph $\hat{\Gamma}$ is clearly asymptotic to a regular tree of degree (q+1) and Γ is a connected component of $\hat{\Gamma}$.
- use lemma 2 to get a tree \mathbb{T}_q from $\hat{\Gamma}$, by removing and adding a finite number of edges to $\hat{\Gamma}$.

The construction in the proof of Theorem 1

Changing a graph with $\nu=0$ into a tree \mathbb{T}_q

The dashed edges are the new edges, the continuous one are the old edges

The spectral theory of Γ

lacksquare Theorem 1 \Longrightarrow existence of a Hilbert space ${\cal H}$ so that

- $l^2(\hat{\Gamma}) = l^2(\Gamma) \oplus \mathcal{H}$
- this decomposition is invariant by $A_{\hat{\Gamma}}$.
- $A_{\hat{\Gamma}}$ is a finite rank perturbation of $A_0 = A_{\mathbb{T}_q}$.
- \Longrightarrow to get the spectral theory of A_{Γ} by using the preceding results, we just need

The spectral theory of Γ

 \blacksquare Theorem 1 \Longrightarrow existence of a Hilbert space \mathcal{H} so that

$$l^2(\hat{\Gamma}) = l^2(\Gamma) \oplus \mathcal{H}$$

- this decomposition is invariant by $A_{\hat{\Gamma}}$.
- $A_{\hat{\Gamma}}$ is a finite rank perturbation of $A_0 = A_{\mathbb{T}_q}$.
- \Longrightarrow to get the spectral theory of A_{Γ} by using the preceding results, we just need

Lemma 4 Let $A_{\hat{\Gamma}} = A_{\mathbb{T}_q} + W$ with $\mathrm{Support}(W) \subset K \times K$ and K finite. Let Γ be an unbounded connected component of $\hat{\Gamma}$ and ω a point at infinity of Γ . Then, for any $s \notin \hat{\mathcal{E}}$, we have

$$\operatorname{support}(e(.;s,\omega)) \subset V_{\Gamma}$$
.

Conversely, if ω' is a point at infinity of $\hat{\Gamma}$ which is not a point at infinity of Γ then

$$\operatorname{support}(e(.; s, \omega')) \cap V_{\Gamma} = \emptyset$$
.

Theorem 2 The Hilbert space $l^2(\Gamma)$ splits into a finite dimensional part $\mathcal{H}_{\mathrm{pp}}$ and an absolutely continuous part $\mathcal{H}_{\mathrm{ac}}$. This decomposition is preserved by A_{Γ} . If $f \in C_0(\Gamma)$ and, for $\omega \in \Omega$, $\hat{f}_{sc}(s,\omega) = \langle f | e(.;s,\omega) \rangle$, then the map $f \to \hat{f}_{sc}$ extends to an isometry from $\mathcal{H}_{\mathrm{ac}}$ onto $L^2_{\mathrm{even}}(S_0 \times \Omega, d\sigma_0 \otimes d\mu)$ which intertwines the action of A_{Γ} with the multiplication by λ_s .