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Abstract. — We factor the virtual Poincaré polynomial of every homogeneous
space G/H , where G is a complex linear algebraic group and H is an algebraic
subgroup, as t2u(t2−1)rQG/H (t2) for a polynomial QG/H with non­negative in­
teger coefficients. Moreover, we show that QG/H (t2) divides the virtual Poincaré
polynomial of every regular embedding of G/H , if G and H are connected.

Résumé. — Nous factorisons le polynôme de Poincaré virtuel de tout espaces
homogène G/H , où G est un groupe algébrique linéaire et H un sous­groupe
algébrique en t2u(t2−1)rQG/H (t2) pour un polynôme QG/H avec des coefficients
positifs. Nous montrons de plus que QG/H (t2) divise le polynôme de Poincaré
virtuel de tout plongement régulier de G/H si G et H sont connexes.

Introduction and statement of the results

One associates to every complex algebraic variety X (possibly singular, or re­
ducible) its virtual Poincaré polynomial PX (t), uniquely determined by the fol­
lowing properties:

(i) (additivity) PX (t) = PY (t) +PX−Y (t) for every closed subvariety Y .

(ii) If X is smooth and complete, then PX (t) =
∑

m dimHm(X) tm is the usual
Poincaré polynomial.

Then PX (t) = PY (t) PF (t) for every fibration F → X → Y which is locally trivial
for the Zariski topology.

Specifically, we have

PX (t) =
∑

j,m

(−1)j+m dimgrmW (H j
c(X)) t

m,
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where grmW (H
j
c(X)) denotes the m­th subquotient of the weight filtration on the

j­th cohomology group of X with compact supports and complex coefficients
(see [11] 4.5 and [7]). More generally, the mixed Hodge structure on H∗c (X)
yields a polynomial EX (s, t) in two variables, satisfying the same properties of
additivity and multiplicativity, and such that PX (t) = EX (−t,−t) (see [5] and
[2] §3 for more details).

In this paper, we investigate the E­polynomials of homogeneous spaces under
linear algebraic groups, and of their regular embeddings in the sense of [3]. It
turns out that these polynomials behave much better than the usual Poincaré
polynomials; the latter are generally unknown for homogeneous spaces. To state
our main results, we introduce the following notation.

Let G be a complex connected linear algebraic group and let H be a closed
subgroup. Let rH (resp. uH ) be the rank (resp. the dimension of a maximal
unipotent subgroup) of H , and define similarly rG , uG. Choose maximal re­
ductive subgroups H red ⊆ H , Gred ⊆ G such that H red ⊆ Gred, and maximal
tori TH ⊆H red, TG = T ⊆ Gred such that TH ⊆ T ; let WH , WG =W be the
corresponding Weyl groups. The Lie algebras of G, H, . . . will be denoted g, h, . . .

The group WH acts on the Lie algebra tH and on its ring of polynomial
functions, C[tH ] = R(TH ). The invariant subring C[tH ]WH = R(H) is a finitely

generated, graded algebra over C, isomorphic to C[hred]H
red

. Its Hilbert series
∑∞

m=0 dimR(H)m tm is the expansion of a rational function of t, denoted FH (t).

Since G is connected, R(G) is a polynomial ring, and there exists a graded
subspace H of R(T) such that the multiplication map induces an isomorphism
of R(G)⊗H onto R(T). Moreover, H is isomorphic to the cohomology space
of the flag variety F (G), with complex coefficients. This isomorphism doubles
degrees, and the Hodge structure on H∗(F (G)) is pure. Therefore, the Poincaré
polynomial PF (G) is even, and we have

EF (G)(s, t) = PF (G)((st)
1/2) and

1

(1− t)rG
= FT (t) = FG(t)PF (G)(t

1/2).

Moreover, we have

PF (G)(q
1/2) = |F (G)(Fq)|

for every finite field Fq with q elements. Here |F (G)(Fq)| denotes the number

of points over Fq of F (G) regarded as the flag variety of the split Z­form of Gred.
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Our first main result generalizes this to an arbitrary homogeneous space G/H ,
with some twists. Notice that both G and its closed subgroup H are defined over
a finitely generated subring of C, so that (G/H)(Fq) makes sense for large q.

Theorem 1. — (a) With preceding notation, the virtual Poincaré polynomial PG/H
is even, and we have

EG/H (s, t) = PG/H ((st)1/2) and FH (t) = FG(t) t
dim(G/H)PG/H (t−1/2).

Moreover, we have for all large q:

|(G/H)(Fq)| = PG/H (q1/2).

(b) There exists a polynomial QG/H with non­negative integer coefficients, such that

PG/H (t1/2) = tuG−uH (t− 1)rG−rHQG/H (t).

Moreover,

QG/H (t) =Q
Gred/H red(t).

The degree of QG/H equals dimF (G)− dimF (H0), with leading coefficient 1,

and QG/H (1) =
|WG |
|WH |

.

(c) If H is connected, then

QG/H (t) =
PF (G)(t

1/2)

PF (H)(t
1/2)

= tdimF (G)−dimF (H)QG/H (t−1).

In particular, QG/H (0) = 1.

It follows that uG − uH , rG − rH and QG/H depend only on the complex
algebraic variety G/H (in fact, rG − rH is a topological invariant, see [1] 4.3).

As another consequence, the Poincaré polynomial of the flag variety of a semi­
simple group is divisible by the Poincaré polynomial of the flag variety of every
semi­simple subgroup, and the quotient has non­negative coefficients.

Theorem 1 is proved in Section 1. Notice that (a) can be deduced from the
fibration

G/H→ BH → BG,

where BH (resp. BG) denotes the classifying space of H (resp. G); then the
cohomology ring of BH is isomorphic to R(H) with degrees doubled, so that the
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Poincaré series of BH is FH (t2). If moreover H is connected, then

PG/H (t1/2) =
PG(t

1/2)

PH (t1/2)
= tuG−uH (t− 1)rG−rH

PF (G)(t
1/2)

PF (H)(t
1/2)

,

as follows from [7] Theorem 6.1 (ii); and a similar relation holds for |(G/H)(Fq)|,
by Lang’s theorem.

So the main point of Theorem 1 is (b), especially the non­negativity of co­
efficients of QG/H . We deduce it (together with (a) and (c)) from a geometric
construction that may be of independent interest. In loose words, we obtain a
locally trivial fibration (for the Zariski topology)

S→ G/H→ Z

where S is a torus of dimension rG − rH , and Z is an algebraic variety satisfying
Poincaré duality and whose cohomology is purely algebraic (see Lemmas 3 and
4 for a precise statement). Thus, EG/H (s, t) = (1− st)rG−rHEZ(s, t), and EZ(s, t)

is the value at (st)1/2 of the Poincaré polynomial of H∗c (Z). In the case where G
and H have the same rank, it follows that PG/H (t) is the Poincaré polynomial of
H∗c (G/H).

Next we turn to the E­polynomials of regular embeddings. Recall from [3] that
a regular embedding of G/H is a smooth complex algebraic variety X endowed
with an algebraic action of G, such that:
(i) X contains an open orbit isomorphic to G/H .
(ii) The complement of this open orbit is a union of smooth irreducible divisors
(the boundary divisors), with normal crossings.
(iii) Every orbit closure is a partial intersection of the boundary divisors, and its
normal bundle contains an open orbit.

Recall also that those homogeneous spaces under a connected reductive group
G which admit a complete regular embedding are exactly the spherical homoge­
neous spaces, i.e., those where a Borel subgroup of G acts with an open orbit.

Since every regular embedding X contains only finitely many orbits, we have

EX (s, t) = PX ((st)
1/2)

by Theorem 1 and additivity. Therefore, it suffices to consider the virtual
Poincaré polynomial PX . Our second main result yields a factorization of that
polynomial:
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Theorem 2. — Let X be a regular embedding of G/H , where H is connected.

Then, for every orbit G/H ′ in X , the polynomial QG/H (t) divides Q
G/H ′

(t), and

the quotient has non­negative integer coefficients.
As a consequence, there exists a polynomial RX (t) with integer coefficients, such

that

PX (t
1/2) =QG/H (t)RX (t).

If moreover X is complete, then the coefficients of RX (t) are non­negative.

The assumption that H is connected cannot be suppressed, as shown by an
example at the end of Section 2. This section is devoted to the proof of Theorem
2. Again, the main point is the non­negativity of coefficients of RX (t); for this,
we show that the equivariant cohomology ring of X is a free module of finite rank
over a polynomial subring generated by R(H) and indeterminates of degree 2.
It would be interesting to obtain a topological interpretation of the polynomial
RX (t). However, the factorization PX (t

1/2) = QG/H (t)RX (t) does not originate
in a fibration with total space X , as shown by the following simple example.

Consider the complex projective space X = P2m+1 of odd dimension, where
the projective special orthogonal group G = SO(2m+2)/{±1} acts linearly. Then
X consists of 2 orbits: the quadric Q2m, and its complement with isotropy group
H ∼= O(2m+ 1)/{±1} ∼= SO(2m+ 1), a connected subgroup; one checks that X
is a regular completion of G/H . We have

PG/H (t1/2) = PP2m+1(t
1/2)−P

Q2m(t
1/2) = tm(tm+1− 1),

so that QG/H (t) = tm + tm−1 + · · ·+ 1 and that RX (t) = tm + 1. How to explain
the factorization

PP2m+1(t
1/2) = t2m+1 + t2m + · · ·+1 = (tm+ tm−1 + · · ·+1)(tm +1)

in topological terms ?

Notice that the complex projective space P2m of even dimension is a regular
completion of the homogeneous space SO(2m+ 1)/O(2m) (where O(2m) is not
connected) by the quadric Q2m−1; this yields QSO(2m+1)/O(2m)(t) = 1.

These are examples of complete symmetric varieties. In fact, the Poincaré poly­
nomials of all such varieties were determined by De Concini and Springer (see
[6]) who deduced the virtual Poincaré polynomials of adjoint symmetric spaces.
Their results were the starting point for the present work, as the factorizations of
Theorems 1 and 2 can be seen on examples of [6].
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For instance, by Theorem 2, the virtual Poincaré polynomial of any regu­
lar embeding X of a connected reductive group G (viewed as a homogeneous
space under the action of G × G by left and right multiplication) is divisible
by QG(t

2) = PF (G)(t
2). When G is semi­simple adjoint and X is its canonical

completion, this agrees with the closed formula for PX (t) given in [6] p. 96.

1. Proof of Theorem 1

In what follows, we use [10] as a general reference for mixed Hodge structure,
and [14] for algebraic groups.

We begin with an easy reduction to the case where both groups G and H
are reductive. Let Ru(H) be the unipotent radical of H . This unipotent group
is isomorphic, as an algebraic variety, to some Cu. Since H is the semi­direct
product of Ru(H) with H red, we have u = uH − u

H red . The quotient map
G→G/H factors through

p :G/H red→ G/H,

a fibration with fiber Ru(H) ∼= Cu. Thus, the pullback map H∗(G/H red) →
H∗(G/H) is an isomorphism of mixed Hodge structures. By Poincaré duality, it
follows that

E
G/H red(s, t) = (st)u EG/H (s, t).

We now show that

|(G/H red)(Fq)| = qu |(G/H)(Fq)|

for q such that H red is defined over Fq and that H is the semidirect product of

Ru(H) with H red over Fq. This follows from Grothendieck’s trace formula; as an
alternative proof using elementary arguments of Galois cohomology, we check
that the map

π : (G/H red)(Fq)→ (G/H)(Fq)

is surjective with all fibers of order qu. We denote by F the Frobenius endomor­
phism of G(Fq), with fixed point subgroup G(Fq).

Let x ∈ G(Fq) such that xH ∈ (G/H)(Fq). Then x−1F(x) ∈ H(Fq). Write

x−1F(x) = yz where y ∈ Ru(H)(Fq) and z ∈ H red(Fq). Since Ru(H)(Fq) is

connected and invariant under Int(z) ◦ F , there exists h ∈ Ru(H)(Fq) such that
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y = hzF(h−1)z−1. Thus, x−1F(x) = hzF(h−1). Replacing x by xh, we may
assume that x−1F(x) ∈H red(Fq). This proves the surjectivity of π.

Let now x, y ∈ G(Fq) such that xH red, yH red ∈ (G/H red)(Fq) and that

y ∈ xH . We may assume that y = xz where z ∈ Ru(H)(Fq). Then H red(Fq)

contains x−1F(x) and y−1F(y) = z−1x−1F(x)F(z). Since H red(Fq) normalizes

Ru(H)(Fq) and their intersection is trivial, it follows that z−1x−1F(x)F(z)F(x−1)x =

1. Therefore, xzx−1 ∈ (xRu(H)x−1)(Fq), and xRu(H)x−1 is a F­stable con­
nected unipotent group of dimension u. So every fiber of π has order qu.

Therefore, if Theorem 1 holds for G/H red, then it holds for G/H , and

Q
G/H red(t) =QG/H (t).

So we may assume that H =H red. Then, using the fibration

G/H →G/Ru(G)H
∼= Gred/H red

with fiber Ru(G), one reduces similarly to the case where G = Gred.

We assume from now on that G and H are reductive; as a consequence, G/H
is affine.

Lemma 3. — The following conditions are equivalent for a subtorus S of T , with
Lie algebra s⊆ t:
(i) All isotropy subgroups of S acting on G/H are finite, and S is maximal for this
property.
(ii) s⊕wtH = t for all w ∈W .

As a consequence, there exist subtori S satisfying (i), and all of them have dimension
rG−rH . Moreover, the double coset space S\G/H is an affine algebraic variety, with
at worst quotient singularities by finite abelian groups.

Proof. — Let g ∈ G, then the finiteness of the isotropy group of gH in S is
equivalent to: s∩ Ad(g)h = 0. As there are only finitely many isotropy groups
for a torus action on an algebraic variety, the finiteness of all isotropy groups for
the S­action on G/H is equivalent to: s∩Ad(G)h = 0. Since

s∩Ad(G)h = s∩ (t∩Ad(G)tH ) = s∩W tH ,

this amounts to: s∩wtH = {0} for all w ∈W .
Now t has a W ­invariant rational structure, defined by the lattice of differen­

tials at 1 of one­parameter subgroups of T ; the rational subspaces are exactly the
Lie algebras of subtori. Moreover, any rational subspace s intersecting trivially
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all subspaces wtH is contained in a rational complement to all these subspaces.
This proves equivalence of conditions (i) and (ii), and the assertion on existence
of subtori S and their dimension. For any such subtorus S, all orbits in the affine
variety G/H are closed, and the isotropy groups are finite abelian groups. This
implies the latter assertion.

Remark. Lemma 3 extends to arbitrary homogeneous spaces G/H , except for
the assertion that S\G/H is an affine algebraic variety. In fact, the quotient
space S\G/H may well be non­separated if G/H is not affine. For example, let
G = SL(2) and let H be its standard unipotent subgroup. The diagonal torus
D ∼= C∗ of G acts on G/H ∼= C2 − {0} by t · (x, y) = (tx, t−1y). All isotropy
groups are trivial, but the quotient space is a classical example of a non­separated
scheme : the affine line with its origin doubled.

Next choose a subtorus S of T satisfying the conditions of Lemma 3 and let

Z = S\G/H

with quotient map f : G/H → Z. Then there exists a decomposition of Z into
finitely many disjoint, locally closed subvarieties Zj (j ∈ J), together with finite

subgroups Fj (j ∈ J) of S, such that every f −1(Zj) is equivariantly isomorphic
to S/Fj × Zj. Since S/Fj is a torus of dimension rG − rH , we have ES/Fj

(s, t) =

(st− 1)rG−rH , whence

EG/H (s, t) = (st− 1)rG−rHEZ(s, t).

Likewise, we have for all large q:

|(G/H)(Fq)| = (q− 1)rG−rH |Z(Fq)|.

Since Z has at worst finite quotient singularities, it satisfies Poincaré duality
over C. As a consequence, each closed algebraic subvariety of codimension (say)
r in Z has a cohomology class in H2r(Z). This yields the (degree doubling) cycle
map

cl : A∗(Z)→H∗(Z),

where the left hand side is the Chow group of Z, graded by codimension (see
[12] Chapter 19).

Lemma 4. — With preceding notation, cl is an isomorphism over C. Moreover,
the graded ring H∗(Z) is isomorphic to R(S)⊗R(G) R(H), and the usual Poincaré
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polynomial of Z equals

FS(t
2)FH (t2)

FG(t
2)

=
FH (t2)

(1− t2)rG−rHFG(t
2)
.

Proof. — We use equivariant cohomology, see e.g. [13]. Consider the action of
T on G/H , then the equivariant cohomology ring H∗T (G/H) is clearly isomor­
phic to H∗H (G/T). Since H∗G(G/T) =H∗(BT) = R(T) is a free module of rank
|W | over H∗G(pt) =H∗(BG) = R(G), the Eilenberg­Moore spectral sequence (see
[13] III.2) yields an isomorphism

H∗H (G/T)∼= H∗(BH)⊗H∗(BG)H
∗
G(G/T),

that is,
H∗T (G/H)∼= R(T)⊗R(G) R(H).

This is a commutative, positively graded algebra, finite and free of rank |W | over
its subring R(H). The latter is a Cohen­Macaulay ring of dimension rH . Thus,
the ring H∗T (G/H) is Cohen­Macaulay of dimension rH as well, with Poincaré
series

FT (t
2)FH (t2)

FG(t
2)

=
FH (t2)

(1− t2)rGFG(t
2)
.

Since the subtorus S of T acts on G/H with finite isotropy groups, we have

H∗T (G/H)∼= H∗T/S(S\G/H)∼= H∗T/S(Z).

This is a finitely generated module over H∗T/S(pt) = R(T/S). But T/S is a torus
of dimension rH , so that R(T/S) is a polynomial ring in rH variables. Since
H∗T (G/H) is Cohen­Macaulay of dimension rH and finite over R(T/S), it is a
free module over that ring, by the Auslander­Buchbaum formula (see [9] 19.3).
By the Eilenberg­Moore spectral sequence again, it follows that the canonical
map

C⊗R(T/S)H
∗
T/S(Z)→H∗(Z)

is an isomorphism. Therefore, we have

H∗(Z)∼= C⊗R(T/S) R(T)⊗R(G) R(H).

But C⊗R(T/S)R(T)∼= R(S); thus, we obtain H∗(Z)∼= R(S)⊗R(G)R(H). More­
over, H∗(Z) is the quotient of H∗T/S(Z) by a regular sequence consisting of rH
homogeneous elements of degree 2. Therefore, the usual Poincaré polynomial of
Z equals

(1− t2)rH
FT (t

2)FH (t2)

FG(t
2)

=
FH (t2)

(1− t2)rG−rH FG(t
2)
.
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It remains to compare cohomology of Z with its Chow group. For this, we
use equivariant intersection theory, see [8] and also [4]. The equivariant Chow
group with complex coefficients (graded by codimension) A∗T (G/H)C is again
isomorphic to R(T)⊗R(G)R(H), by [4] Corollary 12. Moreover, for any scheme
X with an action of T , the natural map

R(S)⊗R(T) A
∗
T (X)C→ A∗S(X)C

is an isomorphism (to see this, one reduces to the case where the quotient X →
X/T exists and is a principal T­bundle, and one argues as in [4], p. 17). As a
consequence, the map

R(S)⊗R(G) R(H)→ A∗S(G/H)C

is an isomorphism; it follows that the cycle map

cl : A∗S(G/H)C→H∗S (G/H) =H∗(Z)

defined in [8] 2.8, is an isomorphism as well. Finally, A∗S(G/H)C is isomorphic
to A∗(S\G/H)C = A∗(Z)C by [8] Proposition 4 and Theorem 4.

Remark. By Lemma 4, the Betti numbers of Z = S\G/H are independent of the
choice of S. But the algebra structure of H∗(Z) may depend on S, as shown by
the example where H = SL(2)× SL(2) is embedded diagonally in H ×H = G.
Furthermore, there may exist no subtorus S acting on G/H with finite constant
isotropy groups; this happens, for instance, if G = SL(3) and H = SO(3).

As a final preparation for the proof of Theorem 1, we need the following easy
result of invariant theory.

Lemma 5. — We have

lim
t→1

(1− t)rHFH (t) =
1

|WH |
.

Moroever, the degree of the rational function FH (t) is at most −dimF (H0), with
equality if H is connected.

Proof. — The former assertion is a (well­known) consequence of Molien’s for­
mula for the invariant ring R(H) = C[tH ]WH :

FH (t) =
1

|WH |

∑

w∈WH

1

dettH
(1− tw−1)

.

For the latter assertion, recall that R(H0) is a graded polynomial ring with
homogeneous generators of degrees d1 6 · · · 6 dr, where r = rH . Thus, the
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degree of F
H0(t) is −d1− · · · − dr = −dimF (H0). Moreover, denoting Γ the

finite group H/H0, we have an exact sequence

1→W
H0→WH → Γ→ 1.

Thus, Γ acts on R(H0) with invariant subring R(H). Since R(H0) is a graded
polynomial ring, it contains a graded Γ­stable subspace V such that the map
Sym(V )→ R(H0) is an isomorphism. It follows that V decomposes as a direct
sum of homogeneous components Vd ; the increasing sequence of their degrees
(with multiplicities given by the dimensions of the Vd) is the same as (d1, . . . , dr).
Now

FH (t) =
1

|Γ|

∑

γ∈Γ

1
∏

d detVd
(1− tdγ−1)

is a sum of rational functions of the same degree, equal to −d1 − · · · − dr =
−dimF (H0).

We can now complete the proof of Theorem 1. By Lemma 4, the cohomol­
ogy of Z vanishes in all odd degrees, and every space H2m(Z) is generated by
algebraic classes. Thus, the Hodge structure on that space is pure of type (m,m),
and the same holds for the dual space H2m

c (Z). In other words,

EZ(s, t) =
∑

m
dimH2m

c (Z) (st)m.

Using Poincaré duality and Lemma 4, it follows that

EZ(s, t) = (st)dim(Z)
FH ((st)−1)

(1− (st)−1)rG−rH FG((st)
−1)

,

so that

EG/H (s, t) =
(st)dim(G/H)FH ((st)−1)

FG((st)
−1)

.

On the other hand, we have

|Z(Fq)| =
∑

m
dimH2m

c (Z) qm

as follows from Grothendieck’s trace formula and purity of the weight filtration
on H∗c (Z) (alternatively, one may show directly that

|(G/H)(Fq)| =
qdim(G/H)FH (q−1)

FG(q
−1)

,

by arguments of Galois cohomology). This implies (a).
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Taking degrees in the equality of rational functions

FH (t) = FG(t)t
dim(G/H) PG/H (t−1/2)

and using Lemma 5, we obtain that PG/H (t1/2) is divisible by

tdim(G/H)−dimF (G)+dimF (H) = tuG−uH .

Thus, we can write PG/H (t1/2) = tuG−uH (t−1)rG−rHQG/H (t) for a polynomial
QG/H (t) with integer coefficients. Since PZ(t) = tuG−uHQG/H (t), these coeffi­

cients are non­negative. Moreover, Lemma 5 implies that QG/H (1) =
|WG |
|WH |

.

For any irreducible variety X , the degree of PX (t) is 2dim(X), with leading
coefficient 1. It follows that the degree of QG/H (t) is dimF (G)− dimF (H0),
with leading coefficient 1. This completes the proof of (b). Finally, (c) follows
from (a), (b) and Poincaré duality for F (G) and F (H).

2. Proof of Theorem 2

Let Y be an orbit in X . Replacing X by the union of all orbits whose closure
contains Y (an open G­invariant subset of X), we may assume that Y is closed
in X . Then Y is the transversal intersection of boundary divisors, say X1, . . . ,Xr.
Choose x ∈ Y and denote by H ′ its isotropy subgroup. Then H ′ acts on the
normal space to Y at x; this action is diagonalizable and given by r linearly
independent characters, see [3]. This defines a surjective group homomorphism
H ′→ (C∗)r, whence an exact sequence

1→ K →H ′→ (C∗)r→ 1

where K is the kernel of the H ′­action on the normal space. Let K red be a
maximal reductive subgroup of K .

We claim that K red is contained in a conjugate of H . To check this, consider
the linear action on K red on the tangent space TxX and choose a K red­invariant
complement N to the K red­invariant subspace TxY ; by construction, K red fixes
N pointwise. Then we can choose a K red­invariant subvariety Z of X , such
that Z is smooth at x and that TxZ = N . Therefore, K red fixes pointwise a
neighborhood of x in Z, and this neighborhood meets the open orbit G/H .

Thus, we may assume that K red is contained in H . Since H is connected,
we can apply [7] Theorem 6.1 (ii) to the fibration G/K red → G/H with fiber
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H/K red, to obtain
P
G/K red(t) = PG/H (t)P

H/K red(t).

Together with Theorem 1, it follows that

QG/K (t) =QG/H (t)Q
H/K red(t).

On the other hand, the right action of H ′/K ∼= (C∗)r on G/K defines a prin­
cipal (C∗)r­bundle G/K → G/H ′. All such bundles are locally trivial, whence
PG/K (t) = (t2− 1)rP

G/H ′
(t), and

QG/K (t) =Q
G/H ′

(t).

So, QG/H (t) divides Q
G/H ′

(t) and the quotient has non­negative coefficients.

By additivity, it follows that QG/H (t) divides PX (t
1/2) ; the quotient is an even

polynomial, RX (t). Since QG/H (0) = 1, the coefficients of RX (t) are integers.
However, their non­negativity for complete X is not an obvious fact, because of

the factor t
uG−uH ′ (t− 1)

rG−rH ′ in each P
G/H ′

(t1/2). For this reason, we shall
present an alternative proof of the existence of RX (t), which will also yield this
non­negativity property.

We begin by relating the virtual Poincaré polynomial PX (t) to equivariant co­
homology of X . If V is a Z­graded complex vector space such that every homo­
geneous component Vm is finite dimensional, let FV (t) =

∑∞
m=−∞ dim(Vm) t

m

be its Poincaré series. If X is a variety where G acts algebraically, then H∗G(X)
is a finitely generated, graded module over H∗(BG) = R(G). As a consequence,
the series FH∗G(X)

(t) is the expansion of a rational function, for which we use the

same notation.

Lemma 6. — For every regular embedding X , the rational function FH∗G(X)
(t) is

even, and

FH∗G(X)
(t1/2) = FG(t) t

dim(X)PX (t
−1/2).

Proof. — In the case where X = G/H is a unique orbit, we have H∗G(X)
∼=

H∗(BH) ∼= R(H), whence FH∗G(X)
(t) = FH (t2). So the assertion follows from

Theorem 1.
In the general case, choose a closed orbit Y in X , of codimension r, with

complement U . The inclusion map i : Y → X defines a Gysin morphism

i∗ :H
∗
G(Y )→H∗G(X),
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of degree 2r. By [3], this map and the restriction map H∗G(X)→H∗G(U ) fit into
a short exact sequence

0→H∗G(Y )→H∗G(X)→H∗G(U )→ 0.

It follows that
FH∗G(X)

(t) = t2rFH∗G(Y )
(t) +FH∗G(U )(t).

Since PX = PY +PU , our assertion follows by induction.

Remark. Lemma 6 admits a simpler formulation in terms of equivariant Borel­
Moore homology HG

∗ (X), as defined in [8]. Indeed, by Poincaré duality, the
rational function F

HG
∗ (X)

(t) is even, and

F
HG
∗ (X)

(t1/2) = FG(t
−1)PX (t

1/2).

In fact this holds, more generally, for every variety X where G acts with finitely
many orbits.

Next let X1, . . . ,Xn be the boundary divisors of the regular embedding X ,
and let z1, . . . , zn ∈ H

2
G(X) be their equivariant cohomology classes. In the ring

H∗G(X), consider the ideal IX of H∗G(X) generated by z1, . . . , zn, and the ideal
JX , kernel of the restriction map

ρ :H∗G(X)→H∗G(G/H)∼= R(H).

Clearly, IX is contained in JX , and the latter ideal is prime. Moreover, ρ is
surjective by [3], so that we have an exact sequence

0→ JX →H∗G(X)→ R(H)→ 0.

Examples show that IX may differ from JX ; but these ideals are closely related, as
shown by the following result.

Lemma 7. — We have J2
N

X ⊆ IX , where N denotes the number of G­orbits in X .

Proof. — We argue by induction on N . If N = 1, then X =G/H so that both IX
and JX are trivial. In the general case, we use the notation of the proof of Lemma
6. The (surjective) restriction map H∗G(X)→ H∗G(U ) sends IX (resp. JX ) onto
IU (resp. JU ).

Let α ∈ JX . Since J2
N−1

U ⊆ IU by the induction assumption, we may assume
that

α2
N−1

= i∗β
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for some β∈H∗G(Y ). Now we have in H∗G(X):

α2
N
= (i∗β)∪ (i∗β) = i∗(β∪ i

∗i∗β) = i∗(β
2 ∪ i∗i∗1) = (i∗β

2)∪ (i∗1),

by the projection formula. Moreover, i∗1 is the equivariant cohomology class of
Y in X . Since Y is a transversal intersection of r boundary divisors, say X1, . . . ,Xr,

we have i∗1 = z1 · · · zr ∈ IX , and α2
N
∈ IX as well.

SinceH is connected, R(H) is a graded polynomial ring, so that we can choose
a graded subalgebra R of H∗G(X) that restricts isomorphically to H∗G(G/H) ∼=
R(H) via ρ.

Lemma 8. — H∗G(X) is finite over its subring generated by R and z1, . . . , zn.

Proof. — Since the algebra H∗G(X) is positively graded, it suffices to prove that
the quotient

H∗G(X)/(z1, . . . , zn) =H∗G(X)/IX

is a finitely generated R­module. By Lemma 7, H∗G(X)/IX is a quotient
of H∗G(X)/J

m
X for some positive integer m. Consider the finite filtration of

H∗G(X)/J
m
X by the powers of the image of JX , and notice that all the subquo­

tients J
p
XH
∗
G(X)/J

p+1
X H∗G(X) are finite modules over H∗G(X)/JX = R(H). Since

the latter is isomorphic to R, the assertion follows.

We now need the following variant of the Noether normalization theorem.

Lemma 9. — Let A be a finitely generated, positively graded algebra over an infi­
nite field k. Let y1, . . . , ym be homogeneous, algebraically independent elements of A
and let z1, . . . , zn be homogeneous elements of degree 1, such that A is finite over its
subalgebra generated by y1, . . . , ym, z1, . . . , zn. Then there exist a non­negative integer

n′ and homogeneous elements y′1, . . . , y
′
m, z
′
1, . . . , z

′
n′

of A such that:

(i) y′i − yi ∈ k[z1, . . . , zn] for 16 i 6m.

(ii) z′1, . . . , z
′
n′

are linear combinations of z1, . . . , zn.

(iii) y′1, . . . , y
′
m, z
′
1, . . . , z

′
n′

are algebraically independent, and A is finite over the sub­

ring that they generate.

Proof. — The argument is similar to that of the classical Noether normalization
theorem, see [9] 13.1; we present it for completeness. We argue by induction
on n, the case where n = 0 being trivial. In the general case, we may assume
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that y1, . . . , ym, z1, . . . , zn are algebraically dependent, and we choose a polynomial
relation

P(y1, . . . , ym, z1, . . . , zn) = 0.

We may assume that this relation is (weighted) homogeneous and involves zn.
Let d1, . . . , dm be the degrees of y1, . . . , ym. Define y′1, . . . , y

′
m, z
′
1, . . . , z

′
n−1 by

yi = y′i + aiz
di
n , zj = z′j + bjzn

where a1, . . . , am, b1, . . . , bn−1 are in k. Then

P(y′1 + a1z
d1
n , . . . , y′m + amz

dm
n , z′1 + b1zn, . . . , z

′
n−1 + bn−1zn, zn) = 0.

Regarding the right­hand side as a polynomial in zn, the coefficient of the leading
term equals

P(a1, . . . , am, b1, . . . , bn−1,1).

Since k is infinite and by our assumptions on P, we may choose a1, . . . , am, b1, . . . , bn−1
so that this coefficient is non­zero. Then zn is integral over the subring A′ of
A generated by y′1, . . . , y

′
m and z′1, . . . , z

′
n−1. We conclude by the induction

assumption for A′.

We can now show that QG/H (t) divides PX (t
1/2). Apply Lemma 9 to the

algebra H∗G(X) and to homogeneous, algebraically independent generators of
its polynomial subalgebra R; then we obtain another polynomial subalgebra
R′ (restricting isomorphically to R(H)) and linear combinations z′1, . . . , z

′
n′

of

z1, . . . , , zn, such that H∗G(X) is finite over its polynomial subring R′[z′1, . . . , z
′
n′
].

Let f (t) be the associated Hilbert polynomial, then

FH∗G(X)
(t1/2) =

FH (t)f (t)

(1− t)n
′ .

Moreeover, f (1) is the rank of the R′[z′1, . . . , z
′
n′
]­module H∗G(X), a positive in­

teger. On the other hand, we have by Lemma 6:

FH∗G(X)
(t1/2) = FG(t) t

dim(G/H)PX (t
−1/2)

and, by Theorem 1:

FH (t) = FG(t) t
dim(G/H)−uG+uH (t−1− 1)rG−rHQG/H (t−1).

This yields

PX (t
1/2) = tn

′+uG−uH (t− 1)rG−rH−n
′
QG/H (t)f (t−1).
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Since f (1)QG/H (1) 6= 0, we must have rG−rH−n
′ > 0; and since QG/H (0) = 1,

the Laurent polynomial tn
′+uG−uH (t − 1)rG−rH−n

′
f (t−1) must be a polyno­

mial. Thus, QG/H (t) divides PX (t
1/2).

If moreover X is complete, then the R(G)­module H∗G(X) is free by [3]. Thus,
the ring H∗G(X) is Cohen­Macaulay of dimension rG. Since this ring is finite over
R′[z′1, . . . , z

′
n′
], a polynomial subring, H∗G(X) is a free module over that subring,

and we have rG = rH + n′. Therefore, the Hilbert polynomial f (t) has non­
negative coefficients, so that the same holds for the polynomial

tn
′+uG−uH f (t−1) =

PX (t
1/2)

QG/H (t)
.

Example. We show that Theorem 2 does not extend to all homogeneous spaces
G/H . Let G = SL(2)× SL(2) with maximal torus T = D×D, where D denotes

the diagonal torus of SL(2). Let n =

(

0 1
−1 0

)

, then the element (n,n) of G

normalizes T . Let H be the subgroup of G generated by T and by (n,n). The
homogeneous space G/H is spherical, and we have TH = T . Denoting by x, y the
obvious coordinates on t, one obtains R(G) = C[x2, y2] and R(H) = C[x2, xy, y2],
whence

FG(t) =
1

(1− t2)2
, FH (t) =

1+ t2

(1− t2)2
, PG/H (t1/2) = t4+t2 and QG/H (t) = 1+t2.

We now construct a regular completion X of G/H , such that PX (t
1/2) is not

divisible by QG/H (t). Consider the variety

Y = P1×P1×P1×P1

where G acts by
(g1, g2)(a, b, c, d) = (g1a, g1b, g2c, g2d).

Then Y is a regular embedding of G/T . Moreover, the right action of (n,n) on
G/T extends to the involution σ of Y , defined by

σ(a, b, c, d) = (b, a, d, c).

The fixed point subset Y σ is the closed G­orbit, diag(P1) × diag(P1). Since
the actions of G and σ commute, G acts on the quotient Y/σ. The latter is
singular along the image Z of Y σ ; the normal space to Y/σ at every point of Z
is isomorphic to the quotient of C2 by the involution (s, t) 7→ (−s,−t). Thus,
blowing up Z along Y/σ yields a smooth projective embedding X of G/H .
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One may check that X is regular and that

PX (t
1/2) = t4 +3t3 +6t2 +3t +1,

which is prime to QG/H (t) = t2 + 1. One may also check that Q
G/H ′

(t) equals

t+1 or (t+1)2 for the other orbits; thus, QG/H (t) is prime to all other Q
G/H ′

(t).
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