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Abstract. — Around 1989, Manin initiated a program to understand the asymp­
totic behaviour of rational points of bounded height on Fano varieties. This
program led to the search of new methods to estimate the number of points of
bounded height on various classes of varieties. Methods based on harmonic anal­
ysis were successful for compactifications of homogeneous spaces. However, they
do not apply to other types of varieties. Universal torsors, introduced by Colliot­
Thélène and Sansuc in connection with the Hasse principle and weak approxi­
mation, turned out to be a useful tool in the treatment of other varieties. The
aim of this short survey is to describe the use of torsors in various representative
examples.

Résumé. — Vers 1989, Manin initia un programme en vue de comprendre le
comportement asymptotique des points rationnels de hauteur bornée sur les va­
riétés de Fano. Ce programme amena à la recherche de nouvelles méthodes pour
estimer le nombre de points de hauteur bornée sur différentes classes de varié­
tés. Les méthodes basées sur l’analyse harmonique s’appliquent avec succès pour
les compactifications d’espaces homogènes. Cependant, elles ne s’appliquent pas
à d’autres types de variétés. Les torseurs universels, introduits par Colliot­Thélène
et Sansuc en relation avec le principe de Hasse et l’approximation faible se sont
révélés utiles pour l’étude d’autres variétés. L’objet de cet article est de décrire l’uti­
lisation de ces torseurs pour divers exemples représentatifs.

1. Introduction

If the rational points of a variety V over a number field k are Zariski dense, it
is natural to equip V with a height H and to study the asymptotic distribution of

Key words and phrases. — Rational points, heights, universal torsors.



2 EMMANUEL PEYRE

the set of points of bounded height on V. In [FMT] and [BM], Batyrev, Franke,
Manin and Tschinkel gave strong evidence supporting conjectures relating the
asymptotic behaviour of the number of points of bounded height on open sub­
sets of V to geometrical invariants of V. This work motivated the development
of several methods to estimate the number of points of bounded height for new
classes of varieties. One of the most successfull methods was the use of harmonic
analysis on adelic groups. For example, it was used by Batyrev and Tschinkel
in [BT1], [BT2], and [BT4] to handle the case of projective toric varieties, by
Strauch and Tschinkel in [ST1] and [ST2] for toric bundles over flag varieties,
and by Chambert­Loir and Tschinkel in [CLT1], [CLT2], and [CLT3] for equiv­
ariant compactifications of vector spaces. However, these kind of methods apply
only to equivariant compactifications of homogeneous spaces. One may say that
almost all other methods have one step in common, namely the lifting to uni­
versal torsors. Universal torsors have been introduced by Colliot­Thélène and
Sansuc in [CTS1], [CTS2], [CTS3], and [CTS4] to study the Hasse principle
and the weak approximation. The interest of universal torsors is that, from an
arithmetic point of view, these torsors should be much simpler that the variety
itself. As an example, universal torsors over smooth projective toric varities are
open subsets of an affine space. When the Fano variety V is a smooth complete
intersection of dimension bigger than three in the projective space, the universal
torsor may be described as the cone over the variety. In that case, if the dimension
of the variety is big enough, the conjectural formula of Manin may be deduced
from the formula given by the classical circle method. This reduction, which is
described in [FMT], may be seen as a particular case of the lifting to the universal
torsor. Salberger in [Sal] was the first to use explicitly universal torsors in relation
with points of bounded height. In particular, he was able to give a new proof of
the theorem of Batyrev and Tschinkel for smooth projective split toric varieties
over Q. This lifting to the universal torsor was then used by de la Bretèche in
[Bre1] to give a better estimate for the number of points of bounded height on
toric varieties. The lifting to universal torsors was later used by Salberger and de
la Bretèche (see [Bre2]) to prove the asymptotic formula for the plane blown up
in four points over Q. In a more general setting, the author described in [Pe2]
and [Pe3] how the conjectural asymptotic formula lifts naturally to universal
torsors.

The aim of this short survey is to explain in a self­contained way the usefulness
of universal torsors for counting points of bounded height. In Section 2, we
describe the heights used throughout the paper, and in Section 3 we recall the
empirical formula for the number of points on Fano varieties. In Section 4 we
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give a short list of cases for which this formula holds, in Section 5 we describe the
counter­example of Batyrev and Tschinkel. In Section 6 we describe briefly both
methods: harmonic analysis and universal torsors. Section 7 is devoted to the
case of a hypersurface in Pn. The next section contains the definition of universal
torsors in general. In Section 9 we describe Cox’s construction of universal torsors
for toric varieties and explain how Salberger used it and in Section 10 we turn to
the case of the plane blown up in four points, in which case the universal torsor
was described by Salberger and Skorobogatov. The last section contains a short
description of the generalization of these lifting arguments to a larger class of
varieties.

Acknowledgements: I am very grateful to John Voight who typed the notes
of my talks at the American Institute of Mathematics on which this survey is
based.

2. Heights on projective varieties

Definition 2.1. — The classical exponential height on the projective space over
Q is defined as follows:

HN : PN (Q)→ R>0

(x0 : . . . : xN ) 7→ sup
06i6N

|xi |, if




xi ∈ Z, and

gcd(xi) = 1.

If K is a number field, one generalizes this construction in the following way:

HN : PN (K )→ R>0

(x0 : . . . : xN ) 7→
∏

v∈ΩK

sup
06i6N

|xi |v

where ΩK is the set of places of K and for any x ∈ Kv,

|x|v = |NKv/Qp
(x)|p if v | p.

Any morphism of varieties ϕ : V → PN
K induces a height

H : V (K )→ R>0

x 7→HN (ϕ(x)).
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If U ⊂ V is an open subset, then we would like to describe and understand
the asymptotic behavior of the counting function

NU,H (B) = #{x ∈U (K ) |H(x)6 B}.

Let us first give a few examples:

Example 2.2. — If V = PN (Q) and ϕ = id, then an easy Möbius inversion
formula gives that

NV,H (B)∼
2N

ζQ(N +1)
BN+1

as B→∞ (see Figure 1).

F 1. Projective space

This result was later generalized by Schanuel in [Sc] to the projective space
over any number field (see Figure 2).

Example 2.3. — If V = V1×V2, and Hi : Vi(K )→ R>0 are heights as above,
and Ui ⊂ Vi is an open subset for each i, then the height H : V → R>0 defined
by H(x1, x2) = H1(x1)H2(x2) corresponds to the Segre embedding of V1×V2.
Assume that

NUi ,Hi
(B) = CiB(logB)

ti−1 +O
(
B(logB)ti−2

)
.

Then, by [FMT, Proposition 2]

NU1×U2,H
(B)∼

(t1− 1)!(t2− 1)!
(t1 + t2− 1)!

C1C2B(logB)
t1+t2−1
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F 2. Projective line over Q(i)

as B→∞. For P1×P1, we get

N
P1×P1,H

(B)∼ CB2 logB

(see Figure 3).

F 3. Product of two projective lines

Example 2.4. — Let V → P2(Q) be the blow up of P2 at P1 = (1 : 0 : 0),
P2 = (0 : 1 : 0), and P3 = (0 : 0 : 1). Then V may be seen as the hypersurface in

P1×P1×P1 given by the equation x1x2x3 = y1y2y3. We put

H(P1, P2, P3) =H1(P1)H1(P2)H1(P3)

which defines a height H : V (Q)→ R>0.
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On V , there are 6 exceptional lines Ei,j : xi = 0, yj = 0 for i 6= j. Let U =

V −
⋃
i 6=j Eij. We have

NEi,j,H
(B)∼ CB2

and

NU,H (B)∼
1

6


∏

p

(
1−

1

p

)4(
1+

4

p
+

1

p2

)
B(logB)3

(see Figure 4).

F 4. The plane blown up

We see that NU,H (B) = o(NEi,j,H
(B)). Thus, in this case, the dominant term

of the asymptotic behaviour of NV,H (B) is given by the number of points on the
six lines. Therefore it can not reflect the geometry of the whole of V . One of
the basic ideas in the interpretation of the asymptotic behaviour of the number
of points of bounded height is that one has to consider open subsets to be able
to get a meaningful geometric interpretation.

In all examples known to the author for which it is possible to give a precise
estimate of the number of points of bounded height, the asymptotic behaviour
is of the form

NU,H (B)∼ CBa(logB)b−1

with C > 0, a > 0 and b ∈ 1
2Z, b > 1. Thus one wishes to give a geometric

interpretation of a, b and C.
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3. Manin’s principle

We assume that V is a smooth, geometrically integral projective variety of

dimension n over the number field K . We also assume that ω−1V = ΛnTV is very
ample (in particular, V is a Fano variety). We look only at the height relative

to this anticanonical divisor ϕ∗(O
PN

(1)) = ω−1V , and we assume that V (K ) is

Zariski dense. The following question is a variant of the conjecture C′ in [BM]:

Question 3.1. — Does there exist a dense open subset U ⊂ V and a constant C > 0
such that

NU,H (B)∼ CB(logB)t−1

as B→∞, where t is the rank of the Picard group of V . (Since V is Fano, PicV is
a free Z­module of finite rank.)

In fact, it is even possible to give a conjectural interpretation of C, but to
describe this conjectural constant, we first need to express the height in terms of
metrics.

Notation 3.2. — Let V be a geometrically integral smooth projective variety

and H be the height corresponding to an embedding ϕ : V → PN
K . Let L be

ϕ∗(O
PN

(1)). We denote by s0, . . . , sN the pull­backs in Γ(V,L) of the sections

X0, . . . ,XN of O
PN

(1). We view L as a line bundle over V and define for any

place v of K a v­adically continuous metric ‖ · ‖v : L(Kv)→ R by the condition:

∀x ∈ V (Kv), ∀s ∈ Γ(V,L), ‖s(x)‖v = inf
06i6N
si (x)6=0

∣∣∣∣∣
s(x)

si (x)

∣∣∣∣∣
v

.

Then the height H may be characterized by

∀x ∈ V (K ), ∀s ∈ Γ(V,L), s(x) 6= 0⇒H(x) =
∏

v∈ΩK

|s(x)|−1v .

From now on we assume that the above line bundle L is the anticanonical
line bundle ω−1V . We now define a measure on the adelic space V (AK ) which
coincides with the product

∏
v∈ΩK

V (Kv), since V is projective.

Definition 3.3. — For any place v of K , we normalize the Haar measure dxv
on Kv by the conditions

—
∫
Ov

dxv = 1 if v is finite,

— dxv([0,1]) = 1 if Kv is isomorphic to R,
— dxv = i dzdz = 2dxdy if Kv is isomorphic to C.



8 EMMANUEL PEYRE

The measure ωv on V (Fv) is defined locally by the formula

ωv =

∥∥∥∥∥
∂

∂x1
∧ · · · ∧

∂

∂xn

∥∥∥∥∥
v

dx1,v . . .dxn,v

if (x1, . . . , xn) is a local system of coordinates on V (Kv) in the v­adic topology

and where
∂
∂x1
∧ · · · ∧ ∂

∂xn
is viewed as a section of ω−1V . The fact that these

expressions glue together follows from the chosen normalization of the absolute
value. Indeed the formula for a change of variables is given by

dy1,v · · ·dyn,v =

∣∣∣∣∣∣∣∣
det


∂yi
∂xj



16i6n
16j6n

∣∣∣∣∣∣∣∣
v

dx1,v · · ·dxn,v

(see [We, §2.2.1]).

Remark 3.4. — At any real place this construction amounts to the classical
recipe for producing a measure on a differential variety from a continuous section
of its canonical line bundle. At almost all finite places, using ideas of Tamagawa
and Weil, one may prove the following proposition:

Proposition 3.5. — For almost all finite p in ΩK ,

ωp(V (Kp)) =
#V (Fp)

(#Fp)
dimV

where Fp is the residue field at p.

In particular, this implies that the product
∏
pωp(V (Kp)) diverges. Therefore

we have to introduce convergence factors. These factors are suggested by the
Grothendieck­Lefschetz formula.

Definition 3.6. — We fix a finite set S of bad places containing all archimedean
places and all places of bad reduction. Let K be an algebraic closure of K and
put V = V ×K K . Then for p∈ΩK − S one defines

Lp(s,Pic(V )) =
1

det(1− q−s Frobq | Pic(VFp
)⊗Q)

where q = #Fp and Frobq is the q­power Frobenius automorphism of the field

Fp, which induces a linear endomorphism of the Q­vector space Pic(VFp
)⊗Q.
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The global L­function is given by the Euler product

LS(s,Pic(V )) =
∏

p∈ΩK−S
Lp(s,Pic(V ))

which converges for Re(s) > 1 and admits a meromorphic continuation to C. We
define the convergence factors by

λv =




Lv(1,Pic(V )), if v ∈ΩK − S,
1, otherwise.

The adelic measure on V (AK ) is then defined by the formula

ωH = lim
s→1

(s− 1)tLS(s,Pic(V ))
1

√
dK

dimV

∏

v∈ΩK

λ−1v ωv,

where dK is the absolute value of the discriminant of K .

Remarks 3.7. —
(i) The convergence of the product

∏
v∈ΩK

λ−1v ωv follows from the Lefschetz

trace formula and Weil’s conjecture about the absolute value of the eigenvalues
of the Frobenius operator which was proven by Deligne [De].

(ii) By definition, the measure ωH does not depend on S.

(iii) Note that
√
dK is the volume of AK /K for the measure

∏
v∈ΩK

dxv.

To define the conjectural constant it remains to multiply by two rational fac­
tors which are the object of the next definition.

Definition 3.8. — Let C1
eff
(V ) be the cone in Pic(V )⊗Z C generated by the

classes of effective divisors and C1
eff
(V )∨ the dual cone defined by

C1
eff
(V )∨ = { y ∈ Pic(V )⊗Z R∨ | ∀x ∈ C1

eff
(V ), 〈x, y〉> 0}.

Then

α(V ) =
1

(t− 1)!

∫

C1
eff
(V )∨

e〈ω
−1
V ,y〉dy

where the measure on Pic(V )⊗Z R∨ is normalized so that the covolume of the

dual lattice Pic(V )∨ is one. We also consider the integer

β(V ) = #H1(K,Pic(V )).
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Remarks 3.9. —
(i) The constant α(V ) may also be defined as the volume of the domain

{ y ∈C1
eff
(V )∨ | 〈y,ω−1V 〉 = 1}

for a suitable measure on the affine hyperplane 〈y,ω−1V 〉 = 1 (see [Pe1, §2.2.5]).
Therefore, if there exists a finite family (Di )16i6r of effective divisors on V such
that

C1
eff
(V ) =

r∑

i=1

R>0[Di ]

then the constant α(V ) is rational.
(ii) The constant β(V ) was introduced by Batyrev and Tschinkel in [BT1].

The conjectural constant is then defined as follows

Definition 3.10. — We define

θH (V ) = α(V )β(V )ωH (V (K )),

where V (K ) denotes the closure of the rational points in the adelic space V (AK ).

We can now give a refined version of Question 3.1:

Empirical formula 3.11. — With notation as in Question 3.1, there often exists
a dense open subset U0 ⊂ V such that for any nonempty subset U of U0, one has

(F) NU,H (B)∼ θH (V )B(logB)t−1.

4. Results

The formula (F) is true in the following cases:
— V = G/P, where G is a reductive algebraic group over K and P is a

parabolic subgroup of G defined over K . It follows from the work of Lang­
lands on Eisenstein series [Lan] (see Franke, Manin, Tschinkel [FMT] and
[Pe1, §6]). We may take U0 = V . In particular, it is true for any quadric.

— V is a smooth projective toric variety, that is an equivariant compactifica­
tion of an algebraic torus (see [Pe1, §8–11] for particular cases, Batyrev
and Tschinkel [BT1], [BT2], and [BT4], Salberger [Sal], and de la
Bretèche [Bre1]). One may take the open orbit as U0. This case includes
the plane blown up in 1, 2, or 3 points, and Hirzebruch surfaces.

— V is an equivariant compactification of an affine space for the action of
the corresponding vector space (see Chambert­Loir, Tschinkel [CLT1],
[CLT2], and [CLT3]).
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— V = P2
Q blown up at (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1) (see Salberger

for an upper bound, and de la Bretèche [Bre2]).
The formula (F) is compatible with:
— the circle method. In particular, it is true if V ⊂ Pn(Q) is a smooth

hypersurface of degree d, if n > 2d(d− 1) (see Birch [Bir]);
— products of varieties (see [FMT], [Pe1, §4]);
— numerical tests for some diagonal cubic surfaces [PT1], [PT2];
— lower bounds for some cubic surfaces (see Slater and Swinnerton­Dyer

[SSD]). The problem of finding an optimal upper bound for cubic sur­
faces is still open.

All these examples support the empirical formula. However, there are also
counterexamples, which will be discussed in the next section.

5. The counterexample of Batyrev and Tschinkel

Take V ⊂ P3×P3 defined by

x0y
3
0 + x1y

3
1 + x2y

3
2 + x3y

3
3 = 0.

We have
Pic(V )≃ Pic(P3×P3) = Z×Z

and ω−1V = OV (3,1). In particular, V is a Fano variety. We may use the height

H : V (Q)→ R>0

((x0 : . . . : x3), (y0 : . . . : y3)) 7→H3(x)
3H3(y).

If (F) is true for V then there is an open subset U and a constant C such that

NU,H (B)∼ CB logB

as B → ∞. There is a projection onto the first coordinate π1 : V → P3. If

(x0 : . . . : x3) ∈ P3 is such that
∏3
i=0 xi 6= 0, then π−11 (x) is a smooth cubic

surface; if x1/x0, x2/x0, x3/x0 are cubes, then rkPic(π−11 (x)) = 4. If (F) is true for
the fiber, then

N
π−1(x),H

(B)∼CxB(logB)
3

as B→∞, but these fibers are Zariski dense, so the answer to Question 3.1 can
not be positive for both V and the fibers. In fact, Batyrev and Tschinkel prove
the following more precise result:

Theorem 5.1 (Batyrev and Tschinkel [BT3]). — If K contains a nontrivial cube
root of unity, then for all nonempty U ⊂ V , (F) does not hold for U .
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6. Methods of counting

We now return to the methods used to prove the results given in Section 4.

Harmonic analysis: Assume that there exists a dense open subset U of V which
is of the form G/H , where G is a reductive algebraic group, look at the height
zeta function

ζU,H (s) =
∑

x∈U (K )

H(x)−s

which converges when Re(s)≫ 0.
The asymptotic behavior of NU,H (B) is given by the meromorphic properties

of ζU,H (s). If U = G, one may use a Poisson formula. If V = G/P, ζU,H (s) is
an Eisenstein series and we may apply the work of Langlands. In both cases the
problem may be handled using harmonic analysis.

These methods do not apply when the variety is not an equivariant compacti­
fication of a homogeneous space. All other cases appearing in the list of section 4
have one preliminary step in common: they all use a lift to universal torsors.

Universal torsors: implicit in the case of a hypersurface in Pn(Q), it was made
explicit by Salberger in [Sal] in his alternative treatment of split toric varieties
over Q; it was then used by Salberger and de la Bretèche in the case of the plane
blown up in 4 points. The end of this survey is devoted to the description of this
preliminary step in those cases.

7. A basic example

In the case of hypersurfaces of large dimension and small degree, the principle
of Manin follows from the following deep theorem which is based upon the
Hardy­Littlewood circle method.

Theorem 7.1 (Birch [Bir]). — Let f ∈ Z[x0, . . . , xN ] be homogeneous of degree d,

and let W ⊂ AN+1−{0} be the cone defined by f = 0. Assume that:

(i) W is smooth,

(ii) W (R) 6=∅, and for all primes p, W (Qp) 6=∅,

(iii) N> 2d(d− 1).

Let

MW (B) = #
{
x ∈ ZN+1−{0}

∣∣∣∣ f (x) = 0 and sup
06i6N

|xi |6 B
}
.
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Then there exist explicit C > 0 and δ > 0 such that

MW (B) = CBN+1−d +O(BN+1−d−δ).

Let π : AN+1−{0}→ PN , and let V = π(W ) be the corresponding projective

hypersurface. Then ω−1V =OV (N +1− d), so we may take the height

H(x) =HN (x)N+1−d

where HN was defined in Section 2. Then

NV,H (B) =
1

2
#




x ∈ ZN+1−{0}

∣∣∣∣∣∣∣∣





f (x) = 0,

sup |xi |
N+1−d 6 B,

gcd(xi) = 1.




.

Using Möbius inversion, we get

NV,H (B) =
1

2

∑

k

µ(k)#



x ∈ (kZ)

N+1−{0}

∣∣∣∣∣∣




f (x) = 0,

supi |xi |
N+1−d 6 B



 ,

where µ : Z>0→{−1,0,1} is the Möbius function. Then

NV,H (B) =
1

2

∑

k

µ(k)MW

(
B1/(N+1−d)

k

)
∼

C

2

∑

k

µ(k)

kN+1−d B

=
C

2ζ(N +1− d)
B.

The motivation behind the introduction of universal torsors was to generalize
this simple descent argument to other varieties.

8. Universal torsors

Let V be a smooth, geometrically integral projective variety over K , where

charK = 0. Assume (for simplicity) that V is Fano, which means that ω−1V is

ample. Thus, if K is an algebraic closure of K , and V = V ×K K , then Pic(V ) is
a free abelian group of finite rank.

Assume K = K first. Let L1, . . . ,Lt be line bundles on V such that

[L1], . . . , [Lt] form a basis of Pic(V ) = Pic(V ). Let L×i = Li − zero section.
Consider

π : L×1 ×V L×2 ×V · · · ×V L×t → V.

On the left we have an action of Gt
m, this is ‘the’ universal torsor of V .
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Proposition 8.1. — If K = K , the universal torsor constructed above does not
depend, up to isomorphism, on the chosen basis of the Picard group.

Proof. — Let L′1, . . . ,L
′
t be line bundles on V whose classes [L′1], . . . , [L

′
t] form

another basis of the Picard group of V . Let M = (mi,j) in GLn(Z) be the matrix

such that

[L′i ] =
t∑

i=1

mj,i[Lj].

In other words, for each i in {1, . . . , t} we may fix an isomorphism

ψi :
t⊗

j=1

L
⊗mj,i
j −̃→ L′i .

But if E1, . . . , Em are one­dimensional vector spaces and k1, . . . , km integers there
is a canonical map

×mi=1(Ei −{0}) →
⊗m

i=1E
⊗ki
i

(y1, . . . , ym) 7→
⊗m

i=1 y
⊗ki
i

where for any vector space E of dimension one, and any non­zero y in E, y⊗−1

is the unique element of the dual E∨ of E such that y⊗−1(y) = 1. In that way,
composing with ψi , we get maps

ρi :
t
×
j=1

L×j → L′
×
i .

This map is equivariant for the action of Gt
m in the following sense:

∀(z1, . . . , zt) ∈Gt
m(K ), ∀y ∈

t
×
j=1

L×j (K ), ρi ((z1, . . . , zt) · y) =
t∏

j=1

z
mj,i
j · ρi (y).

Note that if ρ′i is another map from ×tj=1L
×
j to L′

×
i with the same equivariance

property, then there is a section s ∈ Γ(V,Gm) such that

∀y ∈
t
×
j=1

L×j (K ), ρ′i (y) = s(π(y)) · ρi (y).

But, since V is projective, Γ(V,Gm) = K ∗ and ρi is unique up to multiplication
by a constant. The maps ρi yield a map

ρ :
t
×
i=1

L×i →
t
×
i=1

L′i
×
.
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The matrix M defines a morphism of algebraic groups

M̃ : Gt
m → Gt

m

(z1, . . . , zt) 7→ (
∏t
j=1 z

mj,i
j )16i6t

and the map ρ is equivariant with respect to M̃ :

∀z ∈Gt
m(K ), ∀y ∈

t
×
i=1

L×i (K ), ρ(z · y) = M̃(z) · ρ(y).

Moreover, if ρ′ is another map with the same equivariance property, then there

is z ∈Gt
m(K ) such that ρ′ = z.ρ. Similarly we may define a map

τ :
t
×
i=1

L′i
×
→

t
×
i=1

L×i

which is equivariant with respect to M̃−1. Thus the composite map

τ ◦ ρ :
t
×
i=1

Li
×→

t
×
i=1

L×i

is equivariant with respect to the identity map and therefore coincides with the
action of an element of Gt

m(K ). Thus τ ◦ ρ and ρ ◦ τ are isomorphisms.

For arbitrary fields, a universal torsor may be described as a K ­structure on
the above torsor. Let us define this notion more precisely:

Recall that there is a contravariant equivalence of categories between the cat­
egory of algebraic tori, that is, algebraic groups T such that T is isomorphic

to GdimT
m,K

, and the category of Gal(K/K )­lattices, that is, Gal(K/K )­modules

which are free abelian groups of finite rank. The functors giving the equivalence
are

T 7→ X∗(T) = Homalg.gp.(T,Gm) and M 7→ Spec(K [M])Gal(K/K ).

Definition 8.2. — Let the Néron­Severi torus, TNS, be the torus corresponding
to the Gal(K/K )­lattice PicV .

If G is an algebraic group over K , then a G­torsor is a faithfully flat map
π : T → V with an action of G on T such that locally for the faithfully flat
topology, T ×V U ≃ G ×U , where the isomorphism is compatible with the
action of G. (In another language, these are principal homogeneous spaces.)

A TNS­torsor T → V is said to be universal if T → V is isomorphic as a
torsor to L∗1×V · · · ×V L∗t → V .
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Why are these universal torsors interesting? The following facts are due to
Colliot­Thélène and Sansuc, who introduced this notion.

Proposition 8.3 (Colliot­Thélène, Sansuc). — With notations as above,
— For all x ∈ V (K ), there exists a unique (up to isomorphism) universal torsor

π :T → V such that x ∈ π(T (K )).
— If K is a number field, there exist up to isomorphism only finitely many uni­

versal torsors π : T → V such that T (K ) 6=∅.

This proposition gives us a nice decomposition of the set of rational points

V (K ) =
⊔

16i6m

πi(Ti(K )).

Heuristic 8.4. — From the arithmetical point of view, universal torsors should be
much simpler than the variety V .

This heuristic can be justified by the following statement:

Proposition 8.5 (Colliot­Thélène, Sansuc). — If T c is a smooth projective com­

pactification of a universal torsor T → V , then T c(AK )
Br = T c(AK ). In other

words, there is no Brauer­Manin obstruction to the Hasse principle or weak approxi­
mation.

Example 8.6. — Let V ⊂ PN be a hypersurface over Q with dimV > 3,

degV = d, and N + 1− d > 0. Then the cone W ⊂ AN+1 − {0} above V
is, up to isomorphism, the unique universal torsor over V .

9. Toric varieties

The following construction is due to Cox. Let T be an algebraic torus and V
a smooth projective equivariant compactification of T . This means that there is
an action of T on V , an open subset U ⊂ V , and an isomorphism from U to T
compatible with the actions of T .

Denote by Σ(1) the set of orbits of codimension 1 in V . Then there is an exact
sequence of Gal(K/K )­modules

0→ X∗(T)
div
−→ ZΣ(1)

ρ
−→ Pic(V )→ 0

eσ 7→ [Dσ]
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where Dσ is the closure of the orbit σ in V , which is an irreducible divisor of V .
Moreover, we have

ω−1V =
∑

σ∈Σ(1)
[Dσ].

By duality, we get an exact sequence of tori

1→ TNS→ TΣ(1)
π
−→ T→ 1.

But T ⊂ V and we want to extend the map π to get a torsor over V . We do this
in the following way: We consider the affine space

AΣ(1) = Spec
(
(K [Xσ]σ∈Σ(1))

Gal(K/K )
)

and a closed subset F ⊂ AΣ(1), defined over K as a union of affine subspaces,

F =
⋃

I⊂Σ(1)⋂
σ∈I Dσ=∅

(⋂

σ∈I
(Xσ = 0)

)
.

Note that F is stable under the action of the Galois group, so it is defined over
K . We take T = AΣ(1)− F .

Claim 9.1. — For all x ∈ T(K ), the map

TΣ(1)→ T

t 7→ π(t) · x

extends to a map T → V sending 1 ∈ TΣ(1) to x.

Theorem 9.2 (Colliot­Thélène, Sansuc, Salberger, Madore)
The above construction gives a bijection between T(K )/TΣ(1)(K ) and isomor­

phism classes of universal torsors over V .

We return now to the problem of counting points. We assume that K = Q,

that the action of Gal(Q/Q) on X∗(T) and Σ(1) are trivial, and that ω−1V is
generated by global sections.

Then we consider

M = {m ∈ ZΣ(1) | ∀σ ∈ Σ(1), mσ > 0 and ρ(m) = ω−1V ∈ PicV }.

For all m ∈M , let Xm ∈Q[Xσ]σ∈Σ(1) be the corresponding monomial. We lift

the height to the universal torsor by

H̃((yσ)σ∈Σ(1)) = sup
m∈M
|Xm((yσ)σ∈Σ(1))|.
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Theorem 9.3 (Salberger [Sal]). — There exists a height H relative to ω−1V such

that NU,H (B) = Ñ(B)/2dimTNS , where Ñ(B) is the number of (yσ)σ∈Σ(1) in ZΣ(1)

such that 



H̃(y)6 B,

∀I ⊂ Σ(1),
⋂
σ∈I

Dσ =∅⇒ gcd
σ∈I

(yσ) = 1.

To prove Manin’s conjecture in that case one may then proceed as follows: By
use of a Möbius inversion formula, reduce to give an estimate

#
{
(yσ)σ∈Σ(1) ∈ (Z−{0})

Σ(1)
∣∣∣∣ H̃(y)6 B

}
.

and prove that when B goes to +∞ this is asymptotic to

vol
({

(yσ)σ∈Σ(1) ∈RΣ(1)
∣∣∣∣ H̃(y)6 B

})
∼ CB(logB)rkPicV−1,

which proves the conjecture in this case.

10. The plane blown up in 4 points

The construction is due to Salberger and Skorobogatov. We consider in this

section the blowup π : V → P2 of P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 =
(0 : 0 : 1), and P4 = (1 : 1 : 1). The exceptional divisors on V are Ei,5 =

π−1(Pi) and Ei,j, the strict pullback of the line through Pk and Pl if {i, j, k, l} =
{1,2,3,4}. Then Ei,j∩Ek,l =∅ if and only if {i, j}∩{k, l} 6=∅. Then we consider

the Grassmannian variety Gr(2,5) of the planes in Q5; we may embed it into

P(Λ2Q5). The cone above it, W ⊂ Λ2Q5 is given by the Plücker relations:




X1,2X3,4−X1,3X2,4 +X1,4X2,3 = 0,
X1,2X3,5−X1,3X2,5 +X1,5X2,3 = 0,
X1,2X4,5−X1,4X2,5 +X1,5X2,4 = 0,
X1,3X4,5−X1,4X3,5 +X1,5X3,4 = 0,
X2,3X4,5−X2,4X3,5 +X2,5X3,4 = 0.

Indeed, the vector space Λ2Q5 has dimension 10, and we take Xi,j as coordinates

corresponding to the basis elements ei∧ej for i 6= j. We consider the closed subset

F ⊂W given by

F =
⋃

{i,j}∩{k,ℓ}6=∅

((Xi,j = 0)∩ (Xk,ℓ = 0)),
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and define T =W − F . There is an action G5
m ⊂GL5(Q) on T , and T /G5

m is
isomorphic to V and T → V is up to isomorphism the only universal torsor.

We put

M =
{
(mi,j)i<j ∈ Z10

∣∣∣∣
∑

mi,jEi,j = ω
−1
V

}

and for m ∈M , Xm ∈Q[Xi,j, i < j]. Then we may lift the height by using

H̃((yi,j)) = sup
m∈M
|Xm(y)|.

Proposition 10.1 (Salberger). — There is a height H relative to ω−1V such that

NU,H (B) = Ñ(B)/2dimTNS where Ñ(B) is the number of (yi,j) in W (Z) such that



H̃(yi,j)6 B,

{i, j}∩ {k, l} 6=∅⇒ gcd(yi,j, yk,l) = 1.

This description, which was made by Salberger in order to get an upper bound
for the number of points of bounded height, was also the first step in the proof
of the empirical formula (F), given by de la Bretèche in [Bre2].

11. Generalization

The papers [Pe2] and [Pe3], showed how to generalize the lifting described in
Sections 7, 9, and 10. The first fact enabling this generalization is the existence
of a gauge form on each universal torsor:

Proposition 11.1. — If V is a Fano variety over K , and T a universal torsor over
V , then

— the canonical bundle ωT is trivial,
— Γ(T ,Gm) =K ∗.

As usual, a gauge form yields a measure:

Definition 11.2. — Up to a constant, there exists a unique non­vanishing sec­
tion of the canonical line bundle. Let ω̆T be such a section. This section defines
for any place v of K a measure ωT ,v on T (Kv) which is locally given by

ωT ,v =

∣∣∣∣∣

〈
∂

∂x1
∧ · · · ∧

∂

∂xN
, ω̆T

〉∣∣∣∣∣
v

dx1,v · · ·dxN,v,
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where (x1, . . . , xN ) is an analytic local system of coordinates on T (Kv) for v­adic
topology. We then define a canonical measure on

∏
v∈ΩK
T (Kv) by

ωT =
1

√
dK

dimT

∏

v∈ΩK

ωT ,v.

Remarks 11.3. —
(i) If V is a hypersurface in Pn, the measure ωT ,v coincides with the classical

Leray measure on T (Kv).
(ii) The measure ωT does not depend on the choice of the section ω̆T .
(iii) The volume ωT (

∏
v∈ΩK
T (Kv)) is infinite, but if S ⊂ΩK is a finite set

of places containing the archimedean ones and T a model of T over the ring of
S­integers OS, then the product

∏
v∈ΩK−S

ωT ,v(T (Ov)) converges.

Let T1, . . . ,Tr be torsors representing all isomorphism classes of universal tor­
sors over V having a rational point. It is then possible to construct families of
integrable functions Ψi,j,B :

∏
v∈ΩK
T (Kv)→ R>0 such that upper bounds for

the difference
∣∣∣∣∣∣∣∣

∑

y∈Ti (K )

Ψi,j,B(y)−
∫
∏

v∈ΩK

T (Kv)
Ψi,j,B(y)ωT

∣∣∣∣∣∣∣∣

yield an upper bound for the difference

|NU,H (B)− θH (V )B(logB)t−1|.

The liftings described in previous sections may be seen as particular cases of this
descent argument.
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