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Abstract. — We consider diagonal cubic surfaces defined by an equation of the
form

ax3 + by3 + cz3 + dt3 = 0.

Numerically, one can find all rational points of height 6 B for B in the range of

up to 105, thanks to a program due to D. J. Bernstein. On the other hand, there
are precise conjectures concerning the constants in the asymptotics of rational
points of bounded height due to Manin, Batyrev and the authors. Changing the
coefficients one can obtain cubic surfaces with rank of the Picard group varying
between 1 and 4. We check that numerical data are compatible with the above
conjectures. In a previous paper we considered cubic surfaces with Picard groups
of rank one with or without Brauer­Manin obstruction to weak approximation. In
this paper, we test the conjectures for diagonal cubic surfaces with Picard groups
of higher rank.
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Résumé. — Nous considérons les surfaces cubiques diagonales d’équation

ax3 + by3 + cz3 + dt3 = 0.

On peut trouver numériquement tous ses points rationnels de hauteur plus petite

que B lorsque B est inférieur à 105, gràce à un programme de D. J. Bernstein.
D’un autre côté, il existe une conjecture, due à Manin, Batyrev et les auteurs,
qui prédit exactement quel doit être le comportement asymptotique du nombre
de points rationnels de hauteur bornée sur cette surface. En changeant les coeffi­
cients, on peut obtenir des surfaces cubiques dont le groupe de Picard a un rang
qui varie de 1 à 4. Nous vérifions que les données numériques sont compatibles
avec les conjectures précédentes. Dans un texte antérieur, nous considérions les
surfaces cubiques dont le groupe de Picard est de rang un, avec éventuellement
une obstruction ade Brauer­Manin à l’approximation faible. Ici, nous vérifions les
conjectures pour les surfaces cubiques diagonales avec des groupes de Picard de
rang supérieur à 2.
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1. Introduction

This paper is devoted to numerical tests of a refined version of a conjecture
of Manin about the number of points of bounded height on Fano varieties (see
[BM], [FMT], [Pe], or [BT] for a description of the conjectures). The choice
of diagonal cubic surfaces to test these conjectures was motivated by the work of
Heath­Brown [HB] in which he treated the cases

X3 +Y 3 +Z3 + aT3 = 0
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for a = 2 or 3. The results he obtained were used as a benchmark for the sub­
sequent attempts to interpret the asymptotic constants (see, in particular, [SD],
[Pe] and [PT]).

More precisely, we consider a diagonal cubic surface V ⊂ P3
Q given by an

equation of the form

aX3 + bY 3 + cZ3 + dT3 = 0.

Let H be the height function on P3(Q) defined by the formula: for any Q = (x :
y : z : t) in P3(Q), one has

H(Q) = max{|x|, |y|, |z|, |t|} if




(x, y, z, t)∈ Z4,

gcd(x, y, z, t) = 1.

Let U be the complement in V to the 27 lines. We are interested in the asymp­
totic behavior of the cardinal

NU,H (B) = #{Q ∈U (Q) |H(Q)6 B}
as B goes to infinity.

Assume that V (Q) is Zariski dense, which by a result of Segre (see [Ma2,
§29,§30]) is equivalent to V (Q) 6=∅. It is expected that

NU,H (B) = BP(log(B)) + o(B)

as B goes to +∞, where P is a polynomial of degree rkPic(V )− 1, with leading
coefficient θH (V ). This constant has a conjectural description. The goal is to
compute θH (V ) explicitly in the examples at hand and to compare it with the
constant obtained from numerical data. Our previous paper [PT] was devoted to
surfaces with Picard groups of rank one with or without Brauer­Manin obstruc­
tion to weak approximation. In this paper, we consider examples with Picard
groups of higher rank.

Note that in these examples the relative error term

(NU,H (B)− θH (V )B(logB)rkPic(V )−1)/B(logB)rkPic(V )−1

is expected to decrease more slowly. Indeed, if rkPic(V ) = 1 this error term is
expected to decrease as 1/Bε for some ε > 0, whereas for higher ranks it should
be comparable to 1/ logB. Thus we decided not only to compare the conjectural
constant θH (V ) with the quotient

NU,H (B)/B(logB)rkPic(V )−1
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with B = 105, but also to take into account that a polynomial P of degree
rkPic(V )− 1 should appear in the asymptotics and use a naive statistical for­
mula to estimate its leading coefficient θstat

H (V ) from the data. We observe a
quite good accordance: the difference between θH (V ) and θ

stat
H (V ) is less than

6% in the examples. Moreover the fact that θstat
H (V ) is nearer to θH (V ) than the

above quotient is in itself a point in favor of the conjecture: indeed there is no
obvious purely statistical reason for which this should be true in general.

The paper is organized as follows: in section 2 we define θH (V ). Section
3 contains the description of the Galois action on the geometric Picard group
Pic(V ). In section 4 we compute the Euler product corresponding to good re­
duction places. In section 5 we explain how to compute the local densities at the
places of bad reduction. In section 6 we determine in each case the value of the
geometric constant α(V ) defined in §2. Section 7 is devoted to the description
of statistical tools we used to analyze the numerical data. In section 8 we present
the results.

We would like to thank the referee for the improvements he suggested.

2. Description of the conjectural constant

In this section we give a short description of the conjectural asymptotic con­
stant for heights defined by an adelic metrization of the anticanonical line bundle
(see [Pe] for more details and [BT] for a discussion in a more general setting).

Notations 2.1. — For any field E, we denote by E an algebraic closure of E. If
X is a variety over E, then X(E) denotes the set of rational points of X and X the
product X ×Spec(E) SpecE. The cohomological Brauer group Br(X) is defined

as the étale cohomology group H2
ét(X,Gm). For any A in Br(X), any extension

E′ of E and any P in V (E′), we denote by A(P) the evaluation of A at P.
For a number field F we denote by Val(F) the set of places of F and by Valf (F)

the set of finite places. The absolute discriminant of F is denoted by dF . For any
place v of F , let Fv be the v­adic completion of F . If v is finite, then Ov is the
ring of v­adic integers and Fv the residue field. By global class field theory we
have an exact sequence

(2.1) 0→ Br(F)→
⊕

v∈Val(F)
Br(Fv)

∑
invv−−−→Q/Z→ 0.

In the following, V is a smooth projective geometrically integral variety over a
number field F satisfying the conditions:
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(i) H i (V,OV ) = 0 for i = 1 or 2,
(ii) Pic(V ) has no torsion,
(iii) the anticanonical line bundle ω−1V belongs to the interior of the cone of

classes of effective divisors Λeff(V )⊂ Pic(V )⊗Z R.
The adelic space V (AF ) of V is the product

∏
v∈Val(F)V (Fv). By [CT, lemma

1], for any class A in Br(V ), one has a map ρA defined as the composition

V (AF ) →
⊕

v∈Val(F) Br(Fv)
∑

invv−−−→Q/Z
(Pv)v∈Val(F) 7→ (A(Pv))v∈Val(F).

Then one defines

V (AF )
Br =

⋂

A∈Br(V )

ker(ρA)⊂ V (AF ).

By the exact sequence (2.1), one has the inclusion

V (F)⊂ V (AF )
Br

where V (F) denotes the topological closure of the set of rational points. Con­
jecturally both sets coincide for cubic surfaces. (See also the text of Swinnerton­
Dyer in this volume). There is a Brauer­Manin obstruction to weak approximation,
as described by Manin in [Ma1] and by Colliot­Thélène and Sansuc in [CTS],
if one has

V (AF )
Br 6= V (AF ).

Let us assume that the height H on V is defined by an adelic metric (‖ ·
‖v)v∈Val(F) on ω−1V . By definition, this means that we consider ω−1V as a line

bundle, that the functions ‖ · ‖v are v­adically continuous metrics on ω−1V (Fv)
which for almost all places v are given by a smooth model of V , and that the
height of a rational point x of V is given by the formula

∀y∈ ω−1V (x)−{0}, H(x) =
∏

v∈Val(F)
‖y‖−1v

where ω−1V (x) is the fiber of ω−1V at x.
If v ∈ Val(F) the Haar measure dxv on Fv is normalized as follows:

­
∫
Ov

dxv = 1 if v is finite,

­ dxv is the usual Lebesgue measure if Fv −̃→ R,
­ dxv = dzdz = 2dxdy if Fv −̃→C.
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The metric ‖ · ‖v defines a measure ωH,v on the locally compact space V (Fv). In
local v­adic analytic coordinates x1,v . . . xn,v on V (Fv) this measure is given by the
formula

ωH,v =

∥∥∥∥∥
∂

∂x1,v
∧ · · · ∧ ∂

∂xn,v

∥∥∥∥∥
v

dx1,v . . .dxn,v .

If M is a discrete representation of Gal(F/F) over Q, then for any finite place
p of F , the local term of the corresponding Artin L­function is defined as follows:
we choose an algebraic closure Fp of Fp containing F . We get an exact sequence

1→ Ip→Dp→Gal(Fp/Fp)→ 1

where Dp is the decomposition group and Ip the inertia. We denote by F̃rp
a lifting of the Frobenius map to Dp ⊂ Gal(F/F) (which up to conjugation
depends only on p), and put

Lp(s,M) =
1

Det(1− (#Fp)
−sF̃rp |MIp)

.

We fix a finite set S of bad places containing the archimedean ones so that V
admits a smooth projective model V over the ring of S­integers OS. For any p

in Val(F)− S we consider

Lp(s,Pic(V )) = Lp(s,Pic(V )⊗Z Q).

The corresponding global L­function is given by the Euler product

LS(s,Pic(V )) =
∏

p∈Val(F)−S
Lp(s,Pic(V ))

which converges for Re s > 1 and has a meromorphic continuation to C with a
pole of order t = rkPic(V ) at 1. One introduces local convergence factors λv
given by

λv =





Lv(1,Pic(V )) if v ∈ Val(F)− S,
1 otherwise.

The Weil conjectures (proved by Deligne) imply that the Tamagawa measure
∏

v∈Val(F)
λ−1v ωH,v

converges on V (AF ) (see [Pe, proposition 2.2.2]).
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Definition 2.2. — The Tamagawa measure on V (AF ) corresponding to the
adelic metric (‖ · ‖v)v∈Val(F) is defined by

ωH =
1

√
dF

dimV
lim
s→1

(s− 1)tLS(s,Pic(V ))
∏

v∈Val(F)
λ−1v ωH,v.

From the arithmetic standpoint, it seems more natural to integrate ωH over

the closure V (F) ⊂ V (AF ) (as in the original approach to the Tamagawa num­

ber). However, computationally, it is easier to work with V (AF )
Br. Therefore,

following a suggestion of Salberger, we define here

Definition 2.3. —

(2.2) τH (V ) = ωH (V (A)Br).

Let Pic(V )∨ be the dual lattice to Pic(V ). We denote by dy the corresponding

Lebesgue measure on Pic(V )∨⊗Z R and by

Λeff(V )∨ = {x ∈ Pic(V )∨⊗Z R | ∀y ∈ Λeff(V ), 〈x, y〉> 0}
the dual cone of Λeff(V ).

Definition 2.4. — We define

α(V ) =
1

(t− 1)!
∫

Λeff(V )∨
e−〈ω
−1
V ,y〉dy

and

β(V ) = #H1(k,Pic(V )).

The theoretical constant attached to V and H is defined as

(2.3) θH (V ) = α(V )β(V )τH(V ).

In the following sections we compute θH (V ) for various diagonal cubic sur­
faces.

3. The Galois module Pic(V )

The description of this Galois module is based upon the study of the 27 lines
of the cubic. We fix notations for these lines which are slightly different from
those given by Colliot­Thélène, Kanevsky and Sansuc in [CTKS, p. 9].
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Notations 3.1. — From now on V is a diagonal cubic surface V given by an
equation of the form

(3.1) aX3 + bY 3 + cZ3 + dT3 = 0

where a, b, c and d are strictly positive integers with gcd(a, b, c, d) = 1. Let

S = {∞,3}∪ {p | p|abcd}

We fix a cubic root α (resp. α′,α′′) of b/a (resp. c/a, d/a) (which is assumed to
be in Q if b/a (resp. c/a, d/a) is a cube in Q) and we put

β =
α′′

α′
=

3
√
d

c
, β′ =

α

α′′
=

3
√
b

d
and β′′ =

α′

α
=

3
√

c

b
.

We also consider

γ =
α

α′α′′
=

3
√
ab

cd
, γ′ =

α′

α′′α
=

3
√

ac

bd
and γ′′ =

α′′

αα′
=

3
√
ad

bc
.

We denote by θ a primitive third root of one. The 27 lines of the cubic surface
(3.1) are given by the following equations, where i belongs to Z/3Z:

L(i):





X+θiαY = 0,

Z+θiβT = 0.
L′(i):





X+θiαY = 0,

Z+θi+1βT = 0.
L′′(i):





X+θiαY = 0,

Z+θi+2βT = 0.

M(i):




X+θiα′Z = 0,

T+θiβ′Y = 0.
M ′(i):




X+θiα′Z = 0,

T+θi+1β′Y = 0.
M ′′(i):




X+θiα′Z = 0,

T+θi+2β′Y = 0.

N(i):





X+θiα′′T = 0,

Y+θiβ′′Z = 0.
N ′(i):





X+θiα′′T = 0,

Y+θi+1β′′Z = 0.
N ′′(i):





X+θiα′′T = 0,

Y+θi+2β′′Z = 0.

Let K be the field Q(θ,α,α′,α′′). It is a Galois extension of Q. In the generic
case, K is an extension of degree 54 with a Galois group isomorphic to

(Z/3Z)3⋊Z/2Z.
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It is generated by the elements c, τ, τ′ and τ′′ characterized by their action on θ,
α, α′ and α′′.

θ α α′ α′′

c θ2 α α′ α′′

τ θ θα α′ α′′

τ′ θ α θα′ α′′

τ′′ θ α α′ θα′′

Their action on the 27 lines is given as follows: for τ we have

L(i)−→L′′(i +1)
տ ւ
L′(i +2)

M(i)−→M ′(i)
տ ւ
M ′′(i)

and
N(i)−→N ′′(i)
տ ւ
N ′(i)

(3.2)

for τ′:

L(i)−→L′′(i)
տ ւ
L′(i)

M(i)−→M ′′(i +1)
տ ւ
M ′(i +2)

and
N(i)−→N ′(i)
տ ւ
N ′′(i)

(3.3)

for τ′′:

L(i)−→L′(i)
տ ւ
L′′(i)

M(i)−→M ′′(i)
տ ւ
M ′(i)

and
N(i)−→N ′′(i +1)
տ ւ
N ′(i +2)

(3.4)

for c:

(3.5)

L(0) L′(0) L′′(0)

L(1) L′(1) L′′(1)

L(2) L′(2) L′′(2)

M(0)M ′(0) M ′′(0)

M(1)M ′(1) M ′′(1)

M(2)M ′(2) M ′′(2)

N(0) N ′(0) N ′′(0)

N(1) N ′(1) N ′′(1)

N(2) N ′(2) N ′′(2).

To describe the relations between the classes of these divisors in Pic(V ), which
shall be useful for the computation of α(V ), we consider V as the blow­up of a
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plane P2
Q

in six points P1, P2, P3, P4, P5 and P6. The 27 lines may then be

described as the 6 exceptional divisors E1, . . . , E6, the 15 strict transforms Li,j of

the projective lines (PiPj) for 1 6 i < j 6 6 and the 6 strict transforms of the

conics Qi going through all points except Pi . Let Λ be the preimage of a line of

P2
Q

which does not contain any of the points P1, . . . , P6. Then

([Λ], [E1], [E2], [E3], [E4], [E5], [E6])

is a basis of Pic(V ) and we have the following relations in Pic(V ):

(3.6)

[Li,j] = [Λ]− [Ei]− [Ej] for 16 i < j6 6,

[Qi ] = 2[Λ]−
∑

j 6=i
[Ej].

In the following, we choose the projection of V to P2
Q

so that we have the equal­

ities:

(3.7)

E1 = L(0), E2 = L(1), E3 = L(2),

E4 =M(1), E5 =M ′(2), E6 =M ′′(0),

Q1 = L′(1), Q2 = L′(2), Q3 = L′(0),

Q4 =M(0), Q5 =M ′(1), Q6 =M ′′(2),

L1,2 = L′′(1), L2,3 = L′′(2), L3,1 = L′′(0),

L4,5 =M ′′(1), L5,6 =M(2), L6,4 =M ′(0),
L1,4 =N(0), L1,5 =N(1), L1,6 =N(2),

L2,4 =N ′(1), L2,5 =N ′(2), L2,6 =N ′(0),

L3,4 =N ′′(2), L3,5 =N ′′(0), L3,6 =N ′′(1).

Notations 3.2. — We consider the étale algebra E1 over Q defined as Q(γ) if
ab/cd is not a cube in Q and as Q(θ)×Q otherwise. Similarly, we define the

algebra E2 (resp. E3) corresponding to γ′ (resp. γ′′) and we put

E = E1×E2×E3.
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We also consider the following elements of Pic(V )

e10 = [M(0)] + [M(1)] + [M(2)], e11 = [M ′(0)] + [M ′(1)] + [M ′(2)],

e12 = [M ′′(0)] + [M ′′(1)] + [M ′′(2)], e20 = [N(0)] + [N(1)] + [N(2)],

e21 = [N ′(0)] + [N ′(1)] + [N ′(2)], e22 = [N ′′(0)] + [N ′′(1)] + [N ′′(2)],

e30 = [L(0)] + [L(1)] + [L(2)], e31 = [L′(0)] + [L′(1)] + [L′(2)],

e32 = [L′′(0)] + [L′′(1)] + [L′′(2)]

and the sets

E1 = {e10, e11, e12}, E2 = {e20, e21, e22}, E3 = {e30, e31, e32},
and E = E1 ∪E2 ∪E3.

Lemma 3.3. — The sets E1, E2 and E3 are globally invariant under the action
of the Galois group Gal(K/Q) and the étale algebra corresponding to the set Ei is
isomorphic to Ei .

Proof. — The fact that the sets E1, E2 and E3 are globally invariant follows im­
mediately from the descriptions (3.2)–(3.5). The étale algebra F corresponding
to a finite Gal(K/Q)­set F may be defined as the algebra

(K [F ])Gal(K/Q)

where K [F ] is the algebra KF and where Gal(K/Q) acts simultaneously on K
and F . In the generic case, let us consider

σ = τ′τ′′, σ′ = τ′′τ and σ′′ = ττ′.
Then σ sends γ on θγ and acts trivially on γ′, γ′′ and θ. We may describe similarly

the actions of σ′ and σ′′. The action of Gal(K/Q) on E1 in the generic case is
given by the table

e10 e11 e12

c e10 e12 e11

σ e11 e12 e10

σ′ e10 e11 e12

σ′′ e10 e11 e12



12 EMMANUEL PEYRE & YURI TSCHINKEL

This implies that if ab/cd is not a cube in Q, then E1 is isomorphic to

Gal(K/Q)/Gal(K/Q(γ))

as a Gal(K/Q)­set. Then the corresponding étale algebra is

(K [Gal(K/Q)/Gal(K/Q(γ))])Gal(K/Q) −̃→ KGal(K/Q(γ)) = Q(γ) = E1.

Similarly if ab/cd is a cube in Q, then we may decompose E1 into two orbits and
we see that the corresponding étale algebra is Q(θ)×Q = E1. The proofs for E2
and E3 are similar.

Lemma 3.4. — There exists an exact sequence of Gal(K/Q) modules

0→Q2→Q[E ]→ Pic(V )⊗Z Q→ 0.

Proof. — By (3.6) and (3.7), we have in Pic(V ) the relations

e10 = 3[Λ]− [E1]− [E2]− [E3] + [E4]− 2[E5]− 2[E6],
e11 = 3[Λ]− [E1]− [E2]− [E3]− 2[E4] + [E5]− 2[E6],
e12 = 3[Λ]− [E1]− [E2]− [E3]− 2[E4]− 2[E5] + [E6],

e20 = 3[Λ]− 3[E1]− [E4]− [E5]− [E6],
e21 = 3[Λ]− 3[E2]− [E4]− [E5]− [E6],
e22 = 3[Λ]− 3[E3]− [E4]− [E5]− [E6],
e30 = [E1] + [E2] + [E3],

e31 = 6[Λ]− 2[E1]− 2[E2]− 2[E3]− 3[E4]− 3[E5]− 3[E6],
e32 = 3[Λ]− 2[E1]− 2[E2]− 2[E3]

which proves that the natural projection from Q[E ] to Pic(V )⊗ZQ is surjective.
Moreover one has the relations

3ω−1V =
∑

x∈E1
x =

∑

x∈E2
x =

∑

x∈E3
x,

which gives a homomorphism of Gal(K/Q)­modules

Q2→Q[E ]

and the exact sequence of the lemma.
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Notations 3.5. — For any prime p and any finite field extension F of Q, we
consider the local factor ζF,p of the function ζF at p which is defined by

ζF,p(s) =
∏

{v∈Val(F)|v|p}
(1− #F−sv )−1.

Let F be an étale algebra over Q and F =
∏
i∈I Fi its decomposition in fields. Put

ζF (s) =
∏

i∈I
ζFi (s) and ζF,p(s) =

∏

i∈I
ζFi ,p(s).

For any prime p, we denote by νF (p) the number of components of F ⊗Q Qp of

degree one over Qp.

Proposition 3.6. — With notation as above, for any prime p not in S, one has

(i) Lp(s,Pic(V )) =
ζE,p(s)

ζQ,p(s)
2 ,

(ii) Tr(F̃rp | Pic(V )) = νE(p)− 2.

Proof. — By lemma 3.4, we have

Lp(s,Pic(V )) =
Lp(s,Q[E ])

Lp(s,Q)2
.

Thus it is enough to prove that if E is an arbitrary étale algebra over Q corre­
sponding to a Gal(Q/Q)­set E and if p is a prime such that E/Q is not ramified
at p, then

ζE,p(s) = Lp(s,Q[E ]).

This well­known assertion follows from the fact that the components of E⊗Qp

are in bijection with the orbits of F̃rp in E , and the degree of each component is

the length of the corresponding orbit. This proves (i).
But this also shows that

Tr(F̃rp |Q[E ]) = νE(p)

which implies (ii).

Remark 3.7. — Thus the factor λ′p which was defined in proposition 5.1 in

[PT] coincides with Lp(1,Pic(V )) at the good places (as suggested by the referee

of that paper).
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4. Euler product for the good places

We need to compute the number of solutions of (3.1) modulo p for all primes
not in S.

Proposition 4.1. — For any prime p not in S, one has

#V (Fp)

p2
= 1+

νE(p)− 2
p

+
1

p2

where E is the étale algebra defined in §3.

Proof. — By a result of Weil (see [Ma2, theorem 23.1]),

#V (Fp) = 1+Tr(Frp | Pic(V ))p+ p2.

Proposition 3.6 implies that

Tr(Frp | Pic(V )) = νE(p)− 2.

Remark 4.2. — We could have proved this result directly as in [PT]. Let N(p)

be the number of solutions of (3.1) in F4p . We have

#V (Fp) =
N(p)− 1
p− 1 .

By [IR, §8.7 theorem 5], one has

N(p) = p3 +
∑

χ1(a)χ2(b)χ3(c)χ4(d)J0(χ1,χ2,χ3,χ4),

where the sum is taken over all quadruples (χ1, . . . ,χ4) of nontrivial cubic char­
acters from F∗p to C∗ such that χ1χ2χ3χ4 = 1 and where

J0(χ1,χ2,χ3,χ4) =
∑

t1+···+t4=0

4∏

i=1
χi(ti ),

the characters being extended by χi (0) = 0. For p ≡ 2 mod 3 there are no
nontrivial characters and the formula is obvious. Otherwise there are exactly two
nontrivial conjugated characters χ and χ. By [PT, proof of prop. 4.1], we have

J0(χ1,χ2,χ3,χ4) = p(p− 1)
and

#V (Fp) = 1+ p(1 +
∑

χ1(a)χ2(b)χ3(c)χ4(d)) + p2
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where the sum is taken over the same quadruples as above. The formula

∑
χ1(a)χ2(b)χ3(c)χ4(d) =

χ
(
ab

cd

)
+ χ

(
ab

cd

)
+ χ

(
ac

bd

)
+ χ

(
ac

bd

)
+ χ

(
ad

bc

)
+ χ

(
ad

bc

)

implies the result.

Notations 4.3. — For any place v of Q, we put

λv =






ζE,v(s)

ζQ,v(s)
2 if v is finite,

1 otherwise.

Remark 4.4. — By proposition 3.6, λp = Lp(1,Pic(V )) if p ∈ Val(Q)− S. Thus

the Tamagawa measure ωH is given by the formula

ωH = lim
s→1

(s− 1)rkPic(V )
(

ζE(s)

ζQ(s)2

)
×

∏

v∈Val(Q)

λ−1v ωH,v.

By lemmata 3.2 and 3.4 in [PT] and lemma 5.4.6 in [Pe], for any p in Val(Q)−S
one has

ωH,p(V (Qp)) =
#V (Fp)

p2

(see also [Pe, lemma 2.2.1] and [PT, remark 5.2]). Therefore, the local factor at
a good place p is given by

(
1− 1

p

)7(
1+

7
p +

1

p2

)
if p≡ 1 mod 3 and νE(p) = 9

(
1− 1

p

)4(
1− 1

p3

)(
1+

4
p +

1

p2

)
if p≡ 1 mod 3 and νE(p) = 6

(
1− 1

p

)(
1− 1

p3

)2(
1+

1
p +

1

p2

)
if p≡ 1 mod 3 and νE(p) = 3

(
1− 1

p

)−2(
1− 1

p3

)3(
1− 2

p +
1

p2

)
if p≡ 1 mod 3 and νE(p) = 0

(
1− 1

p

)(
1− 1

p2

)3(
1+

1
p +

1

p2

)
if p≡ 2 mod 3.
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We get (for the good places) the factors C0, C1, C2 and C3 where

C0 =
∏

p/|3abcd,
p≡2 mod 3.

(
1− 1

p3

)(
1− 1

p2

)3
,

C1 =
∏

p/|3abcd,
p≡1 mod 3,
νE(p)=9.

(
1− 1

p

)7(
1+

7

p
+

1

p2

)
,

C2 =
∏

p/|3abcd,
p≡1 mod 3,
νE(p)=6.

(
1− 1

p3

)(
1− 1

p

)4(
1+

4

p
+

1

p2

)
,

C3 =
∏

p/|3abcd,
p≡1 mod 3,
νE(p)=0 or 3.

(
1− 1

p3

)3
.

These products converge rapidly and are easily approximated.

5. Density at the bad places

In this section we restrict to cubic surfaces with equations of the form

(5.1) X3 +Y 3 + qZ3 + q2T3 = 0

with q prime and

(5.2) aX3 + aY 3 + qZ3 + qT3 = 0

with q prime and a an integer coprime to q.

Notations 5.1. — If V is defined by the equation (3.1), and p is a prime, then
we consider

N∗(pr) = #{(x, y, z, t)∈ (Z/prZ)4−(pZ/prZ)4 | ax3+by3+cz3+dt3=0 in Z/prZ}
Remark 5.2. — By [PT, lemmata 3.2 and 3.4], there is an explicit integer r0
such that

ωH,p(V (Qp)) =
1

1− p−1 ×
N∗(pr0)
p3r0

.
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If p = 3 and 3 /| abcd, then a direct computation in (Z/9Z)4 gives the value of
N∗(9) and thus of ωH,p(V (Qp)). Thus, in the following lemma we restrict to

the case when V is given by (5.1) or (5.2) and p = q.

Lemma 5.3. — If V is given by the equation

X3 +Y 3 + pZ3 + p2T3 = 0

then for r> 2,

N∗(pr)
p3r

=






1− 1
p if p≡ 2 mod 3,

3
(
1− 1

p

)
if p≡ 1 mod 3,

2
3 if p = 3.

If V is given by the equation

aX3 + aY 3 + pZ3 + pT3 = 0,

with p /| a, then for r> 3,

N∗(pr)
p3r

=






1− 1

p2
if p≡ 2 mod 3,

3
(
1− 1

p2

)
if p≡ 1 mod 3,

4
3 if p = 3.

Remark 5.4. — This lemma implies that if V is given by the first equation then
the local factor at p is given by

λpωH,p(V (Qp)) =





(
1− 1

p2

)(
1− 1

p

)
if p≡ 2 mod 3,

3
(
1− 1

p

)3
if p≡ 1 mod 3,

4
9 if p = 3,

and if V is given by the second equation then this factor is

λpωH,p(V (Qp)) =





(
1− 1

p2

)3
if p≡ 2 mod 3,

3
(
1− 1

p

)4(
1− 1

p2

)
if p≡ 1 mod 3,

16
27 if p = 3.
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Proof. — Let us consider the set of quadruples (x, y, z, t) in (Z/prZ)4−(pZ/prZ)4
such that

(5.3) x3 + y3 + pz3 + p2t3 = 0 in Z/prZ.

If p|x then p|y, p|z and p|t. Therefore, for any (x, y, z, t) as above, p /| x and p /| y.
But for any triple (y, z, t) in (Z/prZ− pZ/prZ)× (Z/prZ)2, there exists exactly
one x verifying (5.3) if p≡ 2 mod 3 and exactly three of them if p≡ 1 mod 3. If
p = 3 and y belongs to Z/3rZ−3Z/3rZ then (5.3) implies that 3|z. For any triple
(y, z, t) with y in (Z/3rZ)− (3Z/3rZ), z in (3Z/3rZ) and t in (Z/3rZ) there exist
exactly three x in Z/3rZ which satisfy (5.3). We get that

N∗(pr)
p3r

=






(p−1)pr−1×pr×pr
p3r

= 1− 1
p if p≡ 2 mod 3,

3
(p−1)pr−1×pr×pr

p3r
= 3

(
1− 1

p

)
if p≡ 1 mod 3,

3
2×3r−1×3r−1×3r

33r
=

2
3 if p = 3.

Let us now turn to the set of (x, y, z, t) in (Z/prZ)4− (pZ/prZ)4 such that

ax3 + ay3 + pz3 + pt3 = 0.

We decompose this set as follows

N∗1 (p
r) = #



 (x, y, z, t)∈ (Z/prZ)4−(pZ/prZ)4

∣∣∣∣∣∣




p /| x,
ax3+ ay3 + pz3 + pt3 = 0.





N∗2 (p
r) = #



 (x, y, z, t)∈ (Z/prZ)4−(pZ/prZ)4

∣∣∣∣∣∣




p|x, p /| z,
ax3+ ay3 + pz3 + pt3 = 0.





As above we have the formula

N∗1 (pr)
p3r

=






(p−1)pr−1×pr×pr
p3r

= 1− 1
p if p≡ 2 mod 3,

3× (p−1)pr−1×pr×pr
p3r

= 3
(
1− 1

p

)
if p≡ 1 mod 3,

3
2×3r−1×3r−1×3r

33r
=

2
3 if p = 3,

where for p = 3 we use the equality

3r−1× 3r = #{ (z, t)∈ (Z/3rZ)2 | z3 ≡ t3 mod 3}.
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On the other hand,

N∗2 (p
r) = p2



 (x, y, z, t)∈ (Z/pr−1Z)4

∣∣∣∣∣∣




p /| z
ap2x3 + ap2y3 + z3 + t3 = 0.





and

N∗2 (pr)
p3r

=
p2

p3
×






(p−1)pr−2×pr−1×pr−1
p3(r−1)

= 1− 1
p if p≡ 2 mod 3,

3
(p−1)pr−2×pr−1×pr−1

p3(r−1)
= 3

(
1− 1

p

)
if p≡ 2 mod 3,

3
2×3r−2×3r−1×3r−1

33(r−1)
= 2 if p = 3.

We conclude:

N∗(pr)
p3r

=






1− 1
p +

1
p −

1

p2
= 1− 1

p2
if p≡ 2 mod 3,

3
(
1− 1

p2

)
if p≡ 1 mod 3,

2
3 +

2
3 =

4
3 if p = 3.

6. The constant α(V )

Since the cubic surfaces we consider in this paper are Q­rational (which im­
plies that β(V ) = 1), it remains to compute the rank t of the Picard group and
the value of α(V ).

Proposition 6.1. — If V is given by the equation

(6.1) X3 +Y 3 + aZ3 + a2T3 = 0,

where a is not a cube in Q, then rkPic(V ) = 2 and α(V ) = 2.
If V is given by the equation

(6.2) aX3 + aY 3 + bZ3 + bT3 = 0,

where a and b are strictly positive integers and b/a is not a cube in Q, then
rkPic(V ) = 3 and α(V ) = 1.

If V is given by the equation

(6.3) X3 +Y 3 +Z3 +T3 = 0

then rkPic(V ) = 4 and α(V ) = 7/18.
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Proof. — To compute α(V ) we shall use its original definition [Pe, §2]:

α(V ) = Vol{x ∈ Λeff(V )∨ | 〈ω−1V , x〉 = 1}
where the Lebesgue measure on the affine hyperplane

H (λ) = {x ∈ Pic(V )∨⊗Z R | 〈ω−1V , x〉= λ}
is defined by the (t− 1)­form dx which is characterized by the relation

dx ∧ dω−1V = dy

(where dω−1V is the linear form defined by ω−1V on Pic(V )∨ and dy is the form

corresponding to the natural Lebesgue measure on Pic(V )∨ ⊗Z R). More ex­

plicitely, let (e1, . . . , et) be a basis of Pic(V ) and (e∨1 , . . . , e∨t ) be the dual basis.
Write

ω−1V =
t∑

i=1
λi ei

with λt 6= 0. Let f1, . . . , ft−1 be the projection of e∨1 , . . . , e∨t−1 on H (0) along e∨t .
Then

dx =
1

λt
df ∨1 ∧ · · · ∧ df ∨t−1 .

By [SK, pages 14 and 55], if O1, . . . ,Om are the orbits of the action
of Gal(K/Q) on the 27 lines, then Λeff(V ) is generated by the classes
[Oi ] =

∑
x∈Oi [x].

When V is given by the equation (6.1) the Galois group Gal(K/Q) is

Z/3Z⋊Z/2Z

and the orbits of its action on the 27 lines are

O1 = {L(0),L′(0),L′′(0)},
O2 = {L(1),L(2),L′(1),L′(2),L′′(1),L′′(2)},
O3 = {M(0),M(1),M(2)},
O4 = {M ′(0),M ′(1),M ′(2),M ′′(0),M ′′(1),M ′′(2)},
O5 = {N(0),N ′(1),N ′′(2)},
O6 = {N(1),N(2),N ′(0),N ′(2),N ′′(0),N ′′(1)}.

In the basis ([Λ], [E1], . . . , [E6]), a basis of Pic(V ) = (PicV )Gal(K :Q) is given by

e1 = ω−1V , e2 =−2[E4] + [E5] + [E6].
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In the basis (e0, e1), the effective cone Λeff(V ) is generated by the classes

[O1] = e1, [O2] = 2e1, [O3] = e1− e2,
[O4] = 2e1 + e2, [O5] = e1 + e2, [O6] = 2e1− e2.

Therefore, this cone is generated by the elements e1− e2 and e1 + e2 and α(V ) is
given as the volume of the domain

x = 1, x+ y > 0 and x− y > 0,

that is, as the volume of the segment [−1,1] and α(V ) = 2.
If V is given by the equation (6.2) then Gal(K/Q) is isomorphic to

Z/3Z⋊Z/2Z

and the orbits of the Galois action on the 27 lines are

O1 = {L(0)},
O2 = {L(1),L(2)},
O3 = {L′(0),L′′(0)},
O4 = {L′(1),L′′(2)},
O5 = {L′(2),L′′(1)},
O6 = {M(0),M ′(1),M ′′(2)},
O7 = {M(1),M(2),M ′(0),M ′(2),M ′′(0),M ′′(1)},
O8 = {N(0),N(1),N(2)},
O9 = {N ′(0),N ′(1),N ′(2),N ′′(0),N ′′(1),N ′′(2)}.

A basis of Pic(V ) is given by

e1 = ω−1V , e2 = [E1], e3 = [E2] + [E3],

and the cone Λeff(V ) is generated by

[O1] = e2, [O2] = e3, [O3] = e1− e2,
[O4] = e1 + e2− e3, [O5] = e1− e2, [O6] = 2e1− e2− e3,
[O7] = e1 + e2 + e3, [O8] = e1− 2e2 + e3, [O9] = 2e1 +2e2− e3,

that is, by

e2, e3, e1 + e2− e3, 2e1− e2− e3, e1− 2e2 + e3
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(since 3[O3] = [O6] + [O8]). Thus α(V ) is the volume of the domain given by





x = 1, y > 0, z > 0,

x+ y− z > 0,

2x− y− z > 0,

x− 2y+ z > 0.

Using the description above, α(V ) is the volume of





0 < y, 0 < z,

z− y < 1,

y+ z < 2,

2y− z < 1. y

z

Therefore α(V ) = 1.
If V is given by the equation (6.3), then Gal(K/Q) = Z/2Z and the orbits of

the Galois action on the 27 lines are given by

O1 = {L(0)}, O2 = {L(1),L(2)}, O3 = {L′(0),L′′(0)},
O4 = {L′(1),L′′(2)}, O5 = {L′(2),L′′(1)},
O6 = {M(0)}, O7 = {M(1),M(2)}, O8 = {M ′(0),M ′′(0)},
O9 = {M ′(1),M ′′(2)}, O10 = {M ′(2),M ′′(1)},
O11 = {N(0)}, O12 = {N(1),N(2)}, O13 = {N ′(0),N ′′(0)},
O14 = {N ′(1),N ′′(2)}, O15 = {N ′(2),N ′′(1)}.

A basis of the Picard group is given by

e1 = [Λ]− [E4], e2 = [E1], e3 = [E2] + [E3], e4 =−2[E4] + [E5] + [E6].
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The effective cone Λeff(V ) is generated by

[O1] = e2, [O2] = e3,

[O3] = 3e1− 2e2− e3− e4, [O4] = 3e1− 2e3− e4,
[O5] = 3e1− 2e2− e3− e4, [O6] = 2e1− e2− e3− e4,
[O7] = e1− e4, [O8] = e1,

[O9] = 4e1− 2e2− 2e3− e4, [O10] = e1,

[O11] = e1− e2, [O12] = 2e1− 2e2− e4,
[O13] = 2e1− e3− e4, [O14] = 2e1− e3,
[O15] = 2e1− e3− e4.

Since [O3] = [O5] = [O6] + [O11] and [O13] = [O15] = [O6] + [O2], we get that
Λeff(V ) is generated by

e2, e3, 3e1− 2e3− e4, 2e1− e2− e3− e4, e1− e4,
4e1− 2e2− 2e3− e4, e1− e2, 2e1− 2e2− e4, 2e1− e3.

The anticanonical class is given by

ω−1V = 3e1− e2− e3− e4.

Thus α(V ) is the volume of the domain





3x− y− z− t = 1,

y > 0, z > 0,

x− y > 0,

2x− z > 0,

x− t > 0,

3x− 2z− t > 0,

2x− y− z− t > 0,

4x− 2y− 2z− t > 0,

2x− 2y− t > 0,
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that is, of the domain P in R3 given by





y > 0, z > 0,

x− y > 0,

2x− z > 0,

1− 2x+ y+ z > 0,

1+ y− z > 0,

1− x > 0,

1+ x− y− z > 0,

1− x− y+ z > 0.

We compute its volume as follows: decompose P into cones with apex (0,0,0)
and supported by the faces not containing this point. Thus we consider the
following faces of P:

F1 : 1− x = 0, F2 : 1− 2x+ y+ z = 0,

F3 : 1 + y− z = 0, F4 : 1 + x− y− z = 0,

F5 : 1− x− y+ z = 0.

One has

α(V ) = Vol(P) =
1

3

5∑

i=1
Area(Fi ).

The area of F1 is the volume of the domain






y > 0, z > 0,

1− y > 0,

2− z > 0,

−1+ y+ z > 0,

1+ y− z > 0,

2− y− z > 0,

z− y > 0,

y

z
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and we get Area(F1) =
1
2 . For F2 we have the equations





y > 0,

−1+ 2x− y > 0,

x− y > 0,

1+ y > 0,

2− 2x+2y > 0,

1− x > 0,

2− x > 0,

x− 2y > 0.

x

y

We get Area(F2) =
1
6 . For F3 we have the same equations and the same area. For

F4 we have the equations




y > 0,

1+ x− y > 0,

x− y > 0,

−1+ x+ y > 0,

2− x > 0,

−x+2y > 0,

1− x > 0,

2− 2y > 0.

x

y

We find Area(F4) = 1/8+1/24 = 1/6. The face F5 is given by the same equations
and Area(F5) = 1/6. Finally

α(V ) =
1

3

(
1

2
+
4

6

)
=

7

18
.

7. Some statistical formulae

The most naive way to test the conjecture is to compute the quotient

(7.1) NU,H (B)/θH (V )B(logB)t−1

for large values of B. However, as explained in the introduction, the relative error
term is expected to decrease slowly. Therefore it is natural to use the fact that we
expect an asymptotic of the form

NU,H (B) = BP(log(B)) + o(B),
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where P is a polynomial of degree t − 1 with a dominant coefficient equal to
θH (V ). With the program of D. J. Bernstein [Be], we can get a family of pairs
(Bi ,NU,H (Bi))16i6N . In the examples below we took for Bi successive powers

of 6/5 between 200 and 105. For any i between 1 and N , let

xi = log(Bi) and yi =NU,H (Bi)/Bi .

The simplest statistical tool in this setting is to look for a polynomial Q of degree
t− 1 such that

N∑

i=1
(Q(xi )− yi)2

is minimal and to compute its leading coefficient At−1. We then test the conjec­
ture using the quotient

(7.2) At−1/θH (V )

The advantage of this method is that, if the expected formula is correct, and if
we take for Bi successive powers of a fixed real number λ between B1 and BN ,
then the relative error term for (7.2) should at least decrease as C/(log(BN )−
log(B1))

t−1 for BN /B1 large enough with a constant C going to 0 as B1 goes to
infinity.

Of course, due to the arithmetic nature of NU,H (B), the errors are not as
independent as one would need for a clean statistical treatment of the data. Also,
since we do not have a good understanding of the difference

NU,H (B)−BP(log(B)),
and in order to limit the number of arbitrary parameters involved in the statistical
computation, we prefered not to weight the points.

Notations 7.1. — Let R(X,Y ) be a polynomial in Q[X,Y ] and denote by
〈R(X,Y )〉 the mean value of (R(xi , yi ))16i6N , that is,

〈R(X,Y )〉 = 1

N

N∑

i=1
R(xi , yi).

If t = 2 the leading coefficient of Q (if it is uniquely defined) is given by

A1 =
〈XY 〉− 〈Y 〉〈X〉
〈X2〉− 〈X〉2 .
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If t = 3 the leading coefficient is

A2 =
〈YX2〉− 〈Y 〉〈X2〉− (〈X3〉−〈X〉〈X2〉)(〈YX〉−〈Y 〉〈X〉)

〈X2〉−〈X〉2

〈X4〉− 〈X2〉2− (〈X3〉−〈X〉〈X2〉)2
〈X2〉−〈X〉2

.

If t = 4, the leading coefficient is

A3 =
〈YX3〉− 〈Y 〉〈X3〉− (〈X4〉−〈X〉〈X3〉)(〈YX〉−〈Y 〉〈X〉)

〈X2〉−〈X〉2 − βδ
γ

〈X6〉− 〈X3〉2− (〈X4〉−〈X〉〈X3〉)2
〈X2〉−〈X〉2 − β2

γ

,

with

β = 〈X5〉− 〈X3〉〈X2〉− 〈X
3〉− 〈X〉〈X2〉
〈X2〉− 〈X〉2 (〈X4〉− 〈X3〉〈X〉),

γ = 〈X4〉− 〈X2〉2− (〈X3〉− 〈X〉〈X2〉)2
〈X2〉− 〈X〉2 ,

δ = 〈YX2〉− 〈Y 〉〈X2〉− 〈X
3〉− 〈X〉〈X2〉
〈X2〉− 〈X〉2 (〈YX〉− 〈Y 〉〈X〉).

In the next section, we denote by θstat
H (V ) the leading coefficient At−1.

8. Presentation of the results

We consider only cubic surfaces of the form (6.1), (6.2), or (6.3). By [CTKS,
Lemme 1], the corresponding surface V is Q­rational and, in particular, Br(V ) =
0. Thus the Brauer­Manin obstruction to weak approximation is void and

V (AQ)Br = V (AQ) =
∏

v∈Val(Q)

V (Qv).

Moreover,

β(V ) = #H1(Q,Pic(V )) = 1.

By (2.2) and (2.3), the constant θH (V ) may be written as

θH (V ) = α(V )ωH (V (AQ))



28 EMMANUEL PEYRE & YURI TSCHINKEL

Using remark 4.4 we get

θH (V ) = α(V ) lim
s→1

(s− 1)t+2ζE(s)×ωH,∞(V (R))

×
∏

p|3abcd
λpωH,p(V (Qp))×

3∏

i=0

Ci ,

where E is the étale algebra defined in 3.2. The residue of the zeta function could
have been computed directly (see, for example, [Co, chapter 4]), but instead we
used PARI. The volume at the real place is given by the formula

1

2

∫
{
(x,y,z,t)

∣∣∣∣
{
ax3+by3+cz3+dt3=0
sup(|x|,|y|,|z|,|t|)61

}ωL(x, y, z, t),

where ωL is the Leray form

ωL(x, y, z, t) =
3pd−1

3(ax3 + by3 + cz3)2/3
dxdydz .

Decomposing the domain of integration (and using the various expressions of
the Leray form) it is possible to remove the singularities of this integral which is
then easily estimated on a computer. The factors corresponding to the bad places
have been described in section 5 and the constants C0, C1, C2, and C3 may be
computed directly as in section 4.

We considered the following examples: for the cubic surfaces with a Picard
group of rank 2 we used

X3 +Y 3 +2Z3 +4T3 = 0,(S1)

X3 +Y 3 +5Z3 +25T3 = 0,(S2)

X3 +Y 3 +3Z3 +9T3 = 0.(S3)

For the rank 3 case:

X3 +Y 3 +2Z3 +2T3 = 0,(S4)

X3 +Y 3 +5Z3 +5T3 = 0,(S5)

X3 +Y 3 +7Z3 +7T3 = 0,(S6)

2X3 +2Y 3 +3Z3 +3T3 = 0,(S7)

and for rank 4:

X3 +Y 3 +Z3 +T3 = 0.(S8)
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We draw below the corresponding experimental curves in which we compare the

value of NU,H (B)/(B(logB)t−1) with θH (V ). On each drawing, only the points

on the right of the vertical line have been used for the computation of θstat
H (V ).

0 1 2 3 4 5 6 7 8 91011
log(B)

0

θH (V )

S1

0 1 2 3 4 5 6 7 8 91011
log(B)

0

θH (V )

S2

0 1 2 3 4 5 6 7 8 91011
log(B)

0

θH (V )

S3

0 1 2 3 4 5 6 7 8 91011
log(B)

0

θH (V )

S4
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0 1 2 3 4 5 6 7 8 91011
log(B)

0

θH (V )

S5

0 1 2 3 4 5 6 7 8 91011
log(B)

0

θH (V )

S6

0 1 2 3 4 5 6 7 8 91011
log(B)

0

θH (V )

S7

0 1 2 3 4 5 6 7 8 91011
log(B)

0

θH (V )

S8
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We finish with tables of numerical results. The value of θstat
H (V ) is obtained

from the pairs (Bi ,NU,H (Bi)) as described in section 7. We denote by ζ∗Ei (1) the

limit

ζ∗Ei (1) = lim
s→1

(s− 1)ti ζ∗Ei (s),

where ti is the number of components of Ei . Note that for the examples with a
Picard group of rank 2, C2 is equal to 1.
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Surface S1 S2 S3

B 100000 100000 100000

NU,H (B) 433526 286040 455164

α(V ) 2 2 2

ab/cd 1/8 1/125 1/27

ζ∗E0(1) 6.045998× 10−1 6.045998× 10−1 6.045998× 10−1

ac/bd 1/2 1/5 1/3

ζ∗E1(1) 8.146241× 10−1 1.163730 1.017615

ad/bc 2 5 3

ζ∗E2(1) 8.146241× 10−1 1.163730 1.017615

λ′3ωH (V (Q3)) 4/9 4/9 4/9

p0 2 5

λ′p0ωH (V (Qp0
)) 3/8 96/125

C0 8.306815× 10−1 3.493824× 10−1 3.066383× 10−1

C1 9.540383× 10−1 8.704106× 10−1 9.762028× 10−1

C3 9.893865× 10−1 9.906098× 10−1 9.892790× 10−1

ωH (V (R)) 3.255161 1.360417 2.221359

θH (V ) 3.413500× 10−1 2.290769× 10−1 3.660885× 10−1

NU,H (B)/θH (V )B log(B) 1.103137 1.084575 1.079931

θ
stat
H (V )/θH (V ) 0.988687 1.067208 1.051041
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For the examples with a Picard group of rank 3, C3 is equal to 1.

Surface S4 S5 S6 S7

B 100000 100000 100000 100000

NU,H (B) 3051198 1976482 3420784 1966160

α(V ) 1 1 1 1

ab/cd 1/4 1/25 1/49 4/9

ζ∗E0(1) 8.146241× 10−1 1.163730 1.265025 1.028996

ac/bd 1 1 1 1

ζ∗E1(1) 6.045998× 10−1 6.045998× 10−1 6.045998× 10−1 6.045998× 10−1

ad/bc 1 1 1 1

ζ∗E2(1) 6.045998× 10−1 6.045998× 10−1 6.045998× 10−1 6.045998× 10−1

λ′3ωH (V (Q3)) 16/27 16/27 16/27 16/27

p0 2 5 7 2

λ′p0ωH (V (Qp0
)) 27/64 13824/15625 186624/117649 27/64

C0 8.306815× 10−1 3.493824× 10−1 3.066383× 10−1 8.306815× 10−1

C1 9.540383× 10−1 8.704106× 10−1 9.297617× 10−1 8.196347× 10−1

C2 7.827314× 10−1 8.112747× 10−1 9.228033× 10−1 8.294515× 10−1

ωH (V (R)) 4.105301 2.347970 1.910125 2.430506

θH (V ) 1.895795× 10−1 1.291945× 10−1 2.184437× 10−1 1.290720× 10−1

NU,H (B)/θH (V )B log(B)2 1.214249 1.154191 1.181448 1.149252

θ
stat
H (V )/θH (V ) 0.981952 1.035070 0.999247 1.063376
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For the last example we have C2 = C3 = 1 and E1 = E2 = E3 and we get

Surface S8

B 100000

NU,H (B) 12137664

α(V ) 7/18

ζ∗Ei (1) 6.045998× 10−1

λ′3ωH (V (Q3)) 16/27

C0 3.066383× 10−1

C1 5.129319× 10−1

ωH (V (R)) 6.121864

θH (V ) 4.904057× 10−2

NU,H (B)/θH (V )B log(B)3 1.621894

θ
stat
H (V )/θH (V ) 1.012304
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