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Abstract. — Lichtenbaum’s complex enables one to relate Galois cohomology
to K ­cohomology groups. In this paper, we consider the first terms of the
Hochschild­Serre spectral sequence for the cohomology of these complexes, which
was developed by Kahn, in the case of quotients of “big” open sets in cellular va­
rieties. In the particular case of a faithful representation W of a finite group G
over an algebraically closed field k, this yields that the group of negligible classes
in the cohomology group H3(G,Q/Z(2)) is canonically isomorphic to the second
equivariant Chow group of a point. It also implies that the unramified classes in
the cohomology group H3(k(W )G , (Q/Z)′(2)) come from the cohomology of G,
which had been proved by Saltman when k is the field of complex numbers.

Using the motivic complexes of Voevodsky, we then prove similar results in
degrees four and five.

Résumé. — Le complexe de Lichtenbaum fournit un lien entre la cohomolo­
gie galoisienne et les groupes de K ­cohomologie Dans ce texte nous considérons
les premiers termes de la suite spectrale de Hochschild­Serre pour l’hypercoho­
mologie de ces complexes, qui a été développée par Bruno Kahn, dans le cas du
quotient d’un ouvert d’une variété cellulaire dont le complémentaire est de co­
dimension assez grande. Dans le cas particulier d’une représentation fidèle W
d’un groupe G sur un corps algébriquement clos k, cela implique que le groupe
des classes négligeables dans le groupe de cohomologie H3(G,Q/Z(2)) est ca­
noniquement isomorphe au second groupe de Chow équivariant du point. Cela
implique également que les classes non ramifiées dans le groupe de cohomolo­
gie H3(k(W )G , (Q/Z)′(2)) proviennent de la cohomologie de G, ce qui avait été
démontré par Saltman quand k est le corps des complexes.

2000 Mathematics Subject Classification. — primary 12G05; secondary 14C25, 19D45,
14E20.

∗Algebraic K ­theory (Seattle 1998), Proc. Sympos. Pure Math., vol. 67, AMS, Providence,
1999, pp. 181–211



2 EMMANUEL PEYRE

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Hochschild­Serre spectral sequence for Lichtenbaum’s com­

plex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. Application to the case of finite groups. . . . . . . . . . . . . . . . . . . . . 12
4. Application of Voevodsky’s motivic complexes. . . . . . . . . . . . . . 29
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1. Introduction

The unramified cohomology groups were first developed by Colliot­Thélène
and Ojanguren as invariants for stable rationality which generalize the unramified
Brauer group. It has been used in [CTO] and [Pe1] to give new examples of
unirational varieties which are not stably rational.

Unirational fields of special interest are given by Noether’s problem: if G is a
finite group and W a faithful representation of G over a field k, then the field
of invariant functions k(W )G does not depend, up to stable equivalence, on W .
The problem is to determine for which fields k and groups G the field k(W )G

is stably rational. The first counter­example over C was constructed by Saltman
in [Sa1] using the unramified Brauer group. Bogomolov [Bo] gave a complete
description of the unramified Brauer group of the field C(W )G in terms of the
cohomology of the group G.

The study of the higher unramified cohomology groups for these fields is made
more complicated by the existence of negligible classes in the cohomology of
finite groups which vanish when lifted to Galois groups. The first interesting
results about the third unramified cohomology group for such fields have been
obtained by Saltman in [Sa2].

More precisely, he proved that this cohomology group for k = C is contained
in the image of the inflation map

H3(G,Q/Z)→H3(k(W )G ,Q/Z)

and that, if H3(G,Q/Z)n is the kernel of this map and if G is a p­group, then
there is a natural isomorphism

H3(G,Q/Z)n/H
3(G,Q/Z)p +H3(G,Q/Z)c −̃→N3(G)

where
H3(G,Q/Z)p = Ker

(
H3(G,Q/Z)→H3(G,C(W )∗)

)
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which may be computed in terms of the cohomology of G,

H3(G,Q/Z)c =
∑

H G

CoresGH H3(H,Q/Z)n,

and N3G is a kind of equivariant Chow group.
The connection between Chow groups of codimension 2 and restriction maps

in degree 3 appears also in [Pe2], [Pe3] and [Pe4], where we describe for any
generalized flag variety V an exact sequence

H1
Zar(V,K2)

j
→ (PicVks ⊗ ks∗)G

→Ker
(
H3(G ,Q/Z(2))→H3(k(V ),Q/Z(2))

)
→CH2(V )tors→ 0

where ks is a separable closure of k, G =Gal(ks/k), and Ki is the sheaf associated
to the presheaf of Quillen’s K ­groups U 7→ Ki(U ). This exact sequence was ob­
tained using the work of Colliot­Thélène and Raskind on the K ­cohomology
(see [CTR]) and a result of Bruno Kahn based on Lichtenbaum’s complexes
(see [Li1], [Li2], [Li3] and [Kah1]). This sequence was also considered by
Merkur′ev who proved in [Me1] that the map j is injective.

More recently, Kahn gave in [Kah2] a direct proof of this exact sequence and a
description of the unramified cohomology group of degree three of these twisted
generalized flag varieties using the Hochschild­Serre spectral sequence for the
hypercohomology of Lichtenbaum’s complexes.

One of the purposes of this text is to show that an easy generalization of the
results of Kahn enables one to state the results for generalized flag varieties and
for finite groups in a uniform way.

In fact we prove that if G is a finite group, W a faithful representation of G
over an algebraically closed field k of exponential characteristic p such that the
complement of the open set U on which G acts freely in W has a codimension
bigger than 4, then there is an exact sequence

0→CH2
G(k)→H3(G,Q/Z(2))

→H0
Zar

(
U/G,H 3

ét (Q/Z(2))
)
→H0

Zar

(
W,H 3

ét (Qp/Zp(2))
)

where U/G is the quotient of U by G, CH2
G(k) is the equivariant Chow group

of Speck and H
3

ét (Q/Z(2)) is the sheaf corresponding to the presheaf

V 7→H3
ét(V,Q/Z(2)).
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The connection with the results of Saltman becomes clear if one takes into ac­
count the inclusions

H3
nr/k(k(W )G ,Q/Z(2))⊂H0

Zar(U/G,H
3

ét (Q/Z(2)))

⊂H3(k(W )G ,Q/Z(2)).

The second section of this paper contains a partial description of the K ­co­
homology groups of big open sets in cellular varieties followed by an easy gener­
alization of the results of Kahn, the third applies the previous computations to
the case of finite groups and makes explicit the connection with Saltman’s work
and the fourth extends the results to higher degrees using the work of Voevodsky.

2. Hochschild­Serre spectral sequence for Lichtenbaum’s complex

2.1. Notations. — In the sequel we use the following notations:

Notation 2.1.1. — For any field L, let L be an algebraic closure of L and Ls

be the separable closure of L in L. For any variety V over L we denote by
L(V ) the function field of V and for any extension L′ of L by V

L′
the product

V ×SpecL SpecL
′. We put V s = VLs . One denotes by V (i) the set of points of

codimension i in V , and, for any x ∈ V , by κ(x) its residue field. The Chow
groups of cycles of codimension i on V modulo rational equivalence are denoted
by CHi (X).

If L is a field, let p be the exponential characteristic of L, that is 1 if L is of
characteristic 0 and the usual characteristic otherwise. If n is prime to p and V a
variety over L, let µn be the étale sheaf of n­th roots of unity and for any r and
i in Z>0, let WrΩ

i
V,log be the logarithmic part of the corresponding De Rham­

Witt sheaf WrΩ
i
V (see [Il, §I.5.7]). By [BK, corollary 2.8], for V = SpecL one

has
WrΩ

j
L,log(L) ←̃− KM

j (L)/prKM
j (L).

If n = n′pr with (n′, p) = 1, then one puts

Z/nZ(j) = µ⊗jn ⊕WrΩ
j
V,log[−j].

One then defines

Q/Z(j) = lim
−→
n

Z/nZ(j), (Q/Z)′(j) = lim
−→

(n,p)=1

Z/nZ(j)
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and if l is a prime number

Ql/Zl(j) = lim
−→
r

Z/lrZ(j).

If F is one of the above complexes of étale sheaves, we put

H i
ét(V,F) =Hi

ét(V,F)

and if L is a field H i (L,F) =H i
ét(SpecL,F). The Zariski sheaf corresponding to

the presheaf U 7→H i
ét(U,F) is denoted by H

i
ét(F).

If V is an algebraic variety over L and U a Galois covering of V s with a
finite Galois group G, then there exists a finite Galois extension L′ of L and
a Galois étale covering U ′ of V

L′
with Galois group G such that there exists an

isomorphism from U ′s to U over Vs. We shall say that the pair (L′,U ′) represents
the étale covering U → V s. We shall denote by Gal(U/V ) the profinite group

lim
←−

(L′,U ′)

Gal(U ′/V )

where (L′,U ′) is taken over the pairs representing U/V s and such that U ′ is
Galois over V .

2.2. K ­cohomology of big open sets. — The following well known result is
a direct consequence of the Brown­Gersten­Quillen spectral sequence.

Proposition 2.2.1. — If X is a smooth variety over a field k and Y a subvariety of
codimension at least c in X then

H i
Zar(X,Kj) −̃→H i

Zar(X −Y,Kj)

if i 6 c− 2.

Proof. — By Gersten’s resolution the groups H i
Zar(X,Kj) are isomorphic to the

homology groups of the complex

⊕

x∈X (i−1)
Kj−i+1κ(x)

∂i−1
−−→

⊕

x∈X (i)
Kj−iκ(x)

∂i−→
⊕

x∈X (i+1)
Kj−i−1κ(x).

Since the codimension of Y is at least c, we have for j6 c− 1 the equality

(X −Y )(j) = X (j)

and the residue map ∂i is the same for X and X −Y if i 6 c− 1. Therefore the
homology groups coincide.



6 EMMANUEL PEYRE

Let us recall the definition of cellular varieties.

Definition 2.2.1. — A variety X over a field k is called k­cellular if and only if
there exists a sequence of closed subsets of X

∅ = Z0 ⊂ Z1 ⊂ · · · ⊂ Zn = X

such that for 16 i 6 n− 1, Zi+1−Zi is isomorphic to an affine space over k.

Corollary 2.2.2. — If X is a smooth cellular variety over k and Y a subvariety of
codimension at least c in X , then, if i 6 c− 2,

H i
Zar(X −Y,Kj) −̃→CHi(X)⊗Kj−ik

where CHi (X) is a finitely generated free module over Z.

Proof. — By [Kah3, lemma 3.3], the group CH∗(X) is a free Z­module of finite
type, Then, using the proof of [Pe4, proposition 3.1], we get that the module

⊕

i,j>0

H i
Zar(X,Ki+j)

is a free
⊕

j>0Kjk­module with a basis given by any basis of
⊕

i>0CH
i (X) over

Z. By the last proposition, if i 6 c− 2, we get

H i
Zar(X −Y,Kj) −̃→H i

Zar(X,Kj) −̃→CHi (X)⊗Kj−ik.

2.3. The main result in degree three. — Following the method described by
Kahn in [Kah2] we shall now use the Hochschild­Serre spectral sequence for
Lichtenbaum’s complexes to get information about the kernel and cokernel of
the map

H3(k,Q/Z(2))→H3
nr/k(k(V ),Q/Z(2))

for varieties having an étale covering which is a big open set in a cellular variety.

Theorem 2.3.1. — Let U → V be a finite étale Galois covering of smooth geomet­
rically integral varieties over a perfect field k which is of the form

U → V
k′
→ V

where k′ is a finite separable extension of k. Let G be the Galois group of this covering.
Assume that there is an embedding of U in a k′­cellular variety X such that

codimX (X −U )> 4,

and assume moreover that the action of G on U extends to an action of G on X over
k. Let G =Gal(U s/V ). Then the following assertions hold:
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(i) There is an exact sequence

H2(G ,Q/Z(2))→H1
Zar(V,K2)→ (PicX ⊗ k′)G

→Ker
(
H3(G ,Q/Z(2))→H3(k′(X)G ,Q/Z(2))

)
→CH2(V )tors

→H1(G,PicX ⊗ k′
∗
)

(ii) There is a canonical morphism η from the group

Ker
(
H0

Zar(V,H
3

ét (Q/Z(2)))→H0
Zar(X

s,H 3
ét (Qp/Zp(2)))

)

Im
(
H3(G ,Q/Z(2))

)

to the group
CH2(X)G/CH2(V )

such that

Kerη⊂Coker
(
CH2(V )tors→H1(G,PicX ⊗ k′

∗
)
)

Remarks 2.3.2. — (i) The group CH2(V ) may in fact be interpreted as the
equivariant Chow group of X . Indeed these two groups coincide when G is
finite (see [EG, proposition 8]).

(ii) The group H0
Zar

(
X s,H 3

ét (Qp/Zp(2))
)

is trivial if X s is complete (see
[Kah2, remark, page 397]).

(iii) The assumption that k is perfect is only needed for the p­part of the results.

Before proving this theorem, we give an example.

Example 2.3.1. — Let V be a generalized flag variety, that is a projective variety
over k which is homogeneous under the action of a connected linear algebraic
group G and such that the stabilizer of a point of V (ks) is a standard parabolic
subgroup of Gs. Then Bruhat’s decomposition yields a cellular decomposition of
V over any Galois extension k′ of k splitting the group G and over which V has
a rational point. Moreover it yields a basis of PicV s which is globally invariant
under the action of the Galois group of k. We get the following exact sequence

H1
Zar(V,K2)→ (PicV s⊗ ks∗)G

→ Ker
(
H3(k,Q/Z(2))→H3(k(V ),Q/Z(2))

)
→CH2(V )tors→ 0

where G =Gal(ks/k). This sequence has been studied with more details in [Pe4]
where it was obtained using results of Colliot­Thélène and Raskind [CTR] and
Kahn [Kah1].
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In section 3 we shall study the applications of theorem 2.3.1 to negligible
classes and unramified cohomology. We now turn to its proof.

2.4. Proof of theorem 2.3.1. — The Hochschild­Serre spectral sequence
for Lichtenbaum’s complexes was described and used by Kahn in [Kah1] and
[Kah2]. We use it in a slightly more general setting.

For any smooth connected variety X over k we consider Lichtenbaum’s com­
plex Γ(2) = (Γ(2,X)i )i∈Z (see [Li1], [Li2] and [Li3]). By [Kah2, theorem 1.1]
the hypercohomology groups of these complexes are given by

(2.4.1) Hi
ét(X,Γ(2)) =





0 for i 6 0,

K3(k(X))ind if i = 1,

H0
Zar(X,K2) if i = 2,

H1
Zar(X,K2) if i = 3,

Coker cl2X if i = 5,

H i−1
ét (X,Q/Z(2)) if i > 6,

where cl2X is the divisible cycle class map

CH2X ⊗Q/Z→H4
ét(X,Q/Z(2))

and there is an exact sequence

0→CH2X →H4
ét(X,Γ(2))→H0

Zar

(
X,H 3

ét (Q/Z(2))
)
→ 0.

As in [Mi, theorem III.2.20] and [Kah2] we get a Hochschild­Serre spectral
sequence for these hypercohomology groups

E
p,q
2 =Hp(G ,H

q
ét(U

s,Γ(2)))⇒H
p+q
ét (V,Γ(2)).

By [MS2, §11], the canonical map

K3(k
s)ind→ K3(k

s(U ))ind

is injective with a uniquely divisible cokernel. And by corollary 2.2.2 we have
isomorphisms

H0(U s,K2) −̃→CH0(X)⊗K2k
s −̃→ K2k

s,

H1(U s,K2) −̃→ Pic(X)⊗ ks∗.
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If n is prime to p there is an exact sequence [MS1, theorem 11.5], [Su2], [Le]

0→ µ⊗2n (k)→ K3(k)ind
n
→ K3(k)ind→H1(k,µ⊗2n )

→ K 2(k)
n
→ K 2(k)→H2(k,µ⊗2n )→ 0.

We get that

(E
q,1
2 )′ −̃→Hq(G , (Q/Z)′(2)) if q> 2

and

(E
q,2
2 )′ = 0 if q> 1,

where the ′ means that we consider only the prime to p part of the groups.
Therefore the spectral sequence yields an exact sequence

H2(G , (Q/Z)′(2))→H1
Zar(V,K2)

′→(Pic(X s)⊗ ks∗)′
G
→H3(G , (Q/Z)′(2))

→Ker
(

H4
ét(V,Γ(2))

′→H4
ét(U

s,Γ(2))
)
→H1(G ,Pic(X s)⊗ ks∗)′.

On the other hand, by [MS2], the p­part of K 3(ks)ind is uniquely divisible and
by [Su2] and Bloch­Kato’s theorem there are exact sequences

0→ K2(k
s)

pr
→ K2(k

s)→WrΩ
2
ks,log(k

s)→ 0.

and

K2(k)
pr

→ K2(k)→WrΩ
2
k,log(k)→ 0

This implies that

E
q,1
2 ⊗Z(p) = 0 if q> 1,

E
q,2
2 ⊗Z(p) −̃→Hq+1(G ,Qp/Zp(2)) if q> 1.

Thus the p­part of the spectral sequence yields a similar exact sequence for the
p­parts of the groups. We get an exact sequence

(2.4.2)

H2(G ,Q/Z(2))→H1
Zar(V,K2)→ (Pic(X s)⊗ ks∗)

G →H3(G ,Q/Z(2))

→Ker
(
H4

ét(V,Γ(2))→H4
ét(U

s,Γ(2))
)
→H1(G ,Pic(X s)⊗ ks∗).

Moreover, since k is perfect, by Bloch­Ogus spectral sequence [BO] and

the corresponding one for WrΩ
j
X,log[−j] [GS, theorem 1.4] and by the
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fact that sheafification commutes with direct limits, we have that the group
H0

Zar(U
s,H 3

ét (Q/Z(2))) is isomorphic to H0
Zar(X

s,H 3
ét (Q/Z(2))). But X s con­

tains an affine space AN
ks and therefore this group is contained in the group

H0
Zar(A

N
ks ,H

3
ét (Q/Z(2))) the prime to p part of which is trivial by homotopy

invariance. Therefore we get that there is an exact sequence

(2.4.3) 0→CH2(X s)→H4
ét(U

s,Γ(2))→H0
Zar(X

s,H 3
ét (Qp/Zp(2)))→ 0.

We also have an exact sequence

(2.4.4) 0→CH2(V )→H4
ét(V,Γ(2))→H0

Zar(V,H
3

ét (Q/Z(2)))→ 0.

We consider the following groups

A =Coker
(
(Pic(X s)⊗ ks∗)G →H3(G ,Q/Z(2))

)
,

B = Ker
(
H0

Zar(V,H
3

ét (Q/Z(2)))→H0
Zar(X

s,H 3
ét (Qp/Zp(2)))

)
,

K = Ker(A→ B),

C =Coker(A→ B),

D = Ker(CH2(V )→CH2(X s)),

E =Coker(CH2(V )→CH2(X s)G ),

M = Ker(H4
ét(V,Γ(2))→H4

ét(U
s,Γ(2))).

Then the sequences (2.4.3) and (2.4.4) and the snake lemma gives an exact se­
quence

0→D→M→ B→ E.

But (2.4.2) implies the exactness of the complex

0→ A→M→H1(G ,Pic(X s)⊗ ks∗).

Moreover we get a canonical map

ψ :D→H1(G ,Pic(X s)⊗ ks∗)
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and we put U = Kerψ and V =Cokerψ. Thus we obtain a commutative diagram
with exact lines

0

0 K 0

U A

0 D M B E

H1(G ,Pic(X s)⊗ ks∗) C

V 0

0

and a little diagram chase yields an isomorphism from K to U and an injection

Ker(C→ E)→ V.

Using the definitions, one gets an exact sequence

H2(G ,Q/Z(2))→H1
Zar(V,K2)→ (Pic(X s)⊗ ks∗)G

→Ker
(
H3(G ,Q/Z(2))→H0

Zar(V,H
3

ét (Q/Z(2)))
)

→Ker(CH2(V )→CH2(X s)G )→H1(G ,Pic(X s)⊗ ks∗)

and an injection from the homology of the complex

H3(G ,Q/Z(2))→Ker
(
H0

Zar(V,H
3

ét (Q/Z(2)))→H0
Zar(X

s,H 3
ét (Qp/Zp(2)))

)

→Coker(CH2(V )→CH2(X s)G )

to

Coker
(
Ker

(
CH2(V )→CH2(X s)

)
→H1(G , (PicX s⊗ ks)∗)

)
.

But CH2(X s) is a free abelian group, therefore

CH2(V )tors ⊂ Ker(CH2(V )→CH2(X s)).
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A transfer argument implies the inverse inclusion. We also have

CH2(X s) = CH2(X) and CH2(X s)G = CH2(X)G .

Similarly PicX s = PicX and therefore

(PicX s⊗ ks∗)G = (PicX ⊗ k′)G

and by using the inflation restriction exact sequence and Hilbert’s theorem 90

H1(G ,PicX s⊗ ks∗) −̃→H1(G,PicX ⊗ k′
∗
).

Finally, since k is perfect, the Bloch­Ogus spectral sequence yields an embedding

H0
Zar(V,H

3
ét (Q/Z(2)))⊂H3(k(V ),Q/Z(2)) =H3(k′(X)G ,Q/Z(2)).

3. Application to the case of finite groups

3.1. Negligible classes. — The notion of negligible classes has been intro­
duced by Serre in his lecture at the Collège de France [Se]. We shall use a weaker
condition than the one he used.

Definition 3.1.1. — Let H be a finite group, M be a H­module and E be a
field. Then a class λ in H i (H,M) is said to be totally E­negligible if and only if
for any extension F of E and any morphism

ρ : Gal(F s/F)→H

the image of λ by ρ∗ is trivial in H i (F,M).

In the following, we restrict ourselves to the case where E is separably closed
and M = Q/Z(i) for some integer i. The action of G on (Q/Z)′(i) is in fact
trivial, but we keep the twist to get canonical morphisms.

If H is a finite group and W a faithful representation of G over a field E and
n ∈ Z>0 then for any g ∈G,

(W n)g = (W g)n,

where W g is the subspace of invariant elements under g, and thus it has a codi­
mension bigger or equal to n. Let Un be the open set in W n on which G acts
freely. We get that codimWnW n−Un > n. We recall the definition of equivari­
ant Chow groups (see Edidin and Graham [EG, §2.2]).
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Definition 3.1.2. — If Y is a smooth geometrically integral variety equipped
with a G­action over k then

CHi
G(Y ) = CH

i((Y ×Ui+1)/G).

We put CHi
G(k) = CH

i
G(Speck).

If k is separably closed, there is a natural notion of cycle class map going from
CHi

G(k) with value in H2i−1(G, (Q/Z)′(i)). Its construction is based on the
following lemma:

Lemma 3.1.1. — If k is a separably closed field of exponential characteristic p and
n a positive integer with (n, p) = 1, then for any j < i,

H j(G,µ⊗mn ) −̃→H
j
ét(Ui/G,µ

⊗m
n ).

Proof. — By the Bloch­Ogus spectral sequence
⊕

x∈U
(p)
i

Hq−p(κ(x),µ⊗m−pn )⇒H
p+q
ét (Ui ,µ

⊗m
n )

and the similar one for W i we get that if j < i

H
j
ét(Ui ,µ

⊗m
n ) −̃→H

j
ét(W

i ,µ⊗mn ) −̃→H
j
ét(k,µ

⊗m
n ) =




0 if j 6= 0
µ⊗mn (k) if j = 0.

Using the Hochschild­Serre spectral sequence

Hp(G,H
q
ét(Ui ,µ

⊗m
n ))⇒H

p+q
ét (Ui/G,µ

⊗m
n )

we get the isomorphism of the lemma.

Definition 3.1.3. — Let k be a separably closed field of exponential character­
istic p and G be a finite group. For any i in Z and any j in Z>0 we put

H j(G, Ẑ′(i)) = lim
←−

(n,p)=1

H j(G,µ⊗in (k)).

If j > 0 there is a canonical isomorphism

H j(G, (Q/Z)′(i)) −̃→H j+1(G, Ẑ′(i)).

The cycle class map

cli : CH
i
G(k)→H2i (G, (Q/Z)′(i))
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is defined as the composite map

CHi
G(k) −̃→CHi (U2i+1/G)→ lim

←−
(n,p)=1

CHi(U2i+1/G)/n

cli−→ lim
←−

(n,p)=1

H2i
ét (U2i+1/G,µ

⊗i
n ) −̃→ lim

←−
(n,p)=1

H2i (G,µ⊗in ) −̃→H2i−1(G, (Q/Z)′(i)).

Remark 3.1.2. — if k is the field of complex numbers C then, modulo the
isomorphism

Q/Z → Q/Z(1)
a 7→ exp(2iπa)

the cycle class map coincides with the usual one from CHi
G(C) to H2i (G,Z),

defined using the classifying space (see [To]).

Example 3.1.1. — If k is separably closed, we consider the short exact sequence
of G­modules

0→ k∗→ k(W 2)∗→DivW 2→ 0,

we get a long exact sequence

0→ k∗→ k(U2/G)
∗→Div(U2/G)→H1(G,k∗)→H1(G,k(W 2)∗).

But by Hilbert’s theorem 90H1(G,k(W 2)∗) is trivial and we get an isomorphism

cl1 : PicG k −̃→H1(G,Q/Z(1)),

which extends the cycle class map.

The theorem 2.3.1 has the following corollary.

Corollary 3.1.3. — If k is an algebraically closed field and G a finite group, then
the equivariant Chow group CH2

G(k) is canonically isomorphic to the group of totally
k­negligible classes in H3(G,Q/Z(2)).

Remarks 3.1.4. — (i) The map

ΦG : CH2
G(k)→H3(G,Q/Z(2))

extends the cycle class map cl2.
(ii) The injectivity of this map follows from [MS1, corollary 18.3].
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Proof. — First of all, as was pointed out by Serre, the group of totally k­
negligible classes in H3(G,Q/Z(2)) coincides with the kernel of the map

H3(G,Q/Z(2))→H3(k(W )G ,Q/Z(2))

where W is an arbitrary faithful representation of G over k. Indeed one of the
inclusion is obvious and if γ belongs to this kernel, if K is an extension of k, and

ρ : Gal(K s/K )→G

any map then we may assume, without loss of generality, that ρ is surjective. Let
K ′ correspond to the kernel of ρ. By the no­name lemma K ′(W )G is rational
over K . Thus the map

H3(Gal(K s/K ),Q/Z(2))→H3(Gal(K (W )s/K ′(W )G),Q/Z(2))

is injective and there is a commutative diagram

H3(G,Q/Z(2)) −→ H3(Gal(K s/K ),Q/Z(2))y
y

H3(Gal(k(W )s/k(W )G),Q/Z(2)) −→ H3(Gal(K (W )s/K ′(W )G),Q/Z(2)).

We may apply theorem 2.3.1 to W ′ =W 4 and we get an exact sequence

0→Ker
(
H3(G,Q/Z(2))→H3(k(W ′)G ,Q/Z(2))

)
→CH2

G(k)tors→0.

Let us now compare corollary 3.1.3 with the corresponding result of Saltman.
We first recall the definition of the groups considered by Saltman.

Definition 3.1.4. — Let l be a prime number, G an l­group, and W a faithful
representation of G over C. Then ZlG is the free Fl­module over the set of
irreducible G­invariant subvarieties of codimension 2 in W . For any G­invariant
closed irreducible subvariety of codimension 1 in W and any f in C(W ) such
that f n is invariant under G for some n> 1, one defines Div(f ) in Zl(G) as the
class of ∑

Y

νY (f )Y

where Y goes over the set defining ZlG. Let Rl(G) be the subgroup of Zl(G)
generated by these divisors. Then

N3G = ZlG/RlG.
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Let H3(G,Q/Z(i))n denote the set of totally C­negligible classes. It contains
two subgroups, namely the group of permutation negligible classes

H3(G,Q/Z(i))p = Ker(H
3(G,Q/Z(i))→H3(G,C(W )∗))

and

H3(G,Q/Z(i))c =
∑

H G

CoresGH H3(G,Q/Z(i))n.

Then in [Sa2, theorem 4.13], Saltman proved that there is a canonical iso­
morphism

H3(G,Q/Z)n/H
3(G,Q/Z)p +H3(G,Q/Z)c −̃→N3(G).

Proposition 3.1.5. — If G is an l­group and W a representation of G of the form

W ′
4

where W ′ is a faithful representation of G over C, then there is a commutative
diagram

CH2
G(C)

ΦG
−̃→ H3(G,Q/Z(2))ny↓

y↓

N3(G) −̃→ H3(G,Q/Z(2))n/
(
H3(G,Q/Z(2))p +H3(G,Q/Z(2))c

)
.

In order to prove this proposition, we first need to prove that the canonical
morphism ΦG is compatible with corestriction and cup­product.

Notations 3.1.5. — If H is a subgroup of a finite group G, W a faithful repre­
sentation of G, and Ui the open set in W i on which G acts freely, then there is
an étale covering

Ui+1/H
π
→Ui+1/G.

It induces a map

π∗ : CH
i (Ui+1/H)→CHi (Ui+1/G)

and thus a map

CHi
H (k)→CHi

G(k)

which will be denoted by CoresGH .
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Lemma 3.1.6. — If H is a subgroup of a finite group G, then the following diagram
commutes:

CH2
H (k)

ΦH
−̃→H3(H,Q/Z(2))n

CoresGH

y CoresGH

y

CH2
G(k)

ΦG
−̃→H3(G,Q/Z(2))n.

Proof. — The Hochschild­Serre spectral sequence

Hp(G,H
q
ét(U4, F))⇒H

p
ét(U4/G,F)

where F is a complex of étale sheaves on U4/G is compatible with restriction and
morphisms of complexes.

If F is an étale sheaf on U4/H , then we define IndGH F as the direct image of
F by the canonical projection

π :U4/H→U4/G.

But for any étale map U →U4/H there is a canonical map

U →U ×U4/G U4/H

which induces a map π∗π∗F → F and therefore maps

H
q
ét(U4/G, Ind

G
H F)→H

q
ét(U4/H,π∗ IndGH F)→H

q
ét(U4/H,F).

Since π∗ is exact in this case, the composite maps are isomorphisms, which is
analoguous to Shapiro’s lemma. The corresponding isomorphisms for hyperco­
homology

H
q
ét(U4/G, Ind

G
H F) −̃→H

q
ét(U4/H,F)

are compatible with the Hochschild­Serre spectral sequence. If F is defined over
U4/G, then by [SGA4, exposé XVIII, théorème 2.9] there is a transfer map

Tr : π∗π
∗F → F.

The corestriction may be defined as the composite of the map induced by Tr
and the inverse of the Shapiro isomorphism. Thus the Hochschild­Serre spectral
sequence is compatible with the corestriction. Therefore we get a commutative
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diagram for the prime to p part

(3.1.1)

H3(H, (Q/Z)′(2))
CoresGH−−−−→ H3(G, (Q/Z)′(2))y

y

H3
(
H,H1

ét(U4,Γ(2))
)′ CoresGH−−−−→ H3

(
G,H1

ét(U4,Γ(2))
)′

y
y

H4
ét(U4,Γ(2))

′ CoresGH−−−−→ H4
ét(U4,Γ(2))

′

as well as a similar one for the p­part.
The long exact sequence of hypercohomology with support is also compati­

ble with morphisms of complexes and contravariant for étale coverings. Thus
they are compatible with corestrictions. Using [CTHK, §I.1], we get that the
coniveau spectral sequence

E
p,q
1 =

∐

x∈X (p)
Hp+q
x (U4/G,Γ(2))⇒H

p+q
ét (U4/G,Γ(2))

and the similar one for U4/H are compatible with corestrictions. A similar state­
ment holds for the isomorphisms (see [Kah2, theorem 6.1])

Hp(U4/G,H
q

ét (Γ(2))) −̃→ E
p,q
2 .

Therefore we get a commutative diagram

(3.1.2)

0 0y
y

CH2(U4/H)
CoresGH−−−−→ CH2(U4/G)y

y

H4
ét(U4/H,Γ(2))

CoresGH−−−−→ H4
ét(U4/G,Γ(2))y

y

H0
Zar

(
U4/H,H 3

ét (Q/Z(2))
) CoresGH−−−−→ H0

Zar

(
U4/G,H

3
ét (Q/Z(2))

)
y

y
0 0
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where the vertical lines are exact by [Kah2, theorem 1.1].
The lemma follows from the commutativity of the diagrams (3.1.1) et (3.1.2).

Notations 3.1.6. — The complexes

0→ Z→Q→ 0 and 0→ Z
∆
−→Q⊕Q

Σ
−→Q→ 0

are both quasi­isomorphic to Q/Z[−1]. Therefore in the category of bounded
complexes of étale sheaves there is a canonical morphism

Q/Z[−1]
L
⊗Q/Z[−1]→Q/Z[−1].

Similarly one may define canonical products

Q/Z(i)[−1]
L
⊗Q/Z(j)[−1]→Q/Z(i + j)[−1].

Let Γ(1) be the complex Gm[−1]. There is also a product

Γ(1)
L
⊗ Γ(1)→ Γ(2)

and the natural morphisms

Q/Z(1)[−1]→ Γ(1) and Q/Z(2)[−1]→ Γ(2)

may be fitted into a commutative diagram

Q/Z(1)[−1]
L
⊗Q/Z(1)[−1] −→ Q/Z(2)[−1]y ↓

Γ(1)
L
⊗ Γ(1) −−−−−−→ Γ(2).

The top horizontal line corresponds to a cup­product

∪ :Hp
ét(X,Q/Z(1))⊗H

q
ét(X,Q/Z(1))→H

p+q+1
ét (X,Q/Z(2)).

Remark 3.1.7. — The product above may also be described as the composite
map

H
p
ét(X,Q/Z(1))⊗H

q
ét(X,Q/Z(1))→H

p+1
ét (X, Ẑ(1))⊗H

q
ét(X,Q/Z(1))

→Hp+q+1(X,Q/Z(2))

where
H

p
ét(X, Ẑ(j)) = lim

←−
n

H
p
ét(X,Z/nZ(j)).
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Lemma 3.1.8. — If G is a finite group and k a separably closed field, one has a
commutative diagram

PicG k⊗Z PicG k −−−−−−−→ CH2
G ky≀

y≀

H1(G,Q/Z(1))⊗H1(G,Q/Z(1))
∪
−−→ H3(G,Q/Z(2))

where the top map is given by the intersection product.

Proof. — Thanks to the compatibility of the coniveau spectral sequence with
cup­products one gets for any a in PicG k a commutative diagram

PicG k
.a
−→ CH2

G k∥∥∥∥
∥∥∥∥

PicU4/G
.a
−→ CH2U4/Gy≀

y

H2
ét(U4/G,Γ(1))

∪a
−→ H4

ét(U4/G,Γ(2))x≀
x≀

H2(G,Q/Z(1)[−1])
∪a
−→ H4(G,Q/Z(2)[−1])

where a is successively seen as an element of

PicG k, PicU4/G, H2
ét(U4/G,Γ(1)) and H2(G,Q/Z(1)[−1]).

Proof of proposition 3.1.5. — The group CH2
G(C) may be described as a quo­

tient Z/R where Z is the free Z­module over the set of G­orbits in W (2) and R
is the subgroup generated by the divisors of functions f in C(Y )∗StabG Y where
Y goes over W (1). Then the obvious surjective map

Z→ ZlG

sends R into RlG. Indeed, if Y ∈W (1) is not G­invariant and f ∈ C(Y )∗StabG Y ,
then for any C in W (2) invariant under G, νC(f ) belongs to lZ. Thus we get a
surjective morphism

CH2
G(C)→N3G.

We put
CH2

G(C)c =
∑

H G

CoresGH CH2
H (C).
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By lemma 3.1.6 we have an isomorphism

CH2
G(C)c −̃→H3(G,Q/Z(2))c.

By [Sa2, poposition 4.7], the permutation negligible classes may be described
as

Ker
(
H3(G,Q/Z(2))→H3(G,Q∗))

)

where Q∗ is a G­module such that

∀H ⊂G, H1(H,Q∗) = 0

and there is an exact sequence

0→Q/Z(2)→Q∗→Q → 0

where Q is a permutation module. It may be constructed as follows: let

Q =
⊕

H⊂G
(Z[G/H]).H

1(H,Q/Z(2))

If H is a subgroup of G, any α in H1(H,Q/Z(2)) defines canonically an element

α̃ ∈ Ext1H (Z,Q/Z(2)) −̃→ Ext1G(Z[G/H],Q/Z(2))

where the isomorphism is given by Shapiro’s lemma. We consider

η =
∑

H⊂G

∑

α∈H1(H,Q/Z(2))

α̃ ∈ Ext1G(Q,Q/Z(2))

the class η defines an extension

0→Q/Z(2)→Q∗→Q → 0

unique up to isomorphism. But this yields

H3(G,Q/Z(2))c = Im(H
2(G,Q)

∂
→H3(G,Q/Z(2)))

=
∑

H⊂G
α∈H1(H,Q/Z(2))

Im
(
H2(G,Z[G/H])

∂α−→H3(G,Q/Z(2))
)

where ∂α is the map defined by the short exact sequence

0→Q/Z(2)→ Eα→ Z[G/H]→ 0
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associated to α̃. On the other hand, we have a commutative diagram

H2(G,Z[G/H])
∂α−−−→ H3(G,Q/Z(2))x≀

xCoresGH

H2(H,Z)
∂α−−−→ H3(H,Q/Z(2))

which follows from the commutative diagram of G­modules

0 −−−→ Q/Z(2)[G/H] −−−→ E′α[G/H] −−−→ Z[G/H] −−−→ 0yTr
y

∥∥∥∥

0 −−−→ Q/Z(2) −−−→ Eα −−−→ Z[G/H] −−−→ 0

where E′α is the extension of H­modules defined by α̃ and the fact that the core­
striction is induced by the trace and the inverse of Shapiro’s isomorphism. But
for G =H the map ∂α is compatible with cup­products and therefore coincides
with the cup­product by the class of α itself which is the image of 1 by the the
map

H0(H,Z)
∂α−→H1(H,Q/Z(2)).

Therefore H3(G,Q/Z(2))p is given as

∑

H⊂G
CoresGH Im

(
H1(H,Q/Z(2))⊗H2(H,Z)

∪
−→H3(H,Q/Z(2))

)

which is the same as
∑

H⊂G
CoresGH Im

(
H1(H,Q/Z(1))⊗H1(H,Q/Z(1))

∪
−→H3(H,Q/Z(2))

)
.

We put

CH2
G(C)p =

∑

H⊂G
CoresGH Im(PicH C⊗ PicH C→CH2

H C).

By lemma 3.1.8 we get an isomorphism

CH2
G(C)p −̃→H3(G,Q/Z(2))p.

It remains to prove that

(3.1.3) Ker(CH2
G(C)→N3(G)) = CH2

G(C)c +CH
2
G(C)p.
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Since G is a l­group, it has a subgroup of index l and since the composite map

CoresGH ◦Res
G
H

coincides with the multiplication by [G : H], we get that lCH2
G C is contained

in both sides of (3.1.3). Also if Y in W (2) is not G­invariant then the class
of its orbit is the image of the class of Y in CH2

StabG Y C by the corestriction.

Therefore the group CH2
G(C)c is generated by lCH2

G(C) and the G­orbits in

W (2) which are not reduced to one element. Thus the quotient

CH2
G(C)/CH

2
G(C)c

may be described as the quotient of the Fl­vector space F̃l with basis the elements

of W (2)G by the subspace R̃l generated by divisors of functions in C(Y )G where

Y goes over W (1)G.
The image of CH2

G(C)p in this group coincides with the image of

PicG C⊗ PicG C

which is generated by the images of products [y][z] with y and z in W (1)G.
Moreover one has that

PicG C −̃→ PicU2/G.

Therefore one may assume that y is the inverse image of an element y′ in W ′
2(1)

by the first projection W → W ′
2

whereas z comes from an element z′ by the
second one. Since the map

C(W ′
2
)∗→Div(W ′

2
)

is surjective, z′ is defined by a function f on W ′
2

and y.z is given as the divisor
of the function f ◦ pr2 restricted to y. Since z is G­invariant, one has

∀g ∈G, g f/f ∈C∗

and the map
G → C∗

g 7→ g f/f

is a morphism. Therefore (f ◦ pr2)
|G| ∈ C(Y )G. We get that the image of the

group CH2
G(SpecC)p in F̃l/R̃l is contained in

Ker(F̃l/R̃l→N3(G)).
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Conversely, let Y belong to (W (1))G and f be a function on Y such that

∃n ∈ Z>0, f n ∈ C(Y )G

then
∀g ∈G, g f/f ∈Q/Z(1)

and it defines an element of H1(G,Q/Z(1)). Let Z′ in Div(W ′
2
) represent the

corresponding element of the group PicG C and h′ in C(W ′
2
)∗ be such that

Divh′ = Z′.

We may choose λ and µ in C so that the divisor of

h = λh′ ◦ pr1+µh
′ ◦ pr2

intersects properly with Y . By construction we have that

∀g ∈G, (gh/h)|Y = g f/f

and therefore
h|Y /f ∈C(Y )G .

Then the image of Div f in F̃l/R̃l coincides with the one of h|Y which is the
image of the product Divh.y and we get that

Ker(F̃l/R̃l→N3(G)) = Im(CH2
G(C)p→ F̃l/R̃l)

as wanted.

Example 3.1.2. — If G is an Fl­vector space with l 6= 2 by [Bro, page 60], one
has an isomorphism

Hn(G,Q/Z) −̃→Hom(Hn(G,Z),Q/Z).

By [Car, théorème 1], we get that

S2G∨⊕Λ3G∨ −̃→H3(G,Q/Z)

where the isomorphism is given by the map

Λ3G∨ −̃→Λ3H1(G,Z/pZ)→H3(G,Z/pZ)→H3(G,Q/Z)

and the map

S2G∨ −̃→ S2H2(G,Z)
∪
−→H4(G,Z) −̃→H3(G,Q/Z).

By [Pe1, lemma 7], the map

Λ3G∨→H3(k(W )G ,Q/Z)
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is injective. But by lemma 3.1.8, the elements in the image of S2G∨ are permu­
tation negligible and we get that

S2G∨ −̃→ S2 PicG k −̃→CH2
G k.

More generally, Totaro has given a description of the map

cli : CH
i
G(C)→H2i−1(G,Q/Z(i))

in this case.

Example 3.1.3. — If G has a 2­dimensional representation P then we may as­
sume that there is a surjective map W → P. Its kernel defines an element of
CH2

G(k). If G is a 2­group having a cyclic subgroup of index 2 this is the ex­
ample of Saltman [Sa2, theorem 4.14] who proved that the element obtained in
N3G is non­trivial.

Finally we want to give another description of the negligible classes when k is
algebraically closed of characteristic 0.

Notation 3.1.7. — Let R(G) be the ring of representations of G over C. The
ring R(G) has a canonical structure of augmented λ­ring (see [At, §12]). The
first steps of the filtration are obtained as follows:

R(G)0 =R(G),

R(G)1 = Ker(dim),

R(G)2 = Ker(det).

where dim :R(G)→ Z is the dimension homorphism and

det :R(G)→Hom(G,C∗)

is defined by

detR = ΛdimRR

for any representation R of G.

Corollary 3.1.9. — If k is an algebraically closed field of characteristic 0, then there
is a canonical surjective map

R(G)2 ։H3(G,Q/Z(2))n.

Remark 3.1.10. — In fact this map is induced by the second Chern class c2.
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Proof. — By corollary 3.1.3, one has

CH2
G(k) −̃→H3(G,Q/Z(2))n

and, for i 6 2, we have

CHi
G(k) −̃→CHi(U3/G).

For any smooth variety X over a field, let K0(X)
i be the i­th filtration group for

the filtration by codimension of support and denote by K0(X)
(i/i+1) the quotient

group K0(X)
i /K0(X)

i+1. Then by [Su1, proposition 9.3], the composite map

CHi (U3/G)։K0(U3/G)
(i/i+1) ci−→CHi(U3/G)

is the multiplication by (−1)i(i − 1)!. Therefore the group K0(U3/G)
(i/i+1) is

isomorphic to CHi
G(k) if i 6 2.

if X is a scheme equipped with an action of a group scheme G , then
Thomason has developed in [Th] equivariant K ­theory groups Ki(G ,X ) and
K ′i (G ,X ) (see also [Me2, §2]). By [Me2, corollary 2.12], there is a canonical
isomorphism

R(G) −̃→ K ′O(G,Speck),

where we identify R(G) with the ring of G­representations over k. By [Me2,
corollary 2.8] one has an isomorphism

K ′0(G,Speck) −̃→ K ′0(G,W
3),

by [Th, theorem 2.7] there is a surjection

K ′0(G,W
3)։ K ′0(G,U

3),

and, by [Me2, proposition 2.4], isomorphisms

K ′0(G,U3) ←̃− K ′0(U3/G) ←̃− K0(U3/G).

Therefore we get a surjective map

R(G)։ K0(U3/G)

which sends a G­representation R on the vector bundle

(R×U3)/G→U3/G.

But we have
R(G)(i/i+1) −̃→ K0(U3/G)

(i/i+1)
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if i 6 1. Indeed this follows from the commutativity of the diagrams

K0(U3/G)
(0/1) deg

−−−→̃ Zx
x

∥∥∥∥

R(G)(0/1)
dim
−−−→̃ Z

and

K0(U3/G)
(1/2) −−−→̃ PicG kx

x
x≀

R(G)(1/2)
det
−−−→̃ Hom(G,C∗)

Therefore we have a surjective map

R(G)2 ։K0(U3/G)
2.

Example 3.1.4. — By [At, page 23 and Appendix], if Hq(G,Z) = 0 for all odd
q, the chern map

c2 :R(G)2→H3(G,Q/Z)

is surjective. In this case, one gets

H3(G,Q/Z)n =H3(G,Q/Z).

This applies in particular to the groups with periodic cohomology, in which case
this equality may also be deduced from [Sa2, theorem 4.14].

3.2. Unramified cohomology groups. — Let us first recall the definition of
higher unramified cohomology groups (see [CTO]).

Definition 3.2.1. — If K is a function field over k, that is generated by a finite
number of elements as a field over k then one considers the set P(K/k) of discrete
valuation rings A of rank one such that

k⊂ A⊂ K and Fr(A) =K.

For any A in P(K/k) and any n prime to the exponential characteristic p of k,
one considers the residue map

∂A :H
i (K,µ⊗jn )→H i−1(κA,µ

⊗j−1
n )
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where κA denotes the residue field of A. The unramified cohomology groups of
K over k are defined as

H i
nr/k(K,µ

⊗j
n ) =

⋂

A∈P(K/k)

Ker∂A.

We shall also consider

H i
nr/k(K, (Q/Z)′(j)) = lim

−→
(n,p)=1

H i
nr/k(K,µ

⊗j
n ).

Remarks 3.2.1. — By [CTO], the unramified cohomology groups are invariant
for stable rationality. In particular, it follows from the no­name lemma that, for
any finite group G the unramified cohomology group

H i
nr/k(k(W )G , (Q/Z)′(j))

where W is a faithful representation of G over k depends only on k and G.
If i = 2, Bogomolov [Bo, theorem 3.1] proved that

H2
nr/C(C(W )G ,Q/Z(1)) = Ker

(
H2(G,Q/Z(1))→

∏

B∈B
H2(B,Q/Z(1))

)

where B denotes the set of bicyclic groups in G, that is abelian subgroups gen­
erated by two elements.

Theorem 2.3.1 implies the following generalization of a result of Saltman:

Corollary 3.2.2. — (See Saltman [Sa2, theorem 5.3]) If G a finite group and W
a faithful representation of G over a separably closed field k, then

H3
nr/k(k(W )G , (Q/Z)′(2))⊂ Im(H3(G, (Q/Z)′(2))→H3(k(W )G , (Q/Z)′(2)).

Proof. — Let U be the open set in W on which G acts freely. We may assume
that codimW (W −U )> 4 and we may apply theorem 2.3.1 to U and get that

H0
Zar

(
U/G,H 3

ét ((Q/Z)′(2))
)

is contained in

Im
(
H3(G, (Q/Z)′(2))→H3(k(W )G , (Q/Z)′(2))

)
.

But it follows from Bloch­Ogus spectral sequence that

H3
nr/k(k(W )G , (Q/Z)′(2))⊂H0

Zar

(
U/G,H 3

ét ((Q/Z)′(2))
)

and this implies the corollary.
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4. Application of Voevodsky’s motivic complexes

In this section, we want to generalize the results of the previous sections to the
fourth and fifth cohomology groups using the Hochschild­Serre and coniveau
spectral sequences for Voevodky’s étale complexes Z(3) and Z(4) [Vo3, §2.1].

Let us first recall a few facts about the coniveau spectral sequence.

4.1. Reminder on the coniveau spectral sequence. —

Notations 4.1.1. — From now on, we assume that the characteristic of k is 0.
Let Z(n)ét be Voevodsky’s étale motivic complex of weight n [Vo3, §2.1]. Then
for any smooth variety X , one puts

H
q
ét(X,Z(n)) =H

q
ét(X,Z(n)ét).

Let α be the canonical morphism from the big étale site to the big Zariski one.
Then there is a Leray spectral sequence (see [Mi, theorem III.1.18])

E
p,q
2 (n) =H

p
Zar(X,H

q
ét (Z(n)))⇒H

p+q
ét (X,Z(n))

where H
q

ét (Z(n)) is the Zariski sheaf corresponding to the presheaf H
q
ét(Z(n))

given by

U 7→H
q
ét(U,Z(n)).

Indeed, by [Mi, proposition III.1.13], this sheaf coincides with Rqα∗Z(n)ét. Us­
ing [Vo2, §3.3] and the proof of [Vo1, theorem 5.3], we get that H

q
ét(Z(n)) has

a canonical structure of homotopy invariant pretheory and by [Vo1, proposition
4.26] this is also the case of H

q
ét (Z(n)) (see also [Vo3, page 10]). By [Vo1, the­

orem 4.37], there is a Gersten resolution of H
p

ét (Z(n)) and we get a coniveau
spectral sequence

E
p,q
1 (n) =

⊕

x∈X (p)
(ix)∗(H

q
ét (Z(n))−p)⇒H

p+q
ét (X,Z(n))

where for any pretheory F , the pretheory F−1 is given by

F−1(U ) = Coker
(
F(U ×A1)

Res
−→ F(U × (A1−{0}))

)
.

Theorem 4.1.1. — (See Kahn [Kah3]) With notations as above, if n> 1, one has
(i) the group E

p,q
1 (n) is uniquely divisible if p > q and 06 p6 n− 2,

(ii) the group E
p,q
1 (n) is uniquely 2­divisible if p = q and 06 p6 n− 2,
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(iii) one has

E
p,q
1 (n)⊗Z(2) =

⊕

x∈X (p)
KM
n−p(κ(x))⊗Z(2)

if q = n and 06 p6 n− 3,
(iv) there are canonical isomorphisms

E
p,q
1 (n) =

⊕

x∈X (p)
KM
n−p(κ(x))

if q = n and n− 26 p6 n,
(v) the group E

p,q
1 (n)⊗Z(2) is trivial if q = n+1 and 06 p6 n− 3,

(vi) one has
E
p,q
1 (n) =

⊕

x∈X (p)
Hq−1(κ(x),Q/Z(n))

if 06 p6 q− 1 and q > n+1,
(vii) all other E

p,q
1 (n) with q = n+1 or p> q are trivial.

Remark 4.1.2. — The Milnor­Bloch­Kato conjecture is used in all the asser­
tions where the prime 2 plays a special rôle. If we assumed that this conjecture
held for any prime, we would be able to simplify the assertions accordingly.

Proof. — By [Vo3, lemma 2.9] and comparison theorems between Nisnevich
and Zariski topology [Vo1, theorem 5.7], one has that if i 6 n,

H
q

ét (Z(n))−i =H
q−i

ét (Z(n− i)).

Therefore, if p6 n, one has

E
p,q
1 (n) =

⊕

x∈X (p)
H
q−p
ét (κ(x),Z(n− p)).

But for any positive m there is a distinguished triangle

Z(n)
×m
−→ Z(n)→ Z/mZ(n)→ Z(n)[1]

yielding for any field K a long exact sequence

(4.1.1) H
q
ét(K,Z(n))

×m
−→H

q
ét(K,Z(n))→H

q
ét(K,Z/mZ(n))→H

q+1
ét (K,Z(n))

and by [Vo3, theorem 2.6],

(4.1.2) H
q
ét(K,Z/mZ(n)) −̃→Hq(K,µ⊗nm )

which is trivial if q < 0. This implies assertion (i).



NEGLIGIBLE CLASSES 31

Assertion (ii) is proved in [Kah4, theorem 3.1 (a)].
By Beilinson­Lichtenbaum conjecture [Vo3, theorem 2.11], if 06 q6 n,

H
q
Nis(K,Z(n))⊗Z(2) −̃→H

q
ét(K,Z(n))⊗Z(2)

and by [SV, proposition 3.2] one has

KM
n (K ) −̃→Hn

Nis(K,Z(n))

this implies (iii). The same argument implies the case p = n− 2 of (iv).
Assertions (iv) and (vii) for p = n or n− 1 follow from the isomorphisms

Z(1) −̃→Gm[−1] and Z(0) −̃→ Z.

Assertion (v) follows from Hilbert’s theorem 90 [Vo3, theorem 4.1] which also
implies (vii) for p> n− 2 and q = n+1.

From the distinguished triangle

Z(n)→Q(n)→Q/Z(n)→ Z(n)[1]

and the comparison theorem for Q(n) [Vo3, theorem 2.5], one gets that the
motivic cohomology group H

q
ét(K,Z(n)) is torsion for q > n+ 1. Then (4.1.1)

and (4.1.2) gives an isomorphism

H
q
ét(K,Z(n)) −̃→H

q−1
ét (K,Q/Z(n))

if q6 n. This yields (vi) for p6 n.
The exact sequence

0→ Z→Q→Q/Z→ 0

implies that

H
q

ét (Z) −̃→





H
q−1

ét (Q/Z) if q> 2,

Z if q = 0,

0 otherwise.

But by [Vo1, §3.4], one has

H
q

ét (Q/Z(i))−j =H
q−j

ét (Q/Z(i− j))

and we get the assertions (vi) and (vii) for p > n.

Notation 4.1.2. — We define H i
Zar(X,K

M
q ) as the i­th homology group of the

complex (see [Ka, page 242])

0→
⊕

x∈X (0)
KM
q κ(x)→

⊕

x∈X (1)
KM
q−1κ(x)→ ·· · →

⊕

x∈X (q)
Z→ 0.
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Corollary 4.1.3. — One has that
(i) E

p,q
2 (n) is uniquely divisible if p > q+1 and 06 p6 n− 2.

(ii) E
p,q
2 is 2­divisible if q6 p6 q+1 and 06 p6 n− 2.

(iii) E
p,q
2 (n)⊗Z(2) =H

p
Zar(X,K

M
q )⊗Z(2) if q = n and 06 p6 n− 2,

(iv) E
p,q
2 (n) =H

p
Zar(X,Kq) if q = n and n− 16 p6 n,

(v) E
p,q
2 (n)⊗Z(2) is trivial if q = n+1 and 06 p6 n− 3,

(vi) E
p,q
2 (n) =H

p
Zar(X,H

q
ét (Q/Z(n))) if 06 p6 q− 1 and q > n+1.

(vii) all other E
p,q
2 (n) with q = n+1 or p> q are trivial.

Corollary 4.1.4. — If X is a smooth variety over a field k of characteristic 0 and
Y a subvariety of codimension at least c in X , then for any positive integers n and q
such that c > sup(n, q) the natural restriction map

H
q
ét(X,Z(n)) −̃→H

q
ét(X −Y,Z(n))

is an isomorphism.

Proof. — This follows from assertion (vii) of theorem 4.1.1 as in proposition
2.2.1.

Corollary 4.1.5 (Kahn, [Kah3, §5, n = 3]). — With notations as above, there is
an exact sequence

0→H2
Zar(X,K3)⊗Z(2)→H5

ét(X,Z(2)(3))→H0
Zar(X,H

4
ét (Q2/Z2(3)))

→CH3(X)⊗Z(2)→Ker
(
H6

ét(X,Z(2)(3))→H0
Zar(X,H

5
ét (Q2/Z2(3)))

)

→H1
Zar(X,H

4
ét (Q2/Z2(3)))→ 0.

Corollary 4.1.6. — With notations as above, there is a canonical isomorphism

H1
Zar(X,K

M
3 )⊗Z(2) −̃→H4

ét(X,Z(2)(3)).

Corollary 4.1.7. — (See Kahn, [Kah3, §5, n = 4]) With notation as above, there
is a canonical exact sequence

0→H2
Zar(X,K

M
4 )⊗Z(2)→H6

ét(X,Z(2)(4))→H0
Zar(X,H

5
ét (Q2/Z2(4)))

→H3
Zar(X,K4)⊗Z(2)→Ker

(
H7

ét(X,Z(2)(4))→H0
Zar(X,H

6
ét (Q2/Z2(4))

)

→H1
Zar(X,H

5
ét (Q2/Z2(3)))→Ker

(
CH4(X)⊗Z(2)→H8

ét(X,Z(2)(4))
)
.
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Remark 4.1.8. — The maps CHi(X) → H2i
ét (X,Z(i)) which appear in these

corollaries may be interpreted as cycle class maps.

4.2. Finite groups and motivic cohomology. — We now want to relate the
cohomology of finite groups with coefficients in Q/Z(n) to integral motivic co­
homology.

Proposition 4.2.1. — If W is a faithful representation of a finite group G over an
algebraically closed field k of characteristic 0, such that the open set U on which G
acts freely verifies codimW W −U > i and i > n then

H i−1(G,Q2/Z2(n)) −̃→Hi
ét(U/G,Z(2)(n))

Proof. — We consider the Hochschild­Serre spectral sequence

Hp(G,H
q
ét(U,Z(n)))⇒H

p+q
ét (U/G,Z(n)).

By corollary 4.1.4, we have that if j6 i

H
j
ét(U,Z(n)) −̃→H

j
ét(W,Z(n)) −̃→H

j
ét(k,Z(n))

where the second isomorphism is given by homotopy invariance. Using the dis­
tinguished triangle

Z(n)
×m
−→ Z(n)→ Z/mZ(n)→ Z(n)[1]

and the isomorphisms

H
j
ét(k,µ

⊗n
m ) −̃→H

j
ét(k,Z/mZ(n))

we get that the groups H
j
ét(k,Z(n)) are uniquely divisible for j 6= 0 and j 6= 1. By

[Kah4, theorem 3.1 (a)] the group H0
ét(k,Z(2)(n)) is also uniquely divisible. We

obtain a short exact sequence

0→Q2/Z2(n)(k)→H1
ét(k,Z(2)(n))→H1

ét(k,Q(n))→ 0.

By [Vo3, theorem 2.5], we have

Hi
Zar(k,Q(n)) −̃→Hi

ét(k,Q(n))

which, by construction, is 0 if i > n+1. Therefore we get that
­ Hp(G,H

q
ét(k,Z(2)(n))) is uniquely divisible if p = 0, q6 n, q 6= 1,

­ H1
ét(k,Z(2)(n)) is divisible,

­ Hp(G,H1
ét(k,Z(2)(n))) =Hp(G,Q2/Z2(n)) if p > 0,

­ Hp(G,H
q
ét(k,Z(2)(n))) = 0 otherwise.
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The spectral sequence yields for i > n+1 isomorphisms

H i−1(G,Q2/Z2(n)) −̃→Hi
ét(U/G,Z(2)(n))

and an exact sequence

Hn
ét(k,Z(2)(n))

ψ
−→Hn(G,Q2/Z2(n))→Hn+1

ét (U/G,Z(2)(n))→ 0.

But the first group is divisible and the second killed by #G, therefore ψ is trivial.

4.3. Equivariant K ­cohomology. — The following proposition is classical
(see [To, §1]).

Proposition 4.3.1. — Let W and W ′ be two faithful representations of a finite
group G over a field k such that there are open sets U and U ′ on which G acts freely
with

codimW W −U > q+2 and codim
W ′

W ′−U ′ > q+2,

then for any smooth G­variety there is a canonical isomorphism

Hq((Y ×U )/G,K M
n ) −̃→Hq((Y ×U ′)/G,K M

n ).

Before proving this proposition let us recall a result of Rost:

Proposition 4.3.2 (Rost). — If X → Y is a vector bundle, then for any q > 0,
p> 0, one has

Hp(X,K M
q ) −̃→Hp(Y,K M

q ).

Proof. — This follows from theorem 1.4, remark 2.4, and proposition 8.6 in
[Ro].

Proof of proposition 4.3.1. — As in [To, §1] or [EG] we use Bogomolov’s double
fibration argument. By the proof of proposition 2.2.1, if W = W ′, we have
isomorphisms

Hq((Y ×U )/G,K M
n ) −̃→Hq((Y × (U ∩U ′))/G,K M

n )

−̃→Hq((Y ×U ′)/G,K M
n )

thus this group does not depend on the choice of U . But the canonical map

(Y ×U ×W ′)/G→ (Y ×U )/G
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is a vector bundle. Using proposition 4.3.2, we get isomorphisms

Hq((Y ×U )/G,K M
n ) −̃→Hq((Y ×U ×W ′)/G,K M

n )

−̃→Hq((Y ×W ×U ′)/G,K M
n )

−̃→Hq((Y ×U ′)/G,K M
n ).

Definition 4.3.1. — With notation as in the proposition, we define the equiv­
ariant Milnor K ­cohomology group as

H
p
G(Y,K

M
q ) =H

p
Zar((Y ×U )/G,K M

q )

and put H
p
G(k,K

M
q ) =H

p
G(Speck,K

M
q ).

Example 4.3.1. — If p = q, we obtain the usual equivariant Chow group.

Example 4.3.2. — If p = q− 1, then we have

H
p
G(Y,K

M
p+1) =Hp(Y ×U/G,Kq+1)

which coincides with the equivariant higher Chow group CH
p
G(Y,1) (see [EG]).

Proposition 4.3.3. — For any finite group G and any algebraically closed field k,
one has

H1
G(k,K

M
2 ) −̃→H2(G,Q/Z(2)).

Proof. — We use the Hochscild­Serre spectral sequence

Hp(G,H
q
ét(U,Γ(2)))⇒H

p+q
ét (U/G,Γ(2))

and the results of Kahn (2.4.1) to get the isomorphism.

Definition 4.3.2. — Similarly we define the equivariant Hét­cohomology
groups

H
p
G(Y,H

q
ét (Q/Z(n))) =H

p
Zar((Y ×U )/G,H

q
ét (Q/Z(n)))

and put H
p
G(k,H

q
ét (Q/Z(n))) =Hp(Speck,H

q
ét (Q/Z(n))).

Remark 4.3.4. — One has the inclusions

H
p
nr/k(k(W )G ,Q/Z(n))⊂H0

G(k,H
p

ét (Q/Z(n)))⊂Hp(k(W )G ,Q/Z(n)).
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Example 4.3.3. — if p = 2 we have

H2(k(W )G ,Q/Z(2)) = Br(k(W )G)

which is in general infinite,

H2(G,Q/Z(1)) −̃→H0
G(k,H

2
ét (Q/Z(1)))

and, by Bogomolov’s result,

H2
nr/k(k(W )G ,Q/Z(1)) = Ker

(
H2(G,Q/Z(1))→

∏

B∈B
H2(B,Q/Z(1))

)

where B is the set of bicyclic groups in G.

4.4. Application to negligible classes. — In degree 4, we get the following
results:

Theorem 4.4.1. — If G is a finite group and k an algebraically closed field of
characteristic 0, then there is a canonical exact sequence

0→H2
G(k,K3)⊗Z(2)→H4(G,Q2/Z2(3))→H0

G(k,H
4

ét (Q2/Z2(3)))

→CH3
G(k)⊗Z(2)→H5(G,Q2/Z2(3))

and a canonical isomorphism

H1
G(k,K

M
3 )⊗Z(2) −̃→H3(G,Q2/Z2(3)).

Proof. — The first assertion follows from proposition 4.2.1 and corollary 4.1.5
and the second from the same proposition and corollary 4.1.6.

Notations 4.4.1. — Let H i (G,Q2/Z2(i − 1))n be the kernel of the map

H i (G,Q2/Z2(i − 1))→H i (k(W )G ,Q2/Z2(i − 1))

and H i (G,Q2/Z2(i − 1))c be
∑

H G

CoresGH H i (H,Q2/Z2(i − 1))n.

We also consider the group

H i (G,Q2/Z2(i − 1))p

=
∑

H⊂G
CoresGH (H

1(H,Q2/Z2(1))∪H
i−2(H,Q2/Z2(i − 2)))
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where the product is defined as in notations 3.1.6. As in paragraph 3.1 we may
define for any subgroup H of G a map

CoresGH :H
p
H (k,K

M
q )→H

p
G(k,K

M
q )

and there is a natural product (see [Ro, remark 2.4 and §14])

H i
G(k,K

M
p )⊗H

j
G(k,K

M
q )→H

i+j
G (k,K M

p+q).

We define
H

p
G(k,Kq)c =

∑

H G

ImCoresGH

and
H2
G(k,K3)p =

∑

H⊂G
CoresGH (PicG Spec k∪H

1
G(k,K2)).

Remark 4.4.2. — The group H i (G,Q2/Z2(i − 1))p coincides also with the
kernel of a map

H i (G,Q2/Z2(i − 1))→H i (G,k(W )∗).

Proposition 4.4.3. — With the notations of theorem 4.4.1 the canonical isomor­
phism

H2
G(k,K

M
3 )⊗Z(2) −̃→H4(G,Q2/Z2(3))n

induces an isomorphism from

H2
G(k,K

M
3 )/

(
H2
G(k,K3)p +H2

G(k,K3)c
)
⊗Z(2)

to
H4(G,Q2/Z2(3))n/

(
H4(G,Q2/Z2(3))p +H4(G,Q2/Z2(3))c

)
.

Proof. — This follows easily from the next two lemmata:

Lemma 4.4.4. — With notations as above, there is a commutative diagram

H2
H (k,K

M
3 )⊗Z(2) −−−→ H4(H,Q2/Z2(3))yCoresGH

yCoresGH

H2
G(k,K

M
3 )⊗Z(2) −−−→ H4(G,Q2/Z2(3)).

Proof. — As the proof of lemma 3.1.6 this follows from the compatibility of the
spectral sequences with corestriction.
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Lemma 4.4.5. — With notations as above, there is a commutative diagram

H1
G(k,K

M
2 )⊗ PicG k⊗Z(2) −−−→ H2

G(k,K
M
3 )⊗Z(2)y≀
y≀

H2(G,Q/Z(2))⊗H1(G,Q2/Z2(1)) −−−→ H4(G,Q2/Z2(3))n.

Proof. — As in the proof of lemma 3.1.8, the compatibility of the coniveau
spectral sequence with cup­product (see also [We]) yields a commutative diagram

H3(G,Q2/Z2(2)[−1])⊗H2(G,Q2/Z2(1)[−1]) −→ H5(G,Q2/Z2(3)[−1])y
y

H3
ét(U/G,Z(2))⊗H2

ét(U/G,Z(1)) −−−−−→ H5
ét(U/G,Z(3))x

x

H1(U/G,K2)⊗ Pic(U/G) −−−−−−−→ H2(U/G,K3).

In degree 5 we get the following results:

Theorem 4.4.6. — If G is a finite group and k an algebraically closed field of
characteristic 0, then there is a canonical exact sequence

0→H2
G(k,K

M
4 )⊗Z(2)→H5(G,Q2/Z2(4))→H0

G(k,H
5

ét (Q2/Z2(4)))

→H3
G(k,K

M
4 )⊗Z(2)→H6(G,Q2/Z2(4)).

Proof. — This follows from corollary 4.1.7 and proposition 4.2.1.

Notation 4.4.2. — We put

H2
G(k,K

M
4 )p =

∑

H⊂G
CoresGH (PicG k∪H1

G(k,K
M
3 )).

Proposition 4.4.7. — The canonical isomorphism

H2
G(k,K

M
4 )⊗Z(2) −̃→H5(G,Q2/Z2(4))n

induces an isomorphism from

H2
G(k,K

M
4 )/

(
H2
G(k,K4)p +H2

G(k,K4)c
)
⊗Z(2)

to
H5(G,Q2/Z2(4))n/

(
H5(G,Q2/Z2(4))p +H5(G,Q2/Z2(4))c

)
.

Proof. — The proof is similar to the one of proposition 4.4.3.
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This text owes much to the work of Bruno Kahn. I would like to thank him and Burt
Totaro for several fruitful discussions.
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