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Abstract. — Let X be an algebraic variety over a finite field Fq, homogeneous

under a linear algebraic group. We show that there exists an integer N such that
for any positive integer n in a fixed residue class mod N , the number of rational
points of X over Fqn is a polynomial function of qn with integer coefficients.

Moreover, the shifted polynomials, where qn is formally replaced with qn + 1,
have non­negative coefficients.

Résumé. — Soit X une variété algébrique sur un corps fini Fq homogène sous un

groupe algébrique linéaire. Nous démontrons que le nombre de points rationnels
de X sur Fqn est une fonction périodiquement polynomiale en qn avec des coeffi­

cients entiers. De plus, les polynômes obtenus en remplaçant formellement qn par
qn +1 sont à coefficients positifs.

1. Introduction and statement of the results

Given an algebraic variety X over a finite field k = Fq, one may consider the

points of X which are rational over an arbitrary finite field extension Fqn. The

number of these points is given by Grothendieck’s trace formula,

(1.1) |X(Fqn)| =
∑

i>0

(−1)i Tr
(

Fn,H i
c (X)

)

,

where F denotes the Frobenius endomorphism of Xk̄ and H i
c (X) stands for the

ith ℓ­adic cohomology group of Xk̄ with proper supports, ℓ being a prime not
dividing q (see e.g. [De77, Thm. 3.2,p. 86]). Moreover, by celebrated results

of Deligne (see [De74, De80]), each eigenvalue α of F acting on H i
c (X) is an

algebraic number, and all the complex conjugates of α have absolute value q
w
2
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for some non­negative integer w 6 i, with equality if X is smooth and com­
plete. This implies the general properties of the counting function n 7→ |X(Fqn)|
predicted by the Weil conjectures.

We shall obtain more specific properties of that function under the assumption
that X is homogeneous, i.e., admits an action of an algebraic group G over k such

that X(k̄) is a unique orbit of G(k̄); then X is of course smooth, but possibly
non­complete. We begin with a structure result for these varieties:

Theorem 1.1. — Let X be a homogeneous variety over a finite field k. Then

(1.2) X ∼= (A×Y )/Γ,

where A is an abelian k­variety, Y is a homogeneous k­variety under a connected
linear algebraic k­group H , and Γ is a finite commutative k­group scheme which acts
faithfully on A by translations, and acts faithfully on Y by automorphisms commuting
with the action of H .

Moreover, A, Y and Γ are unique up to compatible isomorphisms, Y/Γ is a homo­
geneous k­variety under H , and there is a canonical isomorphism

(1.3) H∗c (X)
∼= H∗(A)⊗H∗c (Y/Γ).

In particular,

(1.4) |X(Fqn)| = |A(Fqn)| |(Y/Γ)(Fqn)|.

Theorem 1.1 is deduced in Section 2 from a structure result for algebraic
groups over finite fields, due to Arima (see [Ar60]).

In view of (1.4) and the known results on the counting function of abelian
varieties, we may concentrate on homogeneous varieties under linear algebraic
groups. For these, we obtain:

Theorem 1.2. — Let X be a variety over Fq, homogeneous under a linear algebraic
group. Then |X(Fqn)| is a periodic polynomial fonction of qn with integer coefficients.

By this, we mean that there exist a positive integer N and polynomials
P0(t), . . . , PN−1(t) in Z[t] such that

(1.5) |X(Fqn)| = Pr(q
n) whenever n≡ r (mod N).

We then say that N is a period of the function qn 7→ |X(Fqn)|.
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Notice that |X(Fqn)| is generally not a polynomial function of qn. For exam­

ple, if char(k) 6= 2, then the affine conic X ⊂ A2k with equation x2−ay2 = b is ho­
mogeneous under the corresponding orthogonal group and satisfies |X(Fqn)| =
qn− ε, where ε = 1 if a is a square in Fqn , and ε =−1 otherwise.

Theorem 1.2 is proved in Section 3, by showing that each eigenvalue of F
acting on H∗c (X) is the product of a non­negative integer power of q with a root
of unity (Proposition 3.1). As a consequence, there exists a unique polynomial
PX (t) ∈ Z[t] such that

(1.6) PX (q
n) = |X(Fqn)|

for any sufficiently divisible, positive integer n. Our third result yields a factor­
ization of that polynomial:

Theorem 1.3. — Let X be a variety over Fq, homogeneous under a linear algebraic
group, and let PX (t) be the polynomial satisfying (1.6). Then there exists a non­
negative integer r such that

(1.7) PX (t) = (t− 1)
rQX (t),

where QX (t) is a polynomial with non­negative integer coefficients.

This result follows from [BP02, Thm. 1] when X is obtained from a com­
plex homogeneous variety by reduction modulo a large prime. However, certain
homogeneous varieties over finite fields do not admit any lift to varieties in char­
acteristic zero (see [LR97] for specific examples). Also, the approach of [BP02]
relies on the existence of Levi subgroups, which fails in our setting, and on argu­
ments of equivariant cohomology which would require non­trivial modifications.

We present a proof of Theorem 1.3 in Section 4; it combines the reduc­
tion steps of Section 3 with a result adapted from [BP02] in a simplified form
(Lemma 4.1, the only ingredient which relies on methods of ℓ­adic cohomology).

In Section 5, we show how to replace this ingredient with arguments of in­
variant theory, along the lines of classical results of Steinberg (see [St68, §14]).
This yields elementary proofs of Theorems 1.2 and 1.3, and also of our most
surprising result:

Theorem 1.4. — Let X be a variety over Fq, homogeneous under a linear algebraic
group, and let P0(t), . . . , PN−1(t) be the polynomials satisfying (1.5). Then the
shifted polynomials P0(t +1), . . . , PN−1(t +1) have non­negative coefficients.

A similar positivity result has been conjectured by Mozgovoy and Reineke in
the setting of quiver moduli (see [MR07, Rem. 6.5] and also [Re08, Conj. 8.5]).
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They also observed that the existence of a decomposition of the considered mod­
uli spaces into locally closed tori would yield a geometric explanation for their
positivity property. Note that such a decomposition generally does not exist in
the setting of homogenenous varieties under linear algebraic groups, since some

of these varieties are not rational over k̄ (this follows from results of Saltman, see
[Sa84a, Sa84b]). This raises the question of finding a (geometric or combinato­
rial) interpretation of the coefficients of our shifted polynomials.

Acknowledgements. We thank J.­P. Serre and D. Timashev for their interest in
our results, and for useful suggestions. Also, we thank the referee for his careful
reading and valuable comments.

Notation and conventions. Throughout this article, we fix a finite field k of

characteristic p, with q elements. Also, we fix an algebraic closure k̄ of k. For any

positive integer n, we denote by Fqn the unique subfield of k̄ with qn elements;

in particular, k = Fq.

By a variety, we mean a geometrically integral, separated scheme of finite type
over k; morphisms (resp. products) of varieties are understood to be over k. An
algebraic group G is a smooth group scheme of finite type over k; then each
connected component of G is a variety. The identity element of G is denoted
by eG. Notice that every algebraic subgroup of G is “defined over k” with our
conventions.

For any variety X , we set

XFqn
:= X ×k Fqn , Xk̄ :=X ×k k̄,

and we denote by F the Frobenius endomorphism of Xk̄.

Given a prime number ℓ 6= p, we set for simplicity

H i (X) :=H i (Xk̄;Qℓ),

the ith ℓ­adic cohomology group of Xk̄. Our notation for cohomology with
proper supports is

H i
c (X) :=H i

c (Xk̄;Qℓ).

We shall use [DG70, Sp98] as general references for algebraic groups, and
[De77, Mi80] for étale cohomology.

2. Proof of Theorem 1.1

We may choose a connected algebraic group G such that X is homogeneous
under G. By [Ar60, Thm. 1] (see also [Ro61, Thm. 4]), we have G = AH ,
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where A is the largest abelian subvariety of G, and H is the largest connected
linear algebraic subgroup of G; moreover, A and H centralize each other. So
G ∼= (A×H)/(A∩H), and we may assume that

G = A×H.

Replacing A and H with quotient groups, we may also assume that they both act
faithfully on X .

Let GX denote the kernel of the G­action on X . Then GX is isomorphic to a
subgroup of A (via the first projection) and also to a subgroup of H . Since A is
complete and H is affine, it follows that GX is finite.

Also, X contains a k­rational point x by Lang’s theorem (see [La56, Thm. 2]).
Denote by Gx its isotropy subgroup­scheme; then Gx is linear by the finiteness
of GX together with [Ma63, Lem. p. 154]. In particular, the reduced neutral
component K of Gx (a closed normal subgroup of Gx) is contained in H . Let
Γ := Gx/K ; then Γ is a finite group scheme acting on G/K on the right via the
action of Gx on G by right multiplication, and

X ∼= G/Gx
∼= (G/K )/Γ∼= (A×Y )/Γ,

where Y :=H/K . Denoting by NG(K ) the normalizer of K in G, we have

Γ⊂NG(K )/K = A×NH (K )/K.

Let Γ′ denote the kernel of the projection of Γ to A. Then Γ′ (resp. Γ/Γ′) is
isomorphic to a subgroup scheme of NH (K )/K (resp. of A), and

X ∼=
(

A× (Y/Γ′)
)

/(Γ/Γ′).

Thus, we may assume that Γ acts faithfully on A by translations. On the other
hand, Γ acts H­equivariantly on Y via the action of NH (K )/K on H/K on the
right, and the kernel of this action is isomorphic to a subgroup scheme of A
which acts trivially on X . Thus, Γ acts faithfully on Y . This completes the proof
of (1.2).

To show the uniqueness of (A,Y,Γ), we begin with a general observation:

Lemma 2.1. — Let X be a variety over an arbitrary field. Then there exists an
abelian variety AX acting faithfully on X , such that any action of an abelian variety
A on X arises from a unique homomorphism A → AX . Moreover, AX centralizes
any connected algebraic group of automorphisms of X .
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Proof. — Consider an abelian variety A and a connected algebraic group G, both
acting faithfully on X . Then the morphism

f : A×G×X −→ X, (a, g, x) 7−→ aga−1g−1x

satisfies f (a, eG , x) = x. By the rigidity lemma of [Mu70, p. 43], it follows that
f factors through the projection p23 : A×G×X → G×X . But f (eA, g, x) = x,
so that f factors through the projection p3 : A×G×X → X . In other words, A
centralizes G.

On the other hand, A stabilizes the smooth locus U of X . By a theorem of
Nishi and Matsumura, the induced action of A on the Albanese variety of U has
a finite kernel (see [Ma63], or [Br07, Thm. 2] for a more modern version). In
particular, dim(A)6 dim(U ) = dim(X).

Combining these two steps yields our statement.

Remark 2.2. — For a variety X , there may exist an infinite sequence G1 ⊂
G2 ⊂ · · ·Gn ⊂ · · · of closed connected algebraic groups, all acting faithfully and

transitively on X . This happens e.g. for the variety X = (A1 {0})×A1 and the
group Gn consisting of automorphisms

x 7−→ ax, y 7−→ y+P(x),

where a ∈Gm and P is a polynomial of degree 6 n.

Returning to the situation of (1.2), we claim that AX = A. To see this, consider
the action of A on X via its action on itself by translations. The projection
p2 : A×Y → Y induces a morphism

(2.1) p : X→ Y/Γ

which is an A­torsor for the fppf topology (since the quotient morphism Y →
Y/Γ is a Γ­torsor, and hence the square

A×Y
p2−−−→ Y

/Γ







y

/Γ







y

X
p
−−−→ Y/Γ

is cartesian). Also, note that the quotient variety

Y/Γ = X/A =G/GxA

exists and is homogeneous under H = G/A. Thus, A is contained in AX , and
the quotient AX /A acts on Y/Γ. Since any morphism from the connected linear
algebraic group H to an abelian variety is constant, the Albanese variety of Y/Γ is
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trivial. By the Nishi­Matsumura theorem again, it follows that the action of the

abelian variety AX /A on Y/Γ is trivial as well. In particular, each AX (k̄)­orbit in

X(k̄) is an A(k̄)­orbit. This implies dim(AX ) = dim(A), which proves our claim.
As a consequence, A (and Y/Γ) depend only on X . On the other hand, the

natural map

q : X = (A×Y )/Γ−→ A/Γ

is a morphism to an abelian variety, with fibers isomorphic to the homogeneous
variety Y under H . It follows that q is the Albanese morphism of X . In particular,
the subgroup scheme Γ of A, and the Γ­variety Y , depend only on X . This shows
the desired uniqueness.

To prove the isomorphism (1.3), we first consider the case where the group
scheme Γ is reduced. Then we have canonical isomorphisms

H∗c (X)
∼= H∗c (A×Y )

Γ ∼=
(

H∗(A)⊗H∗c (Y )
)Γ

∼= H∗(A)⊗H∗c (Y )
Γ ∼= H∗(A)⊗H∗c (Y/Γ),

where the first and last isomorphism follow from Lemma 2.3 (i) below, the sec­
ond one from the Künneth isomorphism and the properness of A, and the third
one holds since the action of Γ on H∗(A) is trivial (indeed, Γ acts on A by trans­
lations).

In the general case, the reduced subscheme Γred is a finite subgroup of Γ, and
the natural map

(A×Y )/Γred→ (A×Y )/Γ = X

is finite and bijective on k̄­rational points. By Lemma 2.3 (ii) below, it follows
that

H∗c (X)
∼= H∗c

(

(A×Y )/Γred
)

.

Together with the preceding step and Lemma 2.3 (ii) again, this yields the iso­
morphism (1.3).

Finally, (1.4) follows by combining (1.1) and (1.3) or, more directly, by con­
sidering the morphism (2.1): for any z ∈ (Y/Γ)(Fqn), the fiber Xz (a variety

over Fqn) is a torsor under AFqn
. By Lang’s theorem, it follows that Xz contains

Fqn­rational points, and these form a unique orbit of A(Fqn).

Lemma 2.3. — (i) Let Γ be a finite group acting on a variety X such that the
quotient morphism f : X → Y exists, where Y is a variety (this assumption is satisfied
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if X is quasi­projective, see [Mu70, p. 69]). Then Γ acts on H∗c (X), and we have a
canonical isomorphism

H∗c (Y )
∼= H∗c (X)

Γ.

(ii) Let f : X → Y be a finite morphism of varieties, bijective on k̄­rational points.
Then we have a canonical isomorphism

H∗c (Y )
∼= H∗c (X).

Proof. — (i) Note that f!Qℓ = f∗Qℓ and Ri f!Qℓ = 0 for all i > 1, since f is finite.
This yields a canonical isomorphism

(2.2) H∗c (X)
∼= H∗c (Yk̄; f∗Qℓ).

Moreover, Γ acts on f∗Qℓ and hence on H∗c (X). Thus, (2.2) restricts to an
isomorphism

H∗c (X)
Γ ∼= H∗c (Yk̄; (f∗Qℓ)

Γ).

To complete the proof, it suffices to show that the natural map from the constant

sheaf Qℓ to f∗Qℓ induces an isomorphism Qℓ
∼= (f∗Qℓ)

Γ. In turn, it suffices to
prove that

(2.3) H0(Xȳ;Qℓ)
Γ ∼= Qℓ,

where Xȳ denotes the geometric fiber of f at an arbitrary point y ∈ Y . But Xȳ is

a finite scheme over the field κ(y), equipped with an action of Γ which induces a
transitive action on its set of connected components; this implies (2.3).

(ii) is checked similarly; here the map Qℓ→ f∗Qℓ is an isomorphism.

Remarks 2.4. — (i) Lemma 2.3 is certainly well­known, but we could not locate
a specific reference. The first assertion is exactly [Sr79, (5.10)]; however, the
proof given there is only valid for Γ­torsors.

(ii) If X in Theorem 1.1 is complete, then Γ is trivial in view of a result of Sancho
de Salas (see [SS03]). Moreover, we have Y ∼= H/Q , where Q is a subgroup
scheme of H such that the reduced subscheme Qred is a parabolic subgroup. It
follows easily that |Y (Fqn)| is a polynomial function of qn (for details, see Steps

1 and 3 in Section 4).
For an arbitrary homogeneous variety X , the subgroup scheme Γ is generally

non­trivial. Indeed, consider an abelian variety A having a k­rational point p
of order 2. Let also Y := SL(2)/T , where T ⊂ SL(2) denotes the diagonal
torus. The group Γ of order 2 acts on A via translation by p, and on Y via
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right multiplication by the matrix

(

0 −1
1 0

)

which normalizes T ; the variety

X := (A×Y )/Γ is the desired example. One easily checks that

|(Y/Γ)(Fqn)| = q2n, whereas |Y (Fqn)| = qn(qn +1).

Thus, Y/Γ cannot be replaced with Y in the equality (1.4).

(iii) The isomorphism (1.2) only holds for homogeneous varieties defined over
finite fields. Consider indeed a field k which is not algebraic over a finite subfield.
By [ST76], there exists an elliptic curve C over k, having a k­rational point x of
infinite order. Let L be the line bundle on C associated with the divisor (x)−(0).
Denote by G the complement of the zero section in the total space of L, and by
q : G→ C the projection; then q is a torsor under the multiplicative group Gm.
In fact, G has a structure of an algebraic group over k, extension of C by Gm;
in particular, q is the Albanese map. If the isomorphism (1.2) holds for G, then
C ∼= A/Γ and Y ∼= Gm. Thus, G has non­constant regular functions, namely,
the non­constant regular functions on the quotient Y/Γ ∼= Gm. In other words,
there exists an integer n 6= 0 such that the power Ln has a non­zero section; but
this is impossible, since Ln is a non­trivial line bundle of degree 0.

The above group G is an example of an anti­affine algebraic group in the
sense of [Br09]. That article contains a classification of these groups, and further
examples in characteristic zero.

3. Proof of Theorem 1.2

First, it suffices to show that |X(Fqn)| is a periodic Laurent polynomial function
of qn with algebraic integer coefficients, i.e., there exist a positive integer N and

P0(t), . . . , PN−1(t) ∈ Z̄[t, t−1] satisfying (1.5), where Z̄ denotes the ring of alge­

braic integers. Indeed, if P(t) ∈ Z̄[t, t−1] and P(qn) is an integer for infinitely
many positive integers n, then P(t)∈ Z[t].

Next, it suffices to show the following:

Proposition 3.1. — Let X be a homogeneous variety under a linear algebraic group.
Then each eigenvalue α of F acting on H∗c (X) is of the form ζqj, where ζ = ζ(α) is a
root of unity, and j = j(α) is an integer.

Indeed, in view of Grothendieck’s trace formula (1.1), that proposition im­
plies readily that |X(Fqn)| is a periodic Laurent polynomial function of qn, with

coefficients being sums of roots of unity.
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Before proving the proposition, we introduce two notions which will also be
used in the proof of Theorem 1.3.

Definition 3.2. — We say that a variety X is weakly pure, if it satisfies the asser­
tion of Proposition 3.1.

Also, X is strongly pure if H i
c (X) = 0 for any odd i, and for any even i, each

eigenvalue of F acting on H i
c (X) is of the form ζq

i
2 , where ζ is a root of unity.

Clearly, any strongly pure variety X is weakly pure; it is also pure in the (usual)
sense that all the complex conjugates of eigenvalues of F acting on H i

c (X) have

absolute value q
i
2 , for all i. Yet some weakly pure varieties are not pure, e.g., tori.

Weak and strong purity are preserved under base change by any finite exten­
sion; specifically, a variety X is weakly (resp. strongly) pure if and only if so is
XFqn

for some (or for any) positive integer n. Further easy properties of these

notions are gathered in the following:

Lemma 3.3. — (i) Let Γ be a finite group acting on a variety X , such that the
quotient variety Y = X/Γ exists. If X is weakly (resp. strongly) pure, then so is Y .
(ii) Let f : X → Y be a finite morphism of varieties, bijective on k̄­rational points.
Then X is weakly (resp. strongly) pure if and only if so is Y .
(iii) Let Y be a closed subvariety of a variety X , with complement U . If both Y and
U are weakly (resp. strongly) pure, then so is X .

Proof. — (i) and (ii) follow from Lemma 2.3, and (iii) from the exact sequence

H i
c (U )−→H i

c (X)−→H i
c (Y ).

Next, we obtain a result of independent interest, which is the main ingredient
of the proof of Proposition 3.1:

Proposition 3.4. — Let G be a connected linear algebraic group, and π : X → Y
a G­torsor, where X and Y are varieties. Then X is weakly (resp. strongly) pure if
and only if so is Y .

Proof. — (i) We may choose a Borel subgroup B of G and a maximal torus T of
B. Then π is the composite morphism

X
πT−−−→ X/T

φ
−−−→ X/B

ψ
−−−→ X/G = Y,

where πT is a T­torsor, φ is smooth with fiber B/T isomorphic to the unipotent
radical of B, and ψ is projective and smooth with fiber G/B, the flag variety of G.
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We claim that X/T is weakly (resp. strongly) pure if and only if so it X/B.

Indeed, B/T is isomorphic to an affine space Ad , and hence Riφ!Qℓ = 0 for all

i 6= 2d, while R2dφ!Qℓ
∼= Qℓ(−d) via the trace map. This yields a canonical

isomorphism

H i
c (X/B)

∼= H i+2d
c (X/T)(d).

Thus, the eigenvalues of F in H i
c (X/B) are exactly the products βq−d , where β is

an eigenvalue of F in H i+2d
c (X/T). This implies our claim.

Next, we claim that X/B is weakly (resp. strongly) pure if and only if so is X/G.
Indeed, the Leray spectral sequence associated with the flag bundle ψ degenerates
(since the cohomology ring of the fiber G/B is generated by Chern classes of
line bundles associated with characters of B, and all such line bundles extend
to X/B); moreover, the sheaves Rjψ!Qℓ = Rjψ∗Qℓ are constant. This yields an
isomorphism of graded Qℓ­vector spaces with F­action

H∗c (X/B)
∼= H∗c (X/G)⊗H

∗(G/B).

In particular, H∗c (X/G) may be identified with a F­stable subspace of H∗c (X/B).
Thus, if X/B is weakly (resp. strongly) pure, then so is X/G. The converse holds
since G/B is strongly pure (as follows from the Bruhat decomposition, see Step 3
in Section 4 for details).

By combining both claims, we may assume that G = T . Replacing k with a
finite extension, we may further assume that T is split. Thus, we are reduced to
the case where G = T =Gm. Then we have the Gysin long exact sequence

· · ·H i
c (X) −−−→ H i−2

c (Y )(2)
c1(L)−−−→ H i

c (Y ) −−−→ H i+1
c (X) · · · ,

where c1(L) denotes the multiplication by the first Chern class of the invert­
ible sheaf L associated with the Gm­torsor π : X → Y . Thus, if Y is weakly
(resp. strongly) pure, then so is X . The converse is obtained by decreasing induc­

tion on i, since H i
c (Y ) = 0 for each i > 2dim(Y ), and F acts on H2dim(Y )

c (Y )

via multiplication by qdim(Y ).

We may now prove Proposition 3.1. We have X ∼= G/H , where G is a linear
algebraic group, and H a closed subgroup scheme. Since X is a variety, we may
assume that G is connected. Moreover, since the reduced subscheme Hred is a
closed algebraic subgroup, and the natural map G/Hred → G/H is finite and

bijective on k̄­rational points, we may assume that H is an algebraic group in
view of Lemma 2.3(ii).
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Applying Proposition 3.4 to the torsors G→ Spec(k) and G→ G/H0 (where

H0 denotes the neutral component of H), we see that G and G/H0 are weakly

pure. Thus, so is G/H ∼= (G/H0)/(H/H0), by Lemma 3.3(i).

4. Proof of Theorem 1.3

As above, we consider a homogeneous variety X = G/H , where G is a con­
nected linear algebraic group, and H is a closed subgroup scheme. We first
reduce to the case where G is reductive, and H is a closed subgroup such that

H0 is a torus. For this, we carry out a sequence of four reduction steps, where
we use elementary counting arguments rather than ℓ­adic cohomology and the
Grothendieck trace formula, to prepare the way for the completely elementary
proofs of Section 5.

Step 1. Since the natural map (G/Hred)(k̄) → (G/H)(k̄) is bijective, we have
|(G/H)(Fqn)| = |(G/Hred)(Fqn)| for any positive integer n, and hence

PG/H (t) = PG/Hred
(t).

Replacing (G,H) with (G,Hred), we may thus assume that H is an algebraic
group.

Step 2. The unipotent radical Ru(G) acts on X , with quotient morphism the
natural map f :G/H →G/Ru(G)H . The fiber of f at any coset gRu(G)H equals

gRu(G)H/H ∼= Ru(G)/
(

Ru(G)∩ gHg−1
)

∼= Ru(G)/g
(

Ru(G)∩H
)

g−1.

The induced map (G/H)(Fqn)→
(

G/Ru(G)H)(Fqn
)

is surjective by Lang’s the­

orem. Moreover, since Ru(G) is connected and unipotent, each fiber has qnd

elements, where d := dimRu(G)/
(

Ru(G)∩H
)

. Hence

PG/H (t) = tdPG/Ru(G)H (t).

Replacing G with the quotient G/Ru(G) and H with its image in that quotient,
we may assume in addition that G is reductive.

Step 3. If H is not reductive, then it is contained in some proper parabolic
subgroup P of G (see [BT71]). We may further assume that H is not contained
in a proper parabolic subgroup of P; then the image of H in the reductive group
P/Ru(P) is reductive as well.

Choose a Borel subgroup B of P and a maximal torus T of B; denote by U
the unipotent radical of B, and by NG(T) the normalizer of T in G. Then
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W :=NG(T)/T is the Weyl group of (G,T); it contains the Weyl group WP of

(P,T). Choose a set WP of representatives in W of the quotient W/WP. Also,

for any w ∈ WP, choose a representative nw ∈ NG(T). Then, by the Bruhat
decomposition, we have

(4.1) G =
⋃

w∈WP

BnwP,

where the BnwP are disjoint locally closed subvarieties. Moreover, for any w ∈
WP, there exists a closed subgroup Uw of U , normalized by T , such that the
map

(4.2) Uw×P−→ BnwP, (x, y) 7−→ xnwy

is an isomorphism; each Uw is isomorphic to an affine space. Thus, G/H is the
disjoint union of the locally closed subvarieties

BnwP/H
∼= Uw×P/H.

It follows that

|(G/H)(Fqn)| = |(G/P)(Fqn)| |(P/H)(Fqn)|,

and |(G/P)(Fqn)| is a polynomial function of qn with non­negative integer coef­

ficients. This yields the factorization

PG/H (t) = PG/P(t) PP/H (t).

Thus, we may replace (G,H) with (P,H). By Step 2, we may further replace

(P,H) with
(

P/Ru(P),Ru(P)H/Ru(P)
)

. So we may assume that G and H are
both reductive.

Step 4. We now choose a maximal torus TH of H , and denote by NH its nor­
malizer in H . We claim that the natural map

p :G/NH →G/H

induces a surjective map (G/NH )(Fqn)→ (G/H)(Fqn) such that each fiber has

qndim(H/NH ) elements.

Indeed, consider g ∈ G(k̄) such that the coset gHk̄ lies in (G/H)(Fqn). Then

the subgroup (gHg−1)k̄ of Gk̄ is defined over Fqn. Moreover, the fiber of p at

gHk̄ is isomorphic to the variety of maximal tori of (gHg−1)k̄; hence its number
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of Fqn­rational points equals qndim(H/NH ), by a theorem of Steinberg (see [St68,

Cor. 14.16]). This implies our claim and, in turn, the equality

PG/H (t) = t−dim(H/NH ) PG/NH
(t).

Replacing (G,H) with (G,NH ), we may thus assume that H0 is a torus.

We may also freely replace k with any finite extension, since this does not affect
the definition of PX , nor the statement of Theorem 1.3.

By Lemma 4.1 below (a version of [BP02, Lem. 1, Lem. 2]), there exists a

torus S ⊂ G acting on G/H0 with finite isotropy subgroup schemes, such that

the quotient S\G/H0 is strongly pure. Then S also acts on X = G/H with finite
isotropy subgroup schemes, and the quotient

S\X = (S\G/H0)/(H/H0)

is also strongly pure by Lemma 3.3(i).
We now claim that there exists a decomposition of X into finitely many locally

closed S­stable subvarieties

Xi
∼= (S/Γi)×Yi ,

where Γi is a finite subgroup scheme of S. Indeed, by a theorem of Chevalley, X
is G­equivariantly isomorphic to an orbit in the projectivization P(V ) of a finite­
dimensional G­module V . Choosing a basis of S­eigenvectors in the dual module
V ∗ yields homogeneous coordinates on P(V ), and hence a decomposition of
P(V ) into locally closed S­stable tori Si (where some prescribed homogenous
coordinates are non­zero, and all others are zero). Clearly, S acts on each Si via a
homomorphism fi : S→ Si . Denote by Γi the kernel of fi . Then we may identify
S/Γi with a subtorus of Si , and hence there exists a “complementary” subtorus

S′i ⊂ Si such that the multiplication map (S/Γi)× S′i → Si is an isomorphism.

If Si meets X , then Γi is finite, and the natural map (S/Γi)× (X ∩ S
′
i )→ X ∩ Si

is an isomorphism. Thus, our claim holds for the subvarieties Xi := X ∩ Si and

Yi :=X ∩ S′i .
That claim yields a similar decomposition of S\X into the subvarieties Yi .

Note that each S/Γi is a torus of dimension

r := dim(S) = dim(T)− dim(H).
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Thus, we have for any sufficiently divisible n:

|X(Fqn)| =
∑

i

|Xi (Fqn)| =
∑

i

|(S/Γi)(Fqn)| |Yi (Fqn)|

= (qn− 1)r
∑

i

|Yi (Fqn)| = (q
n− 1)r |(S\X)(Fqn)|.

In other words, PX (t) = (t−1)
rPS\X (t). By strong purity, the coefficients of the

polynomial PS\X (t) are non­negative; this yields the desired factorization.

Lemma 4.1. — Let G be a connected reductive group, and H ⊂G a torus. Choose
a maximal torus T of G containing H and denote by W the Weyl group of (G,T).

Then, possibly after base change by a finite extension F
qN

, there exist subtori S of

T such that T = S w(H) and S ∩w(H) is finite for all w ∈W .
Any such torus S acts on G/H with finite isotropy subgroup schemes, and the

quotient S\G/H is a strongly pure, affine variety.

Proof. — We may assume that T is split. Let Λ be its character group; this is

a lattice equipped with an action of W , and containing the lattice ΛH of char­

acters of T/H . We may find a subgroup Λ′ of Λ such that Λ/Λ′ is a lattice,

Λ′∩w(ΛH ) = {0} and Λ′+w(ΛH ) has finite index in Λ for any w ∈W (indeed,

the subspaces w(ΛH )Q of the rational vector space ΛQ have a common comple­

ment). Then Λ′ = ΛS for a subtorus S of T which satisfies the first assertion.
For the second assertion, we may choose a Borel subgroup B of G that contains

T . As in (4.1, 4.2), consider the Bruhat decomposition G =
⋃

w∈W BnwB and
the isomorphisms

Uw×U ×T −→ BnwB, (u, v, t) 7−→ unwvt.

The resulting projection

p : BnwB−→ T

is equivariant with respect to T ×T acting on BnwB via left and right multipli­
cation, and on T via

(x, y) · z = w−1(x) z y−1.
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The fiber of p at the identity element of T is isomorphic to the affine space
Uw×U . This yields a cartesian square

BnwB
p
−−−→ T

/H







y

/H







y

BnwB/H
f
−−−→ T/H,

where f is T­equivariant. Moreover, T/H is homogeneous under S acting via s ·
tH = w−1(s)tH , and the corresponding isotropy subgroup scheme is S∩w−1(H).
Thus, BnwB/H is the quotient of Uw×U ×S by S∩w−1(H) acting linearly on
Uw×U , and on S via multiplication.

By our assumption on S, it follows that all isotropy subgroup schemes for its
action on G/H are finite; in particular, all orbits are closed. Since the variety
G/H is affine, the quotient S\G/H exists and is affine as well. Moreover, this
quotient is decomposed into the locally closed varieties

S\BnwB/H ∼= (U ×Uw)/
(

S∩w(H)
)

.

Thus, S\G/H is strongly pure in view of Lemma 3.3(i).

5. Elementary proofs of Theorems 1.2, 1.3 and 1.4

As in Section 4, we may assume that X =G/H , where G is a connected reduc­

tive group and H is a closed subgroup such that H0 is a torus. We first obtain
a formula for the number of Fqn­rational points of X , by standard arguments of

Galois descent.
Denote by Γ the finite group H/H0. For any γ ∈ Γ, choose a represen­

tative hγ ∈ H(k̄). By Lang’s theorem, we may choose gγ ∈ G(k̄) such that

hγ = g−1γ F(gγ).

Consider a point x ∈ (G/H)(k̄) with representative g ∈ G(k̄). Then x ∈
(G/H)(Fq) = (G/H)F if and only if g−1F(g) ∈H(k̄), that is, g−1F(g) ∈ hγH

0(k̄)

for a unique γ ∈ Γ. Equivalently, we have g = zgγ, where z ∈G(k̄) satisfies

z−1F(z) ∈ F(gγ)H
0(k̄)F(g−1γ ).

Moreover,

F(gγ)H
0F(g−1γ ) = F(gγH

0g−1γ ) = gγhγH
0h−1γ g−1γ = gγH

0g−1γ .
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Thus, each gγH
0g−1γ is defined over k, and

z−1F(z) ∈ gγH
0(k̄)g−1γ .

Applying Lang’s theorem again, we see that

z ∈G(Fq)gγH
0(k̄)g−1γ .

Thus, the preimage of (G/H)(Fq) in (G/H0)(k̄) is the disjoint union of the orbits

G(Fq)gγH
0, where γ ∈ Γ. This yields the equality

(5.1) |(G/H)(Fq)| =
1

|Γ|

∑

γ∈Γ

|G(Fq)|

|(gγH
0g−1γ )(Fq)|

.

But G(Fq) = GF and (gγH
0g−1γ )(Fq) = (gγH

0g−1γ )F ∼= (H0)γ
−1F , where γ acts

on H0 via conjugation by hγ (this makes sense since H0 is commutative). Thus,

we may rewrite (5.1) as

(5.2) |(G/H)(Fq)| =
1

|Γ|

∑

γ∈Γ

|GF |

|(H0)γF |
.

This still holds when q is replaced with qn, and F with Fn, where n is an arbitrary
positive integer.

Next, we obtain a more combinatorial formula for |(G/H)(Fqn)|. Denote by

Λ = Λ
H0 := Hom(H

0,Gm)

the character group of the torus H0. Then Λ is a lattice, where Γ acts via its

action on H0 by conjugation. Moreover, F defines an endomorphism of Λ that

we still denote by F , via
(

F(λ)
)

(x) = λ
(

F(x)
)

for all points λ of Λ and x of H0.

Since H0 splits over some finite extension F
qN

, we have

FN = qN id

as endomorphisms of Λ. Thus, we may write F = qF0, where F0 is an automor­
phism of finite order of the rational vector space ΛQ. Then F0 normalizes Γ,

and

|(H0)γF | = |Λ/(γF − id)Λ| = |detΛQ
(γF − id)| = detΛQ

(q id−F−10 γ−1)
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by results of [Ca85, 3.2, 3.3]. As a consequence,

|(H0)γF | = qdim(H) detΛQ
(id−F−1γ−1).

Combined with (5.2), this yields

(5.3) |(G/H)(Fq)| =
|GF |

qdim(H)

1

|Γ|

∑

γ∈Γ

1

detΛQ
(id−F−1γ)

.

Now consider the expansion

1

detΛQ
(id−F−1γ)

=
∞
∑

n=0

TrSn(ΛQ)
(F−1γ),

where Sn denotes the nth symmetric power. Since all eigenvalues of F inΛQ have

absolute value q, the series in the right­hand side converges absolutely. Thus, we
may write

(5.4) |(G/H)(Fq)| =
|GF |

qdim(H)

∞
∑

n=0

TrSn(ΛQ)

(

F−1
1

|Γ|

∑

γ∈Γ
γ
)

.

Since the operator
1
|Γ|
∑

γ∈Γ γ of any Γ­module M is the projection onto the

subspace MΓ of Γ­invariants, the series in the right­hand side of (5.4) equals

∞
∑

n=0

Tr
Sn(ΛQ)

Γ(F
−1) = Tr

SΓ
(F−1),

where S denotes the symmetric algebra of ΛQ, and SΓ the subalgebra of Γ­

invariants; here F acts on S by algebra automorphisms, and preserves SΓ. This
yields the equality

(5.5) |(G/H)(Fq)| =
|GF |

qdim(H)
Tr

SΓ
(F−1).

To obtain the desired combinatorial formula, it remains to compute |GF |. For

this, choose a maximal torus T of G containing H0 (and defined over k), with
normalizer NG(T) and Weyl group W ; denote by ΛT the character group of T ,
and by R its symmetric algebra over Q. Applying (5.5) to H =NG(T) yields

|GF | =
qdim(G)

Tr
RW

(F−1)
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in view of Steinberg’s theorem. Substituting in (5.5) and replacing F with Fn

yields our combinatorial formula

(5.6) |(G/H)(Fqn)| = qndim(G/H) TrSΓ(F
−n)

Tr
RW

(F−n)
.

Here F acts on RW and SΓ by automorphisms of graded algebras which are

diagonalizable over Q̄ with eigenvalues of the form ζqj, where ζ is a root of unity
and j is a non­negative integer.

We now obtain an invariant­theoretical interpretation of the right­hand side
of (5.6). The restriction map ΛT → Λ

H0 induces a surjective, F­equivariant

homomorphism
ρ : R−→ S.

We claim that ρ(RW ) is contained in SΓ. To see this, consider γ ∈ Γ and its repre­

sentative hγ ∈H(k̄)⊂NG(H
0)(k̄). Then T and h−1γ �γ are maximal tori of the

centralizer CG(H
0). It follows that hγ is a k̄­rational point of NG(T)CG(H

0).

Thus, the automorphism of S induced by γ lifts to an automorphism of R in­
duced by some w ∈W ; this implies our claim.

By that claim, SΓ is a graded RW ­module; that module is finitely generated,

since the RW ­module R is finitely generated. Moreover, RW is a graded polyno­

mial algebra over Q, and hence SΓ admits a finite free resolution

0→ RW ⊗Em
φm−→RW ⊗Em−1

φm−1
−→ ·· ·

φ1−→RW ⊗E0→ SΓ→ 0,

where E0, . . . , Em are finite­dimensional vector spaces equipped with an action of

F , and φ1, . . . , φm are F­equivariant homomorphisms of RW ­modules. Thus,

Tr
SΓ
(F−n) = Tr

RW
(F−n)

m
∑

i=0

(−1)i TrEi (F
−n)

for all integers n. Together with (5.6), this yields

(5.7) |(G/H)(Fqn)| = qndim(G/H)
m
∑

i=0

(−1)i TrEi (F
−n)

for any positive integer n.
We may further assume that our free resolution is minimal, i.e., each φi

maps bijectively a basis of Ei to a minimal set of generators of the RW ­module
Im(φi) = Ker(φi−1) (see [Ei95, Lem. 19.4]). In particular, E0

∼= Q, and each

Ei is F­equivariantly isomorphic to a subspace of RW ⊗ Ei−1. Since the action
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of F on RW is diagonalizable over Q̄ with eigenvalues of the form ζqj as above,
it follows by induction on i that the same holds for the action of F on Ei , and

hence on RW ⊗ Ei . Together with (5.7), this yields that |(G/H)(Fqn)| is a lin­

ear combination of powers ζ−n qn(dim(G/H)−j) with integer coefficients. In other
words, |(G/H)(Fqn)| is a periodic Laurent polynomial function of qn with alge­

braic integer coefficients. As noted at the beginning of Section 3, this implies
Theorem 1.2.

We now adapt these arguments to prove Theorem 1.3. Again, we may re­
place Fq with F

qN
and assume that the torus T is split, i.e., F acts on (ΛT )Q

as q id. Then the actions of F on the algebras R,RW , S, . . . are determined by

their gradings, and TrR(F
−n),Tr

RW
(F−n),TrS(F

−n), . . . are obtained from the

Hilbert series hR(t), hRW (t), hS(t), . . . of the corresponding graded algebras by

putting t = q−n.
Consider the graded algebra

A := R⊗
RW

SΓ.

Since R is a free RW ­module of finite rank, the SΓ­module A is also free, of finite
rank; moreover,

(5.8) hA(t) =
hR(t) hSΓ(t)

h
RW

(t)
=

h
SΓ
(t)

(1− t)dim(T) h
RW

(t)
.

The algebra of invariants SΓ is Cohen­Macaulay of Krull dimension dim(H)
(see e.g. [Ei95, Exercise 18.14]), and hence so is A. But A is a finitely generated
module over the polynomial algebra R. By Noether normalization, it follows that

A is a finitely generated module over a polynomial subalgebra R′ ⊂ R generated
by elements z1, . . . , zdim(H) of degree 1. In particular, z1, . . . , zdim(H) generate an

ideal of A of finite codimension; therefore, they form a regular sequence in A. It

follows that A is a free module of finite rank over R′ (see e.g. [Ei95, Cor. 18.17]);
thus, the Hilbert series of A satisfies

hA(t) =
Q(t)

(1− t)dim(H)
,

where Q(t) is a polynomial with non­negative integer coefficients. Combined
with (5.8), this yields the equality

h
SΓ
(t)

h
RW

(t)
= (1− t)r Q(t),
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where r = dim(T)−dim(H). Evaluating at q−n and using (5.6) yields the desired
factorization,

|(G/H)(Fqn)| = (q
n− 1)r qn(dim(G/H)−r) Q(q−n)

(note that the function (t− 1)r tdim(G/H)−r Q(t−1) is polynomial by Theorem

1.2, and hence so is the function tdim(G/H)−r Q(t−1) ).
Finally, we prove Theorem 1.4. By (5.1), we may assume that H is connected,

and hence that

|(G/H)(Fqn)| =
|G(Fqn)|

|H(Fqn)|
.

By [St68] (see also [Ca85, 2.9]), the numerator and denominator of the right­

hand side are products of terms qnd − ζn, where d is a positive integer, and ζ is
either 0 or a root of unity. It follows that the non­zero roots of the polynomials
P0(t), . . . , PN−1(t) of (1.5) are roots of unity. Since these polynomials have real
coefficients, their roots are either 0, 1, −1, or come by pairs of complex conju­

gates ζ, ζ̄, where ζ is a root of unity. Moreover, each polynomial (t+1−ζ)(t+1−ζ̄)
has non­negative real coefficients; thus, the same holds for each Pr(t).

Remarks 5.1. — (i) The final step of the preceding proof does not extend
to all homogeneous varieties under linear algebraic groups, as the polynomials
P0(t), . . . , PN (t) may have roots of absolute value > 1.

For example, let Γ be a group of order 2, and Hr the semi­direct product of
the split r­dimensional torus Gr

m with Γ, where the non­trivial element of Γ acts

on Gn
m via (t1, . . . , tr) 7→ (t−11 , . . . , t−1r ). Then H0

r = Gr
m and Hr

∼= H1×· · ·×H1
(r copies); moreover, H1 is the subgroup of SL(2) consisting of all diagonal or
anti­diagonal matrices. Thus, Hr is isomorphic to a closed F­stable subgroup of
GL(2r), where F is the usual Frobenius endomorphism of GL(2r) that raises all
matrix coefficients to the power q. With the notation of the preceding proof, we
have

|GL(2r)F | = qr(2r−1)
2r−1
∏

i=1

(qi − 1)

and

1

qdim(Hr)
Tr

SΓ
(F−1) =

1

2qr
( 1

(1− q−1)r
+

1

(1+ q−1)r

)

=
Qr(q)

(q2− 1)r
,
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where

Qr(t) :=
1

2

(

(q+1)r + (q− 1)r
)

=
∑

i,062i6r

(

r

2i

)

tr−2i .

By (5.5), it follows that the homogeneous variety Xr := GL(2r)/Hr satisfies

|Xr(Fq)| =Qr(q)q
r(2r−1)

r
∏

i=1

(q2i−1− 1)
r
∏

j=1

q2j− 1

q2− 1
.

In particular, |Xr(Fq)| is a polynomial in q, and the maximal absolute value of its

roots tends to infinity as r→∞.

(ii) By the reduction steps in Section 4 and the equation (5.3), we may take
for the period N the least common multiple of the orders of all the Frobenius
endomorphisms of tori with dimension 6 rk(G). As a consequence, we may take

N = lcm
(

n,φ(n)6 rk(G)
)

,

where φ denotes the Euler function.
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