CORPS DE FONCTIONS DE VARIÉTÉS HOMOGÈNES ET COHOMOLOGIE GALOISIENNE*

par

Emmanuel Peyre

Résumé. — Soit V une variété de drapeaux généralisée sur un corps k. Il existe alors des extensions finies k_i de k pour $1 \le i \le m$, des éléments α_i du groupe de Brauer de k_i et une suite exacte naturelle

$$\bigoplus_{i=1}^{m} k_{i}^{*} \xrightarrow{N_{k_{i}/k}(.\cup\alpha_{i})} \operatorname{Ker}\left(H^{3}(k, \mathbf{Q}/\mathbf{Z}(2)) \to H^{3}(k(V), \mathbf{Q}/\mathbf{Z}(2))\right) \to \operatorname{CH}^{2}(V)_{\operatorname{tors}} \to 0.$$

où $H^i(k, \mathbf{Q}/\mathbf{Z}(2))$ désigne le groupe de cohomologie galoisienne à valeur dans \mathbf{Q}/\mathbf{Z} tordu deux fois et $\mathrm{CH}^2(V)$ le groupe de Chow des cycles de codimension deux modulo l'équivalence rationnelle.

Abstract. — Let V be a generalized flag variety over a field k. Then there exist finite field extensions k_i of k for $1 \le i \le m$, elements α_i of the Brauer group of k_i and a natural exact sequence

$$\bigoplus_{i=1}^{m} k_{i}^{*} \xrightarrow{N_{k_{i}/k}(.\cup \alpha_{i})} \operatorname{Ker}\left(H^{3}(k, \mathbf{Q}/\mathbf{Z}(2)) \to H^{3}(k(V), \mathbf{Q}/\mathbf{Z}(2))\right) \to \operatorname{CH}^{2}(V)_{\operatorname{tors}} \to 0$$

where the groups $H^{j}(k, \mathbf{Q}/\mathbf{Z}(2))$ are the Galois cohomology groups with coefficients in \mathbf{Q}/\mathbf{Z} twisted twice and $\mathrm{CH}^{2}(V)$ the Chow group of cycles of codimension two modulo rational equivalence.

Abridged English Version – For any field L we denote by L^s a separable closure of L. For any discrete $\operatorname{Gal}(L^s/L)$ -module M, $H^i(L,M)$ is the Galois cohomology group of degree i with coefficients in M. If L' is a finite extension of L, we denote by $N_{L'/L}$ the corestriction map from $H^i(L',M)$ to $H^i(L,M)$. If a_i belongs to k^* for $1 \le i \le n$ then (a_i) denote their images in $H^1(k, \mathbb{Z}/2\mathbb{Z})$ and

^{*}C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 891-896

 $(a_1, ..., a_n)$ the cup-product $(a_1) \cup \cdots \cup (a_n)$. The Galois cohomology groups with coefficients in \mathbb{Q}/\mathbb{Z} twisted twice are denoted by $H^i(L, \mathbb{Q}/\mathbb{Z}(2))$ and the Brauer group of L by $\operatorname{Br} L$.

Let V be an integral smooth variety over a field L. Then V^s denotes the product $V \times_{\operatorname{Spec} L} \operatorname{Spec} L^s$. The function field of V is denoted by L(V). The group $\operatorname{CH}^i(V)$ is the Chow group of cycles of codimension i modulo rational equivalence. For any $i \geq 0$, the sheaf \mathscr{K}_i is the sheaf for Zariski topology corresponding to the presheaf which maps an open set U to $K_i(U)$, the i-th group of Quillen's K-theory. A generalized flag variety over L is a projective variety over L which is homogeneous under the action of a connected linear algebraic group.

Theorem 1. — Let V be a generalized flag variety over a field k. Let \mathcal{G} be the Galois group of k^s over k. Then the Picard group of V^s is a permutation module. Thus it may be written as $\bigoplus_{i=1}^n \mathbf{Z}[\mathcal{G}/\mathcal{H}_i]$ where the groups \mathcal{H}_i are open subgroups of \mathcal{G} . Let k_i be the corresponding fields. There exist elements α_i of $\operatorname{Br} k_i$ and a natural complex

$$\bigoplus_{i=1}^{m} k_i^* \xrightarrow{N_{k_i/k}(.\cup \alpha_i)} H^3(k, \mathbf{Q}/\mathbf{Z}(2)) \to H^3(k(V), \mathbf{Q}/\mathbf{Z}(2))$$

the homology of which is isomorphic to the torsion subgroup of $CH^2(V)$. In particular, this homology is finite.

The proof, which is a generalization of the proof of the main result in [**Pe2**], is based upon a result of Bruno Kahn [**Kah**, corollaire 3.2] giving an isomorphism

$$\operatorname{Ker}\left(H^{3}(k, \mathbf{Q}/\mathbf{Z}(2)) \to H^{3}(k(V), \mathbf{Q}/\mathbf{Z}(2))\right) \tilde{\to} H^{1}(\mathcal{G}, K_{2}k^{s}(V)/K_{2}k^{s}),$$

proposition 3.6 of [CTR], which yields an exact sequence

$$H^{1}(V^{s}, \mathcal{K}_{2})^{\mathcal{G}} \to H^{1}(\mathcal{G}, K_{2}(k^{s}(V))/H^{0}(V^{s}, \mathcal{K}_{2})) \to$$

$$\to \operatorname{Ker}(\operatorname{CH}^{2}(V) \to \operatorname{CH}^{2}(V^{s})) \to H^{1}(\mathcal{G}, H^{1}(V^{s}, \mathcal{K}_{2}))$$

and the following proposition:

Proposition 1. — The group $\bigoplus_{i,j\in\mathbb{N}} H^j(V^s, \mathcal{K}_{i+j})$ is a free $\bigoplus_{i\in\mathbb{N}} K_i k^s$ -module with a canonical basis which is invariant under the action of $\operatorname{Gal}(k^s/k)$. In particular if $i \geq 0$,

$$H^1(\operatorname{Gal}(k^s/k), H^i(V^s, \mathcal{K}_{i+1})) = 0.$$

We then apply theorem 1 to get the following proposition:

Proposition 2. Let k be a field of characteristic different from 2 and containing a fourth root of unity. Let a_i be elements of k^* for $1 \le i \le 6$. Let V be the product of the four conics corresponding to the symbols (a_2, a_5) , (a_4, a_1) , (a_6, a_3) and $(a_2a_4a_6, a_1a_3a_5)$. Then $(a_1, a_2, a_3) + (a_4, a_5, a_6) \in H^3(k, \mathbb{Z}/2\mathbb{Z})$ maps to 0 in $H^3(k(V), \mathbb{Z}/2\mathbb{Z})$. In general, this defines a nontrivial element in $CH^2(V)_{tors}$.

1. Notations et énoncé du résultat.

Pour tout corps L, on note L^s une clôture séparable de L. Pour tout $\operatorname{Gal}(L^s/L)$ -module discret M, les groupes de cohomologie galoisienne $H^i(\operatorname{Gal}(L^s/L), M)$ sont désignés par $H^i(L, M)$. Si L' est une extension finie de L, on note $N_{L'/L}$ l'application de corestriction de $H^i(L', M)$ à $H^i(L, M)$. Si la caractéristique de L ne divise pas n alors μ_n désigne le groupe des racines n-ièmes de l'unité dans L^s . Si L est un corps de caractéristique exponentielle p, i un entier positif et j un entier, on pose (cf. $[\mathbf{Kah}]$)

$$H^{i}(L, (\mathbf{Q}/\mathbf{Z})'(j)) = \underset{(p,n)=1}{\varinjlim} H^{i}(L, \mu_{n}^{\otimes j})$$

et, si j = 0, 1 ou 2,

$$H^{i}(L, \mathbf{Q}_{p}/\mathbf{Z}_{p}(j)) = \underset{r}{\underline{\lim}} H^{i-j}(L, K_{j}(L^{s})/p^{r}).$$

Si j = 0, 1 ou 2, on pose alors

$$H^i(L,\mathbf{Q}/\mathbf{Z}(j)) = H^i(L,(\mathbf{Q}/\mathbf{Z})'(j)) \oplus H^i(L,\mathbf{Q}_p/\mathbf{Z}_p(j)).$$

Si V est une variété sur L et L' une extension de L, $V_{L'}$ désigne $V \times_{\operatorname{Spec} L}$ Spec L' et V^s la variété V_{L^s} . Si V est intègre, k(V) désigne son corps de fonctions. Le faisceau \mathscr{K}_i est le faisceau pour la topologie de Zariski sur V associé au préfaiseau $U \mapsto K_i(U)$ où $K_i(U)$ désigne le i-ème groupe de K-théorie de Quillen. Si G est un groupe algébrique linéaire semi-simple, une variété de drapeaux généralisée sous G est une variété projective qui est homogène sous G.

Le but de cette Note est de montrer le théorème suivant

Théorème 1. — Soit G un groupe algébrique linéaire semi-simple sur un corps k de groupe de Galois absolu G. Soit V une variété de drapeaux généralisée sous G. Alors le groupe de Picard de V^s est un module de permutation et se met donc sous la forme $\bigoplus_{i=1}^m \mathbf{Z}[G/\mathcal{H}_i]$ où les \mathcal{H}_i sont des sous-groupes ouverts de G. Soient k_i les

corps correspondants. Il existe des classes α_i de $\operatorname{Br} k_i$ et un complexe naturel

$$\bigoplus_{i=1}^{m} k_{i}^{*} \xrightarrow{N_{k_{i}}/k} (.\cup \alpha_{i}) \to H^{3}(k, \mathbf{Q}/\mathbf{Z}(2)) \to H^{3}(k(V), \mathbf{Q}/\mathbf{Z}(2))$$

dont l'homologie est canoniquement isomorphe au sous-groupe de torsion de $\mathrm{CH}^2(V)$. En particulier, cette homologie est finie.

2. \mathcal{K} -cohomologie d'une variété de drapeaux généralisée.

Soient k un corps de clôture séparable k^s et $\mathcal G$ le groupe de Galois de k^s sur k. Soit G un groupe algébrique linéaire semi-simple sur k et V une variété de drapeaux généralisée sous G. On fixe un sous-groupe parabolique P de G^s tel que V^s soit isomorphe à $P \backslash G^s$ et un sous-groupe de Borel B de P. Soit T un tore maximal de B, Φ l'ensemble des racines de T dans G^s et W le groupe de Weyl correspondant. La lettre Δ désigne la base de Φ correspondant à B. Pour tout $J \subset \Delta$, P_J désigne le sous-groupe parabolique correspondant, W_J le sous-groupe de W engendré par les symétries s_α pour $\alpha \in J$ et W^J l'ensemble des uniques éléments de longueur minimale dans les classes $W_J w$ lorsque w décrit W. On note W_i^J le sous-ensemble de W^J des éléments de longueur i et V_J la variété $P_J \backslash G^s$. Pour tout $w \in W$, $X_{w,J}$ désigne l'adhérence de l'image dans V_J de la double classe BwB. L'élément le plus long dans W_J est noté w_J .

Proposition 1. — Avec les notations qui précèdent, le groupe $\bigoplus_{i,j\in \mathbb{N}} H^j(V_J, \mathscr{K}_{i+j})$ est un $\bigoplus_{i\in \mathbb{N}} K_i k^s$ -module libre muni d'une base canonique donnée par les classes $[X_{J,w}]$ dans $H^i(V_J, \mathscr{K}_i)$ pour w appartenant à $W^J_{\dim V_J - i}$. En outre l'application $w\mapsto w_Jww_\Delta$ induit une bijection de W^J_i dans $W^J_{\dim V_J - i}$ et, en posant $\bar{w}=w_Jww_\Delta$, on obtient dans l'anneau de Chow $\bigoplus_{i\in \mathbb{N}} H^i(V_J, \mathscr{K}_i)$, la relation

$$\forall (w, w') \in W_i^J \times W_{\dim V_J - i}^J, [X_{J, w}]. [X_{J, w'}] = \delta_{\bar{w}, w'} [X_{J, e}]$$

où $[X_{J,e}]$ est la classe d'un point.

Démonstration. — Soit $\pi_J: G \to V_J$ la projection canonique. Par [**Bo**, theorem 21.29], les sous-variétés $\pi_J(BwB)$ pour $w \in W^J$ forment une décomposition cellulaire de V_J et pour tout w de W^J la dimension de $\pi_J(BwB)$ est égale à l(w). Or les groupes $H^i(V_J, \mathcal{K}_i)$ coïncident avec $CH^i(V_J)$. Donc par [**Fu**,

example 1.9.1], les classes $[X_{J,w}]$ pour w appartenant à $W^J_{\dim V_J-i}$ engendrent $H^i(V_J,\mathcal{K}_i)$. D'après $[\mathbf{Dem},$ corollaire page 69], il s'agit d'une base lorsque $J=\varnothing$. Un calcul élémentaire sur les longueurs montre que, si $w\in W^J_i$, alors w_Jww_Δ appartient à $W^J_{\dim V_J-i}$. On note $\pi_{\varnothing,J}:V_\varnothing\to V_J$ la projection canonique. Soit w un élément de W^J_i et w' un élément de $W^J_{\dim V_J-i}$. Par $[\mathbf{Bo},\ 21.29],\ \pi_{\varnothing,J}(\pi_\varnothing(Bw_JwB))$ coïncide avec $\pi_J(BwB)$. Comme $l(w_Jw)=\dim(V_\varnothing)-\dim(V_J)+l(w)$, on obtient que $\pi_{\varnothing,J}^{-1}(X_{J,w})=X_{\varnothing,w_Jw}$. En appliquant $[\mathbf{Dem},\ proposition\ 3.1]$ et $[\mathbf{Fu},\ proposition\ 8.3]$, on obtient

$$\begin{split} [X_{J,w}].[X_{J,w'}] &= [X_{J,w}].\pi_{\varnothing,J_*}([X_{\varnothing,w'}]) &= \pi_{\varnothing,J_*}(\pi_{\varnothing,J}^*([X_{J,w}]).[X_{\varnothing,w'}]) \\ &= \pi_{\varnothing,J_*}([X_{\varnothing,w_Jw}].[X_{\varnothing,w'}]) &= \pi_{\varnothing,J_*}(\delta_{w_Jw,w'w_\Delta}[X_{\varnothing,e}]) \\ &= \delta_{\bar{w},w'}[X_{J,e}]. \end{split}$$

Les éléments $[X_{J,w}]$ pour $w \in W_J$ forment donc une base de l'anneau de Chow et la formule d'intersection est démontrée.

Choisissons maintenant une bijection de $\{1,\ldots,N\}$ dans W^J telle que, si $i \leq i'$, alors $l(w_i) \geqslant l(w_{i'})$. Pour tout i compris entre 0 et N on note O_i l'ouvert $\bigcup_{j \leq i} \pi_J(Bw_jB)$. Nous allons démontrer par récurrence sur i que, pour tout i tel que $1 \leq i \leq N$, le $\bigoplus_{j \in \mathbb{N}} K_j k^s$ -module $\bigoplus_{j,l \in \mathbb{N}} H^l(O_i, \mathscr{K}_{j+l})$ est libre avec une base donnée par les classes

$$\left[\overline{\pi_J(Bw_jB)}\right] \in H^{\dim V_J - l(w_j)}(V_J, \mathcal{K}_{\dim V_J - l(w_j)})$$

où j décrit $\{1,\ldots,i\}$. Pour i=1 on a que l'ouvert O_1 est isomorphe à l'espace affine de dimension $\dim V_J$ et le résultat est une conséquence du théorème d'homotopie pour la \mathcal{K} -cohomologie (cf. $[\mathbf{Sh}, \text{ theorem } 2.4]$). Supposons le résultat connu pour i-1. Alors $U_i=O_i-O_{i-1}=\pi_J(Bw_iB)$ est isomorphe à l'espace affine de dimension $l(w_i)$. Par le théorème d'homotopie, on obtient que $H^p(U_i,\mathcal{K}_q)$ est isomorphe à K_qk^s si p est nul et est trivial sinon. Or on a des suites exactes longues

$$\begin{split} \cdots &\to H^{p-d}(U_i, \mathcal{K}_{q-d}) \to H^p(O_i, \mathcal{K}_q) \\ &\to H^p(O_{i-1}, \mathcal{K}_q) \xrightarrow{\partial_i^{p,q}} H^{p+1-d}(U_i, \mathcal{K}_{q-d}) \to \cdots \end{split}$$

où $d = \dim V_J - l(w_i)$. Mais si p > d, alors le groupe $H^{p-d}(U_i, \mathcal{K}_{p-d})$ est trivial et $\partial_i^{p-1,p} = 0$. Si, par contre, p = d, alors sachant que

$$\operatorname{rk}(H^p(V_J, \mathcal{K}_p)) = \#W^J_{\dim V_J - p} = \sum_{\{i \mid l(w_i) = \dim V_J - p\}} \operatorname{rk}(\operatorname{Coker} \partial_i^{p-1,p}),$$

on obtient que les applications $\partial_i^{p,p-1}$ sont triviales. Mais les morphismes ∂_i sont K_*k^s -linéaires et par hypothèse de récurrence $\bigoplus_{i\in \mathbf{N}} H^p(O_{i-1}, \mathscr{K}_{p+i})$ est un $\bigoplus_{i\in \mathbf{N}} K_i k^s$ -module libre. Donc toutes les applications $\partial_i^{p,q}$ sont nulles. En d'autres termes on a obtenu un diagramme commutatif dont les lignes sont exactes :

Par conséquent la flèche verticale du centre est également un isomorphisme.

Corollaire 1. — Les \mathcal{G} -réseaux $H^i(V^s, \mathcal{K}_i)$ sont des modules de permutation.

Démonstration. — On note I la partie de Δ correspondant à P. Soit $C_{\text{eff}}^i \subset H^i(V^s, \mathcal{K}_i)$ le cône des classes de diviseurs effectifs. Alors $[X_{I,w}]$ appartient à ce cône. Réciproquement, soit $\alpha = \sum_{w \in \mathcal{W}_i^J} n_w[X_I, w]$ un élément de $C_{\text{eff}}^{\dim V - i}$.

Alors, d'après [**Fu**, page 441] pour tout w appartenant à $W^I_{\dim V-i}$ on a $[X_{I,w}].\alpha \geqslant 0$. Mais pour tout élément $w \in W^I_i$, $n_w = [X_{I,\bar{w}}].\alpha$. Donc on obtient que $C^{\dim V-i}_{\mathrm{eff}}$ est le monoïde engendré par les $[X_{I,w}]$ où w décrit W^I_i . L'action de $\mathscr G$ sur $H^i(V^s,\mathscr K_i)$ laisse C^i_{eff} globalement invariant. Ses faces de dimension un sont également invariantes et la base définie par $[X_{I,w}]$ est globalement invariante.

Corollaire 2. — Pour tout entier positif i, on a $H^1(\mathcal{G}, H^i(V^s, \mathcal{K}_{i+1})) = 0$.

Démonstration. — Par la proposition 1, on a des isomorphismes

$$H^{i}(V^{s}, \mathscr{K}_{i+1}) \xrightarrow{\sim} k^{s*} \otimes_{\mathbb{Z}} H^{i}(V^{s}, \mathscr{K}_{i}).$$

Le corollaire résulte alors du corollaire 1 et du théorème 90 d'Hilbert.

3. Démonstration du théorème 1

Par [CTR, proposition 3.6], on a une suite exacte

$$H^{1}(V^{s}, \mathcal{K}_{2})^{\mathcal{G}} \to H^{1}(\mathcal{G}, K_{2}(k^{s}(V))/H^{0}(V^{s}, \mathcal{K}_{2})) \to$$

$$\to \operatorname{Ker}(\operatorname{CH}^{2}(V) \to \operatorname{CH}^{2}(V^{s})) \to H^{1}(\mathcal{G}, H^{1}(V^{s}, \mathcal{K}_{2})).$$

D'après le corollaire 2, $H^1(\mathcal{G}, H^1(V^s, \mathcal{K}_2))$ est trivial et par la proposition 1 on a des isomorphismes $K_2k^s \to H^0(V^s, \mathcal{K}_2)$ et Pic $V^s \otimes k^{s*} \to H^1(V^s, \mathcal{K}_2)$. Mais d'après [**Kah**, corollaire 3.2] qui est un des éléments-clefs de cette démonstration,

$$H^1(\mathcal{G}, K_2(k^s(V))/K_2k^s) \xrightarrow{\cdot} \operatorname{Ker} \left(H^3(k, \mathbf{Q}/\mathbf{Z}(2)) \to H^3(k(V), \mathbf{Q}/\mathbf{Z}(2))\right).$$

En outre, comme $CH^2(V^s)$ est sans torsion, on a

$$Ker(CH^2(V) \rightarrow CH^2(V^s)) = CH^2(V)_{tors}$$

ce qui donne la suite exacte

$$(\operatorname{Pic} V^{s} \otimes k^{s*})^{\mathscr{G}} \to \operatorname{Ker} \left(H^{3}(k, \mathbf{Q}/\mathbf{Z}(2)) \to H^{3}(k(V), \mathbf{Q}/\mathbf{Z}(2)) \right) \to \operatorname{CH}^{2}(V)_{\operatorname{tors}} \to 0.$$

Comme (Pic $V^s \otimes k^{s*}$) $\stackrel{\mathcal{G}}{\to} \bigoplus_{i=1}^m k_i^*$ il reste à montrer que le morphisme de k_i^* dans $H^3(k, \mathbf{Q}/\mathbf{Z}(2))$ a bien la forme désirée. Mais on vérifie que les morphismes considérés sont compatibles avec la corestriction. Il suffit donc de considérer le cas où $k_i = k$. Soit α_i l'image du générateur naturel de $\mathbf{Z}[\mathcal{G}/\mathcal{H}_i]^{\mathcal{G}} \subset \operatorname{Pic} V^{s\mathcal{G}}$ dans $\operatorname{Br} k$ par l'application composée

Pic
$$V^{\mathcal{SG}} \to H^1(\mathcal{G}, k^{\mathcal{S}}(V)^*/k^{\mathcal{S}^*}) \to \operatorname{Br}(k)$$
.

On vérifie alors comme dans [Pe2, lemma 4.3] la commutativité du diagramme

$$k^* \longrightarrow H^3(k, \mathbf{Q}/\mathbf{Z}(2))$$
 $k^* \otimes \alpha \mathbf{Z}.$

4. Application.

Proposition 2. — Soit k un corps de caractéristique différente de 2 et contenant des racines quatrièmes de l'unité. Soit $a_i \in k^*$ pour $1 \le i \le 6$. On pose

$$A_1 = a_2$$
, $A_2 = a_4$, $A_3 = a_6$, $A_4 = a_2 a_4 a_6$
 $B_1 = a_5$, $B_2 = a_1$, $B_3 = a_3$, $B_4 = a_1 a_3 a_5$.

On note V le produit des quatre coniques C_i d'équations homogènes

$$T_{i,1}^2 - A_i T_{i,2}^2 - B_i T_{i,3}^2 = 0.$$

Alors l'élément $(a_1, a_2, a_3)+(a_4, a_5, a_6)$ de $H^3(k, \mathbb{Z}/2\mathbb{Z})$ s'annule dans $H^3(k(V), \mathbb{Z}/2\mathbb{Z})$ et définit en général un élément non nul de $CH^2(V)_{tors}$.

Démonstration. — Un calcul explicite à partir du théorème 1 amène à considérer la fonction

$$f = \left(\frac{T_{1,1}}{T_{1,3}}\right)^2 a_1 - \left(\frac{T_{2,1}}{T_{2,3}}\right)^2 a_5 = \left(\frac{T_{2,1}T_{1,2}}{T_{2,3}T_{1,3}}\right)^2 a_2 - \left(\frac{T_{1,1}T_{2,2}}{T_{1,3}T_{2,3}}\right)^2 a_4 \in k(C_1 \times C_2 \times C_3).$$

D'après [**Lam**, chapter 10, proposition 1.3], dans $H^3(k(C_1 \times C_2 \times C_3), \mathbb{Z}/2\mathbb{Z})$ on a les relations

$$\begin{split} (f,a_1a_3a_5,a_2a_4a_6) &= \left(a_2\left(\frac{T_{2,1}T_{1,2}}{T_{2,3}T_{1,3}}\right)^2 - a_4\left(\frac{T_{1,1}T_{2,2}}{T_{1,3}T_{2,3}}\right)^2, a_2a_4, a_1a_3a_5\right) \\ &+ \left(a_1\left(\frac{T_{1,1}}{T_{1,3}}\right)^2 - a_5\left(\frac{T_{2,1}}{T_{2,3}}\right)^2, a_1a_5, a_6\right) \\ &= (a_2,a_4,a_1a_3a_5) + (a_1,a_5,a_6) \\ &= (a_2,a_3,a_4) + (a_1,a_5,a_6). \end{split}$$

Ce dernier élément s'annule donc dans $H^3(k(V), \mathbb{Z}/2\mathbb{Z})$. Mais $(a_1, a_2, a_3) + (a_1, a_5, a_6) + (a_2, a_3, a_4) + (a_4, a_5, a_6)$ appartient au groupe

$$<(a_{i}),1\leqslant i\leqslant 6>\cup <(a_{2},a_{5}),(a_{4},a_{1}),(a_{6},a_{3}),(a_{1}a_{3}a_{5},a_{2}a_{4}a_{6})>$$

qui est contenu dans le noyau de l'application de restriction de k à k(V).

Pour la seconde assertion, constatons d'abord que le complexe du théorème 1 s'écrit

$$S \otimes k^* \xrightarrow{\cup} H^3(k, \mathbf{Q}/\mathbf{Z}(2)) \to H^3(k(V), \mathbf{Q}/\mathbf{Z}(2))$$

où S est le sous-groupe de Brk engendré par les (A_i, B_i) pour $1 \le i \le 4$. D'après [**Pe2**, remark 4.1] qui utilise le théorème principal de Merkur'ev et Suslin [**MS**], si ce complexe est exact il en est a fortiori de même du complexe obtenu en remplaçant $\mathbf{Q}/\mathbf{Z}(2)$ par $\mathbf{Z}/2\mathbf{Z}$. On se place alors dans le cas où k est de la forme $k_0((a_1))...((a_6))$ pour des indéterminées a_i et un corps algébriquement clos k_0 . Par [**Pe1**, page 255], $H^*(k, \mathbf{Z}/2\mathbf{Z})$ est alors isomorphe à Λ^*U où U est le sous-groupe de $k^*/(k^*)^2$ engendré par les (a_i) . Un calcul élémentaire donne alors que

$$(a_1) \wedge (a_2) \wedge (a_3) + (a_4) \wedge (a_5) \wedge (a_6) \notin S \wedge U.$$

Je remercie Markus Rost pour les discussions qui m'ont amené à étendre le résultat principal de [**Pe2**] aux variétés de drapeaux généralisées.

Références

- [Bo] A. Borel, *Linear algebraic groups (Second enlarged edition)*, Graduate Texts in Math., vol. 126, Springer-Verlag, Berlin, Heidelberg and New York, 1991.
- [CTR] J.-L. Colliot-Thélène and W. Raskind, \mathcal{K}_2 -cohomology and the second Chow group, Math. Ann. **270** (1985), 165–199.
- [Dem] M. Demazure, *Désingularisation des variétés de Schubert généralisées*, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88.
- [Fu] W. Fulton, *Intersection theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 2, Springer-Verlag, Berlin, 1984.
- [Kah] B. Kahn, Descente galoisienne et K_2 des corps de nombres, K-theory 7 (1993), 55–100.
- [Lam] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, Reading, 1973.
- [MS] A. S. Merkur'ev and A. A. Suslin, *K-cohomology of Severi-Brauer varieties and the norm residue homomorphism*, Izv. Akad. Nauk SSSR Ser. Mat. **46** (1982), n° 5, 1011–1046; English transl. in Math. USSR-Izv. **21** (1983), n° 2, 307–340.
- [Pe1] E. Peyre, Unramified cohomology and rationality problems, Math. Ann. 296 (1993), 247–268.
- [Pe2] ______, Products of Severi-Brauer varieties and Galois cohomology, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa-Barbara, 1992) (B. Jacob and A. Rosenberg, eds.), Proc. Sympos. Pure Math., vol. 58.2, AMS, Providence, 1995, pp. 369–401.
- [Sh] C. C. Sherman, *K-cohomology of regular schemes*, Comm. Algebra 7 (1979), n° 10, 999–1027.

1995

Emmanuel Peyre, Institut Fourier, UFR de Mathématiques, UMR 5582, Université de Grenoble I et CNRS, BP 74, 38402 Saint-Martin d'Hères CEDEX, France Url: http://www-fourier.ujf-grenoble.fr/~peyre

• E-mail: Emmanuel.Peyre@ujf-grenoble.fr