GALOIS COHOMOLOGY IN DEGREE THREE
AND HOMOGENEOUS VARIETIES*

by

Emmanuel Peyre

Abstract. — The central result of this paper is the following generalization of a
result of the author on products of Severi-Brauer varieties. Let G be a semi-simple
linear algebraic group over a field £. Let /" be a generalized flag variety under G.
Then there exist finite extensions £; of £ for 1 <i < m, elements ; in Brk; and
a natural exact sequence
7 N a(Ue) 3 3 5
b — s Ker (H2 (b QUZ(2) > H k(1) Z(2)) ) = CHY (1) 0150,

i=1

After giving a more explicit expression of the second morphism in a particular
case, we apply this result to get classes in H 3 (Q, Q/Z), which are k-negligible for
any field £ of characteristic different from 2 which contains a fourth root of unity,
for a group Q which is a central extension of an F, vector space by another.

Résumé. — Le résultat central de ce texte est la généralisation suivante d’un
résultat de 'auteur sur les produits de variéeés de Severi-Brauer. Soit G un groupe
algébrique linéaire semi-simple sur un corps 4. Soit ¥ une variété de drapeaux
généralisée sous G. Alors il existe des extensions finies £; de £ pour 1 <7 < 7, des
éléments a; de Brk; et une suite exacte naturelle
2 N alUe) 3 3 5

B Ker (H (b Q/Z2)—H3 k(V), Q/Z(z))) — CHA(F) 0.
i=1

Apres avoir donné une description plus explicite du deuxiéme morphisme dans
une cas particulier, nous utilisons ce résultat pour construire des classes dans
H3 (Q, Q/Z) qui sont k-négligeables pour tout corps 4 de caractéristique diffé-
rente de 2 et contenant une racine quatri¢tme de 'unité, pour un groupe Q qui est
extension centrale d’un F, espace vectoriel par un autre.
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1. Introduction

The central result of this paper is a generalization of a previous result of the
author about products of Severi-Brauer varieties [Pe2), theorem 4.1]. Let /" be
a generalized flag variety for a linear algebraic group G over a field £. Then the
Picard group of V" over a separable closure of £ has a canonical basis B which is
globally invariant under the action of the Galois group. Let £ be the étale algebra
corresponding to the Galois set B. There exists a class « in the Brauer group of E
and an exact sequence

* N () 3 3 2

Ef ——— Ker(H”(k, Q/Z(2)) — H” (k(V), Q/Z(2))) = CH*(} ) oys — O.
In fact the part of the kernel given by the image of E* comes from the ker-
nel for Brauer groups in the following sense: this image is the union, for 4
describing the separable finite extensions of £ of the corestriction of the group
K" UKer(Brk — Brk’(V)). This kernel has been studied independently by
Merkur’ev in [Me].

After giving a few applications of this result and describing an explicit con-
struction of the second map in a particular case, we turn to the second topic of
this paper, the problem of totally £-negligible classes in the third cohomology
group of some meta-abelian groups G, that is classes which vanish when lifted
to the Galois cohomology of any extension of k. This notion of negligibility is
weaker than the one introduced by Serre in [Se, §7]. In this article, the idea
is to replace the field of invariants £(7)®, on which the negligibility may be
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tested, by a function field K(7") where K is purely transcendental over £ and 7
a generalized flag variety over K for which we may apply the previous results of
the paper. We then use this machinery to get a class in H>(G, Q/Z) which is
k-negligible for any field 4 of characteristic different from 2 and containing the
fourth roots of one, where the group G is a central extension of an F, vector
space by another.

It is interesting to note that the first examples of geometrically negligible
classes in the group H 3(G, Q/Z) were constructed by Saltman (see [Sa2, the-
orem 4.14]) for a 2-group G with a cyclic subgroup of index 2 using a kind of
equivariant Chow group. Although the techniques used here are different from
those of Saltman, the group CH?(¥) which appears may also be interpreted as
an equivariant Chow group; this seems to indicate the existence of a more general
underlying structure.

Some of the results of this article have been stated with shortened proofs in

[Pe3].

2. Notation and statement of the main result

Notation . — For any field L, L denotes an algebraic closure of L and L* the
separable closure of L in L. For any discrete Gal(Z’/L)-module M, set

H' (L, M) = H (Gal(L*/L), M).

If the characteristic of L does not divide 7, 1, denotes the group of 7-th roots of
unity in Z°. If p is the exponential characteristic of L, which coincides with the
usual one if it is different from 0 and is 1 otherwise, 7 a positive integer and j an
integer, we put (see [Kah])
' Tray _ 1 i ®)
H(L(Q2) () = i H (L)
(pn)=1

and, ifj=0, 1 or 2,

H' (L, Qy/Z,())) =lim H' (L, Ki{(L*)/p")
Then ifj =0, 1 or 2 we put

H' (L, Q/Z(j)) = H' (L, (Q/Z)'()) ® H' (L, Qp/Z, /).

If 2/ is a finite separable field extension of Z then N 1, denote the corestriction

/
/L
morphism from the Galois cohomology of L’ to that of L.
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If 7 is a variety over L then L()) is the function field of 7. If moreover L’
is a field extension of L then V;; denotes the product V' Xgpec 1 SpecL’ and V*

the variety /7;s. For any nonnegative integer 7, () denotes the set of points
of codimension 7 in 7. The sheaf %] is the sheaf on V" for Zariski topology
corresponding to the presheaf mapping U to K;(U), the i-th group of Quillen
K-theory. If V" is smooth, the codimension of support defines a decreasing fil-
tration on K’ (7") which is denoted by K’ (VY (see [Q, §7.5]). The quotient
K'(VY/K*(VY*! is denoted byKi(V)(//f'+1).

A generalized flag variety is a projective variety which is homogeneous under
the action of a connected linear algebraic group G and such that /* is isomorphic
to the quotient of G* by a standard parabolic subgroup. Without loss of general-
ity, we may assume that the group G is semi-simple and simply connected.

From now on, G will denote a semi-simple simply connected linear algebraic
group over a field £ and 7 a generalized flag variety under G. We denote by ¢
the Galois group of £° over 4.

The key result of this paper is the following theorem, the proof of which is
given in section [l

Theorem 2.1. — With notation as above, the Picard group of V* is a § permuta-
tion module. This means that there exist subgroups ¢ of G of finite index such that
Pic V* is isomorphic to @7_1 L[/ I;). Let k; be the corresponding frelds. Then for
any i there is a class o; of Brk; such that:

(i) In the natural exact sequence

Pic V- — Pic(V*)Y LsBrk — Bri(y)

the natural generator of L|9 / H; 19 is sent to N, k. /k(0t;) by p.
(i) The homology of the complex

@ Dk

9D, i Q) — R, 22)

is canonically isomorphic to the torsion subgroup of CH2(V). In particular
this homology is finite.

Remark 2.2. — Merkur’ev has proved in [Me] that the kernel of the first map
in (€) coincides with H (V] ).
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3. . -cohomology

We shall now consider the ¢-module structure of the .# -cohomology groups
of *.

We fix a parabolic subgroup P of G* such that 7* is isomorphic to P\ G*. Let
B be a Borel subgroup of G° contained in P, T' be a maximal torus in B, ® be
the root system of 7" in G*, and W be the corresponding Weyl group. The letter
A denotes the basis of @ corresponding to B. For any a in A, s, denotes the
corresponding generator of /¥ and &, the corresponding fundamental weight.
Let I be the subset of A corresponding to P (see [Bor, page 234]). For any subset
J of A, the corresponding parabolic subgroup is denoted by P;. Let V' be the
homogeneous variety Py\G* and 7y be the canonical projection G* — V. The
subgroup generated by the s, for a € J is denoted by /7 and the set of the

unique elements of minimal length in the classes Ww for w in W by w7 . Let
wy be the longest element in /7.
Let g be the Lie algebra of G* and for any o € O let

g, ={Xe€g|VeeTk), Ad(t)(X) = a()X }.
The unique subgroup of G° normalized by 7" and having g, as Lie algebra is

denoted by U,. If w belongs to W, then Uy, is the subgroup of G* generated by
the U, where y varies over

{3€®|d>0and wd <0}

By Bruhat’s decomposition, G* is the disjoint union of the double classes C(w) =
BuwB for w € W. Moreover by [Bor, theorem 14.12] there are isomorphisms

Bx U, = BuwB
(byu) — bwu

and by [Bor, theorem 21.29], the sets m;(C(w)) give a cellular decomposition of

(1)

V7 as w varies over W/ . Moreover the isomorphism (I) yields an isomorphism

from U, to 77(C(w)). In particular by [Bki, chapitre VI, n® 1.6, page 158,

corollaire 2],
dim(m;(C(w))) =#{y€ ®|y>0and wy <0} = /(w).

Let X, = m;(C(w)). By [Ful example 1.9.1], the Chow group CH,(¥7), which

by [Q, theorem 7.5.19] is isomorphic to H*( V5, %), is generated by the classes
(X}, for

we W{:{we W | l(w) =i}
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and by [Dem), corollaire page 69] these classes form a basis when J = &. We shall
now generalize this result.

Proposition 3.1. — With notation as above, @, ]>0H (V], is a free
D=0 Kjk' -module with a canonical basis given by the classes [X] w] in H (Vj, H;)
Jfor w in Wéme] . where i varies over {0,...,dimVy}.  Moreover the map

w— wywwy induces a bijection w — w from W] to Wim Vi . and in the Chow
ring ;>0 Hi(V'], ;) one has for any w € WZ] and any W e Wim Vo
(Xl X =8, 01X ]
where (X ,] is the class of a point.
We first state two corollaries of this proposition.
Corollary 3.2. — The G -lattices H' (V*, ;) are permutation modules.

Proof. — Let C éﬁ: C H (I, #;) ® Q be the cone of classes of effective divisors.
Then [X},,] belongs to this cone. On the other hand, let

o= Z nw[XLw]

we VVZJ

be an element of Cgfifm V—, Then, let £ be an effective divisor representing a
multiple of a. By [Ful page 441] for any w belonging to W Jim —;» there exists

¢ in G(£') such that the intersection of X7 ,,.¢ with E is a union of points. Thus
one has [X7,,].[E] > 0 and hence [X},,].0 > 0. But, by the proposition, for any

we VV;, 7y, = [XM,].OL. Therefore, we get

s
Ca 7= > QuolXpul
weW-I

The action of 4 on H' (V*, #;) ® Q leaves Cl globally invariant. Its faces of

dimension one remain also invariant and thus the basis ([X7,]) wel is
di

imV—i
also globally invariant. O

Corollary 3.3. — For any positive integer i, one has
HY G, H'(V*, #;41)) = 0.



GALOIS COHOMOLOGY AND HOMOGENEOUS VARIETIES 7

Proof. — By proposition[3.1], there are isomorphisms

H V', i) = K @z H' V', K;),
but the right term is a permutation module by corollary B.2l Let &; be the
subgroups of & such that H'(V*,.%;) = j”i1Z[g/gj]. Then by Shapiro’s

lemma

. m
H VS, X)) = G?Hl(%j, F*).
j:

But by Hilbert’s theorem 90, the groups A 1 (%, k™) are trivial. O

Proof of proposition[3.1l — Let us first prove the assertions concerning the
Chow ring. By [Ful example 1.9.1], the classes [X},,] generate the Z-module
@ieNHi(V], ;). Let w belong to W/ and let us show that «/ = wyww

7

belongs to Wéim v By [Bki, chapitre IV, §1, exercice 3],

Z(w]w) = l(w]) +/(w) = dim V' —dim Vi+ [(w)
and by [Bki, chapitre VI, n°® 1.6, page 158, corollaire 3],
wywwp) = l(wp) — l(wyw) = dim Vy — [(w).

Let us write 2/ in the form wqw, with w; € Wy and w, € W/ . Then

W) = lwpwyw;) = H(wy) — (w) + (wy).
Thus we have
l(w) = l(w]w/wA) =l(wp) —l(wy) + Hwy) — Lwy) = dim Vy + L(wy) — [(w)

but /(&) = l(w;) + {(w,) = dim Vi —l(w) and we get 2/(w;) = 0, which yields
that w is trivial.

Let us now consider elements w of VVZJ and «’ of Wim Vi We denote by
Ty, the canonical projection from Vg to V. By [Bor, proposition 21.29], one
has the equality

g1 (e (Clwyw))) = 77 (C(w))

since [(wyw) = [(wy)+{(w) = dim(V ) —dim (V) +/(w), we get that ﬁg’lj(Xj)w) is
equal to X@,w]w- Then, using [Dem) §3.3, proposition 1] and [Ful proposition
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8.3], we obtain the following equalities
00X, ) = D )mag, (X,, )
=g, (T (X)X /1)
= @,j*([XQ,w]w]'[Xg’w])

=77, it Kae))

Thus the classes [X ],w] for we W/ give a basis of the Chow ring and the inter-
section formula is proved.

Let N be the cardinal of W/ . Let us now choose a bijection from {1,..., N}
to W/ such that i <i 1mphes lw;) =1 (w /), where w; denotes the image of 7.
Then for any 7 between 1 and N we denote by O; the open set Ui<i W](C( w;)).
We shall prove by induction on 7 that for any 7 such that 1 < i < N the
Dj>0 Kk’ -module B; />0 H L 0,, %} ;) is free with a basis given by the classes

7/ (Clw)| e H

forjin{1,...,i}. For i = 1, the open set Oy is isomorphic to an affine space and
the assertion is a consequence of the homotopy theorem for .2 -cohomology (see
[Sh! theorem 2.4]). Let us assume the result for i —1. Then U; = 0, — 0;_; =
77(C(w;)) is isomorphic to an affine space of dimension /(w;). By the homotopy
theorem one has

dim V7—{(w;
D0 Koy 110)

I(qks ifp=0,
0 otherwise.

Since the varieties U; and O; are smooth, there are long exact sequences

8pq
= HP U, A )~ HP(0;, 7)) — HP (01, ) —— HPY YU, )

where d = dim V7 — /(w;) which are induced by the short exact sequences

0— P Kiklx)— @ Kik(x @ Kik(x

erl(’_d) x€0; ) x€0); )1

For g = p one has in particular

T

s HITH U, A g) = HP(0,, 2,) — HP (0, X,

p)—>0.
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But, if p > d the group HP_‘{(UZ-, Ji;,_d) is trivial and af_l’f’ = 0. On the other
hand, if p = d then

ck(HP (V), H,)) = #1V) = > tk(Coker 1),
{ill(w;)=dim V;—p}

and the maps 85) b2 are trivial. But the morphisms d; are K ' linear and by in-
duction hypothesis H?(0;_;, ,%?H*) is a free K, &’-module. Therefore all maps

8‘?’4 are trivial. Hence we obtain the following commutative diagram the hori-
zontal lines of which are exact:

0——H(U, A g)————HP (0}, H)————HP (0,1, )——0
| | T?
0K, k' @HP (U, H_}K, K RH? (0}, )oK,k @H?(0;_1, H)}~0.
Therefore the vertical line in the middle is also an isomorphism. O

Concerning the Chow groups of 7 we simply note the following facts:

Proposition 3.4. — Let £ bea separable finite extension of k which splits G.
(i) The group Ko(V') is without torsion. We may identify it with its image in
Ko(Vk/).
(i) One has the inclusions

[ Ko (V) NKo(V) C Ko(F) C Ko(Vy) NKo (V).
(iii) The kernel of the surjective map

is killed by (i — 1)! and (& k).
(iv) Ko(V) = Ko(Vy) NKo(V) ifi =1 0r2.
() CH(F )05 = (Ko(Vy)> N Ko(P))/Ko(V).

Proof- — The assertion (i) is a consequence of Panin’s result [Pa, theorem 4.2].
The assertions (ii), (iii) and (iv) are proved as the similar assertions of [Pe2,
proposition 3.8]. For the last assertion, since CH2 (7, ;) is without torsion and

Ker(CH(V) = CH*(V))
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is killed by [#' : ], one has
CH? (V) s, = Ker(CH*(F') — CH*(V)))

=Ker (Ko(V)*/Ko(V) = KoV */Ko(Vy)?)

= (Ko(")> N KoV VKo(V)?

= (KoM NKy(V)VEK(7). O

tors

4. Explicit description of the Hochschild-Serre spectral sequence for
hypercohomology

The construction of the morphism from the homology of the complex (%) to
the group CH?(¥),,s involves the Hochschild-Serre spectral sequence for rela-
tive hypercohomology groups of £ (V')/k’ with coefficients in the Lichtenbaum
complex T'(2) (see [Kah, page 68]). Therefore we shall now give an explicit
construction of this spectral sequence and then check that it is compatible with
corestriction and cup-products. In fact, this construction is a simple generaliza-
tion of the one of Hochschild and Serre and the proof of the compatibilities are
quite straightforward but we include them for self-completeness.

For any group G and any G-module M, C?(G, M) denotes the group of nor-
malized n- cochains, this means the group of functions f : G” — M such that
f(g15--.>g,) is trivial whenever one of the g; is e. Let G be a group and K be
a normal subgroup of G. In the following a bounded complex of G-modules is
a family (M?);cz of G-modules, which are trivial except for a finite number of
integers, equipped with a differential 8 going from M’ to M**1. Let (M?*,8) be
a bounded complex of G-modules. We consider the group

=P (G M)
20
jez
which is a bicomplex for the differentials d’" and 4" where
d . C(G M) — CG M)
is the standard non homogeneous coboundary operator and

is (—1)'3,. We put 4%)(G) = C'(G, M) ifi > 0 and j € Z and 4%)(G) = 0
otherwise. As in [HS, page 119] one defines a decreasing filtration on A as
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follows: Ay’ .)(G) is A(ij)( G)ifl <0, AEiJ)(G) is the set of i-cochains y: G' —
M such that v(¢1>--->g;) depends only on g1,.... ¢, _pgi_ 1K ...,g; K if 0 <
/ <i and is 0 otherwise. Then we put

= P 4% = P A G) and 4)(G) = P 4}(G)
i+j=n i+j=n nel

By [HS, page 119] this filtration is compatible with d’. The compatibility with
d" is clear. Therefore it is compatible with the total complex

(@A” G)d= d+a’”)

nel

Moreover there is a natural morphism
a: 4(6) — /K, ¢ (i )

obtained by restricting the first i —/ coordinates of an element of Agi’j) (G)to K.
We recall that the corresponding spectral sequence is then defined by

24(G) = {ac 4(6) | dae 417 (G)

and
EPIG/K) = PG (0T (6) + d AT (G).

The group G acts on the modules M ’ and by conjugation on K. This yields
an action of G on C'(K, M’) compatible with the differentials and induces an
action on the hypercohomology groups H4(K, M*®).

Lemma 4.1. — The group K acts trivially on H1(K, M*®).

Proof. — Consider the abelian category 4> of bounded complexes of G-
modules (N*,8) such that N is trivial if » < 0. Without loss of generality,
we may assume that M*® is an object of this category. The hypercohomology
functors H? (K, —) when restricted to %~ are the right derived functors of the
functor sending (N'®,8) on the group Ker(N?® — N1)X (see [Mi, appendix C])
and for any object N*® of €, the group K acts trivially on the cohomology
group HY(K, N*). Thus, for any 4 in K, the induced automorphism of the
cohomological functor H*(K,—) is trivial in degree 0 and therefore in any

degree [CE, Chapter III, proposition 5.2]. U
We get an action of G/K on HY(K, M*®) for any g in Z.
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Lemma 4.2. — With notation as above, the map q’p induces an isomorphism

EYY(G/K) = C(G/K, HI(K M)
and
By (G/K) = HP (G/K, HI(K, M*)).

Proof. — By construction, if we denote also by &’ the map on C?(G/K, C1(K, M/))
induced by the standard coboundary operator for K, then ¢, commutes with

d’. Let d” be defined as (—1)7798, on CP(G/K, C1(K, M7)). Then ¢, and A"
commute. Thus ¢, induces a canonical map

EP(G/K) — CP(G/K, BI(K, M*)).
Let us check that it is an injection. Let us consider pairs (f, #) with

f = @)i>0 e @)Algl)])'i‘q_l)(G) and u= (ul)l>]) e @ CP(G/I(, CZ_P(KMp+q—1—z))
i> i>p

such that df belongs to A]Zi :{ G) and ¢,(f) = d(u) where d denotes the sum

d' +d". We putu; = 0ifi < p. Since M* is bounded, it is enough to prove by an
increasing induction on 2 that for any such pair which verifies

Vl GZZOJ = m = I/tl 1= =0 andf GAPZf;q Z)(G),

there exists b E/lgﬂj_l (G) such that
F—dhe £1(G).

ptl

It is true if 7 is zero. Let us assume it is true for 7. Let (f, #) be a pair which
verifies the condition for 72 + 1. By definition of 4 one has that

4 (£,) € AV IT(G) and 4,(5,) = d (1,1

By [HS! pages 121 and 122], there exists a cochain 4,, ; in A(m Lptq—m) (G)
such that

Splbypr) =ty and fy, —d (1) €A,
lecf' =f —d(h,,_1). Then f’ € Z/(G) and
¢p(f ¢p(f ¢p°d m—1) = d(u) _d°¢p(l7m—1)-



GALOIS COHOMOLOGY AND HOMOGENEOUS VARIETIES 13

It is enough to check the result for f° ’ But

Sy = fu=d (by) €40 (G)

and ¢P(f ') where

0 otherwise.

/_{I/tl‘ lfl m—2

Thus we may apply the induction hypothesis.
Let us now prove the surjectivity. Let

() = (4;);>0 € P CP(G/K, C'P (K, MPT177))
>0

be such that d(#) = 0. We shall prove by a decreasing induction on 7 the existence
of
()= €D (G, MP*17)
jZ
such thatif j > i

1
4" +d () e AV (6)
and, ifj > 7, we have q’p(’j) = 1. It is true for i big enough since M* is bounded.

Let us assume it is true for 7 + 1. Then we have ¢,(f;41) = #;41. But A" (u; 1) +
d'(u;) = 0. Thus

(" (f41)) = d" (& (fir1)) = (—uy).
Moreover one has
i+2, —i
A1) = d (" (f42)—d (fr1)) € A (G).
Therefore, by [HS, pages 121 and 122], there exists f; EA(i’P +q_i)(G) such that

80) =y and &' () + 4" (fi41) € 45T TH(6)

and the result is proved for 7. Thus we get an element

£= 0 @4 T@)
20
such that
$p(f) = wand d(f) € 4)7(G),
This proves the first assertion of the lemma.
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It remains to show that we have a commutative diagram:

CPG/K, HI(K, M)~ el Gk Ba(K, M)

" i
EY(G/K) <4, MGk,

As in [HS, page 123] we consider the partial coboundary operators defined, for
any f in CPT47Y(G, M™) by

S 1f (@1 Bl s By) = a1 (o s 2t By By)

q—1
k
+> (=1 (oo g 155 2 B1o- -5 Bp)
k=1

+ (—1>qf(0(.1, cees O(.q_l, Bl" ces Bp)

and

Fptf (@1 tgp Brre o By) = Brf (BT 1B B tgBr B s By)

p—1
3 D (s 0 B BeBisto -5 By)
k=1

+ (_1)pf(061,. e ocq, Bl" v Bp—l)

For any subset § = {51,...,5p} of {L...,p+¢q} with sy < --+ < Spo let §* =
{51‘,...,5;} be its complement with s} < --- < SZ. Write i* = 57 —i and v(S) =

Z?:lz'* and set by =1 and by, = ;... B for 1 <k < p. As in [HS, page 123]
one defines for any ¢ € CP*1(G, M™)

gsag,..., P,Bp--ufﬁq> :g(Yl)---)Yp+q>
where 755 = Bi for 1 <i K P and Ver = bl._*laibi* for 1 <i < q and g(]’) =

> S(—I)V(S ) ¢g where S ranges over all the subsets of p elements from (1,...,p+¢).
By [HS, page 123, proposition 2], for any f in Cp”]_l(G,M”) one has

(1)) =31 (fip)) + (= 110p—1 (fip—1))
Let 3}/_1 be defined by

(1) (@1oeeer gy B s By) = (1Y 93(F (. 1 B )
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and 3, : A7*9(G) — A1 (G) by 3, = %, +8,. Then

(3) Vf € 4Pha(), (@) pa1) =3 Fpr1) + (=1 (£

LetD, : A(G) — A(G) be defined as (—1)1'8], on A+h4—) (G). Then D, induces
on CP(G/K, C*(K, M) a map D, which commutes with the maps d’ and
d” defined at the beginning of the proof. This is obvious for 4 and follows
from straightforward computations for 4’. The map D,, induces (—=1)2d on
CP(G/K, H1(K, M*)). On the other hand, for any g belonging to Az(,p +hg—i) (@),
the natural image of cpp(g) in C?(G, C'(K, M17%)) coincides with the restriction
ofg(])) to K* x GP. Thus by (3) the map induced by 4 =d’ +d” on

Im(C?(G/K, H(K, M*)) — C? (G, HY (K, M*)))
coincides with the one defined by D), and this implies the commutativity of the

diagram (2). O

Remark 4.3. — From this description of the spectral sequence it follows im-
mediately that if A is a subgroup of G containing K then the spectral sequence
is compatible with the restriction map from G to H and that it is functorial
for maps of bounded complexes. Let us now state more precisely and prove the
corresponding result for the corestriction.

Lemma 4.4. — Ler K C H C G be three groups such that K is normal in G and
H is of finite index in G and let M® be a bounded complex of G-modules. Then the
Hochschild-Serre spectral sequences

EYU(H/K) = HP (H/K, H(K, M®)) = HY9(H, M)
and
EYN(G/K) = HP (G/K, HY(K, M*)) = H'V(G, M®)

are compatible with the corestriction map. More precisely, if i > 2, there are natural
maps

Cores; : Ef’q(H/I() — E‘f’q(G/K)
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such that one has commutative diagrams

Cores;

EPHK) —S  EPUG/K)
27 27

Cores;

Elf+i,q—i+1(H/K) i N EP"'Z"‘]_HI(G/K)

and .
EY(H/K) o, EY(G/K)
[ [
Cores

HP(H/K,H1(K,M*®)) —— HP(G/K,HI(K, M*))
and such that Cores; | coincides with the map induced by Cores;. This yields maps
Cores : ERA(H/K) — EZ4(G/K).

Moreover the corestriction maps are compatible with the filtrations on HP (H, M*)
and HP (G, M®) and the diagram

Cores
—

EXI(H/K) EXA(G/K)

[ [
HP*(H, M)+ S5 mra G ape) e D),

commutes.
Proof. — Let Indg,(M *) be the induced complex given by
Ind% (M) = Ind% (M)

where the induced module Indg(M /) is defined as the set of maps from G to M’
invariant under the x-action of H defined by the formula

Vf € Map(G,M*), Vh e H, g € G, (h=f)(g) = h.(f(hLg))
equipped with the action of G defined by
Vg € G Vf €ndf (), V' € G, (¢f)(¢)) =/ (¢9)
Then there are projections of H-modules
Ind% (M) — M’
f=fe)
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which gives an epimorphism of complexes pr : Indg(M *) — M*. Composing it
with the restriction map from G to H we get using remark [4.3| that the spectral
sequences
HP (H/K,HY(K, M®)) => BP9 (H, M*)
and
HP (G/K, HY(K, Ind%; M*)) = H'(G, Ind %, M®)
are compatible with the isomorphisms of Shapiro’s lemma.

But, since the M’ are G-modules the action * extends to G and the group of
invariants for this extended action is in bijection with A?. This yields a map
of G-modules Tr : Indg,(M " —» M’. But using the same argument as in the
proof of lemma [4.1] we get that the corestriction from H to G is obtained as the
composite of the map induced by Tr and the inverse of Shapiro’s isomorphism.
This completes the proof of the lemma. O

Remark 4.5. — Using an explicit description of the corestriction at the level of
cocycles it is possible to show that the condition 7 > 2 is unnecessary.

It remains to prove the compatibility with cup-products. To this intent, we
now give another filtration on the group A4(G) which produces the same spectral
sequence and is compatible with cup-products (see [HS, page 118]). The group

BEiJ)(G,M') is A(iJ)(G) if / <0, it is the set of all i-cochains y: G* — M/ such
thaty(gy,...,g;) = 0 whenever i —/+ 1 of the ¢1,. .., g; belongs to K if 0 </ < i
and is 0 otherwise. Then
BIGM*) = @ B (G M*) and BJ(GM*) = P B} (G, M").
i+j=n nel

This filtration is compatible with &’ and 4 and therefore with the total complex.

Let M®, N°®, and P* be three bounded complexes of G-modules. Then the
tensor product M*® ® N* is given by

itj=n
equipped with the differential given by 83, ® 1+ (—1)’ ® 8y on M’ @ N/. Let ¢
be a morphism of G-complexes from M*® ® N*® to P°. Then it induces a pairing
Uy : CP(GM') x C1(G,N/) — CP*(G, ')

given by

S Y01 Ypag) = U (Y15 ¥p) V1 V98 (Vpt 1o+ 5 Vpag))-



18 EMMANUEL PEYRE

One has the inclusion B;(G, M*) Us B,(G,N*) C B;,4(G, P*) and this induces
products for the corresponding spectral sequences
E(B,(GM") ® EF (B.(G,N*)) — EH* (B,(G, P*)).

Lemma 4.6. — The inclusion A;(G) C B)(G, M*) gives a map of spectral sequences
such that the induced morphisms
EY(G/K) — EY(B.(G,M*))
are isomorphisms forr > 1 and i,j in Z.
Proof. — As in [HS, page 119], it is sufficient to prove that, for any / in Z-,

the cohomology of the complex (B;(G, M*)/4;(G),d) is trivial. Therefore, if f
in B} (G, M*) is such that df belongs to A4} *1(G), we want to prove the existence

of g in B7_1(G,M') such that f — dg belongs to A4}(G). We shall prove by an
increasing induction on 72 that for any such element
f: (}(l‘)l>0 c @Bgl’n_l)(G;M.)
20
such that moreover

VieZoopizm=f eAgi’”_i)(G)

there exists g in 87_1 (G, M?®) such that f —dg belongs to A7 (G). It is verified
for m = 0. Let us assume it is true for 7 and let f verify the condition for 7 + 1.

Then 1
4 () +d" () €47 (G)
Thus 4'(f,,) belongs to Agm-ﬂ’n_m)(G). By [HS, pages 119-120], there is
Zm—1 in the group BY”—I’”_m) (G, M*®) such that f,, — d'(g,,—;) belongs to
A§m’n_m)(G). Let ' be f —d(g,,—;). Then one may apply the induction
hypothesis to f/. We get an element g’ in 87_1(GM *) such that £/ — d(g’)
belongs to 47(G). Then f —d(g’ +g,,—1) belongs to A7 (G). O
The next proposition follows directly from [HS, page 126].

Proposition 4.7. — Let p be the induced isomorphisms from the group E‘Il)’q(B, (G, M*®))

(respectively E‘Il)’q(B,(G N*)), Ell)’q(B,(G, P*))) to the group CP(G/K, H1(K, M*))
(respectively CP(G/K, H1(K, N*®)), CP(G/K, H1(K, P*))). Then

Vu € B (By(GM®)), Vo € EF(B,(G,N*)), plu Uy v) = (—1)? p(ae) Uy p(2).
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5. Proof of the main statement

We shall decompose the proof of theorem [2.1lin a chain of lemmata. We first
recall the following well known result:

Lemma 5.1. — Let V' be a nonsingular, proper and geometrically integral variety
over k. Let G be the absolute Galois group of k. Then there exist a canonical exact
sequence

0 — PicV — Pic(V/er)g — Brk — Brk(V).

Proof. — Since V' is nonsingular, proper and geometrically integral, we have an
exact sequence

0=k —k(V) — @ Z— PicV —0
pey)
as well as the corresponding one over £°. Hilbert’s theorem 90 then gives that
(kS(V)*/ .c>x<>g _ k(V)*/k*
Therefore we get an exact sequence
0= k()= @ Z— (PicV*)? = HN G K (V) k") =0
peys()
and thus
0— PicV — (PicV*)Y — HY (@, ¥V /) — 0
is exact. But we have also an exact sequence
0— HY (G, V) k) - HX (G, k) — H* (&, K (V)Y).
And Hilbert’s theorem 90 implies that the map from H*(¥, k(V)*) to Br(k(V))
Is injective. H

Lemma 5.2. — If V is a generalized flag variety under a semi-simple linear alge-
braic group G, there exists a natural exact sequence

(Pic °@k™) — Ker (H> (b Q/Z(2) —» H>(k(V), Q/Z(2))) — CH*(V")

tors 0.

Proof. — By [CTR, proposition 3.6], one has an exact sequence

H(7, )7 — HY (9, KW 1) ) ) -

— Ker(CH?(V) —» CH2(P*)) > HY (94, H' (V*, %))
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By corollary 33, H (4, H(V*, /#3)) is trivial and proposition B.1]gives isomor-
phisms

HO(V, 45) = Kok and H (V*, ) = Pic V' @ k™.
Moreover, since CH?(V*) is torsion-free, one has

Ker(CH?(V) — CH?(V*)) = CH?(V)

tors*

But by [Kah)| corollaire 3.2] which is one of the key ingredient of the proof
HYN 9, Ky (k5 (V))/Ko k) <> Ker (H3 (b, Q/Z(2)) — H> (k(V), Q/Z(z)))
which implies the exact sequence of the lemma. O

It remains to prove that the morphism from £; to H 3(k, Q/Z(2)) is indeed
the composition of a cup-product by the corestriction map. Let us first consider
the case when £, = £.

Lemma 5.3. — Assume that H; is equal to §. Let o be the image of the natu-
ral generator of Z|G/ 7] C (PicV* ) in the Brauer group of k. Then there is a

commutative diagram

k——H3(k, Q/Z(2))
N A

Qo

where the morphism at the top is the one defined in previous lemma.

Proof. — The proof of this lemma is exactly the same as in [Pe2, lemma 4.3]
and uses compatibility with cup-products to get for any 4 in £#* a commutative
diagram

Z — Pic(V)Y — HYG, K (EW)/HO(V, 7)) — H*(k, Q/Z(1))

} Ua } Ua J Ua l Ua

ko — (Pic '@k — HY G, KEWV)/HO(V?, ) —H (k Q/Z(2)).

But the morphism Z — Br# of lemma[5.1] coincides with the composition of the
morphisms of the top row. [

It remains to prove the following lemma.
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Lemma 5.4. — For all i between 1 and m, one has a commutative diagram
(Z[9/ ) & k) —H3 (k;, Q/Z(2))
Nki//e\ Nki/k\
(2[9/ A1 @ k)T —H (b Q/Z(2)).
Proof. — First let us recall a more precise description of the map

£ Pic(V) @ &) — H (b, Q/Z(2)).

We consider the Lichtenbaum complex I'(2, £°)" for #° and the one for £(7)° (see
[Li1], [Li2] and [Li3]). There is a canonical morphism

T2 E) =T V)Y

the cokernel of which will be denoted by I'(2, k(F )’ /&) +1. Let H: (& (V )/k, T(2))
(respectively H (k(V)/k, T(2))) be the hypercohomology groups corresponding
to this complex of Gal(k(¥)'/k'(V))-modules (respectively Gal(k(V)'/k(V"))-
modules).

Then f is defined as the composition of natural morphisms

i) @&V Lot (17 5) P @, o (7))

f—3>H1(£4§ H3(kS(V>/kfr(z)))&rﬁ(k(V)/k,r(z))iﬂ‘*(k,r(z))ﬁ)zﬁ(k,Q/Z(z)).

The map £, is induced by the short exact sequence
0 Kk (V)/Kk — % — HY(VS, 45) — 0
where 2 is the kernel of the map
P Fx)y'—- P z

xepst) x5

The morphism £3 is induced by the natural morphism
H(6'(1), T(2)) = B (K (V)& T(2))

and the isomorphism from HZ(£°(V),T(2)) to Kok (V), /4 by the spectral se-

quence

HP (G, 1K (V)/k,T(2))) = BT (k(V)/k, T(2))

and f¢ by the canonical isomorphism

Fr HP(kh Q/Z(2)) = HA (K, T(2)).
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The maps f;, /> and f3 are clearly compatible with the corestriction map. The
map /7 is induced by a morphism of complexes of Galois modules whereas the
map fs is a cobordism for a short sequence of complexes. Therefore the maps f5
and fg are compatible with the corestriction. Finally the compatibility of f; with
the corestriction is a consequence of lemma[4.4] O

6. Connection with Panin’s result
Let us first recall this result which yields the K -theory groups of the variety /.

Theorem 6.1 (Panin, [Pa]). — IfV is a generalized flag variety over a field k then
there exists a natural separable algebra A over k and an isomorphism

K.V =K, A

Proposition 6.2. — Assume that the field k is perfect or that the center of G is a
reduced k-group. With notation as in the preceding theorem and theorem 21} there
exists a natural decomposition of A into the product of two separable algebras C and
D such that one has C = X2, C; where C; is a simple central algebra of centre k;,
the class of which is equal to o; in Brk;.

Remark 6.3. — The decomposition is given explicitly in the proof.

Proof. — We use the notation of section We shall first recall Panin’s con-
struction of the algebra 4. There exists a simply connected quasi-split k-form
G1 of G, a parabolic subgroup P? of G4 and an element y of H'(k, G7) where
G4 = G1/7Z(G1) such that V" is the twisted k-form of P1\G? defined by y and G
the corresponding -form of G4. Let BY be a Borel subgroup of G7 defined over
k and contained in P4 and 77 be a maximal torus of B4. We may assume that
the isomorphism G* = (G7)° sends (P9)* (resp. (BY)*, (T7)°) on P (resp. B, T).
We denote by U;q the images of UZL in (G1)°. Let BY be the image of BY in G4
and for any Jin A, let P}] be the parabolic subgroup of G7 corresponding to /.
By [St, theorem 1.3], the ring of representations R(P) of P over % has a canon-

ical basis as a module over R(G'é) which is defined as follows: let /1 " be the
set
{(weW |Va€l wae®*}

then the basis (ei”)weW ,/ is given by:

d,= Y 2ezx ()" < R(P)

w
e WI‘)"w
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where
Ay = S wle,ex (1)
{ oLGA|w_1¢x<0}
/
The set W is globally invariant under the natural action of ¥ on W. Let

/
E be the commutative separable algebra corresponding to the @-set W1 . A
representation of P? on E, when lifted to #°, gives a family of representations

/
indexed by W1 . Thus it is characterized by a ¢-invariant family of weights

indexed by this set. The basis (¢/,) ol defines a representation of P4 over E.
we

Let 7 be the induced representation from P4 to G4, A1 the ring Endg(¥) and

/I? the twisted form of 47 by y. The algebra 4 = A? is the algebra constructed
by Panin in [Pa, §12].

Lemma 6.4. — The set W coincides with (whH=1,

/
Proof. — Let w belong to W7. Assume that ! does not belong to W' . Let
o € I be such that w o < 0. Then by [BKi, chapitre VI, n° 1.6, pages 157-158,

corollaires 1 et 2]
wts)=#{pedt |wls,p<0} =l 1)—1.
Then w is not of minimal length in its class & € W\ W which is in contradiction

/ /
with the hypothesis. thus (W 1 )_1 is a subset of W . But W' is a set of
representing elements for W/W T (see [St, lemma 2.5(a)]) and both sets have the
same cardinal. O

In the sequel we pute,, = e;_l for all win W7,

Lemma 6.5. — For any o. in A— I one has that WA () WA belongs ro W and

e“’A—{a} wy =—W,.

Proof- — By proposition[3.1} wp_ 3w is of minimal length in its class modulo

Wx_ (a) it is a fortiori of minimal length modulo 7#;. Moreover
(BEA uy_(uaB <0} = (BEA wy_(y8>0) = )
where ¢ : A — A is the involutive bijection such that wy.0 = —%a. Thus we get
)\wA—{a}wA = wA—{oz}wA@Ea = wA—{a}'(_aoc> =—W,.

But —&,, is invariant under /#} and the lemma is proved. O
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End of the proof of proposition|6.2 — Let C be the érale algebra constructed
from the ¢ -set (ew)we{wA_{a}wA,ae A—g)- Then one may write 4 as C X D
where D corresponds to the complementary set. The above ¢ -set is canonically
isomorphic to the ¥-set (—®,),ea—s- Thus we get a canonical isomorphism of

étale algebras

Z(C) = (PicV @ k)Y,
Let F be this algebra. Let y be the natural character Z(G?) — G,), £ defined by
the family (—®,),ea—7- Let 1 be the image of y by the composite map

(4) H'( G1) — H'(E 69) S (E2(G7) 5 HXEG,,).

Then, thanks to the hypothesis on &, the components of 1 in the decomposition
m
H*(EG,,) = [] Br#;
i=1

are the classes of the~ algebras C; (see [Pa, lemma 3.3] and [Tit, 4.2]). For
any ¢-module M, M denotes the corresponding étale sheaf on Speck. By

definition of the fields 4, there is an isomorphism from H(F Pic V’*) onto
D1<ij<m HOk;, 2[4/ H]]). Let n, be the image of the sum of the elements 7]

of Z[%/#:)7% by the composite morphism

0 05 ooy OL 1l 1o e iy 92 172

D HO, 29/ 7))~ HAEPiT) 25 H\ER (7Y /) 2 HA(EG,,)
1<i<m
where 9y is the coboundary homomorphism for the short exact sequence
0— (V) /k* — DivlV* — PicV* —0
and d, the coboundary homomorphism for the short exact sequence
0= k" =WV = EWV) /" —o.

Then, by definition, the a; are the components of 1. Thus it remains to prove
the following lemma:

Lemma 6.6. — With notation as above, the classes | and v, coincide.

Proof. — Letus fix 7 in {1,...,m}. It is enough to prove that the image &, of the
generator of Z[Y/ 7, 174 by the composite map

2[4/ )7 — HOk;, Pic V°) — H (b, K (V)" /%) — H? (k;, &)
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coincides with the component of n; in Br; which we denote by §;. Let " be
the orbit of & in A —1I corresponding to 4; and y; : Z(G?) — Gy, be the
corresponding character. We denote also by

v:9 — GI(k)
a cocycle which represents y so that for any o in ¢ the composite map

Id xo™ Id Xo
—

_ I . _
G xF GIxkESGEXE——GxkES>GIxE

coincides with the interior automorphism Int

o x i ..
+(0)- Let x — & be a set-theoritic

section of the canonical map
Gk — GI(k)

which is surjective, by the hypothesis on 4. Then & is the image by y of the
cocycle

) 21 g2 Z(Gq) (&)
5 —_ —_ _IN

((1.52) = “1(Yo2))(o102) (o).
Let )y be a lifting of wy in ,/Véq(Tq). Let 51 : Pic/® — Div V* be the section
which sends the class of n(BwB) to n(BwB) for w € W({im y_1- Forall o €€ let
/., be the function on G defined by

Vbe BI(k), Yue U;,"A(kf>, F (i) = 2,(b) 7Y,

where @, is the extension to BY of the corresponding character on 749. By [Pe4,
page 164] this function induces the section of the sheaf defined by &, which cor-
responds to the divisor ©(B%5,B). The stabilizer of n(B75,B87) C P1\ G4 contains
B1. Tt is thus a standard parabolic subgroup of GZ. But for any f € A one has:

(B%5,B)sg C m(B15,B7)
= qutwaBqSB C Bis,wpB1

< Blwpse anSB C Blwpse, BY
= /(WASEOLSB) =[(wpse,) —1
SpeA—>o

where the third equivalence follows from the fact that, by [Bki, chapitre IV, §2,
(3') et théoreme 2],

dim(quA,cs“quBBq) =dimB7? + sup(l(wASe“SB), [(wpse,)).
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We then choose a section
Ph . \GI(k) — GI(k).
Then we may choose a section s,
sy KV IR = BV

such that, identifying £°(7)*/&* with its image in Div 7, one has for any ¢ €
G1(k)

5o (—mn(B%5,B7) + n(B15,B7).g ) =1 (h) 1fa (h;@)

where ¢ is the class of g in Pz_ga\Gq(kS ). We are now able to compute

& = 9,00y (|n(BT,B7)) ).

First, using sq, the class d; ({W(BanBq)D is represented by the cocycle

o— —n(B%s,BT) + W(Bq.?an>.y(O‘)_l € Ker(Div(F*) — Pic(F7)).

Let ¥ (resp. 5) be the composite of y (resp. s) with the section x — %. Then &, is
represented by the cocycle

(op.32) = lg =i (i) e (gi(e1) 13 (1)) )
Al (¢ (1))

£ i (5 (1)) )|

But for any g in G1(£°), ¢ s(g belongs to P \_¢, (k') and forany p € i’qA_g k),

o

the expression @, (/, AW A> is well defined and

Ve € G1(K), f,(gp) = 0, (wrpw's) ().
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We get that £, is represented by the cocycle

(o1, 02) = [g = fulg7(e1) ™ ilg¥(o1) “19(a2))
fulg7(0102)) £, (g 01))

(1o (whttor s (o)) k)
, (whiloro) ™5 ((or22) )

5 (wyitor) 5 (o) o) ).

Then removing a coboundary and using (3) one gets that £, is represented by

(01, 02) = —0,(1 (01, 02)). O

7. A few examples

7.1. The low-dimensional cases

Corollary 7.1. — With the notation of theorem 2.1} the complex € is exact if the
dimension of V" is 1 or 2.

Proof. — 1In this case Ko(V*)? = {0}. Thus, by proposition 3.4l (v), CH(¥) s
is trivial. The corollary is then a direct consequence of theorem 211 O

Corollary 7.2. — Ifdim V' = 3 then the homology of the complex € is either cyclic

or trivial.

Proof — In this case Ko(V*)> = Z. Thus proposition 3.4] (v) and theorem 211
imply the result. O

Remark 7.3. — The paragraph 6.2 of [Pe2] gives an example for which dim 7" =
3 and (%) is not exact.

7.2. The case of orthogonal groups. — We shall first give an explicit descrip-
tion of the complex (%) in the case of a flag variety under an orthogonal group.

Let £ be a field of characteristic different from 2. Let 4 be a nondegenerate
quadratic form of dimension 7 over k. We assume that 7 is strictly bigger than
2. Let G be the group PSO(g) and V" be a flag variety under G. We denote by
Co(q) the even Clifford algebra of 4.
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By [MPW, proposition 1.3], these varieties are characterized by the form ¢
and their type over £°. We recall their description (see [MPW, §5]). If 7 is odd,
n =2m+ 1 then G is of type B,,. The root system is given in R” by the basis
o, =¢ —¢g11 if 1 <i<m—1anda, = ¢, where (¢;)1<,;<,, is the standard
basis of R”. The flag variety X (¢, 71,..., ;) corresponding to A—{a,, ..., anl}
with 1 <7y <--+ <z <mis such that

X(q,}’ll,...,}’ll)(kj) :{(Wl,..., VV[) | Wl c---C VV[C V®/€S,
Wy is totally isotropic and dimys W; =, }

as a set with Galois action.

If # is even, # = 2m, then G is of type D,,, the root system is given in R” by
thebasisa; =¢; —¢; 1 if l1<i<m—1landa,=¢, |+¢,.

If the signed discriminant of ¢, ¢, is a square then we are in the inner case.
The algebra Cy(g) may be written as C,(g)>. The variety of maximal totally
isotropic spaces has two components. Over £°, the form ¢ may be written as

D71 %;X,,—; over a basis (¢;)1<;<2,,- We choose the maximal torus to be the

1

diagonal matrices D(ay,..., 0, 0, 5. .., acl_l) and ¢; sends this diagonal element

m
on a;. Let us denote by .#* the component containing < ¢y,...,¢,, > and by
A~ the other one. If 1 <7y <--- <y <m—1 then X(g,7y,...,7;) is the flag

variety such that
Xgnpyeoon)&)={(Wp... W) | W, C---CW;CVQFK,
W is totally isotropic and dimys W; =, }.
If #; < m—2 then the corresponding set of roots is A—{anl, oo “n[}; ifn; =m—1

then the corresponding set is A —{at,, >0, 1,0, 1 <np <-oe <

nj_1 < m—2and n; = m, then
X gnpon) &) ={(Wy,... W) | W1 C---CW;CVRFK,
W) is totally isotropic, dimys W; = n; and W) € .4 (k) }.

Similarly, one defines X~ (¢, 7y, ., #;). The first variety corresponds to the set of
roots A—{a,, ,...,a,, ,a,}and thesecond oneto A—{a,, ,.... 0, e, 1}

If dyq is not a square we are in the outer case. Let L be the field £(y/dq).
The absolute Galois group of £ acts through Gal(Z/k) on the system of roots.
If1 <n <+ <ny <m—1 the variety X(g,7y,...,7;) is defined as in the
previous case. The set of roots is A — {anl,...,anl} if ny#m—1and A—

{e s Oy 1 1> a,,} otherwise.
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Lemma 7.4. — Let V' be one of the flag varieties described above. Let I be the
corresponding set of roots. The non-trivial component of the algebra C given by the
proposition is similar to

(i) Colq) if n=2m+1anda,,c A—1I,

(i) Colq) if n=2m and{w,, a,, 1} CA—I,

(iii) C(q) ifn="2m, d1q€ k> and either &y, 07 &, 1 does not belong to 1.
In all other cases C is a product of trivial algebras.

Remark 7.5. — This result generalizes easily to the case of a central simple
algebra of even degree with an involution of the first kind and of orthogonal

type.

Proof- — The center of the algebra C is the étale algebra corresponding to the
Galois set {@,} for « € A—1. It is non-trivial only when n = 2m, d1q & k2
and {a,,, 2,1} C A—1I in which case its non trivial component is k(\/c@)
By construction, (see (4)) the classes of the components of C depend only on
the restriction of the characters @, to the center 2 of Spin(g) for « € A—1. By
[Bki, planches II et IV], these restrictions are as follows:
— Iftn=2m+1, then & =7Z/2Z and ‘Dz‘|f generates Hom(Z, G,,) if and
only if i = m.
— Ifn=2mwithm evenand dyq € #*? then Hom(%,G,,) > Z/2ZxZ/2Z
so that the restriction of ®; with 7 < /—1 is trivial if 7 is even and (1, 1) if
i is odd, the restriction of ®;_; corresponds to (1,0) and the one of &; to
(0,1).
— it n =2m withm odd and d1 g € #*% then Hom(Z,G,,) = Z/4Z so that
the restriction of @; with 7 </—1 is trivial if 7 is even and equal to 2 if 7 is
odd, the restriction of ®;_; is 1 and the one of @; 3.
— If n =2m and dpq ¢ k*z, then the above description is valid over L =

k( \/ch) and is compatible with the action of Gal(L/k) over A — I and
Z/4Z or /27 x Z/21.
But, by [MPW, Proposition 2.2], the class of a component corresponding to a
morphism ¢ from 2° to G,, £ is given by the class of any central algebra 4 over
E such that there exists a representation from Spin(gq)x to GL;(A) which extends

If 7 is odd the natural injection Spin(g) — GL;(Cy(g)) restricts itself to the
generator of Hom(%, G,,,) and we get (7).
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If n is even, n =2m, and dyg € £*? then the injection

Spin(g) — Co(q) = C(q9) x C.(q)

gives, by projection, the generators of Hom(Z, G,,,). This implies (ii) and (iii).
O

In the case of quadrics, the results of Karpenko on the torsion subgroup in
the second Chow group enables us to give a slight refinement of Arason’s results.
This refinement seems to be known but we give it as an illustration of our results.

For any (4y,...,4,) in £” the n-Pfister form <ay,...,4,>> is the form

<L—4;>®®<1,—a,>.

A quadratic form ¢ of dimension 7 is said to be a neighbour of a r-Pfister form
4 ifand only if » > 27! and 4 is similar to a subform of 4.

Proposition 7.6. — Let q be an anisotropic quadratic form of dimension strictly
bigger than two and let Q be the corresponding projective quadric then the following
cases are possible:
(i) (Arason [Ar, Satz 5.4]) If q is a neighbour of a 2-Pfister form <Ka, b> then
the sequence
,b
H'(k2/22) b g3 (k2/2Z) — H>(k(Q), Z/2Z)
1s exact.
(ii) If the dimension of q is four and q is not similar to a 2-Pfister form, let d be
its discriminant and c(q) its Witt invariant. Then the sequence

N(.)Uc

H' (VD) 222) X, 13 707) — 1P (4(0), 222)

is exact.

(iii) (Arason [Ar, Satz 5.6]) If the form is a neighbour of 3-pfister form
La, b,c> then Ker(H>(kZ/2Z) — H3(k( Q),Z/21)) is the subgroup
generated by the symbol (a, b, c).

(iv) (Arason [Ar}, Satz 5.6]) In all other cases this kernel is trivial.

Remark 7.7. — For assertion (iii), theorem [2.1] and the result of Karpenko
implies only that the kernel is isomorphic to Z/2Z. Using the bijectivity of
Arason invariant proved independantly by Rost and by Merkur’ev and Suslin
[MS2], the assertion (ii) implies a result of Fitzgerald on 3-fold Pfister forms [Fi,
example, page 94].
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Proof. — We only prove assertions (i), (ii) and (iv). By [Kar, theorem 6.1]
the torsion subgroup of CH?(Q) is trivial except when ¢ is anisotropic and the

neighbour of a 3-fold Pfister form in which case this group is isomorphic to
7Z/27. Here we have

A—]:{{aljaz} if}’l:4,

{a1} otherwise.

Thus, by lemma[7.4] the algebra C is nontrivial only if dimg = 3 or 4 in which

case the non trivial components are similar to

— (ﬂkb) if ¢ is a neighbour of K4, &>>.

_ (/e(%)) if dimg =4 and d = dyq ¢ k%, where 4, b are elements of £*

such that (4, 6) = c(q)k(ﬂ).
We then apply theorem 2.1] to get (i), (ii), and (iv). O

We recall that g is an Albert form if the dimension of ¢ is 6 and dq € k2
In [Lag, Corollaire 6], Laghribi shows that if 4 is an Albert form and if L is the
universal splitting field of ¢4 over £ then one has an exact sequence

.Ucl
g2, g (b, Z/2Z) — H>(L,7/2Z)

where ¢(q) is the clifford invariant of g. By [KR] the field L coincides with the
function field of the variety of Borel subgroups of SO(q). We get the following

result:
Proposition 7.8. — Let q be an Albert form, let V' be the variety of Borel subgroups
in SO(q) then

CH (V) s = {0}

8. An explicit expression in a particular case

Definitions 8.1. — For any field K a field extension L is a function field over

K if and only if it is generated by a finite number of elements as a field over K.
If L is a function field over K, then we denote by &(L/K) the set of discrete
valuation rings of rank 1 such that

K CACLand Fr(4) = L.
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If A belongs to Z?(L/K) then x4 denotes the residue field of 4 and if the charac-

teristic of K does not divide 7

dq: H (Lu®) — H ™ (g, u®@ 1)

(]

the residue map (see [CTO) §1]). The unramified cohomology groups of L over
K are then defined by

Lk D)= ) Ker(dy)
AeP(L/K)

In the rest of this paragraph we assume that the field £ is of characteristic
different from 2, that the group G is of the form SL;(4) x G’ where 4 is a

quaternion algebra (“kb) and G’ a semi-simple simply connected linear algebraic

group and that /" may be split into the product of a conic C by a homogeneous
variety / so that the action of G is the product of an action of SL;(4) on C and
an action of G’ on 7. In this setting we shall now give a more explicit expression
of the morphism from the homology of (%) to CH?(V) oy

By [Ar, Satz 5.4] and Merkur’ev and Suslin [MS} theorem 12.1], one has an
exact sequence
(©6)
(a,b)

'Y 220 3 k(1) Q(2))— H (V)% (2)

rectV,
%

Let a be in the kernel of the canonical map from A 3k, Q/Z(2)) to H2 (k(V), Q/Z(2)).
Then 'y Ay be written as (4, 4, /) for some f in ( V). Let D be the divisor

of fonV /. Since a comes from H>(k, Q/Z(2)), for any point P of codimension
1 in V one has

ap(ﬂ, b,f) =0.
By [CTO) proposition 1.3], one gets that

(1) (

VeV, (a b>/e(P) 7!0 = vp(f) is even.

Letpy: ¥ — Cand py : ¥ — V"’ be the natural projections. For any P in V/(l),
the conic Cjpy has a rational point if and only if (4, b)py = 0. Thus we get that

Delm(p,,: P Z— P 2).
pey(2) PEV/(I)
Let E belong to the inverse image of D and [E] be its class in CH?(V )/p;(CHZ(V M.
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Lemma 8.1. — With the above notations, [E] depends only on o.

Proof. — Let us first prove that for a fixed f the class [E] is independant of the
choice of E. Let £/ in @PeV(z) Z be such that p,_ (E') = p,,(E). We may then
write

E—E( D> ngg)+ S )

per’ M (0er@p,, (Q)ezp) per’®

O [£(Q) : k(P)] = 0. But for

where for any P in V'

P
{0er @, (Q)ezr} "R

anyPeV /(1), the Picard group of Cypy is isomorphic to Z and thus there exists
a function f, on Vp such that

Div(fy) = > R
{0er@|p,, (Q)ezP)

Therefore the class of E—E’ in CH2(V)/p3(CH2(V")) is trivial.
Let us now prove that [E] is independant of the choice of £. Let f’ be an
element of (V) such that

ity = @ bf).

By the exact sequence (G), there existsa family (fp) ~ (y in@® ) &V N(P)*
peCyl ) PEC) )
such that
= 11 N (/p)
s ey VP
pectV) y
K(V")
Then E/ = E— ZPGC’(I) Div(fp) verifies pz*(E/) = Div(f/), but its class in
k()
CH? (V) is the same as the class of E. O
We denote by

O : Ker (H> (b Q/Z(2)) — H>(k(V), Q/Z(2))) = CH*(V')/ CH*(V")
the induced map sending « on [E].

Theorem 8.2. — With notation as above, the natural morphism from the homology

of the complex (€) to CH2(V))/ CH2(V") defined by theorem 21 coincides with the
map induced by .
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Proof. — By [Kah), corollaire 3.2], there exists a canonical isomorphism
HY G, Kok (VKA (V)) 5 Ker(HP (k(V), Q/Z(2)) — H> (k(V), Q/Z(2))).

Moreover as in [Pe2} page 391] for any ¢ in #°(V"’) there is a commutative dia-
gram

HY G, K VK EV') = Ker(Br(k(V')) — Br(k(V)))

lUg 1Ug
HY G, Kk (VVEEV)) = Ker(H>k(V'), Q/Z(2)) — H>(k(V), Q/Z(2))).

But there is a surjection
(Pic C*)Y — HY (G, Kk (V)/K (V).

Moreover PicC’ is a free Z-module of rank 1 with a trivial ¢ action and the
image of one of its generator in Br(k(F")) is (a, b).

We use again the symbols «, / and E introduced before lemma [8.1] Let
B be the image of one generator of PicC’ in HY (G, K (VYK (V)).
Let v be the image of o in H (¥, Kok'(V)/Kok). Then the image of y in
HYG, Kok (V)/KkS (V7)) is BUF.

The conic C may be defined by the homogeneous equation

X*—ar*—bz* =0.
Let 4/a be a square root of 2 in £°. Then the cocycle

B:9 — KWWV

{m if o(y/2) = V2,
o — {X—\/ZY

A } otherwise.

represents (5. The element BU/f is thus given by the cocycle

BUF:9 — Kk KRV
[0] if o(4/2) = v/,
7 [{X_T‘/H,fH otherwise.

But the map
Y HY (9, K, (¥ (V))/Ko k) — CH2 (V)
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is defined as follows (see [CTR, page 188]). One considers the kernel 2 and the
image .# of the morphism

P k- P Z
xEV(l) xGV(Z)

which appears in Gersten-Quillen spectral sequence, as well as the corresponding
groups Z;s and 75 over k°. We have a short exact sequence

0 — Kok' (V)/Kok — 25 — HY (V*, #5) — 0.
Then the isomorphism
Y : H (9, Z5) 5 Ker(CH?(V) — CH?(1"*))

is yielded by diagram chases in the following two commutative diagrams which
have exact rows

7) Y
0= % - <®erk(})kS(x)*> - 7 S H\@, %) -0

| | |

0—» 2 - D _ ) k)" - 4 — 0

d

and

9
0— 77 — (®er(2>Z> — CH2(V)

r i

0= J - 69xEV(

We put €(1) = @er(l) k(x)* and €(2) = @er(z) Z and take a similar nota-
tion for the corresponding groups over &°. Let €”(1), €}5(1), €' (2), €55(2), 2/,
Qﬁ/e/:, 7" and .#); be the corresponding objects for . Since the map from .’

to .# is injective, we have exact sequences

nZ - CHLV) — 0.

0-2/% -€0)/€' (1) - 7/9" -0

and

719 —€(2)/¢€ (2) - CH*(V)/CH*(V) =0
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as well as the corresponding ones over £°. Moreover Hilbert’s theorem 90 implies
that

4

(%ksu)/%,gu))g; DK P/ PF (P

PEVk(sl) PEV/S')
= PP/ PP =€(1)/E (1).
per() PEV/(I)

Thus we get the following two commutative diagrams of complexes the first of
which has exact horizontal lines:

0 —(Z/ 21 = (G (1) E(1)? _><ykg/ykc)gi’>Hl (&, 2/ Z))
) T ﬁ T
0— /% — €/’ — /9 =0
and
(/I = (Gp(2/62)7 - CHX )/ CHY (V)
w : |

/9 S €€ — CH2(V)/CH*(V)

which defines a map from Imd’ to CH?(V)/CH?(V’). Moreover there are
obvious morphisms of diagrams from (7) to (9) and from (8) to (I0). Thus we

get a commutative diagram
Imd —— CH2(V)/CH3*(V")
HNY, %) —— CH2(V).

It remains to show that the image of PUf in CH?(V)/CH>(V) is given by the
class of E. The image of BUf in H(Y, 2}/ Z};) is given by the cocycle

0 if o(v/2) = /4,

—
BUS 10— > "

otherwise .

Pe VIE})
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where

vo(f)
<X_L\/ZY>Q if P=71(0),
=L EP=p1 (Ya:1:0)),
FrifP=pr (Va:—1:0),

1 otherwise.

We may write £ in the form Ej + ZQ (1) Egp where p;, (Ep) = 0 and for any
S

QinV /(1), the support of Eg is included in p2_1 (Q) and p, *(EQ) is equal to

vo(f)Q. Thus for any Q in p/ (V)

the divisor of gg over K(Q) is
—VQ(}[‘)(\/Z :—1: 0) +EQ

and they may be choosen to be trivial except for a finite number. Then one

considers the element y of €}5(1)/ %/s(1) defined by y = [2 pey () vp] where

fifP=pr (va:—1:0)),
=180 fP=p;"(Q),

1 otherwise.

there exists a function go in £ (Q)(C) such

Then for any ¢ in & such that o(4/2) = —4/a and any Q in V/ "D the divisor of

_ —vo(f)
UgQgél over £°(Q) coincides with the one of <XT‘/:ZY) ¢ . Thus, for any

cEY,

— .

BUF (o) ="
Moreover the image of y in &5/ fk/s is invariant under ¢ and its image in
C15(2)/ %5(2) comes from E by the natural map

D 72— (€))7
rey@
which implies the result. [

9. Application to negligible classes

We shall now apply the results of the preceding sections to the study of neg-
ligible classes in the cohomology of a central extension of an F,, vector space by
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another. Such groups have been used in [Sal]] to construct counter-examples
to Noether’s problem using classes in the unramified Brauer group. In fact one
of the advantage of these extensions from the point of view of Galois coho-
mology is the fact that the unramified classes coming from the cohomology of
the quotient may be characterized with linear algebra (see [Bol lemma 5.1] and

proposition 9.4 below).

9.1. Products of generic Severi-Brauer varieties. — Let p be a prime number
and £ be a field of characteristic different from p. If p = 2 we assume that the field
contains a primitive fourth root of one and in general that it contains a primitive
p-th root of one & Let m be an integer, Xj,..., X, be indeterminates and K
be the field £(X}, ..., X,,). We fix an integer 7z and monomials 4;, B; in the X;
for 1 < i < m. We then consider the cyclic simple algebras D; = 4¢(4;, B;)
generated by two elements 7 and J with the relations

IP :Al‘,]‘p :Bi and[]:UI,

we denote by Y; the corresponding Severi-Brauer variety and by ¥ the product of
these varieties. Using Amitsur’s theorem [Am), theorem 9.3] one gets (see [Pel,
lemma 8]) that

Ker(BrK — BrK(Y)) =< (4;,B;), 1 <i<m>

and the complex 6" may be written as
(11) < (4, B8,), 1 <i<m>®K*BH K Q/Z(2)) — H3 (K(Y), Q/Z(2)).

9.2. Connection with negligible classes. — Let U be an F,, vector space with

a basis #1,..., ,. Let % be the morphism from the dual UY of U to K*/K*P
which sends uy of the dual basis to (X;). Let

i (N U)Y — H (K, )

be the induced map (see [Pell, page 250]). This is an injection by [Pel, lemma
7]. Moreover

Ker (Br(K) — Br(K(Y))) C Im OF.
Let ¥ be the dual of the inverse image of this kernel by ®%. We then have an
injection
Vo \2u)Y
and a surjective map
NU—V
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which gives an element y in AU V.
For any vector space I over F, let AC*(J¥) be the quotient of the tensor
algebra 7% (W) by the ideal generated by x® y + y @ x for all x,y in . Then

there is a surjective morphism
ACH (W) - N*(W)
which is an isomorphism if p is not 2 and a natural map of algebras
ACH (W) — H*(W,F,)

which extends the isomorphism WY = H1(W, Fp).
Let7 bealift of y in AC*(UY)®V. We also denote by 7 its image in H>(U, V).
There is a natural surjection
HYU V) - A (UYY®V
(see [Bro, exercise IV.3.8]). The image of ¥ by this map coincides with y. Let

0V 165U -0

be the central extension corresponding to .

Deﬁr.tition 9.1. — If H is a finite group, M a H-module and £ a field, a class A
in H*(H, M) is said to be rotally E-negligible if and only if for any extension F of
E and any morphism

p:Gal(F/F) > H
the image of A by p* is zero in H’ (EM).

If E is a field over £ and a = (4,) <;<,, a family of inversible elements of E, we

denote by
PO, : DNV — D H (B u)

i=0 i=0 i=0

the morphism of graded algebras which sends ujv onto ;.

Proposition 9.1. — Let . belong to AC'U" and ). be its image in N'UV. The
following three assertions are equivalent: .
(1) The image of \ under inflation in H' (G, H]?l) is totally k-negligible.
(2) For any field E over k and any family a = (a;)1<;<,, of inversible elements in
E such that
(D%,a(V V) =0



40 EMMANUEL PEYRE

one has ‘
% ,,(\) =0.
(3) One has @;((Y) x(»)=0.
Proof. — e Let us first prove the equivalence of the first two assertions. Let

E be an extension of 4. By Kummer theory, there is a natural correspondance
between the morphisms p; from Gal(F*/F) to U and the families (2;)1<,<, of
elements of E*/E*!. Let us first prove the following lemma:

Lemma 9.2. — With the notation as above, the morphism
p1:Gal(F°/F) - U

may be lifted in a morphism
p:Gal(F°/F) > G

if and only if
oz ,(VY)=0.

Proof. — The morphism p; may be lifted to G if and only if the image of ¥ in
H?*(E V) is trivial. Let us choose a basis (vy,...,v,,) of V" and let (v\l/,..., 117\72)
be the dual basis. The condition is equivalent to the triviality of vl\/ L(p1(§)) for
1 < i < m that is the triviality of pT(vy .(¥)) for 1 <7 < m which is equivalent
to (D%)a(vly) =0. O
End of the proof of proposition[9.1L — Let us assume that the first assertion is true
and let E be a field over # and 4 a family of inversible elements such that the

hypothesis of the second assertion are verified. By the preceding lemma, the
morphism Gal(E*/E) — U defined by 4 may be lifted to G. But by the first

assertion the image of A in H* (G, Z/pZ) is sent to 0 in H' (E, H]?i ).
Let us assume that the second assertion is true, let £ be a field extension of £
and p : Gal(E*/E) — G be a morphism. The map p induces a morphism

Gal(E°/E) - U
corresponding to a family 4. By the lemma CD%} 7 VY = 0. Thus CD%} LA =0
and the image of nin H'(E, H]?i ) is trivial.
e It is clear that the second assertion implies the third. Let us prove
the opposite implication. First the fact that q)ZK(Y) y() = 0 implies that
(Djé@k k() x (&) =0. Thus we are reduced to the case where £ = E.
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Let 4] € Z(K/k) be the discrete valuation ring of rank one defined by the di-
visor X = a;. Consider the algebras %(Aj, Bj) defined over A; by the generators
I and J and the relations

=4, JP =B;and I = §JI.

It defines a Severi-Brauer scheme @] U over SpecA;. Let Z' be the product

of these schemes. Then the special fiber of 2! defines a local ring B; in
P(K(Y)/k) over A; such that B; is unramified over 4] and the residue field xg .

is the function field over £(X5,...,X,,) of the product ¥ 1 of the Severi-Brauer
varieties defined by the algebras
Ag(x%(ﬂl,Xz, .. "Xi’l>’ Bj(ﬂl,Xz, .o )Xn))

In a similar way we construct discrete valuation rings of rank one 4; in
‘@(KAj—l/k) and.B]- e @(K%_l/k) so that KAj = k(XjH,...,Xn) and KBJ_ =
KAj(Y]> where ¥/ is defined as Y. We put kg, =K and KB, = K(Y). Let us
assume that

l. —
(DKBJ,, (ﬂl,...,ﬂj,){]'_l_l,,,_,Xﬂ) ()\-) - O.

Then taking the completion of xB; for By

But the field K}gj is isomorphic to “B, ) ( (Xj+1 —aj+1)). Thus the natural surjec-

tion
AS A S
Gal(KBj/KBj) — GaI(KBj+1/KBj+1)
has a section and the map
e ) 99
is an injection. Thus

(Di
KB]_+ v (a1,...,aj,ﬂj+1,)(}+2,...,X”)

) =0.

Therefore by induction, we get that @2 _(X) = 0. But, since CD/%’ SV V=0, B,

KBﬂ,d

is rational on £ and CDZ’ ,)=0. O
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Lemma 9.3. — The images in AUV of the kernels of the natural maps
H>(U,2/pZ) — H>(G, Z/pZ)

and
H(U,Z/pZ) — H>(G,Q/Z)

are equal to uvary.

Proof. — The element 7 in AC*(UY) ® V" defines a morphism
7: VY = 4CHUY)

which is injective. We then consider the Hochschild-Serre spectral sequences

EYN(Z/pZ) = HP (U, H1(V, Z/pZ)) = HP (G, Z/pZ)
and

EY(Qz) = 1P (U HI(KQZ)) = HIM (G QZ)
Moreover the natural map Z/pZ — Q/Z induces a morphism of spectral se-
quences from the first one to the second one. If p = 2 there is a natural isomor-
phism

S(UY)@s1(rY) = H (U, HY(V, 2/22))

(see [Carll, théoreme 2]) and if p # 2 isomorphisms

v e n2(uY) 2% n2u zz)

where 8 is the Bockstein operator and by [Car2, théoréme 2],

UV e UYeoaduY 222V 13 77)

e By [Bro, page 60], one has an exact sequence
0 — Exty(H,_ (U, Z), Q/Z) — H" (U, Q/Z) — Hom(H,,(U, Z), Q/Z) — 0.
But ExtIZ(Hn_l(U, Z),Q/Z) is trivial and by [Brol pages 122 and 123], A’ U is

isomorphic to H;(U,Z) if i = 1 or 2 and A'U— H;(U,Z) for i > 3. We get
isomorphisms

HY(U,QZ) > QZ H (U,Q/Z) > U and H*(U, Q/Z) > A*UY
as well as surjections . ‘
H (U,Q/Z)— NUV.
Similarly, one gets

(12) HYWUH'(QZ)=U'eVY and HX(K,Q/Z) = A2 VY.
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e We shall now prove that the map
vV —ac*(UY)
induced by the first spectral sequence is the one defined by —y. We use the same
filtration on @,,eN C*(G, Z/pZ) as in section 4l Let us write y = Zf: g ®v;

with 5, ¢; in UY and v; in V. Lets: U — G be a set-theoritic section of 7 such
that 5(0) = e and

i=1

Vi o € U, s(u)s(v) = (Zﬁ(u)g,.(u/)u,.) s(udd).

Let / belong to AN HY(UH\(,2/Z)) = E(Z)’I(G/V). For any ¢ in G let
t(g) in ¥ denote gs(n(g))_l. Then b is represented in C1(G, Z/pZ) by the cocycle
b defined by

G — ZpL

g — b))
But t(gg’) = 7(¢) +1(¢”) + i1 /i (n(0))g; (n(¢”))e;. Thus

dh(gg') = hx(h) —h(x(gg) + h(x(g))
=—h (Zﬁ (n(¢))e; (W(g/))vi)
i=1
which is sent in H*(U, Z/pZ) on the image of the element of AC 2(uY) given by

—2_hilfigi
i=1

But it is the opposite of the image of / by .

e Since the Hochschild-Serre spectral sequence is compatible with the cup-
product, the map

HY U H (K Z/p2)) — H? (U, Z/5Z)
is induced by the map

vVerV o 4c3uY

(13) u®v — —uy(v).

e Also thanks to this compatibility, the composite morphism

AC*(VY) - HY U H* (L Z/Z)) — H* (U, H (V, Z/»Z))
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is given by the opposite of the map
ACr(VYY - ackuVyevV
xy > () ®y—70) ®x.
e By the expression of the map
H'(UH'(K2/pZ)) — H (U, Z/pZ)

we get that U VAV is contained in the image in A3UY of the kernel of the
inflation map

H(U,2/pZ) — H>(G, Z/pZ).
Thus it suffices to prove that the image in A>U" of
Ker(H> (U, Z/pZ) — H> (G, Q/Z))

is contained in UY AV, But, by (I2) and (13), we already know that the image
of the composite map

HYUH\(Q/Z)) — H(U,Q/Z) — AUV

is contained in UV A VY. Also the computation of the map

AC*(VY) - HX (U H (VL Z/Z))
shows that the map

H*(K,Q/Z) - H*(U,H' (Q/Z))
is induced by the map

A2V o Ao rY
xNy — Y ®x—jx)®y

which is injective, since ¥ is injective. Therefore Eg’z(Q/Z) is trivial and the
result is proved. O

Notation . — Let (VY A UV)(Ji;C C A3 U be the subgroup of 7V A UV)L gen-
erated by the elements of the form « A v, for u € AU, ve U. Let I(r?m be its
orthogonal in A3UV.

Proposition 9.4. — The inverse image in AuY of H r?r ) (K(Y), [17;@3 ) is equal to

I(r%lax. In particular one has

max”*

V V 3 3
VAU C Kerq)I((Y),X CcK
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Moreover the quotient Ker (D13((Y))X/VV AUV is imbedded in CH*(Y)

tors*

Proof- — The inclusion VAUY C Ker CD?( is clear. Therefore

(Y),X
(Ker @ ey aut

and
(Ker @3y x)aee € (VY AUY )z

Thus for any £ in K3_,

by [Pel, theorem 2 and remark p. 251] the image of / in H3(K(Y), &?3) is
unramified over £.

Let) & Kr%lax. We want to show that its image is ramified. There existp € AU
and ull € U such that < )\,p/\ull >#0 andp/\ull belongs to VA UV)J‘. We
complete (”/1> in a basis (u/l,,u;) of U. We may choose these elements so
that they can be lifted in a basis of Z”. Let Mj,..., M,, be the monomials in
Xl,...,Xn,Xl_l,...,Xn_l given by this basis of Z”. Then (D}((uiv) = (M;) and
k(Xy,...,X,) =k(M,...,M,). Let A be the discrete valuation ring correspond-
ing to M in k(Mj,..., M,). One may write the symbols (4,, B;) as (4}, B.)
where the A; are monomials in M,,..., M, and B; monomials in Mj,..., M

the restriction of /" to (Ker @%((Y)’ X)i‘ec is trivial and

-
Moreover, by taking suitable powers of B: and A%, we may assume that v 4(B.) €
{0, 1}. Then let I/ and J! be generators of D; such that

1P =4, 77 =B and I]| = ]I/ for 1 <i <m

and let 9, be the order of D; over A generated by I! and J/. It is a maximal order
of D;. Indeed, if v 4(B}) = 0, this follows from the fact that &;/(M;) is a skew
field. Otherwise, define a function v on D; — {0} by

» ‘ /
v( > ﬂj,lli']i) = 01<nf (vA(aj,[) + —)
0gj<p zj;p p

0<<p Ost<p

then v verifies v(a+6) > inf (v(a), v(b)), and for any 4, b in D;—{0}, write 2 = J] .

and & = J}B with v(a) = v(B) = 0. Then
o= Z ocj)llijil and = Z BJZI]JZ[
0s/<p 0<j<p

0<i<p 0<i<p
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with inf0<j<pv/1(aj’0) = inf0<j<pv/1((3j)0) = 0. Since A[A;l/p]/(m/l) is a field,

we get that V(Zogj,kp(“j,OB[,O)ff-’_l) =0 and then that v(ab) = v(a) + v(b). Thus
v is a valuation and ¥, the maximal order of D; (see [Re, §12]). Let ¥; be
the connected component of the corresponding Severi-Brauer scheme on Spec A4
which contains the generic fiber (see [Art], [Brz] and [Fr, page 37]). This is
Artin’s model of ;. Let % be the products of the %;. If M| does not divide
B’ then the special fibre %% of %; is the Severi-Brauer variety corresponding to
the algebra 7; ® x4 and otherwise, by [Art, theorem 1.4], %05 has p irreducible

components birationally equivalent to Pix_l They may be described as follows:
9; ® 1y is the algebra generated by I and J! with the relations
P _ 4 P Il _ eyl oyl

Let us consider the algebra 2/ = 7; ® y(A! v

;7). A maximal set of orthogonal

idempotents ¢; of 9! is given by
IZ/ . gl AZ 1/p

: 1/p°
rezpz (8 —E)A4)"7
1%

This follows from the existence of an isomorphism from D; x K (Agl/]) ) to

M, (I((A; l/p)) which maps I; to the diagonal matrix D(A; 1/]), ’E,Af 1/]), oo gP—lAQ l/p)'
Therefore the points of %" which correspond to right ideals L for which
dimZe; = 1 for any / (see [Art, lemma 3.3]) are given by dej.@; for 1 <;j<p

and 4 in 9:‘/ such that dej.@; e 7( 0 for 1 </ < p. Therefore the components of
@/Z-OS are permuted cyclically by Gal(xcy(A" p )/xyg). Thus the special fiber %°
of % is integral over x4 and defines a discrete valuation ring B over A4 which is
unramified over A.

We may reduce to the case where M |B. if and only if 1 < i < / for some /
between 1 and 7. Then xp is rational over

m((Aﬁ)“f’,lgz'@)( 11 @°>
[+1<i<m
By [Pell lemma 0]
(D) x V) = O (#101))
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where OF " A*ullj_ — H*(xp, H]? *) is the morphism which sends # over M; for

2 <i < nand for any w of A vV, “/1 (w) is the unique element of A1 (u/lj_)
such that

w—u/lv /\ull(w) € Ai(ullj_).
We want to show that the image of A is ramified at B. Therefore, we shall now
describe the kernel of CD% -

Lemma 9.5. — With notation as above,

/ L

Ker(@2,) = 2y (W) Ay ) + 7Y 1 A2, )

Proof- — Let a; (resp. b;) be the inverse image of (Af) (resp. (Bf)) in UY. Then
the right hand side coincides with

[ J_ m
Zdl' /\ (I/tll ) + Z Fpﬂi /\ bi
i=1 i=l+1
which is contained in Ker @%B. Moreover Amitsur’s theorem implies (see [Pell,
lemma 8]) that

Ker (H2(4((A)V2,1 < < 1),u®?) — H2 (x5 u2?))

is generated by the symbols (A%, B.) for i >/ + 1. Therefore we only have to

consider the case 2 = /.

In this case, let w\l/,u/)/ be a basis of i/l(VV). We complete it in a basis

(wz\'/)lgz’gm—l ofullj_. Let wy,..., w,, 1 be the dual basis and let v belong to

N2y =il (Y A ).

Then there exist i and j strictly bigger than 7 such that
<njw; A w; >7( 0.

We may construct a discrete valuation ring 4’ (resp. B') in k(M,,..., M) (resp.
xp) such that

Y4

1 A
/(CD}%(wk)) =9, and K= k(Ny,...,N;,...,N,_q)
where Ny,..., N, are monomials corresponding to wy,..., w,_1, such that B

is unramified on A4’, which is possible since 7 > » and x / is rational over

B
o 1/ 1
k(N Ny NN NP,



48 EMMANUEL PEYRE

Thus
A
aB/((D%B(VI)) = (DiB/(Z <njw; A w) > wy) = (HNZ<V]|wl w[>) 7_10
[7(1‘ [7(1‘
and

n)#£0. O

End of the proof of proposition[9.4. — We want to show that the class ®2 - (#00)

is non zero, which, by lemma[9.3] is equivalent to

1 1
W E VYN T VY NN ).

. . . N2 .
Taking the inverse image by #] is is sufficient to show that

/L

1 1
VEVYANE T+ VY AW Va3 = Y AUY £ A3,

But, by hypothesis, p A #] belongs to (V¥ A UV)J‘. Thus p A 4] is zero on
yVaUY + A%/f).

Since < A p Auj > 0, the first assertion is proved. It implies the following
inclusions.
. . 3 . .
It remains to prove the last assertion. The kernel of @ K(r)x the inverse

image in AU of
Ker(H*(K, Q/Z(2)) — H(K(Y), Q/Z(2)
Let X in A2UY be such that
D30 €< (4, B;), 1 <i <m>®K*,

then we may write

D3() ZABP

where w belongs to 77V AUY and P; is a polynomial which is not divisible by any
of the X;. Then taking successive residues at places defined by indeterminates X,

Xj, and X; with 7, j, and / distincts in {1,..., 7z}, we get that
A—w)(; /\uj/\uk) =0

and therefore A = w. Thus the last assertion follows from theorem 2.1l and (I1).
O
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9.3. An explicit example. — We now assume that U is an F, vector space of
dimension 6 and ¥ is the dual of the subspace of A>U generated by the elements

u}/ A ug/, u}f A “\1/: ug A u},/, (u}/ + u}f + ug) A (“\1/ + ug/ + u;/)
Lemma 9.6. — With the notations of section[9.2
K2 /WYANUY 5 2/2L
Proof. — We have
VV/\ UV :<u\1//\u;//\u>l/, u\l//\u}//\u;/, u\l//\ug//\uz/,

”\1//\”\3//\”\6/’ u\l/AuX/\u;/, u\l//\uXAu\G/,

u\z//\u;//\u\s/, u}//\ug//\ug, ”\2//\”2//\”\5/)

u\z//\u\s//\u\g, ug//\uz//\ug, u\3//\u;//\u\6/,

u\l//\u\z//\u;/ +u\1//\u;//\ug, u\z//\u;//\uz +u\1//\u¥/\ug,

u\3//\u>l//\u\5/+u\l//\u¥/\u¥, u}l//\u\s//\u\6/+u¥/\u§//\u2/ >,

Thus
(VV/\UV)J‘ =<ui Nup Nuz +uz NugyNus+us Nug ANuy,
uy Nus Nug+ug Nus Nug+ug ANuy Nuy,
uy Nug Nug,uy Nugy Nus >.
Let
g1=ur Nug Nug+uy Nug Nus+us NugN\uy,
D =m NusNug+ug Nus Nug+ugNuy Nuy,
by =uy Nug ANug
and
hy =uy ANuz Nus.
Since
g1 +& +hy+hy = (g +ug) Nug +us) Nus + ug),
we get that

<h1,}]2/,g1 +g2+h1+h2 >C (VVAUV)dLCC.

But by [Pel, pages 265 and 260]

6
O aju;) Nagy + By +vhy +8h) =0
i=1
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is equivalent to

alptaze = 0 ajatayy = 0
ayytase. = 0 azat+agy = 0
azp+age = 0 a30+aghp = 0
a10+a48 = 0 af+as0 = 0
ﬂzOL'i‘dSB = 0.

Let us assume that « = 1 and 8 = 0. Then a4 = 4, = 44 = 0 and this implies
that 23 = a5 = 41 = 0. Thus the elements of the form gy + 5y + 6h, are not
decomposable. This is also the case for the elements of the form g, +vh; + 0h,.

Thus
[gl] S (Vv/\ UV)_L/< hl,hz,gl +g2+h1 +}Jz >
does not lift to a decomposable element. This implies the equality
<},71,},72,g1+g2+}]1+h2 >=(VV/\UV)dLCC. ]
Proposition 9.7. — With notation as above

Ker(®F y) x) = Ko 7V AUV,

Proof. — The group Kr%lax is the orthogonal of (V VAU V>(Ji_ec' Therefore we have

K3, =VYANUY+ <uy Ny A +ud Aul Auf >.
Thus it is enough to show that

(X0, X3, X4) + (X5, X6, X7)
is trivial in H>(K(Y), Z/2Z). Let Y’ be the product of the conics Cy, C;, Cs
given by the homogeneous equations

(C): T1 1 — X T, — X575 =0,
(C)): T35, — X413, — X, T35 =0,
(C3): T3 — XT3, —X3T53=0.

Then a direct computation using the assertion (ii) of proposition [3.4] for
quadratic extensions yields an explicit element of CH?(Y) which is either 0 or

the unique nontrivial element of CH?(Y),,,. Then the method described in
section [8 used backwards yields the function f of £(¥”) defined by

2 2 2 2
Ty, 15, IERVER) ISRUEY)
fz(T >X1_<T B2 TaT1s) 2T\ TaTh,)
13 2,3 2,3171,3 13123
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in £(Cy X - -+ x C3). But by [Lam), chapter 10, proposition 1.3],

2 2
15, T1,2> _x, <T1,1 T,

(f X1X3X5, X X4 X) = <X2< ) :X2X4:X1X3X5)

2 2
Ty, 15,
+ Xl _XS ,X6,X1X5
T3 155
= (Xp, Xy X1 X3X5) + (X1, X5, X¢)
= (Xp, X3, Xy) + (X1, X5, Xg).

This element is therefore trivial in H>(k(Y), Z/2Z). O

Corollary 9.8. — Consider U = 6916:1 Fou;, V = G}f‘: 1 Fov; and G the central
extension of U by V' corresponding to the following element of H 2(UV):

uy U ”\5/ ®uvy+u) Un) vy +u U u\3/ ®uv3+ (u\1/+u\3/+u¥) U () +1) +d) @ v
Then for any field k of characteristic different from 2 and containing a primitive
Jfourth root of one, ”\1/ U ug/ U u\3/ + u}f U ”\5/ U ug gives a non-trivial totally k-negligible
element in H>(G, Q/Z).

Remark 9.9. — 1f we consider the group H 3(6GQ/ zZ),
ligible classes introduced by Saltman in [Sa2] and which corresponds to classes
vanishing in the cohomology group H>(G, C(W)*) for any faithful represen-
tation W of G over C, then it is possible to show using computations in the
cohomology of G that the class obtained is not permutation negligible. The first
examples of geometrically negligible elements in degree three which are not per-
mutation negligible are given by Saltman in [Sa2) theorem 4.14] for 2-groups
having a cyclic subgroup of index 2.

orm Of permutation neg-

Proof. — The corollary follows from proposition 9.7, lemma [9.3] and proposi-
tion[9.1] ]

Corollary 9.10. — For any field k of characteristic different from 2 and containing
the fourth roots of one, for any family (ay,...,ag) of elements in k* such that

(a1, a4) = (ay, as) = (a3, a6) = (ara4a6, aya3a5) = 0
one has

(a1, ap, a3) + (ay a5, ag) = 0.
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