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Abstract. — The central result of this paper is the following generalization of a
result of the author on products of Severi­Brauer varieties. Let G be a semi­simple
linear algebraic group over a field k. Let V be a generalized flag variety under G.
Then there exist finite extensions ki of k for 1 6 i 6 m, elements αi in Brki and
a natural exact sequence
m⊕

i=1

k∗i
Nki /k

(.∪αi )−−−−−−→Ker
(
H3(k,Q/Z(2))→H3(k(V ),Q/Z(2))

)
→CH2(V )tors→0.

After giving a more explicit expression of the second morphism in a particular
case, we apply this result to get classes in H3(Q,Q/Z), which are k­negligible for
any field k of characteristic different from 2 which contains a fourth root of unity,
for a group Q which is a central extension of an F2 vector space by another.

Résumé. — Le résultat central de ce texte est la généralisation suivante d’un
résultat de l’auteur sur les produits de variétés de Severi­Brauer. Soit G un groupe
algébrique linéaire semi­simple sur un corps k. Soit V une variété de drapeaux
généralisée sous G. Alors il existe des extensions finies ki de k pour 16 i 6m, des
éléments αi de Brki et une suite exacte naturelle
m⊕

i=1

k∗i
Nki /k

(.∪αi )−−−−−−→Ker
(
H3(k,Q/Z(2))→H3(k(V ),Q/Z(2))

)
→CH2(V )tors→0.

Après avoir donné une description plus explicite du deuxième morphisme dans
une cas particulier, nous utilisons ce résultat pour construire des classes dans
H3(Q,Q/Z) qui sont k­négligeables pour tout corps k de caractéristique diffé­
rente de 2 et contenant une racine quatrième de l’unité, pour un groupe Q qui est
extension centrale d’un F2 espace vectoriel par un autre.
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1. Introduction

The central result of this paper is a generalization of a previous result of the
author about products of Severi­Brauer varieties [Pe2, theorem 4.1]. Let V be
a generalized flag variety for a linear algebraic group G over a field k. Then the
Picard group of V over a separable closure of k has a canonical basis B which is
globally invariant under the action of the Galois group. Let E be the étale algebra
corresponding to the Galois set B. There exists a class α in the Brauer group of E
and an exact sequence

E∗
NE/k(.∪α)−−−−−→Ker(H3(k,Q/Z(2))→H3(k(V ),Q/Z(2)))→CH2(V )tors→ 0.

In fact the part of the kernel given by the image of E∗ comes from the ker­
nel for Brauer groups in the following sense: this image is the union, for k′
describing the separable finite extensions of k of the corestriction of the group
k′∗ ∪ Ker(Brk′ → Brk′(V )). This kernel has been studied independently by
Merkur′ev in [Me].

After giving a few applications of this result and describing an explicit con­
struction of the second map in a particular case, we turn to the second topic of
this paper, the problem of totally k­negligible classes in the third cohomology
group of some meta­abelian groups G, that is classes which vanish when lifted
to the Galois cohomology of any extension of k. This notion of negligibility is
weaker than the one introduced by Serre in [Se, §7]. In this article, the idea
is to replace the field of invariants k(W )G, on which the negligibility may be
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tested, by a function field K (V ) where K is purely transcendental over k and V
a generalized flag variety over K for which we may apply the previous results of
the paper. We then use this machinery to get a class in H3(G,Q/Z) which is
k­negligible for any field k of characteristic different from 2 and containing the
fourth roots of one, where the group G is a central extension of an F2 vector
space by another.

It is interesting to note that the first examples of geometrically negligible
classes in the group H3(G,Q/Z) were constructed by Saltman (see [Sa2, the­
orem 4.14]) for a 2­group G with a cyclic subgroup of index 2 using a kind of
equivariant Chow group. Although the techniques used here are different from
those of Saltman, the group CH2(V ) which appears may also be interpreted as
an equivariant Chow group; this seems to indicate the existence of a more general
underlying structure.

Some of the results of this article have been stated with shortened proofs in
[Pe3].

2. Notation and statement of the main result

Notation . — For any field L, L denotes an algebraic closure of L and Ls the
separable closure of L in L. For any discrete Gal(Ls/L)­module M , set

H i (L,M) =H i (Gal(Ls/L),M).

If the characteristic of L does not divide n, µn denotes the group of n­th roots of
unity in Ls. If p is the exponential characteristic of L, which coincides with the
usual one if it is different from 0 and is 1 otherwise, i a positive integer and j an
integer, we put (see [Kah])

H i (L, (Q/Z)′(j)) = lim−→
(p,n)=1

H i (L,µ⊗jn )

and, if j = 0, 1 or 2,

H i (L,Qp/Zp(j)) = lim−→r
H i−j(L,Kj(L

s)/pr).

Then if j = 0, 1 or 2 we put

H i (L,Q/Z(j)) =H i (L, (Q/Z)′(j))⊕H i (L,Qp/Zp(j)).

If L′ is a finite separable field extension of L then N
L′/L denote the corestriction

morphism from the Galois cohomology of L′ to that of L.
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If V is a variety over L then L(V ) is the function field of V . If moreover L′
is a field extension of L then V

L′ denotes the product V ×SpecL SpecL′ and V s

the variety VLs . For any nonnegative integer i, V (i) denotes the set of points
of codimension i in V . The sheaf Ki is the sheaf on V for Zariski topology
corresponding to the presheaf mapping U to Ki(U ), the i­th group of Quillen
K ­theory. If V is smooth, the codimension of support defines a decreasing fil­
tration on K i(V ) which is denoted by K i(V )j (see [Q, §7.5]). The quotient
K i(V )j/K i(V )j+1 is denoted by K i (V )(j/j+1).

A generalized flag variety is a projective variety which is homogeneous under
the action of a connected linear algebraic group G and such that V s is isomorphic
to the quotient of Gs by a standard parabolic subgroup. Without loss of general­
ity, we may assume that the group G is semi­simple and simply connected.

From now on, G will denote a semi­simple simply connected linear algebraic
group over a field k and V a generalized flag variety under G. We denote by G

the Galois group of ks over k.

The key result of this paper is the following theorem, the proof of which is
given in section 5.

Theorem 2.1. — With notation as above, the Picard group of V s is a G permuta­
tion module. This means that there exist subgroups Hi of G of finite index such that
PicV s is isomorphic to

⊕n
i=1Z[G /Hi]. Let ki be the corresponding fields. Then for

any i there is a class αi of Brki such that:
(i) In the natural exact sequence

PicV → Pic(V s)G
ρ−→Brk→ Brk(V )

the natural generator of Z[G /Hi]
G is sent to Nki /k

(αi ) by ρ.
(ii) The homology of the complex

(C )
m⊕

i=1
k∗i

Nki /k
(.∪αi )−−−−−−→H3(k,Q/Z(2))→H3(k(V ),Q/Z(2))

is canonically isomorphic to the torsion subgroup of CH2(V ). In particular
this homology is finite.

Remark 2.2. — Merkur′ev has proved in [Me] that the kernel of the first map
in (C ) coincides with H1(V,K2).
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3. K ­cohomology

We shall now consider the G ­module structure of the K ­cohomology groups
of V s.

We fix a parabolic subgroup P of Gs such that V s is isomorphic to P\Gs. Let
B be a Borel subgroup of Gs contained in P, T be a maximal torus in B, Φ be
the root system of T in Gs, and W be the corresponding Weyl group. The letter
∆ denotes the basis of Φ corresponding to B. For any α in ∆, sα denotes the
corresponding generator of W and ϖα the corresponding fundamental weight.
Let I be the subset of ∆ corresponding to P (see [Bor, page 234]). For any subset
J of ∆, the corresponding parabolic subgroup is denoted by PJ . Let VJ be the
homogeneous variety PJ\Gs and πJ be the canonical projection Gs → VJ . The
subgroup generated by the sα for α ∈ J is denoted by WJ and the set of the

unique elements of minimal length in the classes WJw for w in W by W J . Let
wJ be the longest element in WJ .

Let g be the Lie algebra of Gs and for any α ∈Φ let

gα = {X ∈ g | ∀t ∈ T(ks), Ad(t)(X) = α(t)X }.
The unique subgroup of Gs normalized by T and having gα as Lie algebra is
denoted by Uα. If w belongs to W , then U ′w is the subgroup of Gs generated by
the Uγ where γ varies over

{δ ∈Φ | δ > 0 and wδ < 0}.
By Bruhat’s decomposition, Gs is the disjoint union of the double classes C(w) =
BwB for w ∈W . Moreover by [Bor, theorem 14.12] there are isomorphisms

(1) B×U ′w →̃ BwB
(b,u) 7→ bwu

and by [Bor, theorem 21.29], the sets πJ (C(w)) give a cellular decomposition of

VJ as w varies over W J . Moreover the isomorphism (1) yields an isomorphism
from U ′w to πJ (C(w)). In particular by [Bki, chapitre VI, no 1.6, page 158,
corollaire 2],

dim(πJ (C(w))) = #{γ ∈Φ | γ > 0 and wγ < 0} = l(w).

Let XJ,w = πJ (C(w)). By [Fu, example 1.9.1], the Chow group CHi(VJ ), which
by [Q, theorem 7.5.19] is isomorphic to H i (VJ ,Ki), is generated by the classes
[XJ,w] for

w ∈W J
i = {w ∈W J | l(w) = i }
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and by [Dem, corollaire page 69] these classes form a basis when J =∅. We shall
now generalize this result.

Proposition 3.1. — With notation as above,
⊕

i,j>0H
i (VJ ,Ki+j) is a free

⊕
j>0Kjk

s­module with a canonical basis given by the classes [XJ,w] in H i (VJ ,Ki)

for w in W
J
dimVJ−i where i varies over {0, . . . ,dimVJ}. Moreover the map

w 7→ wJww∆ induces a bijection w 7→ w̄ from W
J
i to W J

dimVJ−i and in the Chow

ring
⊕

i>0H
i (VJ ,Ki) one has for any w ∈W J

i and any w′ ∈W J
dimVJ−i

[XJ,w].[XJ,w′] = δ
w̄,w′[XJ,e]

where [XJ,e] is the class of a point.

We first state two corollaries of this proposition.

Corollary 3.2. — The G ­lattices H i (V s,Ki) are permutation modules.

Proof. — Let Ci
eff
⊂H i (V s,Ki)⊗Q be the cone of classes of effective divisors.

Then [XI,w] belongs to this cone. On the other hand, let

α =
∑

w∈W I
i

nw[XI,w]

be an element of CdimV−i
eff

. Then, let E be an effective divisor representing a
multiple of α. By [Fu, page 441] for any w belonging to W I

dimV−i , there exists
g in G(ks) such that the intersection of XI,w.g with E is a union of points. Thus
one has [XI,w].[E]> 0 and hence [XI,w].α> 0. But, by the proposition, for any
w ∈W I

i , nw = [XI,w̄].α. Therefore, we get

CdimV−i
eff

=
∑

w∈W I
i

Q>0[XI,w].

The action of G on H i (V s,Ki)⊗Q leaves Ci
eff

globally invariant. Its faces of
dimension one remain also invariant and thus the basis ([XI,w])w∈W I

dimV−i
is

also globally invariant.

Corollary 3.3. — For any positive integer i, one has

H1(G ,H i (V s,Ki+1)) = 0.
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Proof. — By proposition 3.1, there are isomorphisms

H i (V s,Ki+1) →̃ ks∗⊗Z H i (V s,Ki),

but the right term is a permutation module by corollary 3.2. Let Gj be the

subgroups of G such that H i (V s,Ki ) →̃
⊕m

j=1Z[G /Gj]. Then by Shapiro’s
lemma

H i (V s,Ki+1) →̃
m⊕

j=1

H1(Gj, k
s∗).

But by Hilbert’s theorem 90, the groups H1(Gj, k
s∗) are trivial.

Proof of proposition 3.1. — Let us first prove the assertions concerning the
Chow ring. By [Fu, example 1.9.1], the classes [XJ,w] generate the Z­module
⊕

i∈NH i (VJ ,Ki). Let w belong to W
J
i and let us show that w′ = wJww∆

belongs to W
J
dimVJ−i . By [Bki, chapitre IV, §1, exercice 3],

l(wJw) = l(wJ ) + l(w) = dimV∅− dimVJ + l(w)

and by [Bki, chapitre VI, no 1.6, page 158, corollaire 3],

l(wJww∆) = l(w∆)− l(wJw) = dimVJ − l(w).

Let us write w′ in the form w1w2 with w1 ∈WJ and w2 ∈W J . Then

l(wJw
′) = l(wJw1w2) = l(wJ )− l(w1) + l(w2).

Thus we have

l(w) = l(wJw
′w∆) = l(w∆)− l(wJ ) + l(w1)− l(w2) = dimVJ + l(w1)− l(w2)

but l(w′) = l(w1) + l(w2) = dimVJ − l(w) and we get 2l(w1) = 0, which yields
that w1 is trivial.

Let us now consider elements w of W J
i and w′ of W J

dimVJ−i . We denote by

π∅,J the canonical projection from V∅ to VJ . By [Bor, proposition 21.29], one
has the equality

π∅,J (π∅(C(wJw))) = πJ (C(w))

since l(wJw) = l(wJ )+l(w) = dim(V∅)−dim(VJ )+l(w), we get that π−1∅,J (XJ,w) is
equal to X∅,wJw

. Then, using [Dem, §3.3, proposition 1] and [Fu, proposition
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8.3], we obtain the following equalities

[XJ,w][XJ,w′] = [XJ,w].π∅,J∗([X∅,w′])

= π∅,J∗(π
∗
∅,J ([XJ,w]).[X∅,w′])

= π∅,J∗([X∅,wJw
].[X

∅,w′])

= π∅,J∗(δwJw,w′w∆[X∅,e])

= δ
w̄,w′[XJ,e].

Thus the classes [XJ,w] for w ∈W J give a basis of the Chow ring and the inter­
section formula is proved.

Let N be the cardinal of W J . Let us now choose a bijection from {1, . . . ,N}
to W J such that i 6 i′ implies l(wi)> l(w

i′), where wi denotes the image of i.
Then for any i between 1 and N we denote by Oi the open set

⋃
j6i πJ (C(wj)).

We shall prove by induction on i that for any i such that 1 6 i 6 N the
⊕

j>0Kjk
s­module

⊕
j,l>0H

l(Oi ,Kl+j) is free with a basis given by the classes
[
πJ (C(wj))

]
∈HdimVJ−l(wj)(Oi ,KdimVJ−l(wj))

for j in {1, . . . , i}. For i = 1, the open set O1 is isomorphic to an affine space and
the assertion is a consequence of the homotopy theorem for K ­cohomology (see
[Sh, theorem 2.4]). Let us assume the result for i − 1. Then Ui = Oi −Oi−1 =
πJ (C(wi)) is isomorphic to an affine space of dimension l(wi ). By the homotopy
theorem one has

Hp(Ui ,Kq) =




Kqk

s if p = 0,

0 otherwise.

Since the varieties Ui and Oi are smooth, there are long exact sequences

· · · →Hp−d(Ui ,Kq−d)→Hp(Oi ,Kq)→Hp(Oi−1,Kq)
∂
p,q
i−→Hp+1−d(Ui ,Kq−d)→ ·· ·

where d = dimVJ − l(wi) which are induced by the short exact sequences

0→
⊕

x∈U (r−d)
i

Kjk(x)→
⊕

x∈O(r)i

Kjk(x)→
⊕

x∈O(r)i−1

Kjk(x)→ 0.

For q = p one has in particular

. . .
∂
p−1,p
i−−−→Hp−d(Ui ,Kp−d)→Hp(Oi ,Kp)→Hp(Oi−1,Kp)→ 0.
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But, if p > d the group Hp−d(Ui ,Kp−d) is trivial and ∂
p−1,p
i = 0. On the other

hand, if p = d then

rk(Hp(VJ ,Kp)) = #W
J
p =

∑

{ i|l(wi )=dimVJ−p}
rk(Coker∂

p−1,p
i ),

and the maps ∂
p−1,p
i are trivial. But the morphisms ∂i are K∗ks linear and by in­

duction hypothesis Hp(Oi−1,Kp+∗) is a free K∗ks­module. Therefore all maps

∂
p,q
i are trivial. Hence we obtain the following commutative diagram the hori­

zontal lines of which are exact:

0−−−→Hp−d(Ui ,Kq−d)−−−−−→Hp(Oi ,Kq)−−−−−→Hp(Oi−1,Kq)−−−→0x≀
x

x≀
0→Kq−pks⊗Hp−d(Ui ,Kp−d)→Kq−pks⊗Hp(Oi ,Kp)→Kq−pks⊗Hp(Oi−1,Kp)→0.

Therefore the vertical line in the middle is also an isomorphism.

Concerning the Chow groups of V we simply note the following facts:

Proposition 3.4. — Let k′ be a separable finite extension of k which splits G.
(i) The group K0(V ) is without torsion. We may identify it with its image in

K0(Vk′).
(ii) One has the inclusions

[k′ : k]K0(Vk′)
i ∩K0(V )⊂ K0(V )i ⊂ K0(Vk′)

i ∩K0(V ).

(iii) The kernel of the surjective map

CHi (V )→ K0(V )(i/i+1)

is killed by (i − 1)! and [k′ : k].
(iv) K0(V )i =K0(Vk′)

i ∩K0(V ) if i = 1 or 2.

(v) CH2(V )tors →̃ (K0(Vk′)
3 ∩K0(V ))/K0(V )3.

Proof. — The assertion (i) is a consequence of Panin’s result [Pa, theorem 4.2].
The assertions (ii), (iii) and (iv) are proved as the similar assertions of [Pe2,
proposition 3.8]. For the last assertion, since CH2(V

k′) is without torsion and

Ker(CH2(V )→CH2(V
k′))
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is killed by [k′ : k], one has

CH2(V )tors = Ker(CH2(V )→CH2(V
k′))

= Ker
(
K0(V )2/K0(V )3→ K0(Vk′)

2/K0(Vk′)
3
)

= (K0(V )2 ∩K0(Vk′)
3)/K0(V )3

= (K0(V )∩K0(Vk′)
3)/K0(V )3.

4. Explicit description of the Hochschild­Serre spectral sequence for
hypercohomology

The construction of the morphism from the homology of the complex (C ) to
the group CH2(V )tors involves the Hochschild­Serre spectral sequence for rela­
tive hypercohomology groups of ks(V )/ks with coefficients in the Lichtenbaum
complex Γ(2) (see [Kah, page 68]). Therefore we shall now give an explicit
construction of this spectral sequence and then check that it is compatible with
corestriction and cup­products. In fact, this construction is a simple generaliza­
tion of the one of Hochschild and Serre and the proof of the compatibilities are
quite straightforward but we include them for self­completeness.

For any group G and any G­module M , Ci(G,M) denotes the group of nor­
malized n­cochains; this means the group of functions f : Gn → M such that
f (g1, . . . , gn) is trivial whenever one of the gi is e. Let G be a group and K be
a normal subgroup of G. In the following a bounded complex of G­modules is
a family (M i )i∈Z of G­modules, which are trivial except for a finite number of
integers, equipped with a differential δ going from M i to M i+1. Let (M•, δ) be
a bounded complex of G­modules. We consider the group

A(G) =
⊕

i>0
j∈Z

Ci(G,M j)

which is a bicomplex for the differentials d′ and d′′ where

d′ :Ci(G,M j)→ Ci+1(G,M j)

is the standard non homogeneous coboundary operator and

d′′ : Ci(G,M j)→ Ci(G,M j+1)

is (−1)iδ∗. We put A(i,j)(G) = Ci(G,M j) if i > 0 and j ∈ Z and A(i,j)(G) = 0
otherwise. As in [HS, page 119] one defines a decreasing filtration on A as
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follows: A
(i,j)
l (G) is A(i,j)(G) if l 6 0, A

(i,j)
l (G) is the set of i­cochains γ : Gi →

M j such that γ(g1, . . . , gi) depends only on g1, . . . , gi−l , gi−l+1K, . . . , giK if 0 6

l 6 i and is 0 otherwise. Then we put

An(G) =
⊕

i+j=n

A(i,j)(G), Anl (G) =
⊕

i+j=n

A
(i,j)
l (G) and Al(G) =

⊕

n∈Z

Anl (G).

By [HS, page 119] this filtration is compatible with d′. The compatibility with
d′′ is clear. Therefore it is compatible with the total complex


⊕

n∈Z

An(G), d = d′ + d′′

 .

Moreover there is a natural morphism

ϕl : A
(i,j)
l (G)→ C l(G/K,Ci−l(K,M j))

obtained by restricting the first i− l coordinates of an element of A
(i,j)
l (G) to K .

We recall that the corresponding spectral sequence is then defined by

Zp,q
r (G) =

{
a ∈ Ap+qp (G) | da∈ Ap+q+1p+r (G)

}

and
Ep,qr (G/K ) = Zp,q

r (G)/(Z
p+1,q−1
r−1 (G) + d(Z

p−r+1,q+r−2
r−1 (G))).

The group G acts on the modules M i and by conjugation on K . This yields
an action of G on Ci(K,M j) compatible with the differentials and induces an
action on the hypercohomology groups Hq(K,M•).

Lemma 4.1. — The group K acts trivially on Hq(K,M•).

Proof. — Consider the abelian category C>0 of bounded complexes of G­
modules (N•, δ) such that N i is trivial if n < 0. Without loss of generality,
we may assume that M• is an object of this category. The hypercohomology
functors Hi (K,−) when restricted to C>0 are the right derived functors of the
functor sending (N•, δ) on the group Ker(N0→N1)K (see [Mi, appendix C])
and for any object N• of C>0, the group K acts trivially on the cohomology
group H0(K,N•). Thus, for any k in K , the induced automorphism of the
cohomological functor H∗(K,−) is trivial in degree 0 and therefore in any
degree [CE, Chapter III, proposition 5.2].

We get an action of G/K on Hq(K,M•) for any q in Z.
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Lemma 4.2. — With notation as above, the map ϕp induces an isomorphism

E
p,q
1 (G/K ) →̃ Cp(G/K,Hq(K,M•))

and
E
p,q
2 (G/K ) →̃Hp(G/K,Hq(K,M•)).

Proof. — By construction, if we denote also by d′ the map on Cp(G/K,Cq(K,M j))
induced by the standard coboundary operator for K , then ϕp commutes with

d′. Let d′′ be defined as (−1)p+qδ∗ on Cp(G/K,Cq(K,M j)). Then ϕp and d′′
commute. Thus ϕp induces a canonical map

E
p,q
1 (G/K )→ Cp(G/K,Hq(K,M•)).

Let us check that it is an injection. Let us consider pairs (f ,u) with

f = (fi )i>0 ∈
⊕

i>0

A
(i,p+q−i)
p (G) and u = (ui )i>p ∈

⊕

i>p

Cp(G/K,Ci−p(K,Mp+q−1−i))

such that df belongs to A
p+q+1
p+1 (G) and ϕp(f ) = d(u) where d denotes the sum

d′+d′′. We put ui = 0 if i < p. Since M• is bounded, it is enough to prove by an
increasing induction on m that for any such pair which verifies

∀i ∈ Z>0, i >m⇒ ui−1 = 0 and fi ∈ A(i,p+q−i)p+1 (G),

there exists h ∈ Ap+q−1p (G) such that

f − dh ∈ Ap+qp+1(G).

It is true if m is zero. Let us assume it is true for m. Let (f ,u) be a pair which
verifies the condition for m+1. By definition of d one has that

d′(fm) ∈ A(m+1,p+q−m)p+1 (G) and ϕp(fm) = d′(um−1).

By [HS, pages 121 and 122], there exists a cochain hm−1 in A
(m−1,p+q−m)
p (G)

such that

ϕp(hm−1) = um−1 and fm− d′(hm−1) ∈ A(m,p+q−m)p+1 (G).

let f ′ = f − d(hm−1). Then f ′ ∈ Zp,q
1 (G) and

ϕp(f
′) = ϕp(f )− ϕp◦d(hm−1) = d(u)− d◦ϕp(hm−1).
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It is enough to check the result for f ′. But

f ′m = fm− d′(hm−1) ∈ A(m,p+q−m)(p+1) (G)

and ϕp(f
′) = d(u′) where

u′i =




ui if i 6m− 2

0 otherwise.

Thus we may apply the induction hypothesis.
Let us now prove the surjectivity. Let

(u) = (ui)i>0 ∈
⊕

i>0

Cp(G/K,Ci−p(K,Mp+q−i))

be such that d(u) = 0. We shall prove by a decreasing induction on i the existence
of

(fj)j>i ∈
⊕

j>i

C j(G,Mp+q−j)

such that if j > i

d′′(fj) + d′(fj−1) ∈ A(j,p+q−j+1)p+1 (G)

and, if j> i, we have ϕp(fj) = uj. It is true for i big enough since M• is bounded.

Let us assume it is true for i +1. Then we have ϕp(fi+1) = ui+1. But d′′(ui+1) +
d′(ui ) = 0. Thus

ϕp(d
′′(fi+1)) = d′′(ϕp(fi+1)) = d′(−ui ).

Moreover one has

d′(d′′(fi+1)) = d′′(−d′′(fi+2)− d′(fi+1)) ∈ A(i+2,p+q−i)p+1 (G).

Therefore, by [HS, pages 121 and 122], there exists fi ∈ A(i,p+q−i)p (G) such that

ϕp(fi ) = ui and d′(fi) + d′′(fi+1) ∈ A(i+1,p+q−i)p+1 (G)

and the result is proved for i. Thus we get an element

f = (fi )i>0 ∈
⊕

i>0

A
(i,p+q−i)
p (G)

such that
ϕp(f ) = u and d(f ) ∈ Ap+qp+1(G).

This proves the first assertion of the lemma.
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It remains to show that we have a commutative diagram:

(2)

Cp(G/K,Hq(K,M•))
(−1)qd−−−→ Cp+1(G/K,Hq(K,M•))x≀

x≀

E
p,q
1 (G/K )

d−−−→ E
p+1,q
1 (G/K ).

As in [HS, page 123] we consider the partial coboundary operators defined, for
any f in Cp+q−1(G,Mn) by

δ′p−1f (α1, . . . ,αq,β1, . . . ,βp) = α1.f (α2, . . . ,αq,β1, . . . ,βp)

+
q−1∑

k=1

(−1)kf (α1, . . . ,αkαk+1, . . . ,αq,β1, . . . ,βp)

+ (−1)qf (α1, . . . ,αq−1,β1, . . . ,βp)
and

∂p−1f (α1, . . . ,αq,β1, . . . ,βp) = β1f (β
−1
1 α1β1, . . . ,β

−1
1 αqβ1,β2, . . . ,βp)

+
p−1∑

k=1

(−1)kf (α1, . . . ,αq,β1, . . . ,βkβk+1, . . . ,βp)

+ (−1)pf (α1, . . . ,αq,β1, . . . ,βp−1).
For any subset S = {s1, . . . , sp} of {1, . . . , p + q} with s1 < · · · < sp, let S∗ =

{s∗1, . . . , s∗q} be its complement with s∗1 < · · · < s∗q. Write i∗ = s∗i − i and ν(S) =
∑q

i=1 i
∗ and set b0 = 1 and bk = β1 . . .βk for 1 6 k 6 p. As in [HS, page 123]

one defines for any g ∈ Cp+q(G,Mn)

gS(α1, . . . ,αp,β1, . . . ,βq) = g(γ1, . . . ,γp+q)

where γsi = βi for 1 6 i 6 p and γs∗i = b−1
i∗ αibi∗ for 1 6 i 6 q and g(p) =

∑
S(−1)ν(S)gS where S ranges over all the subsets of p elements from (1, . . . , p+q).

By [HS, page 123, proposition 2], for any f in Cp+q−1(G,Mn) one has

(d′f )(p) = δ′p−1(f(p)) + (−1)q∂p−1(f(p−1)).

Let δ′′p−1 be defined by

(δ′′p−1f )(α1, . . . ,αq,β1, . . . ,βp) = (−1)p+qδ(f (α1, . . . ,αq,β1, . . . ,βp))
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and δp : A
p+q(G)→ Ap+q+1(G) by δp = δ′p + δ′′p . Then

(3) ∀f ∈ A(p+i,q−i)(G), (df )(p+1) = δp(f(p+1)) + (−1)i∂p(f(p)).

Let Dp : A(G)→ A(G) be defined as (−1)i∂p on A(p+i,q−i)(G). Then Dp induces

on Cp(G/K,Ci(K,Mq−i)) a map Dp which commutes with the maps d′ and

d′′ defined at the beginning of the proof. This is obvious for d′′ and follows
from straightforward computations for d′. The map Dp induces (−1)qd on

Cp(G/K,Hq(K,M•)). On the other hand, for any g belonging to A
(p+i,q−i)
p (G),

the natural image of ϕp(g) in Cp(G,Ci(K,Mq−i)) coincides with the restriction

of g(p) to K i ×Gp. Thus by (3) the map induced by d = d′ + d′′ on

Im(Cp(G/K,Hq(K,M•))→ Cp(G,Hq(K,M•)))

coincides with the one defined by Dp and this implies the commutativity of the
diagram (2).

Remark 4.3. — From this description of the spectral sequence it follows im­
mediately that if H is a subgroup of G containing K then the spectral sequence
is compatible with the restriction map from G to H and that it is functorial
for maps of bounded complexes. Let us now state more precisely and prove the
corresponding result for the corestriction.

Lemma 4.4. — Let K ⊂H ⊂ G be three groups such that K is normal in G and
H is of finite index in G and let M• be a bounded complex of G­modules. Then the
Hochschild­Serre spectral sequences

E
p,q
2 (H/K ) =Hp(H/K,Hq(K,M•))⇒Hp+q(H,M•)

and

E
p,q
2 (G/K ) =Hp(G/K,Hq(K,M•))⇒Hp+q(G,M•)

are compatible with the corestriction map. More precisely, if i > 2, there are natural
maps

Coresi : E
p,q
i (H/K )→ E

p,q
i (G/K )
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such that one has commutative diagrams

E
p,q
i (H/K )

Coresi−−−→ E
p,q
i (G/K )

d
p,q
i

y d
p,q
i

y

E
p+i,q−i+1
i (H/K )

Coresi−−−→ Ep+i,q−i+1(G/K )

and

E
p,q
2 (H/K )

Cores2−−−→ E
p,q
2 (G/K )

y≀
y≀

Hp(H/K,Hq(K,M•)) Cores−−−→ Hp(G/K,Hq(K,M•))
and such that Coresi+1 coincides with the map induced by Coresi . This yields maps

Cores : E
p,q
∞(H/K )→ E

p,q
∞(G/K ).

Moreover the corestriction maps are compatible with the filtrations on Hp(H,M•)
and Hp(G,M•) and the diagram

E
p,q
∞(H/K )

Cores−−−→ E
p,q
∞(G/K )

y≀
y≀

Hp+q(H,M•)(p/p+1) Cores−−−→ Hp+q(G,M•)(p/p+1).
commutes.

Proof. — Let IndGH (M•) be the induced complex given by

IndGH (M)i = IndGH (M i )

where the induced module IndGH (M i) is defined as the set of maps from G to M i

invariant under the ∗­action of H defined by the formula

∀f ∈Map(G,M i ), ∀h ∈H, ∀g ∈G, (h ∗ f )(g) = h.(f (h−1g))
equipped with the action of G defined by

∀g ∈G, ∀f ∈ IndGH (M i), ∀g′ ∈G, (g.f )(g′) = f (g′g).
Then there are projections of H­modules

IndGH (M i )→M i

f 7→ f (e)
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which gives an epimorphism of complexes pr : IndGH (M•)→M•. Composing it
with the restriction map from G to H we get using remark 4.3 that the spectral
sequences

Hp(H/K,Hq(K,M•))⇒Hp+q(H,M•)
and

Hp(G/K,Hq(K, IndGH M•))⇒Hp+q(G, IndGH M•)
are compatible with the isomorphisms of Shapiro’s lemma.

But, since the M i are G­modules the action ∗ extends to G and the group of
invariants for this extended action is in bijection with M i . This yields a map
of G­modules Tr : IndGH (M i ) → M i . But using the same argument as in the
proof of lemma 4.1 we get that the corestriction from H to G is obtained as the
composite of the map induced by Tr and the inverse of Shapiro’s isomorphism.
This completes the proof of the lemma.

Remark 4.5. — Using an explicit description of the corestriction at the level of
cocycles it is possible to show that the condition i > 2 is unnecessary.

It remains to prove the compatibility with cup­products. To this intent, we
now give another filtration on the group A(G) which produces the same spectral
sequence and is compatible with cup­products (see [HS, page 118]). The group

B
(i,j)
l (G,M•) is A(i,j)(G) if l 6 0, it is the set of all i­cochains γ : Gi →M j such

that γ(g1, . . . , gi) = 0 whenever i− l +1 of the g1,. . . , gi belongs to K if 06 l 6 i
and is 0 otherwise. Then

Bnl (G,M
•) =

⊕

i+j=n

B
(i,j)
l (G,M•) and Bl(G,M

•) =
⊕

n∈Z

Bnl (G,M
•).

This filtration is compatible with d′ and d′′ and therefore with the total complex.
Let M•, N•, and P• be three bounded complexes of G­modules. Then the

tensor product M•⊗N• is given by

M•⊗N•n =
⊕

i+j=n

M i ⊗N j

equipped with the differential given by δM ⊗1+ (−1)i ⊗ δN on M i ⊗N j. Let ϕ
be a morphism of G­complexes from M•⊗N• to P•. Then it induces a pairing

∪ϕ : Cp(G,M i )×Cq(G,N j)→ Cp+q(G,Pi+j)

given by

f ∪ϕ g(γ1, . . . ,γp+q) = ϕ(f (γ1, . . . ,γp)⊗ γ1 . . .γp.g(γp+1, . . . ,γp+q)).
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One has the inclusion Bl(G,M
•) ∪ϕ Bs(G,N•) ⊂ Bl+s(G,P

•) and this induces
products for the corresponding spectral sequences

Ei,jr (B•(G,M
•))⊗Ek,lr (B•(G,N

•))→ Ei+k,j+lr (B•(G,P
•)).

Lemma 4.6. — The inclusion Al(G)⊂ Bl(G,M
•) gives a map of spectral sequences

such that the induced morphisms

Ei,jr (G/K )→ Ei,jr (B•(G,M
•))

are isomorphisms for r> 1 and i, j in Z.

Proof. — As in [HS, page 119], it is sufficient to prove that, for any l in Z>0,
the cohomology of the complex (Bl(G,M

•)/Al(G), d) is trivial. Therefore, if f
in Bnl (G,M

•) is such that df belongs to An+1l (G), we want to prove the existence

of g in Bn−1l (G,M•) such that f − dg belongs to Anl (G). We shall prove by an
increasing induction on m that for any such element

f = (fi )i>0 ∈
⊕

i>0

B(i,n−i)l (G,M•)

such that moreover

∀i ∈ Z>0, i >m⇒ fi ∈ A(i,n−i)l (G)

there exists g in Bn−1l (G,M•) such that f − dg belongs to Anl (G). It is verified
for m = 0. Let us assume it is true for m and let f verify the condition for m+1.
Then

d′(fm) + d′′(fm+1) ∈ A(m+1,n−m)l (G).

Thus d′(fm) belongs to A
(m+1,n−m)
l (G). By [HS, pages 119­120], there is

gm−1 in the group B(m−1,n−m)l (G,M•) such that fm − d′(gm−1) belongs to

A
(m,n−m)
l (G). Let f ′ be f − d(gm−1). Then one may apply the induction

hypothesis to f ′. We get an element g′ in Bn−1l (G,M•) such that f ′ − d(g′)
belongs to Anl (G). Then f − d(g′ + gm−1) belongs to Anl (G).

The next proposition follows directly from [HS, page 126].

Proposition 4.7. — Let ρ be the induced isomorphisms from the group Ep,q1 (B•(G,M
•))

(respectively E
p,q
1 (B•(G,N

•)), Ep,q1 (B•(G,P
•))) to the group Cp(G/K,Hq(K,M•))

(respectively Cp(G/K,Hq(K,N•)), Cp(G/K,Hq(K,P•))). Then

∀u ∈ Ep,q1 (B•(G,M
•)), ∀v ∈ Er,s1 (B•(G,N

•)), ρ(u∪ϕ v) = (−1)spρ(u)∪ϕ ρ(v).



GALOIS COHOMOLOGY AND HOMOGENEOUS VARIETIES 19

5. Proof of the main statement

We shall decompose the proof of theorem 2.1 in a chain of lemmata. We first
recall the following well known result:

Lemma 5.1. — Let V be a nonsingular, proper and geometrically integral variety
over k. Let G be the absolute Galois group of k. Then there exist a canonical exact
sequence

0→ PicV → Pic(Vks)
G → Brk→ Brk(V ).

Proof. — Since V is nonsingular, proper and geometrically integral, we have an
exact sequence

0→ k∗→ k(V )∗→
⊕

P∈V (1)

Z→ PicV → 0

as well as the corresponding one over ks. Hilbert’s theorem 90 then gives that

(ks(V )∗/ks∗)G = k(V )∗/k∗.
Therefore we get an exact sequence

0→ k(V )∗/k∗→
⊕

P∈V s(1)

Z→ (PicV s)G →H1(G , ks(V )∗/ks∗)→ 0

and thus
0→ PicV → (PicV s)G →H1(G , ks(V )∗/ks∗)→ 0

is exact. But we have also an exact sequence

0→H1(G , ks(V )∗/ks∗)→H2(G , ks∗)→H2(G , ks(V )∗).

And Hilbert’s theorem 90 implies that the map from H2(G , ks(V )∗) to Br(k(V ))
is injective.

Lemma 5.2. — If V is a generalized flag variety under a semi­simple linear alge­
braic group G, there exists a natural exact sequence

(PicV s⊗ks∗)G →Ker
(
H3(k,Q/Z(2))→H3(k(V ),Q/Z(2))

)
→CH2(V )tors→ 0.

Proof. — By [CTR, proposition 3.6], one has an exact sequence

H1(V s,K2)
G →H1

(
G ,K2(k

s(V ))/H0(V s,K2)
)
→

→Ker(CH2(V )→CH2(V s))→H1(G ,H1(V s,K2)).
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By corollary 3.3, H1(G ,H1(V s,K2)) is trivial and proposition 3.1 gives isomor­
phisms

H0(V s,K2) →̃ K2k
s and H1(V s,K2) →̃ PicV s⊗ ks∗.

Moreover, since CH2(V s) is torsion­free, one has

Ker(CH2(V )→CH2(V s)) = CH2(V )tors.

But by [Kah, corollaire 3.2] which is one of the key ingredient of the proof

H1(G ,K2(k
s(V ))/K2k

s) →̃Ker
(
H3(k,Q/Z(2))→H3(k(V ),Q/Z(2))

)

which implies the exact sequence of the lemma.

It remains to prove that the morphism from k∗i to H3(k,Q/Z(2)) is indeed
the composition of a cup­product by the corestriction map. Let us first consider
the case when ki = k.

Lemma 5.3. — Assume that Hi is equal to G . Let α be the image of the natu­
ral generator of Z[G /Hi] ⊂ (PicV s)G in the Brauer group of k. Then there is a
commutative diagram

k∗−−→H3(k,Q/Z(2))
ց ր∪
k∗⊗ αZ

where the morphism at the top is the one defined in previous lemma.

Proof. — The proof of this lemma is exactly the same as in [Pe2, lemma 4.3]
and uses compatibility with cup­products to get for any a in k∗ a commutative
diagram

Z −−→ Pic(V s)G −−→ H1(G ,K1(k
s(V ))/H0(V s,K1))→H2(k,Q/Z(1))

↓ ∪a ↓ ∪a ↓ ∪a ↓ ∪a
k∗ → (PicV s⊗ks∗)G → H1(G ,K2(k

s(V ))/H0(V s,K2))→H3(k,Q/Z(2)).

But the morphism Z→ Brk of lemma 5.1 coincides with the composition of the
morphisms of the top row.

It remains to prove the following lemma.
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Lemma 5.4. — For all i between 1 and m, one has a commutative diagram

(Z[G /Hi]⊗ ks∗)Hi→H3(ki ,Q/Z(2))

Nki /k

y Nki /k

y

(Z[G /Hi]⊗ ks∗)G →H3(k,Q/Z(2)).

Proof. — First let us recall a more precise description of the map

f : (Pic(V s)⊗ ks∗)G →H3(k,Q/Z(2)).

We consider the Lichtenbaum complex Γ(2, ks)i for ks and the one for k(V )s (see
[Li1], [Li2] and [Li3]). There is a canonical morphism

Γ(2, ks)i → Γ(2, k(V )s)i

the cokernel of which will be denoted by Γ(2, k(V )s/ks)i+1. Let Hi (ks(V )/ks,Γ(2))
(respectively Hi (k(V )/k,Γ(2))) be the hypercohomology groups corresponding
to this complex of Gal(k(V )s/ks(V ))­modules (respectively Gal(k(V )s/k(V ))­
modules).

Then f is defined as the composition of natural morphisms

(Pic(V s)⊗ ks∗)G
f1−→H1(V s,K2)

G
f2−→H1(G ,K2(k

s(V ))/K2(k
s))

f3−→
f3−→H1(G,H3(ks(V )/ks,Γ(2)))

f4−→H4(k(V )/k,Γ(2))
f5−→H4(k,Γ(2))

f6−→H3(k,Q/Z(2)).

The map f2 is induced by the short exact sequence

0→ K2k
s(V )/K2k

s→Z →H1(V s,K2)→ 0

where Z is the kernel of the map
⊕

x∈V s(1)

ks(x)∗→
⊕

x∈V s(2)

Z.

The morphism f3 is induced by the natural morphism

H2(ks(V ),Γ(2))→H3(ks(V )/ks,Γ(2))

and the isomorphism from H2(ks(V ),Γ(2)) to K2k
s(V ), f4 by the spectral se­

quence
Hp(G ,Hq(ks(V )/ks,Γ(2)))⇒Hp+q(k(V )/k,Γ(2))

and f6 by the canonical isomorphism

f7 :H
3(k,Q/Z(2)) →̃H4(k,Γ(2)).
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The maps f1, f2 and f3 are clearly compatible with the corestriction map. The
map f7 is induced by a morphism of complexes of Galois modules whereas the
map f5 is a cobordism for a short sequence of complexes. Therefore the maps f5
and f6 are compatible with the corestriction. Finally the compatibility of f4 with
the corestriction is a consequence of lemma 4.4.

6. Connection with Panin’s result

Let us first recall this result which yields the K ­theory groups of the variety V .

Theorem 6.1 (Panin, [Pa]). — If V is a generalized flag variety over a field k then
there exists a natural separable algebra A over k and an isomorphism

K∗V →̃ K∗A.

Proposition 6.2. — Assume that the field k is perfect or that the center of G is a
reduced k­group. With notation as in the preceding theorem and theorem 2.1, there
exists a natural decomposition of A into the product of two separable algebras C and
D such that one has C →̃ ×mi=1Ci where Ci is a simple central algebra of centre ki ,
the class of which is equal to αi in Brki .

Remark 6.3. — The decomposition is given explicitly in the proof.

Proof. — We use the notation of section 3. We shall first recall Panin’s con­
struction of the algebra A. There exists a simply connected quasi­split k­form
G̃q of G, a parabolic subgroup P̃q of G̃q and an element γ of H1(k,Gq) where
Gq = G̃q/Z(G̃q) such that V is the twisted k­form of P̃q\G̃q defined by γ and G
the corresponding k­form of G̃q. Let B̃q be a Borel subgroup of G̃q defined over
k and contained in P̃q and T̃q be a maximal torus of B̃q. We may assume that
the isomorphism Gs →̃ (G̃q)s sends (P̃q)s (resp. (B̃q)s, (T̃q)s) on P (resp. B, T).
We denote by U ′w

q
the images of U ′w in (G̃q)s. Let Bq be the image of B̃q in Gq

and for any J in ∆, let P
q
J be the parabolic subgroup of Gq corresponding to J .

By [St, theorem 1.3], the ring of representations R(P) of P over k̄ has a canon­

ical basis as a module over R(Gk̄) which is defined as follows: let W I ′ be the
set

{w ∈W | ∀α∈ I, wα ∈Φ+ }
then the basis (e′w)w∈W I ′ is given by:

e′w =
∑

λ∈WI .λw

λ ∈ Z[X∗(T)]WI ←̃ R(P)
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where
λw =

∑

{α∈∆|w−1α<0}
w−1ϖα ∈ X∗(T).

The set W I′ is globally invariant under the natural action of G on W . Let

E be the commutative separable algebra corresponding to the G ­set W I′ . A
representation of P̃q on E, when lifted to ks, gives a family of representations

indexed by W I′ . Thus it is characterized by a G ­invariant family of weights
indexed by this set. The basis (e′w)

w∈W I′ defines a representation of P̃q over E.

Let V be the induced representation from P̃q to G̃q, Aq the ring EndE(V ) and
A
q
γ the twisted form of Aq by γ. The algebra A = A

q
γ is the algebra constructed

by Panin in [Pa, §12].

Lemma 6.4. — The set W I′ coincides with (W I )−1.

Proof. — Let w belong to W I . Assume that w−1 does not belong to W I′ . Let
α ∈ I be such that w−1α < 0. Then by [Bki, chapitre VI, no 1.6, pages 157–158,
corollaires 1 et 2]

l(w−1sα) = #{β ∈Φ+ | w−1sαβ < 0} = l(w−1)− 1.

Then w is not of minimal length in its class w̄ ∈WI\W which is in contradiction

with the hypothesis. thus (W I )−1 is a subset of W I′ . But W I′ is a set of
representing elements for W/W I (see [St, lemma 2.5(a)]) and both sets have the
same cardinal.

In the sequel we put ew = e′
w−1 for all w in W I .

Lemma 6.5. — For any α in ∆− I one has that w∆−{α}w∆ belongs to W I and

ew∆−{α}w∆ =−ϖα.

Proof. — By proposition 3.1, w∆−{α}w∆ is of minimal length in its class modulo
W∆−{α}, it is a fortiori of minimal length modulo WI . Moreover

{β ∈∆ | w∆−{α}w∆β < 0} = {β ∈ ∆ | w∆−{α}εβ > 0} = {εα}
where ε :∆→ ∆ is the involutive bijection such that w∆.α =−εα. Thus we get

λw∆−{α}w∆ = w∆−{α}w∆ϖεα = w∆−{α}.(−ϖα) =−ϖα.
But −ϖα is invariant under WI and the lemma is proved.
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End of the proof of proposition 6.2. — Let C be the étale algebra constructed
from the G ­set (ew)w∈{w∆−{α}w∆,α∈∆−I}. Then one may write A as C × D

where D corresponds to the complementary set. The above G ­set is canonically
isomorphic to the G ­set (−ϖα)α∈∆−I . Thus we get a canonical isomorphism of
étale algebras

Z(C) →̃ (PicV s⊗ ks)G .

Let F be this algebra. Let χ be the natural character Z(G̃q)→ GmF defined by
the family (−ϖα)α∈∆−I . Let η1 be the image of γ by the composite map

(4) H1(k,Gq)→H1(F,Gq)
∂−→H2(F,Z(G̃q))

χ∗−→H2(F,Gm).

Then, thanks to the hypothesis on k, the components of η1 in the decomposition

H2(F,Gm) →̃
m∏

i=1

Brki

are the classes of the algebras Ci (see [Pa, lemma 3.3] and [Tit, 4.2]). For
any G ­module M , M̃ denotes the corresponding étale sheaf on Speck. By

definition of the fields ki there is an isomorphism from H0(F, P̃icV s) onto⊕
16i,j6mH0(ki ,Z[G /Hj]). Let η2 be the image of the sum of the elements Hi

of Z[G /Hi]
Hi by the composite morphism

⊕

16i6m

H0(ki ,Z[G /Hi])→H0(F, P̃icV s)
∂1−→H1(F, ˜ks(V )∗/ks∗)

∂2−→H2(F,Gm)

where ∂1 is the coboundary homomorphism for the short exact sequence

0→ ks(V )∗/ks∗→DivV s→ PicV s→ 0

and ∂2 the coboundary homomorphism for the short exact sequence

0→ ks∗→ ks(V )∗→ ks(V )∗/ks∗→ 0.

Then, by definition, the αi are the components of η2. Thus it remains to prove
the following lemma:

Lemma 6.6. — With notation as above, the classes η1 and η2 coincide.

Proof. — Let us fix i in {1, . . . ,m}. It is enough to prove that the image ξ2 of the
generator of Z[G /Hi]

Hi by the composite map

Z[G /Hi]
Hi→H0(ki ,PicV

s)→H1(ki , k
s(V )∗/ks∗)→H2(ki , k

s∗)
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coincides with the component of η1 in Brki which we denote by ξ1. Let C be
the orbit of G in ∆− I corresponding to ki and χi : Z(G̃

q) → Gmki
be the

corresponding character. We denote also by

γ : G → Gq(ks)

a cocycle which represents γ so that for any σ in G the composite map

G̃q× ks
Id×σ−1−−−−→ G̃q× ks →̃ G× ks

Id×σ−−→G× ks →̃ G̃q× ks

coincides with the interior automorphism Intγ(σ). Let x 7→ x̃ be a set­theoritic
section of the canonical map

G̃q(ks)→Gq(ks)

which is surjective, by the hypothesis on k. Then ξ1 is the image by χ of the
cocycle

(5)
ξ̃1 : G

2 → Z
(
G̃q
)
(ks)

(σ1,σ2) 7→ σ1
(
γ̃(σ2)

)
γ̃(σ1σ2)

−1
γ̃(σ1).

Let w′∆ be a lifting of w∆ in NG̃q(T̃q). Let s1 : PicV
s→ DivV s be the section

which sends the class of π(BwB) to π(BwB) for w ∈W I
dimV−1. For all α ∈ C let

fα be the function on G̃q defined by

∀b ∈ B̃q(ks), ∀u∈U ′w∆
q
(ks), fα(bw

′
∆u) = ϖα(b)

−1,

where ϖα is the extension to B̃q of the corresponding character on T̃q. By [Pe4,
page 164] this function induces the section of the sheaf defined by ϖα which cor­
responds to the divisor π(Bq s̄αB

q). The stabilizer of π(Bq s̄αB
q)⊂ P̃q\G̃q contains

Bq. It is thus a standard parabolic subgroup of Gq. But for any β ∈ ∆ one has:

π(Bq s̄αB
q)sβ ⊂ π(Bq s̄αB

q)

⇔ Bqsαw∆B
qsβ ⊂ Bqsαw∆B

q

⇔ Bqw∆sεαB
qsβ ⊂ Bqw∆sεαB

q

⇔ l(w∆sεαsβ) = l(w∆sεα)− 1

⇔ β ∈ ∆− εα.

where the third equivalence follows from the fact that, by [Bki, chapitre IV, §2,
(3′) et théorème 2],

dim(Bqw∆sεαB
qsβB

q) = dimBq + sup(l(w∆sεαsβ), l(w∆sεα)).
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We then choose a section

s : P
q
∆−εα\G

q(ks)→Gq(ks).

Then we may choose a section s2

s2 : k
s(V )∗/ks∗→ ks(V )∗

such that, identifying ks(V )∗/ks∗ with its image in DivV s, one has for any g ∈
G̃q(ks)

s2(−π(Bq s̄αBq) + π(Bq s̄αB
q).g−1)(h) = fα(h)

−1fα
(
hs̃(ĝ)

)

where ĝ is the class of g in P
q
∆−εα\Gq(ks). We are now able to compute

ξ2 = ∂2◦∂1
([
π(Bqs̄αB

q)
])

.

First, using s1, the class ∂1
([
π(Bq s̄αB

q)
])

is represented by the cocycle

σ 7→ −π(Bq s̄αBq) + π(Bq s̄αB
q).γ(σ)−1 ∈Ker(Div(V s)→ Pic(V s)).

Let γ̃ (resp. s̃) be the composite of γ (resp. s) with the section x 7→ x̃. Then ξ2 is
represented by the cocycle

(σ1,σ2) 7→
[
g 7→ fα (gγ̃(σ1))

−1 fα
(
gγ̃(σ1)

σ1 s̃
(
γ̂(σ2)

))

.fα(g)fα

(
gs̃
(
γ̂(σ1σ2)

))−1

.fα(g)
−1 fα

(
gs̃
(
γ̂(σ1)

))]
.

But for any g in G̃q(ks), g−1 s̃(ĝ) belongs to P̃
q
∆−εα(k

s) and for any p ∈ P̃q∆−εα(ks),
the expression ϖα(w

′
∆pw

′
∆) is well defined and

∀g ∈ G̃q(ks), fα(gp) = ϖα(w
′
∆pw

′
∆)
−1fα(g).
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We get that ξ2 is represented by the cocycle

(σ1,σ2) 7→
[
g 7→ fα(gγ̃(σ1))

−1fα(gγ̃(σ1) σ1 γ̃(σ2))

.fα(gγ̃(σ1σ2))
−1fα(gγ̃(σ1))

.

(
σ1ϖα

(
w′∆γ̃(σ2)

−1 s̃
(
γ̂(σ2)

)
w′∆
)−1

.ϖα

(
w′∆γ̃(σ1σ2)

−1 s̃
(
γ̂(σ1σ2)

)
w′∆
)

ϖα

(
w′∆γ̃(σ1)

−1 s̃
(
γ̂(σ1)

)
w′∆
)−1)]

.

Then removing a coboundary and using (5) one gets that ξ2 is represented by

(σ1,σ2) 7→ −ϖα(ξ̃1(σ1,σ2)).

7. A few examples

7.1. The low­dimensional cases

Corollary 7.1. — With the notation of theorem 2.1, the complex C is exact if the
dimension of V is 1 or 2.

Proof. — In this case K0(V
s)3 = {0}. Thus, by proposition 3.4 (v), CH2(V )tors

is trivial. The corollary is then a direct consequence of theorem 2.1.

Corollary 7.2. — If dimV = 3 then the homology of the complex C is either cyclic
or trivial.

Proof. — In this case K0(V
s)3 = Z. Thus proposition 3.4 (v) and theorem 2.1

imply the result.

Remark 7.3. — The paragraph 6.2 of [Pe2] gives an example for which dimV =
3 and (C ) is not exact.

7.2. The case of orthogonal groups. — We shall first give an explicit descrip­
tion of the complex (C ) in the case of a flag variety under an orthogonal group.

Let k be a field of characteristic different from 2. Let q be a nondegenerate
quadratic form of dimension n over k. We assume that n is strictly bigger than
2. Let G be the group PSO(q) and V be a flag variety under G. We denote by
C0(q) the even Clifford algebra of q.
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By [MPW, proposition 1.3], these varieties are characterized by the form q
and their type over ks. We recall their description (see [MPW, §5]). If n is odd,
n = 2m + 1 then G is of type Bm. The root system is given in Rm by the basis
αi = εi − εi+1 if 1 6 i 6 m− 1 and αm = εm where (εi )16i6m is the standard
basis of Rm. The flag variety X(q,n1, . . . , nl) corresponding to ∆−{αn1 , . . . ,αnl }
with 16 n1 < · · · < nl 6m is such that

X(q,n1, . . . , nl)(k
s) = { (W1, . . . ,Wl) |W1 ⊂ · · · ⊂Wl ⊂ V ⊗ ks,

Wl is totally isotropic and dimksWi = ni }
as a set with Galois action.

If n is even, n = 2m, then G is of type Dm, the root system is given in Rm by
the basis αi = εi − εi+1 if 16 i 6m− 1 and αm = εm−1 + εm.

If the signed discriminant of q, d±q, is a square then we are in the inner case.
The algebra C0(q) may be written as C+(q)

2. The variety of maximal totally
isotropic spaces has two components. Over ks, the form q may be written as∑m

i=1 xix2m−i over a basis (ei )16i62m. We choose the maximal torus to be the
diagonal matrices D(α1, . . . ,αm,α

−1
m , . . . ,α−11 ) and εi sends this diagonal element

on αi . Let us denote by M
+ the component containing < e1, . . . , em > and by

M
− the other one. If 16 n1 < · · · < nl 6m− 1 then X(q,n1, . . . , nl) is the flag

variety such that

X(q,n1, . . . , nl)(k
s) = { (W1, . . . ,Wl) |W1 ⊂ · · · ⊂Wl ⊂ V ⊗ ks,

Wl is totally isotropic and dimksWi = ni }.
If nl 6m−2 then the corresponding set of roots is ∆−{αn1 , . . . ,αnl }; if nl =m−1
then the corresponding set is ∆− {αn1 , . . . ,αnl−1 ,αm−1,αm} If 1 6 n1 < · · · <
nl−1 6m− 2 and nl =m, then

X+(q,n1, . . . , nl)(k
s) = { (W1, . . . ,Wl) |W1 ⊂ · · · ⊂Wl ⊂ V ⊗ ks,

Wl is totally isotropic, dimksWi = ni and Wl ∈M
+(ks)}.

Similarly, one defines X−(q,n1, . . . , nl). The first variety corresponds to the set of
roots ∆−{αn1 , . . . ,αnl−1 ,αm} and the second one to ∆−{αn1 , . . . ,αnl−1 ,αm−1}.

If d±q is not a square we are in the outer case. Let L be the field k(
√
d±q).

The absolute Galois group of k acts through Gal(L/k) on the system of roots.
If 1 6 n1 < · · · < nl 6 m− 1 the variety X(q,n1, . . . , nl) is defined as in the
previous case. The set of roots is ∆ − {αn1 , . . . ,αnl } if nl 6= m − 1 and ∆ −
{αn1 , . . . ,αnl−1 ,αm−1,αm} otherwise.
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Lemma 7.4. — Let V be one of the flag varieties described above. Let I be the
corresponding set of roots. The non­trivial component of the algebra C given by the
proposition 6.2 is similar to

(i) C0(q) if n = 2m+1 and αm ∈∆− I ,
(ii) C0(q) if n = 2m and {αm,αm−1} ⊂ ∆− I ,
(iii) C+(q) if n = 2m, d±q ∈ k∗2 and either αm or αm−1 does not belong to I .

In all other cases C is a product of trivial algebras.

Remark 7.5. — This result generalizes easily to the case of a central simple
algebra of even degree with an involution of the first kind and of orthogonal
type.

Proof. — The center of the algebra C is the étale algebra corresponding to the
Galois set {ϖα} for α ∈ ∆− I . It is non­trivial only when n = 2m, d±q 6∈ k∗2

and {αm,αm−1} ⊂ ∆− I in which case its non trivial component is k(
√
d±q).

By construction, (see (4)) the classes of the components of C depend only on
the restriction of the characters ϖα to the center Z of Spin(q) for α ∈ ∆− I . By
[Bki, planches II et IV], these restrictions are as follows:

— If n = 2m+ 1, then Z = Z/2Z and ϖi |Z generates Hom(Z ,Gm) if and
only if i =m.

— If n = 2m with m even and d±q ∈ k∗2 then Hom(Z ,Gm) →̃ Z/2Z×Z/2Z
so that the restriction of ϖi with i < l − 1 is trivial if i is even and (1,1) if
i is odd, the restriction of ϖl−1 corresponds to (1,0) and the one of ϖl to
(0,1).

— if n = 2m with m odd and d±q ∈ k∗2 then Hom(Z ,Gm) →̃ Z/4Z so that
the restriction of ϖi with i < l− 1 is trivial if i is even and equal to 2 if i is
odd, the restriction of ϖl−1 is 1 and the one of ϖl 3.

— If n = 2m and d±q 6∈ k∗2, then the above description is valid over L =

k(
√
d±q) and is compatible with the action of Gal(L/k) over ∆− I and

Z/4Z or Z/2Z×Z/2Z.
But, by [MPW, Proposition 2.2], the class of a component corresponding to a
morphism ϕ from Z to Gm,E is given by the class of any central algebra A over
E such that there exists a representation from Spin(q)E to GL1(A) which extends
ϕ.

If n is odd the natural injection Spin(q)→ GL1(C0(q)) restricts itself to the
generator of Hom(Z ,Gm) and we get (i).
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If n is even, n = 2m, and d±q ∈ k∗2 then the injection

Spin(q)→ C0(q) →̃ C+(q)×C+(q)

gives, by projection, the generators of Hom(Z ,Gm). This implies (ii) and (iii).

In the case of quadrics, the results of Karpenko on the torsion subgroup in
the second Chow group enables us to give a slight refinement of Arason’s results.
This refinement seems to be known but we give it as an illustration of our results.

For any (a1, . . . , an) in k∗n the n­Pfister form≪a1, . . . , an≫ is the form

< 1,−a1 >⊗· · ·⊗ < 1,−an > .

A quadratic form q of dimension n is said to be a neighbour of a r­Pfister form
q′ if and only if n > 2r−1 and q is similar to a subform of q′.

Proposition 7.6. — Let q be an anisotropic quadratic form of dimension strictly
bigger than two and let Q be the corresponding projective quadric then the following
cases are possible:

(i) (Arason [Ar, Satz 5.4]) If q is a neighbour of a 2­Pfister form≪a, b≫ then
the sequence

H1(k,Z/2Z)
∪(a,b)−−−→H3(k,Z/2Z)→H3(k(Q),Z/2Z)

is exact.
(ii) If the dimension of q is four and q is not similar to a 2­Pfister form, let d be

its discriminant and c(q) its Witt invariant. Then the sequence

H1(k(
p
d),Z/2Z)

N(.)∪c(q)−−−−−→H3(k,Z/2Z)→H3(k(Q),Z/2Z)

is exact.
(iii) (Arason [Ar, Satz 5.6]) If the form is a neighbour of 3­pfister form
≪a, b, c≫ then Ker(H3(k,Z/2Z) → H3(k(Q),Z/2Z)) is the subgroup
generated by the symbol (a, b, c).

(iv) (Arason [Ar, Satz 5.6]) In all other cases this kernel is trivial.

Remark 7.7. — For assertion (iii), theorem 2.1 and the result of Karpenko
implies only that the kernel is isomorphic to Z/2Z. Using the bijectivity of
Arason invariant proved independantly by Rost and by Merkur′ev and Suslin
[MS2], the assertion (ii) implies a result of Fitzgerald on 3­fold Pfister forms [Fi,
example, page 94].
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Proof. — We only prove assertions (i), (ii) and (iv). By [Kar, theorem 6.1]
the torsion subgroup of CH2(Q) is trivial except when q is anisotropic and the
neighbour of a 3­fold Pfister form in which case this group is isomorphic to
Z/2Z. Here we have

∆− I =




{α1,α2} if n = 4,

{α1} otherwise.

Thus, by lemma 7.4, the algebra C is nontrivial only if dimq = 3 or 4 in which
case the non trivial components are similar to

—
(
a b
k

)
if q is a neighbour of≪a, b≫.

—
(

a b
k(
p
d)

)
if dimq = 4 and d = d±q 6∈ k∗2, where a, b are elements of k∗

such that (a, b) = c(q)
k(
p
d)

.

We then apply theorem 2.1 to get (i), (ii), and (iv).

We recall that q is an Albert form if the dimension of q is 6 and d±q ∈ k∗2.
In [Lag, Corollaire 6], Laghribi shows that if q is an Albert form and if L is the
universal splitting field of q over k then one has an exact sequence

k∗
.∪c(q)−−−→H3(k,Z/2Z)→H3(L,Z/2Z)

where c(q) is the clifford invariant of q. By [KR] the field L coincides with the
function field of the variety of Borel subgroups of SO(q). We get the following
result:

Proposition 7.8. — Let q be an Albert form, let V be the variety of Borel subgroups
in SO(q) then

CH2(V )tors = {0}.

8. An explicit expression in a particular case

Definitions 8.1. — For any field K a field extension L is a function field over
K if and only if it is generated by a finite number of elements as a field over K .
If L is a function field over K , then we denote by P(L/K ) the set of discrete
valuation rings of rank 1 such that

K ⊂ A⊂ L and Fr(A) = L.
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If A belongs to P(L/K ) then κA denotes the residue field of A and if the charac­
teristic of K does not divide n

∂A : H i (L,µ⊗jn )→H i−1(κA,µ⊗j−1n )

the residue map (see [CTO, §1]). The unramified cohomology groups of L over
K are then defined by

H i
nr/K (L,µ

⊗j
n ) =

⋂

A∈P(L/K )

Ker(∂A).

In the rest of this paragraph we assume that the field k is of characteristic
different from 2, that the group G is of the form SL1(A) × G′ where A is a

quaternion algebra
(
a b
k

)
and G′ a semi­simple simply connected linear algebraic

group and that V may be split into the product of a conic C by a homogeneous
variety V ′ so that the action of G is the product of an action of SL1(A) on C and
an action of G′ on V ′. In this setting we shall now give a more explicit expression
of the morphism from the homology of (C ) to CH2(V )tors.

By [Ar, Satz 5.4] and Merkur’ev and Suslin [MS, theorem 12.1], one has an
exact sequence
(6)
⊕

P∈C(1)

k(V ′)

k(V ′)(P)∗
N
k(V ′)(P)/k(V ′)−−−−−−−−→k(V ′)∗

∪(a,b)−−−→H3(k(V ′),Q/Z(2))→H3(k(V ),Q/Z(2)).

Let α be in the kernel of the canonical map from H3(k,Q/Z(2)) toH3(k(V ),Q/Z(2)).
Then α

k(V ′) may be written as (a, b, f ) for some f in k(V ′). Let D be the divisor

of f on V ′. Since α comes from H3(k,Q/Z(2)), for any point P of codimension
1 in V one has

∂P(a, b, f ) = 0.

By [CTO, proposition 1.3], one gets that

∀P ∈ V ′(1), (a, b)k(P) 6= 0⇒ νP(f ) is even.

Let p1 : V → C and p2 : V → V ′ be the natural projections. For any P in V ′(1),
the conic Ck(P) has a rational point if and only if (a, b)k(P) = 0. Thus we get that

D ∈ Im(p2∗ :
⊕

P∈V (2)

Z→
⊕

P∈V ′(1)
Z).

Let E belong to the inverse image of D and [E] be its class in CH2(V )/p∗2(CH2(V ′)).



GALOIS COHOMOLOGY AND HOMOGENEOUS VARIETIES 33

Lemma 8.1. — With the above notations, [E] depends only on α.

Proof. — Let us first prove that for a fixed f the class [E] is independant of the
choice of E. Let E′ in

⊕
P∈V (2) Z be such that p2∗(E

′) = p2∗(E). We may then
write

E−E′ =


 ∑

P∈V ′(1)

∑

{Q∈V (2) |p2∗(Q)∈ZP }
nPQQ


+

∑

P∈V ′(2)
nPp
∗
2(P)

where for any P in V ′(1), ∑{Q∈V (2) |p2∗(Q)∈ZP } n
P
Q [k(Q) : k(P)] = 0. But for

any P ∈ V ′(1), the Picard group of Ck(P) is isomorphic to Z and thus there exists
a function fp on VP such that

Div(fP) =
∑

{Q∈V (2) |p2∗(Q)∈ZP }
nPQQ.

Therefore the class of E−E′ in CH2(V )/p∗2(CH2(V ′)) is trivial.
Let us now prove that [E] is independant of the choice of f . Let f ′ be an

element of k(V ′) such that

α
k(V ′) = (a, b, f ′).

By the exact sequence (6), there exists a family (fP)P∈C(1)

k(V ′)
in
⊕

P∈C(1)

k(V ′)
k(V ′)(P)∗

such that
f/f ′ =

∏

P∈C(1)

k(V ′)

N
k(V ′)(P)/k(V ′)(fP).

Then E′ = E −∑
P∈C(1)

k(V ′)
Div(fP) verifies p2∗(E

′) = Div(f ′), but its class in

CH2(V ) is the same as the class of E.

We denote by

Φ : Ker
(
H3(k,Q/Z(2))→H3(k(V ),Q/Z(2))

)
→CH2(V )/CH2(V ′)

the induced map sending α on [E].

Theorem 8.2. — With notation as above, the natural morphism from the homology
of the complex (C ) to CH2(V )/CH2(V ′) defined by theorem 2.1 coincides with the
map induced by Φ.
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Proof. — By [Kah, corollaire 3.2], there exists a canonical isomorphism

H1(G ,K2k
s(V )/K2k

s(V ′)) →̃Ker(H3(k(V ′),Q/Z(2))→H3(k(V ),Q/Z(2))).

Moreover as in [Pe2, page 391] for any g in ks(V ′) there is a commutative dia­
gram

H1(G ,K1k
s(V )/K1k

s(V ′)) →̃ Ker(Br(k(V ′))→ Br(k(V )))
↓ ∪g ↓ ∪g

H1(G ,K2k
s(V )/K2k

s(V ′)) →̃ Ker(H3(k(V ′),Q/Z(2))→H3(k(V ),Q/Z(2))).

But there is a surjection

(PicCs)G ։H1(G ,K1k
s(V )/K1k

s(V ′)).

Moreover PicCs is a free Z­module of rank 1 with a trivial G action and the
image of one of its generator in Br(k(V ′)) is (a, b).

We use again the symbols α, f and E introduced before lemma 8.1. Let
β be the image of one generator of PicCs in H1(G ,K1k

s(V )/K1k
s(V ′)).

Let γ be the image of α in H1(G ,K2k
s(V )/K2k

s). Then the image of γ in
H1(G ,K2k

s(V )/K2k
s(V ′)) is β∪ f .

The conic C may be defined by the homogeneous equation

X2− aY 2− bZ2 = 0.

Let
p
a be a square root of a in ks. Then the cocycle

β̃ : G → ks(V )∗/ks(V ′)∗

σ 7→




[1] if σ(
p
a) =
p
a,[

X−paY
Z

]
otherwise.

represents β. The element β∪ f is thus given by the cocycle

β̃∪ f : G → K2k
s(V )/K2k

s(V ′)

σ 7→




[0] if σ(
p
a) =
p
a,[{

X−paY
Z , f

}]
otherwise.

But the map

Ψ :H1(G ,K2(k
s(V ))/K2k

s)→CH2(V )
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is defined as follows (see [CTR, page 188]). One considers the kernel Z and the
image I of the morphism

⊕

x∈V (1)

k(x)∗→
⊕

x∈V (2)

Z

which appears in Gersten­Quillen spectral sequence, as well as the corresponding
groups Zks and Iks over ks. We have a short exact sequence

0→ K2k
s(V )/K2k

s→Zks→H1(V s,K2)→ 0.

Then the isomorphism

Ψ :H1(G ,Zks) →̃Ker(CH2(V )→CH2(V s))

is yielded by diagram chases in the following two commutative diagrams which
have exact rows
(7)

0→ Z
G
ks →

(
⊕

x∈V (1)
ks

ks(x)∗
)G

→ I
G
ks

∂−→ H1(G ,Zks) → 0
x

x≀
x

0→ Z → ⊕
x∈V (1) k(x)

∗ → I → 0

and

(8)

0→ I
G
ks →

(
⊕

x∈V (2)
ks

Z

)G

→ CH2(Vks)
x

x≀
x

0→ I → ⊕
x∈V (2) Z → CH2(V ) → 0.

We put C (1) =
⊕

x∈V (1) k(x)
∗ and C (2) =

⊕
x∈V (2) Z and take a similar nota­

tion for the corresponding groups over ks. Let C
′(1), C

′
ks(1), C

′(2), C
′
ks(2), Z

′,
Z
′
ks , I

′ and I
′
ks be the corresponding objects for V ′. Since the map from I

′
to I is injective, we have exact sequences

0→Z /Z ′→ C (1)/C ′(1)→I /I ′→ 0

and

I /I ′→ C (2)/C ′(2)→CH2(V )/CH2(V ′)→ 0
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as well as the corresponding ones over ks. Moreover Hilbert’s theorem 90 implies
that

(
Cks(1)/C

′
ks(1)

)G
=




⊕

P∈V (1)
ks

ks(P)∗/
⊕

P∈V ′(1)
ks

ks(P)∗




G

=
⊕

P∈V (1)

k(P)∗/
⊕

P∈V ′(1)
k(P)∗ =C (1)/C ′(1).

Thus we get the following two commutative diagrams of complexes the first of
which has exact horizontal lines:

(9)
0→(Zks/Z

′
ks)

G→(Cks(1)/C
′
ks(1))

G→(Iks/I
′
ks)

G ∂′−→H1(G ,Zks/Z
′
ks)x

x≀
x

0→ Z /Z ′ −→ C (1)/C ′(1) −→ I /I ′ →0

and

(10)

(Iks/I
′
ks)

G → (Cks(2)/C
′
ks(2))

G → CH2(Vks)/CH
2(V ′ks)x

x≀
x

I /I ′ → C (2)/C ′(2) → CH2(V )/CH2(V ′)

which defines a map from Im∂′ to CH2(V )/CH2(V ′). Moreover there are
obvious morphisms of diagrams from (7) to (9) and from (8) to (10). Thus we
get a commutative diagram

Im∂′ −−−→ CH2(V )/CH2(V ′)x
x

H1(G ,Zks) −−−→ CH2(V ).

It remains to show that the image of β∪ f in CH2(V )/CH2(V ′) is given by the
class of E. The image of β∪ f in H1(G ,Zks/Z

′
ks) is given by the cocycle

β̃∪ f ′ : σ 7→





0 if σ(
p
a) =
p
a,[

∑
P∈V (1)

ks
λP

]
otherwise .
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where

λP =





(
Z

X−paY

)νQ (f )
if P = p−12 (Q),

f if P = p−11 ((
p
a : 1 : 0)),

f −1 if P = p−11 ((
p
a :−1 : 0)),

1 otherwise.

We may write E in the form E0 +
∑

Q∈V ′(1)
EQ where p2∗(E0) = 0 and for any

Q in V ′(1), the support of EQ is included in p−12 (Q) and p2∗(EQ ) is equal to

νQ (f )Q . Thus for any Q in V ′(1) there exists a function gQ in ks(Q)(C) such
the divisor of gQ over ks(Q) is

−νQ (f )(
p
a :−1 : 0) +EQ

and they may be choosen to be trivial except for a finite number. Then one
considers the element γ of Cks(1)/C

′
ks(1) defined by γ = [

∑
P∈V (1) γP] where

γP =





f if P = p−11 ((
p
a :−1 : 0)),

gQ if P = p−12 (Q),

1 otherwise.

Then for any σ in G such that σ(
p
a) = −pa and any Q in V ′(1) the divisor of

σgQ g
−1
Q over ks(Q) coincides with the one of

(
X−paY

Z

)−νQ (f )
. Thus, for any

σ ∈ G ,

β̃∪ f ′(σ) = σ�−1.
Moreover the image of γ in Iks/I

′
ks is invariant under G and its image in

Cks(2)/C
′
ks(2) comes from E by the natural map

⊕

P∈V (2)

Z→ (Cks(2)/C
′
ks(2))

G

which implies the result.

9. Application to negligible classes

We shall now apply the results of the preceding sections to the study of neg­
ligible classes in the cohomology of a central extension of an Fp vector space by
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another. Such groups have been used in [Sa1] to construct counter­examples
to Noether’s problem using classes in the unramified Brauer group. In fact one
of the advantage of these extensions from the point of view of Galois coho­
mology is the fact that the unramified classes coming from the cohomology of
the quotient may be characterized with linear algebra (see [Bo, lemma 5.1] and
proposition 9.4 below).

9.1. Products of generic Severi­Brauer varieties. — Let p be a prime number
and k be a field of characteristic different from p. If p = 2 we assume that the field
contains a primitive fourth root of one and in general that it contains a primitive
p­th root of one ξ. Let m be an integer, X1, . . . ,Xn be indeterminates and K
be the field k(X1, . . . ,Xn). We fix an integer m and monomials Ai , Bi in the Xi
for 1 6 i 6 m. We then consider the cyclic simple algebras Di = Aξ(Ai , Bi)
generated by two elements I and J with the relations

Ip = Ai , J
p = Bi and IJ = ξJI,

we denote by Yi the corresponding Severi­Brauer variety and by Y the product of
these varieties. Using Amitsur’s theorem [Am, theorem 9.3] one gets (see [Pe1,
lemma 8]) that

Ker(BrK → BrK (Y )) =< (Ai , Bi), 16 i 6m >

and the complex C may be written as

(11) < (Ai , Bi), 16 i 6m >⊗K ∗ ∪−→H3(K,Q/Z(2))→H3(K (Y ),Q/Z(2)).

9.2. Connection with negligible classes. — Let U be an Fp vector space with

a basis u1, . . . , un. Let Φ1
K be the morphism from the dual U∨ of U to K ∗/K ∗p

which sends u∨i of the dual basis to (Xi ). Let

Φi
K : (ΛiU )∨→H i (K,µp)

be the induced map (see [Pe1, page 250]). This is an injection by [Pe1, lemma
7]. Moreover

Ker
(
Br(K )→ Br(K (Y ))

)
⊂ ImΦ2

K .

Let V be the dual of the inverse image of this kernel by Φ2
K . We then have an

injection
V∨→ (Λ2U )∨

and a surjective map
Λ2U → V
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which gives an element γ in Λ2(U∨)⊗V .
For any vector space W over Fp let AC∗(W ) be the quotient of the tensor

algebra T∗(W ) by the ideal generated by x⊗ y + y⊗ x for all x, y in W . Then
there is a surjective morphism

AC∗(W )→Λ∗(W )

which is an isomorphism if p is not 2 and a natural map of algebras

AC∗(W∨)→H∗(W,Fp)

which extends the isomorphism W∨ →̃H1(W,Fp).

Let γ̃ be a lift of γ in AC∗(U∨)⊗V . We also denote by γ̃ its image in H2(U,V ).
There is a natural surjection

H2(U,V )։ Λ2(U∨)⊗V

(see [Bro, exercise IV.3.8]). The image of γ̃ by this map coincides with γ. Let

0→ V
j−→G

π−→U → 0

be the central extension corresponding to γ̃.

Definition 9.1. — If H is a finite group, M a H­module and E a field, a class λ
in H i (H,M) is said to be totally E­negligible if and only if for any extension F of
E and any morphism

ρ : Gal(F s/F)→H

the image of λ by ρ∗ is zero in H i (F,M).

If E is a field over k and a = (ai)16i6n a family of inversible elements of E, we
denote by ⊕

i>0

Φi
E,a :

⊕

i>0

ΛiU∨→
⊕

i>0

H i (E,µ⊗ip )

the morphism of graded algebras which sends u∨j onto aj.

Proposition 9.1. — Let λ̃ belong to ACiU∨ and λ be its image in ΛiU∨. The
following three assertions are equivalent:

(1) The image of λ̃ under inflation in H i (G,µ⊗ip ) is totally k­negligible.
(2) For any field E over k and any family a = (ai)16i6n of inversible elements in

E such that
Φ2
E,a(V

∨) = 0
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one has
Φi
E,a(λ) = 0.

(3) One has Φi
K (Y ),X (λ) = 0.

Proof. — • Let us first prove the equivalence of the first two assertions. Let
E be an extension of k. By Kummer theory, there is a natural correspondance
between the morphisms ρ1 from Gal(F s/F) to U and the families (ai)16i6n of
elements of E∗/E∗p. Let us first prove the following lemma:

Lemma 9.2. — With the notation as above, the morphism

ρ1 : Gal(F
s/F)→U

may be lifted in a morphism

ρ : Gal(F s/F)→G

if and only if
Φ2
E,a(V

∨) = 0.

Proof. — The morphism ρ1 may be lifted to G if and only if the image of γ̃ in
H2(F,V ) is trivial. Let us choose a basis (v1, . . . , vm) of V and let (v∨1 , . . . , v∨m)
be the dual basis. The condition is equivalent to the triviality of v∨i ∗(ρ

∗
1(γ̃)) for

1 6 i 6 m that is the triviality of ρ∗1(v∨i ∗(γ̃)) for 1 6 i 6 m which is equivalent
to Φ2

E,a(v
∨
i ) = 0.

End of the proof of proposition 9.1. — Let us assume that the first assertion is true
and let E be a field over k and a a family of inversible elements such that the
hypothesis of the second assertion are verified. By the preceding lemma, the
morphism Gal(Es/E) → U defined by a may be lifted to G. But by the first
assertion the image of λ̃ in H i (G,Z/pZ) is sent to 0 in H i (E,µ⊗ip ).

Let us assume that the second assertion is true, let E be a field extension of k
and ρ : Gal(Es/E)→G be a morphism. The map ρ induces a morphism

Gal(Es/E)→U

corresponding to a family a. By the lemma Φ2
E,a(V

∨) = 0. Thus Φi
E,a(λ) = 0

and the image of λ̃ in H i (E,µ⊗ip ) is trivial.

• It is clear that the second assertion implies the third. Let us prove
the opposite implication. First the fact that Φi

K (Y ),X (λ) = 0 implies that

Φi
E⊗kK (Y ),X (λ) = 0. Thus we are reduced to the case where k = E.
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Let A1 ∈P(K/k) be the discrete valuation ring of rank one defined by the di­
visor X1 = a1. Consider the algebras Aξ(Aj, Bj) defined over A1 by the generators
I and J and the relations

Ip = Aj, J
p = Bj and IJ = ξJI.

It defines a Severi­Brauer scheme Y
1
j over SpecA1. Let Y

1 be the product

of these schemes. Then the special fiber of Y 1 defines a local ring B1 in
P(K (Y )/k) over A1 such that B1 is unramified over A1 and the residue field κB1
is the function field over k(X2, . . . ,Xn) of the product Y 1 of the Severi­Brauer
varieties defined by the algebras

Aξ(Aj(a1,X2, . . . ,Xn), Bj(a1,X2, . . . ,Xn)).

In a similar way we construct discrete valuation rings of rank one Aj in
P(κAj−1/k) and Bj ∈ P(κBj−1/k) so that κAj = k(Xj+1, . . . ,Xn) and κBj =

κAj(Y
j) where Y j is defined as Y 1. We put κA0 = K and κB0 = K (Y ). Let us

assume that

Φi
κBj

,(a1,...,aj ,Xj+1,...,Xn)
(λ) = 0.

Then taking the completion of κBj for Bj+1

Φi
ˆκBj ,(a1,...,aj ,Xj+1,...,Xn)

(λ) = 0.

But the field ˆκBj is isomorphic to κBj+1((Xj+1− aj+1)). Thus the natural surjec­

tion

Gal(κ̂sBj/
ˆκBj)→Gal(κsBj+1/κBj+1)

has a section and the map

H i (κBj+1 ,µ
⊗i
p )→H i ( ˆκBj ,µ

⊗i
p )

is an injection. Thus

Φi
κBj+1

,(a1,...,aj,aj+1,Xj+2,...,Xn)
(λ) = 0.

Therefore by induction, we get that Φi
κBn

,a(λ) = 0. But, since Φ2
k,a(V

∨) = 0, κBn
is rational on k and Φi

k,a(λ) = 0.
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Lemma 9.3. — The images in Λ3(U∨) of the kernels of the natural maps

H3(U,Z/pZ)→H3(G,Z/pZ)

and
H3(U,Z/pZ)→H3(G,Q/Z)

are equal to U∨ ∧V∨.

Proof. — The element γ̃ in AC2(U∨)⊗V defines a morphism

γ̃ : V∨→ AC2(U∨)
which is injective. We then consider the Hochschild­Serre spectral sequences

E
p,q
2 (Z/pZ) =Hp(U,Hq(V,Z/pZ))⇒Hp+q(G,Z/pZ)

and
E
p,q
2 (Q/Z) =Hp(U,Hq(V,Q/Z))⇒Hp+q(G,Q/Z).

Moreover the natural map Z/pZ → Q/Z induces a morphism of spectral se­
quences from the first one to the second one. If p = 2 there is a natural isomor­
phism

Sp(U∨)⊗ Sq(V∨) →̃Hp(U,Hq(V,Z/2Z))

(see [Car1, théorème 2]) and if p 6= 2 isomorphisms

U∨⊕Λ2(U∨) δ⊕∪−−→H2(U,Z/pZ)

where δ is the Bockstein operator and by [Car2, théorème 2],

U∨⊗U∨⊕Λ3U∨ δ.∪.⊕.∪.∪.−−−−−→H3(U,Z/pZ).

• By [Bro, page 60], one has an exact sequence

0→ Ext1Z(Hn−1(U,Z),Q/Z)→Hn(U,Q/Z)→Hom(Hn(U,Z),Q/Z)→ 0.

But Ext1Z(Hn−1(U,Z),Q/Z) is trivial and by [Bro, pages 122 and 123], ΛiU is
isomorphic to Hi (U,Z) if i = 1 or 2 and ΛiU→ Hi (U,Z) for i > 3. We get
isomorphisms

H0(U,Q/Z) →̃Q/Z, H1(U,Q/Z) →̃U∨ and H2(U,Q/Z) →̃Λ2U∨

as well as surjections
H i (U,Q/Z)։ ΛiU∨.

Similarly, one gets

(12) H1(U,H1(V,Q/Z)) →̃U∨⊗V∨ and H2(V,Q/Z) →̃Λ2V∨.
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• We shall now prove that the map

V∨→ AC2(U∨)
induced by the first spectral sequence is the one defined by −γ̃. We use the same
filtration on

⊕
n∈NCn(G,Z/pZ) as in section 4. Let us write γ̃ =

∑t
i=1 fi .gi ⊗ vi

with fi , gi in U∨ and vi in V . Let s : U → G be a set­theoritic section of π such
that s(0) = e and

∀u,u′ ∈U, s(u)s(u′) = j




t∑

i=1

fi (u)gi(u
′)vi


 s(uu′).

Let h belong to V∨ →̃ H0(U,H1(V,Z/pZ)) →̃ E0,12 (G/V ). For any g in G let
τ(g) in V denote gs(π(g))−1. Then h is represented in C1(G,Z/pZ) by the cocycle
h̃ defined by

G → Z/pZ
g 7→ h(τ(g)).

But τ(gg′) = τ(g) + τ(g′) +∑t
i=1 fi (π(g))gi (π(g

′))vi . Thus

dh̃(g, g′) = h(τ(g′))− h(τ(gg′)) + h(τ(g))

=−h



t∑

i=1

fi (π(g))gi(π(g
′))vi




which is sent in H2(U,Z/pZ) on the image of the element of AC2(U∨) given by

−
t∑

i=1

h(vi)fi .gi .

But it is the opposite of the image of h by γ̃.

• Since the Hochschild­Serre spectral sequence is compatible with the cup­
product, the map

H1(U,H1(V,Z/pZ))→H3(U,Z/pZ)

is induced by the map

(13) U∨⊗V∨ → AC3U∨
u⊗ v 7→ −u.γ̃(v).

• Also thanks to this compatibility, the composite morphism

AC2(V∨)→H0(U,H2(V,Z/pZ))→H2(U,H1(V,Z/pZ))
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is given by the opposite of the map

AC2(V∨) → AC2(U∨)⊗V∨
xy 7→ γ̃(x)⊗ y− γ̃(y)⊗ x.

• By the expression of the map

H1(U,H1(V,Z/pZ))→H3(U,Z/pZ)

we get that U∨ ∧ V∨ is contained in the image in Λ3U∨ of the kernel of the
inflation map

H3(U,Z/pZ)→H3(G,Z/pZ).

Thus it suffices to prove that the image in Λ3U∨ of

Ker(H3(U,Z/pZ)→H3(G,Q/Z))

is contained in U∨∧V∨. But, by (12) and (13), we already know that the image
of the composite map

H1(U,H1(V,Q/Z))→H3(U,Q/Z)→ Λ3U∨

is contained in U∨ ∧V∨. Also the computation of the map

AC2(V∨)→H2(U,H1(V,Z/pZ))

shows that the map

H2(V,Q/Z)→H2(U,H1(V,Q/Z))

is induced by the map

Λ2V∨ → AC2(U∨)⊗V∨
x∧ y 7→ γ̃(y)⊗ x− γ̃(x)⊗ y

which is injective, since γ̃ is injective. Therefore E0,23 (Q/Z) is trivial and the
result is proved.

Notation . — Let (V∨ ∧U∨)⊥dec ⊂ Λ3U be the subgroup of (V∨ ∧U∨)⊥ gen­
erated by the elements of the form u∧ v, for u ∈ Λ2U , v ∈ U . Let K 3

max be its
orthogonal in Λ3U∨.

Proposition 9.4. — The inverse image in Λ3U∨ of H3
nr/k(K (Y ),µ⊗3p ) is equal to

K 3
max. In particular one has

V∨ ∧U∨ ⊂ KerΦ3
K (Y ),X ⊂ K 3

max.
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Moreover the quotient KerΦ3
K (Y ),X /V

∨ ∧U∨ is imbedded in CH2(Y )tors.

Proof. — The inclusion V∨ ∧U∨ ⊂ KerΦ3
K (Y ),X is clear. Therefore

(KerΦ3
K (Y ),X )

⊥ ⊂ (V∨ ∧U∨)⊥

and

(KerΦ3
K (Y ),X )

⊥
dec ⊂ (V∨ ∧U∨)⊥dec.

Thus for any f in K 3
max, the restriction of f to (KerΦ3

K (Y ),X )
⊥
dec is trivial and

by [Pe1, theorem 2 and remark p. 251] the image of f in H3(K (Y ),µ⊗3p ) is
unramified over k.

Let λ 6∈ K 3
max. We want to show that its image is ramified. There exist p ∈ Λ2U

and u′1 ∈ U such that < λ, p∧ u′1 >6= 0 and p∧ u′1 belongs to (V∨ ∧U∨)⊥. We
complete (u′1) in a basis (u′1, . . . , u′n) of U . We may choose these elements so
that they can be lifted in a basis of Zn. Let M1, . . . ,Mn be the monomials in

X1, . . . ,Xn,X
−1
1 , . . . ,X−1n given by this basis of Zn. Then Φ1

K (u
′
i
∨
) = (Mi) and

k(X1, . . . ,Xn) = k(M1, . . . ,Mn). Let A be the discrete valuation ring correspond­
ing to M1 in k(M1, . . . ,Mn). One may write the symbols (Ai , Bi) as (A′i , B′i)
where the A′i are monomials in M2, . . . ,Mn and B′i monomials in M1, . . . ,Mn.
Moreover, by taking suitable powers of B′i and A′i , we may assume that νA(B

′
i) ∈

{0,1}. Then let I ′i and J ′i be generators of Di such that

I ′i
p
= A′i , J

′
i
p
= B′i and I ′i J

′
i = ξJ ′i I

′
i for 16 i 6m

and let Di be the order of Di over A generated by I ′i and J ′i . It is a maximal order
of Di . Indeed, if νA(B

′
i ) = 0, this follows from the fact that Di /(M1) is a skew

field. Otherwise, define a function ν on Di −{0} by

ν
( ∑

06j<p
06l<p

aj,lI
j
i J
l
i

)
= inf

06j<p
06l<p

(
νA(aj,l) +

l

p

)

then ν verifies ν(a+b)> inf (ν(a), ν(b)), and for any a, b in Di−{0}, write a = J ri α
and b = J siβ with ν(α) = ν(β) = 0. Then

α =
∑

06j<p
06l<p

αj,lI
j
i J
l
i and β =

∑

06j<p
06l<p

βj,lI
j
i J
l
i
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with inf06j<p νA(αj,0) = inf06j<p νA(βj,0) = 0. Since A[A′i
1/p

]/(mA) is a field,

we get that ν(
∑

06j,l<p(αj,0βl,0)I
j+l
i ) = 0 and then that ν(ab) = ν(a) + ν(b). Thus

ν is a valuation and Di the maximal order of Di (see [Re, §12]). Let Yi be
the connected component of the corresponding Severi­Brauer scheme on SpecA
which contains the generic fiber (see [Art], [Brz] and [Fr, page 37]). This is
Artin’s model of Yi . Let Y be the products of the Yi . If M1 does not divide
B′i then the special fibre Y

0
i of Yi is the Severi­Brauer variety corresponding to

the algebra Di ⊗ κA and otherwise, by [Art, theorem 1.4], Y
0
i
s

has p irreducible

components birationally equivalent to P
p−1
κsA

. They may be described as follows:

Di ⊗ κA is the algebra generated by I ′i and J ′i with the relations

I ′i
p
= A′i , J

′
i
p
= 0 and I ′i J

′
i = ξJ ′i I

′
i .

Let us consider the algebra D
′
i = Di ⊗ κA(A

′
i
1/p

). A maximal set of orthogonal
idempotents ej of D

′
i is given by

ej =
∏

l∈Z/pZ
l 6=j

I ′i − ξlA′i
1/p

(ξj− ξl)A′i
1/p .

This follows from the existence of an isomorphism from Di × K (A′i
1/p

) to

Mp(K (A′i
1/p

)) which maps Ii to the diagonal matrix D(A′i
1/p

, ξA′i
1/p

, . . . , ξp−1A′i
1/p

).

Therefore the points of Y 0
i
s

which correspond to right ideals L for which
dimLel = 1 for any l (see [Art, lemma 3.3]) are given by dejD

′
i for 1 6 j 6 p

and d in D
′
i such that dejD

′
i el 6= 0 for 1 6 l 6 p. Therefore the components of

Y
0
i
s

are permuted cyclically by Gal(κA(A
′
i
1/p

)/κA). Thus the special fiber Y
0

of Y is integral over κA and defines a discrete valuation ring B over A which is
unramified over A.

We may reduce to the case where M1|B′i if and only if 1 6 i 6 l for some l
between 1 and m. Then κB is rational over

κA((A
′
i )
1/p,16 i 6 l)

( ∏

l+16i6m

Y
0
i

)
.

By [Pe1, lemma 6]

∂B(Φ
3
k(Y ),X (λ)) =Φ2

κB
(û′1(λ))
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where Φ∗κB :Λ∗u′1
⊥→H∗(κB,µ⊗∗p ) is the morphism which sends u′i over Mi for

2 6 i 6 n and for any w of ΛiU∨, û′1(w) is the unique element of Λi−1(u′1
⊥
)

such that

w− u′1
∨ ∧ û′1(w) ∈ Λi (u′1

⊥
).

We want to show that the image of λ is ramified at B. Therefore, we shall now
describe the kernel of Φ2

κB
.

Lemma 9.5. — With notation as above,

Ker(Φ2
κB
) = û′1(V

∨)∧ (u′1
⊥
) +V∨ ∩Λ2(u′1

⊥
).

Proof. — Let ai (resp. bi ) be the inverse image of (A′i ) (resp. (B′i )) in U∨. Then
the right hand side coincides with

l∑

i=1

ai ∧ (u′1
⊥
) +

m∑

i=l+1

Fpai ∧ bi

which is contained in KerΦ2
κB

. Moreover Amitsur’s theorem implies (see [Pe1,
lemma 8]) that

Ker
(
H2(κA((A

′
i )
1/p,16 i 6 l),µ⊗2p )→H2(κB,µ

⊗2
p )

)

is generated by the symbols (A′i , B′i) for i > l + 1. Therefore we only have to
consider the case m = l.

In this case, let w∨1 , . . .w∨r be a basis of û′1(V∨). We complete it in a basis

(w∨i )16i6m−1 of u′1
⊥

. Let w1, . . . ,wm−1 be the dual basis and let η belong to

Λ2(u′1
⊥
)− û′1(V

∨)∧ (u′1
⊥
).

Then there exist i and j strictly bigger than r such that

< η|wi ∧wj >6= 0.

We may construct a discrete valuation ring A′ (resp. B′) in k(M2, . . . ,Mn) (resp.
κB) such that

ν
A′(Φ

1
κA
(wk)) = δi,k and κ

A′ = k(N1, . . . , N̂i , . . . ,Nn−1)

where N1, . . . ,Nn−1 are monomials corresponding to w1, . . . ,wn−1, such that B′
is unramified on A′, which is possible since i > r and κ

B′ is rational over

k(N1, . . . , N̂i , . . . ,Nn)(N
1/p
1 , . . . ,N1/p

r ).
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Thus

∂
B′(Φ

2
κB
(η)) =Φ1

κ
B′
(
∑

l 6=i
< η|wi ∧wl > wl) = (

∏

l 6=i
N

<η|wi∧wl>
l ) 6= 0

and
Φ2
κB
(η) 6= 0.

End of the proof of proposition 9.4. — We want to show that the class Φ2
κB
(û′1(λ))

is non zero, which, by lemma 9.5, is equivalent to

û′1(λ) 6∈ û′1(V∨)∧ u′1
⊥
+V∨ ∩Λ2(u′1

⊥
).

Taking the inverse image by û′1 is is sufficient to show that

λ 6∈ V∨ ∧ u′1
⊥
+V∨ ∧ u′1

∨
+Λ3(u′1

⊥
) = V∨ ∧U∨ +Λ3(u′1

⊥
).

But, by hypothesis, p∧ u′1 belongs to (V∨ ∧U∨)⊥. Thus p∧ u′1 is zero on

V∨ ∧U∨ +Λ3(u′1
⊥
).

Since < λ, p ∧ u′1 >6= 0, the first assertion is proved. It implies the following
inclusions.

It remains to prove the last assertion. The kernel of Φ3
K (Y ),X is the inverse

image in Λ3U∨ of

Ker(H3(K,Q/Z(2))→H3(K (Y ),Q/Z(2))).

Let λ in Λ3U∨ be such that

Φ3
K (λ) ∈< (Ai , Bi),16 i 6m >⊗K ∗,

then we may write

Φ3
K (λ) =Φ3

K (w) +
m∑

i=1

(Ai , Bi , Pi)

where w belongs to V∨∧U∨ and Pi is a polynomial which is not divisible by any
of the Xj. Then taking successive residues at places defined by indeterminates Xi ,
Xj, and Xl with i, j, and l distincts in {1, . . . , n}, we get that

(λ−w)(ui ∧ uj ∧ uk) = 0

and therefore λ = w. Thus the last assertion follows from theorem 2.1 and (11).
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9.3. An explicit example. — We now assume that U is an F2 vector space of
dimension 6 and V is the dual of the subspace of Λ2U generated by the elements

u∨2 ∧ u∨5 , u∨4 ∧ u∨1 , u∨6 ∧ u∨3 , (u∨2 + u∨4 + u∨6 )∧ (u∨1 + u∨3 + u∨5 ).

Lemma 9.6. — With the notations of section 9.2

K 3
max/V

∨ ∧U∨ →̃ Z/2Z.

Proof. — We have

V∨ ∧U∨ =<u∨1 ∧ u∨2 ∧ u∨4 , u∨1 ∧ u∨2 ∧ u∨5 , u∨1 ∧ u∨3 ∧ u∨4 ,
u∨1 ∧ u∨3 ∧ u∨6 , u∨1 ∧ u∨4 ∧ u∨5 , u∨1 ∧ u∨4 ∧ u∨6 ,
u∨2 ∧ u∨3 ∧ u∨5 , u∨2 ∧ u∨3 ∧ u∨6 , u∨2 ∧ u∨4 ∧ u∨5 ,
u∨2 ∧ u∨5 ∧ u∨6 , u∨3 ∧ u∨4 ∧ u∨6 , u∨3 ∧ u∨5 ∧ u∨6 ,
u∨1 ∧ u∨2 ∧ u∨3 + u∨1 ∧ u∨5 ∧ u∨6 , u∨2 ∧ u∨3 ∧ u∨4 + u∨1 ∧ u∨2 ∧ u∨6 ,
u∨3 ∧ u∨4 ∧ u∨5 + u∨1 ∧ u∨2 ∧ u∨3 , u∨4 ∧ u∨5 ∧ u∨6 + u∨2 ∧ u∨3 ∧ u∨4 > .

Thus

(V∨ ∧U∨)⊥ =<u1 ∧ u2 ∧ u3 + u3 ∧ u4 ∧ u5 + u5 ∧ u6 ∧ u1,
u2 ∧ u3 ∧ u4 + u4 ∧ u5 ∧ u6 + u6 ∧ u1 ∧ u2,
u2 ∧ u4 ∧ u6, u1 ∧ u3 ∧ u5 > .

Let

g1 = u1 ∧ u2 ∧ u3 + u3 ∧ u4 ∧ u5 + u5 ∧ u6 ∧ u1,
g2 = u2 ∧ u3 ∧ u4 + u4 ∧ u5 ∧ u6 + u6 ∧ u1 ∧ u2,
h1 = u2 ∧ u4 ∧ u6

and

h2 = u1 ∧ u3 ∧ u5.
Since

g1 + g2 + h1 + h2 = (u1 + u4)∧ (u2 + u5)∧ (u3 + u6),

we get that

< h1, h2, g1 + g2 + h1 + h2 >⊂ (V∨ ∧U∨)⊥dec.

But by [Pe1, pages 265 and 266]

(
6∑

i=1

aiui )∧ (αg1 + βg2 + γh1 + δh2) = 0
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is equivalent to
a1β+ a4α = 0 a1α+ a4γ = 0
a2γ+ a5α = 0 a3α+ a6γ = 0
a3β+ a6α = 0 a3δ+ a6β = 0
a1δ+ a4β = 0 a2β+ a5δ = 0
a2α+ a5β = 0.

Let us assume that α = 1 and β = 0. Then a4 = a2 = a6 = 0 and this implies
that a3 = a5 = a1 = 0. Thus the elements of the form g1 + γh1 + δh2 are not
decomposable. This is also the case for the elements of the form g2 + γh1 + δh2.
Thus

[g1] ∈ (V∨ ∧U∨)⊥/ < h1, h2, g1 + g2 + h1 + h2 >

does not lift to a decomposable element. This implies the equality

< h1, h2, g1 + g2 + h1 + h2 >= (V∨ ∧U∨)⊥dec.

Proposition 9.7. — With notation as above

Ker(Φ3
k(Y ),X ) =K 3

max 6= V∨ ∧U∨.

Proof. — The group K 3
max is the orthogonal of (V∨∧U∨)⊥dec. Therefore we have

K 3
max = V∨ ∧U∨+ < u∨2 ∧ u∨3 ∧ u∨4 + u∨5 ∧ u∨6 ∧ u∨1 > .

Thus it is enough to show that

(X2,X3,X4) + (X5,X6,X1)

is trivial in H3(K (Y ),Z/2Z). Let Y ′ be the product of the conics C1, C2, C3
given by the homogeneous equations

(C1) :T
2
1,1−X2T

2
1,2−X5T

2
1,3 = 0,

(C2) :T
2
2,1−X4T

2
2,2−X1T

2
2,3 = 0,

(C3) :T
2
3,1−X6T

2
3,2−X3T

2
3,3 = 0.

Then a direct computation using the assertion (ii) of proposition 3.4 for
quadratic extensions yields an explicit element of CH2(Y ) which is either 0 or
the unique nontrivial element of CH2(Y )tors. Then the method described in
section 8 used backwards yields the function f of k(Y ′) defined by

f =

(
T1,1

T1,3

)2
X1−

(
T2,1

T2,3

)2
X5 =

(
T2,1T1,2

T2,3T1,3

)2
X2−

(
T1,1T2,2

T1,3T2,3

)2
X4
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in k(C1× · · · ×C3). But by [Lam, chapter 10, proposition 1.3],

(f,X1X3X5,X2X4X6) =


X2

(
T2,1T1,2

T2,3T1,3

)2
−X4

(
T1,1T2,2

T1,3T2,3

)2
,X2X4,X1X3X5




+


X1

(
T1,1

T1,3

)2
−X5

(
T2,1

T2,3

)2
,X6,X1X5




= (X2,X4,X1X3X5) + (X1,X5,X6)

= (X2,X3,X4) + (X1,X5,X6).

This element is therefore trivial in H3(k(Y ),Z/2Z).

Corollary 9.8. — Consider U =
⊕6

i=1 F2ui , V =
⊕4

i=1 F2vi and G the central
extension of U by V corresponding to the following element of H2(U,V ):

u∨2 ∪u∨5 ⊗ v1+u∨4 ∪u∨1 ⊗ v2+u∨6 ∪u∨3 ⊗ v3+(u∨1+u
∨
3+u

∨
5 )∪ (u∨2+u∨4+u∨6 )⊗ v4.

Then for any field k of characteristic different from 2 and containing a primitive
fourth root of one, u∨1 ∪u∨2 ∪u∨3 +u∨4 ∪u∨5 ∪u∨6 gives a non­trivial totally k­negligible
element in H3(G,Q/Z).

Remark 9.9. — If we consider the group H3(G,Q/Z)perm of permutation neg­
ligible classes introduced by Saltman in [Sa2] and which corresponds to classes
vanishing in the cohomology group H3(G,C(W )∗) for any faithful represen­
tation W of G over C, then it is possible to show using computations in the
cohomology of G that the class obtained is not permutation negligible. The first
examples of geometrically negligible elements in degree three which are not per­
mutation negligible are given by Saltman in [Sa2, theorem 4.14] for 2­groups
having a cyclic subgroup of index 2.

Proof. — The corollary follows from proposition 9.7, lemma 9.3 and proposi­
tion 9.1.

Corollary 9.10. — For any field k of characteristic different from 2 and containing
the fourth roots of one, for any family (a1, . . . , a6) of elements in k∗ such that

(a1, a4) = (a2, a5) = (a3, a6) = (a2a4a6, a1a3a5) = 0

one has

(a1, a2, a3) + (a4, a5, a6) = 0.
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I am very thankful to Markus Rost for several discussions during which I realized that
it was possible to generalize the result I had for products of Severi­Brauer varieties to the
case of generalized flag varieties and to the referee for the improvements he suggested.
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