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Abstract. — Let Y1, . . . , Yn be n Severi­Brauer varieties over a field k. Let k(Y1×
· · · ×Yn) be the function field of their product. Using a recent result of Kahn we
show that the quotient of the kernel of the restriction map

H3(k,Q/Z(2))→H3(k(Y1× · · · ×Yn),Q/Z(2))

by the subgroup generated by the cup­products with the classes of Y1, . . . , Yn in
Brk is isomorphic to CH2(Y1 × · · · × Yn)tors. We first apply this result to the
product of two conics, using the fact that in this case CH2(Y1×Y2)tors is trivial.
Then we construct examples with three conics where this quotient is not trivial.
We also show how, in the case of one conic, the restriction map fits into a longer
exact sequence.

Résumé. — Soient Y1, . . . , Yn n variétés de Severi­Brauer sur un corps k, Soit
k(Y1 × · · · × Yn) le corps de fonctions de leur produit. En utilisant un résultat
récent de Bruno Kahn, nous montrons que le quotient du noyau de l’application
de restriction

H3(k,Q/Z(2))→H3(k(Y1× · · · ×Yn),Q/Z(2))

par le sous­groupe engendré par les cup­produits des classes de Y1, . . . , Yn dans Brk
est isomorphe à CH2(Y1× · · · ×Yn)tors. Nous appliquons ce résultat au produit
de deux coniques en utilisant le fait que dans ce cas CH2(Y1×Y2)tors est trivial.
Nous construisons ensuite des exemples de produits de trois coniques pour lequel
ce quotient n’est pas trivial.

∗K ­theory and algebraic geometry: connections with quadratic forms and division algebras
(Santa­Barbara, 1992), Proc. Sympos. Pure Math., Vol. 58.2, AMS, Providence, 1995, pp. 369–
401
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1. Introduction

Let k be a field of characteristic different from 2 and M be a multiquadratic
extension of k. Then the restriction and corestriction maps for the Galois co­
homology of these fields were studied by Kahn, Merkur′ev, Shapiro, Tignol and
Wadsworth ([Kah1], [STW], [Ti], [MT]) using various complexes which gen­
eralize the canonical long exact sequence associated to a quadratic extension. In
particular in cohomological degree two one has the complex

⊕

u∈U
k(
p
u)∗ N−→H1(k,Z/2Z)⊗U

∪−→H2(k,Z/2Z)
Res−→

Res−→H2(M,Z/2Z)
Cores−−→

⊕

g∈Gal(M/k)−{0}
H2(Mg ,Z/2Z)

where U is the kernel of the restriction map

H1(k,Z/2Z)→H1(M,Z/2Z)

and N is the sum of the maps

k(
p
u)∗ → H1(k,Z/2Z)⊗U
a 7→ Nk(

p
u)/k(a)⊗ u.

Tignol proved that this complex is exact when the degree of the extension is
four but is not exact in general when it is greater than eight. The starting
point of this problem is that M may be seen as the canonical splitting field
for U ⊂ H1(k,Z/2Z). Thanks to Amitsur’s theorem (see [Am]), one gets that
the function field of a product of Severi­Brauer varieties plays the same rôle for
a finitely generated subgroup of the Brauer group of k. Indeed for any field
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k, any elements [Y1], . . . , [Ym] in Brk corresponding to Severi­Brauer varieties
Y1, . . . , Ym the function field M = k(Y1× · · · ×Ym) of Y1× · · · ×Ym verifies

Ker
(

H2(k,Q/Z(1))→H2(M,Q/Z(1))
)

=< [Yi ],16 i 6m >

and if k′/k is a field extension such that

< [Yi ],16 i 6 n >⊂ Ker(Brk→ Brk′).
then there is a closed point P of Y1× · · · ×Ym and an embedding

k(P)→ k′

over k. By analogy with the case of multiquadratic extensions, we introduce the
following complex:

(C∞)
⊕

u∈U

⊕

i∈N

(

A⊗iu

)∗ Nrd−−→ k∗⊗U →H3(k,Q/Z(2))→H3(M,Q/Z(2))

where U is the subgroup of Brk generated by the [Yi ] for 1 6 i 6 m, for any
u ∈ U , Au is a central simple algebra representing u ∈ Brk and Nrd denotes the
sum of the morphisms

(

A⊗iu

)∗ → k∗⊗U

a 7→ Nrd(a)i ⊗ u.

If U ⊂ Brk(n) and n is prime to the exponent characteristic of k, one may also
consider the complex

(Cn)
⊕

u∈U

⊕

i∈N

(

A⊗iu

)∗ Nrd−−→H1(k,µn)⊗U
∪−→H3(k,µ⊗2n )→H3(M,µ⊗2n )

The exactness of this complex at the third term would mean that the kernel
of the restriction map in degree three is simply given by sums of the form
∑m

i=1(ai ) ∪ [Yi ]. If n = 2 and U is generated by the class of a quaternion al­

gebra
(

a,b
k

)

then Arason [Ar] proved the exactness of C2 at the third term.

Using a result of Merkur′ev and Suslin, Colliot­Thélène (1988, unpublished)
proved the exactness of Cp at the third term when U is generated by the class of

a cyclic central simple algebra of prime index. By Merkur′ev and Suslin [MS1,
corollary 12.1], Cp is exact at the second term in this case. Therefore Cp is exact
when U is generated by the class of a cyclic central simple algebra of prime index.
Knus, Lam, Shapiro and Tignol proved in [KLST] that C2 is exact at the second
term if U is generated by the tensor product of two quaternion algebras.
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In section 2, we consider the case of one conic Y and, using computations of
Suslin [Su1], construct morphisms

N :Hn
nr/k(M,Z/2Z)→Hn(k,Z/2Z)

where Hn
nr/k(M,Z/2Z) denotes the unramified cohomology groups of M over k.

This enables us to fit C2 in a longer exact sequence of the form

A∗ Nrd−−→H1(k,Z/2Z)
∪α−→H3(k,Z/2Z)

Res−→H3
nr/k(M,Z/2Z)

N−→
N−→ Im(H1(k,Z/2Z)

∪α−→H3(k,Z/2Z))
∪(−1)−−−→H4(k,Z/2Z)

where A is the quaternion algebra corresponding to Y and α its class in Brk.
In section 3, we compute in the general case the K ­theory groups of Y1×· · ·×

Ym and gather some information on the topological filtration of K0(Y1× · · · ×
Ym). These computations play a fundamental rôle in the following sections.

In section 4.1 we apply a theorem of Kahn to prove the main tool of this
paper, namely the existence of a canonical isomorphism between the torsion part
of CH2(Y1× · · · ×Ym) and the homology group of C∞ at the third term.

In section 4.2 we use this theorem and results of Karpenko to show that if
A is a central simple algebra over k such that the quotient of the index of A by
its exponent is squarefree and if for any p dividing this quotient the p­primary
component of the corresponding division algebra is decomposable then

Ker
(

H3(k,Q/Z(2))→H3(k(Y ),Q/Z(2))
)

= [A]∪H1(k,Q/Z(1))

where Y is the corresponding Severi­Brauer variety.
In part 5 we consider the case of two conics and, using the theorem of Knus,

Lam, Shapiro and Tignol, prove the exactness of C2 in this case.
In section 6 we construct an example with three conics where C∞ is not exact

at the third term.
I would like to thank Colliot­Thélène and Kahn for several fruitful discus­

sions.

1.1. Notations. — For any field L, we denote by Ls a separable closure of L
and for any discrete Gal(Ls/L)­module M ,

H i (L,M) =H i (Gal(Ls/L),M).

In particular the Brauer group of L is given by BrL =H2(L,Ls∗). If the charac­
teristic of L does not divide n then µn denotes the group of n­th roots of unity

in Ls. If j < 0, we put µ
⊗j
n = Hom(µ

⊗−j
n ,Z/nZ). If L′ is a finite field extension
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of L and ϕ : SpecL′ → SpecL the corresponding map, then the trace map (see
[SGA4, exposé XVII, théorème 6.2.3])

Tr : ϕ∗ϕ
∗µ⊗jn → µ⊗jn

induces a canonical map

CoresL
′

L :H i (L′,µ⊗jn )→H i (L,µ⊗jn )

which coincides with the usual corestriction map when the extension is separable.
If L is a field of exponent characteristic p one defines (see [Kah2])

H i (L, (Q/Z)′(j)) = lim−→
(p,n)=1

H i (L,µ⊗jn ),

H i (L, (Qp/Zp)(0)) = lim−→r
H i (L,Z/prZ),

H i (L, (Qp/Zp)(1)) = lim−→r
H i−1(L,K1(L

s)/pr),

H i (L, (Qp/Zp)(2)) = lim−→r
H i−2(L,K2(L

s)/pr)

and, if j = 0, 1 or 2,

H i (L,Q/Z(j)) =H i (L, (Q/Z)′(j))⊕H i (L, (Qp/Zp)(j)).

In particular there is a canonical isomorphism

H2(L,Q/Z(1)) →̃ BrL.

These definitions coincide with the usual ones if p = 1. We also define

H i (L, Ẑ′(j)) = lim←−
(n,p)=1

H i (L,µ⊗jn ),

H i (L,Zp(1)) = lim←−r
H i−1(L,K1(k

s)/pr)

and

H i (L, Ẑ(1)) =H i (L, Ẑ′(1))⊕H i (L,Zp(1)).
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There is a canonical morphism from L∗ to H1(L, Ẑ(1)). Let d,n,m∈N be such
that p is prime to nm and d|n then one has a commutive diagram

µ⊗inm⊗ µ
⊗j
d −−−→ µ

⊗i+j
d







y







y

µ⊗in ⊗ µ
⊗j
d −−−→ µ

⊗i+j
d .

Hence we get a morphism

Hq(L, Ẑ′(i))⊗Hr(L,µ
⊗j
d )→Hq+r(L,µ

⊗i+j
d ).

Moreover for any N such that nm|N and N is prime to p one has a commutative
diagram

µ⊗iN ⊗ µ
⊗j
n −−−→ µ

⊗i+j
n







y







y

µ⊗iN ⊗ µ
⊗j
nm −−−→ µ

⊗i+j
nm .

Therefore we get a commutative diagram

Hq(L, Ẑ′(i))⊗Hr(L,µ
⊗j
n ) −−−→ Hq+r(L,µ

⊗i+j
n )







y







y

Hq(L, Ẑ′(i))⊗Hr(L,µ
⊗j
nm) −−−→ Hq+r(L,µ

⊗i+j
nm ).

and a morphism

Hq(L, Ẑ′(i))⊗Hr(L,Q/Z′(j))→Hq+r(L,Q/Z′(i + j)).

If j = 0 or 1 similar diagrams for the product

K1(L
s)/ps⊗Kj(L

s)/ps→ Kj+1(L
s)/ps

induces

Hr(L,Zp(1))⊗Hq(L,Qp/Zp(j))→Hq+r(L,Qp/Zp(j+1))

and we get a canonical product

Hr(L, Ẑ(1))⊗Hq(L,Q/Z(j))→Hq+r(L,Q/Z(j+1)).

In particular this induces a product

L∗⊗BrL→H3(L,Q/Z(2)).
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The field L is a function field over K if and only if it is generated by a finite
number of elements as a field over K . Let L be a function field over K . We
denote by P(L/k) the set of discrete valuation rings A of rank one such that
K ⊂ A ⊂ L and the fraction field Fr(A) of A is L. If A ∈ P(L/K ) then κA
denotes the residue field. For any i ∈ N− 0, j ∈ Z and any n ∈ N not divisible
by the characteristic of L,

∂A :H
i (L,µ⊗jn )→H i−1(κA,µ

⊗j−1
n )

denotes the residue map as defined in [CTO]. For any smooth variety X over a
field k and any integer p one denotes by X (p) the set of points of codimension p
in X . For any i ∈N, any integer n not divisible by the characteristic of k and any

j ∈ Z, the sheaf H i (µ
⊗j
n ) is defined as the sheaf over XZar corresponding to the

presheaf
U 7→H i (Uét,µ

⊗j
n ).

For any i, j, n as above and any l ∈N, we put

H l(X,H i (µ⊗jn )) =H l(XZar,H
i(µ⊗jn )).

Similarly, Kj denotes the Zariski sheaf on X associated to the presheaf

U 7→ Kj(H
0(U,OX ))

and
H l(X,Ki) =H l(XZar,Ki).

1.2. Basic facts on unramified cohomology

Definition 1.1. — If L is a function field over K , and n a positive integer prime
to the exponent characteristic of K , the unramified cohomology groups are the
groups

H i
nr/K (L,µ

⊗j
n ) =

⋂

A∈P(L/K )

Ker(H i (L,µ⊗jn )
∂A−→H i−1(κA,µ

⊗j−1
n ))

One defines similarly the unramified Brauer group.
We recall that two function fields L and M over K are stably isomorphic over

K if and only if there exist indeterminates U1, . . . ,Ul and T1, . . . ,Tm and an
isomorphism

L(U1 . . . ,Ul) →̃M(T1, . . . ,Tm)

over K . A function field L over K is stably rational over K if it is stably isomor­
phic to K .
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As was pointed out by Gabber, [BO] implies the following proposition:

Proposition 1.1 (Bloch,Ogus). — If X is a smooth projective model of L over K
then

H0(X,H i (µ⊗jn )) →̃H i
nr/K (L,µ

⊗j
n ).

Proposition 1.2 (Colliot­Thélène, Ojanguren [CTO])
Let L and M be two function fields over K . If L and M are stably isomorphic

over K then there exists an isomorphism

H i
nr/K (L,µ

⊗j
n ) →̃H i

nr/K (M,µ⊗jn ).

2. The case of one conic

Let us fix a field k of characteristic different from 2. In this section the coeffi­
cients of the cohomology groups are equal to Z/2Z. We shall omit them in the
notation. The letter X denotes a conic over the field k given by the homogeneous
equation

X2
1 − aX2

2 − bX2
3 = 0.

We denote by (a, b) the corresponding symbol in H2(k) and by M the function
field of X . We shall use results of Suslin [Su1] to fit the restriction maps

H i (k)→H i (M)

into an infinite complex. Let k be an algebraic closure of k and X = X×kk. Since

Hq(X ét) =







Z/2Z if q = 0 or 2

0 otherwise,

the Hochschild­Serre spectral sequence

Hp(k,Hq(X ét))⇒Hp+q(Xét)

gives a long exact sequence

· · · →Hn(k)→Hn(Xét)→Hn−2(k)
d3−→Hn+1(k)→ ·· ·

and d3 coincides with the cup­product ∪(a, b,−1) (See [Su1, lemma 1]). Denote
the generic point by η : Speck(X)→ X . By [Su1] the Leray spectral sequence

Hp(X,Rqη∗µ2)⇒Hp+q(k(X),µ2)
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gives a long exact sequence

· · · →
⊕

P∈X (1)
Hn−2(k(P))→Hn(Xét)→Hn(k(X))

⊕∂P−−→
⊕

P∈X (1)
Hn−1(k(P))→ ·· ·

Since the E2 term of the Bloch­Ogus spectral sequence (see [BO, corollary 6.3])

E
p,q
1 =

⊕

x∈X (p)
Hq−p(k(x))⇒Hp+q(Xét)

is given by
E
p,q
2 =Hp(X,H q)

one gets short exact sequences

0→H1(X,H n−1)→Hn(Xét)→H0(X,H n)→ 0.

Lemma 2.1. — The composite map

H1(X,H n−1)→Hn(Xét)→Hn−2(k)
coincides with the map induced by

⊕

P∈X (1)
Hn−2(k(P)) ⊕Cores−−−−→Hn−2(k).

In the case n = 3 this is lemma 2 of [Su1].

Proof. — It is sufficient to show that for any P ∈ X (1) the composite map

Hn−2(k(P))→H1(X,H n−1)→Hn(Xét)→Hn−2(k)
coincides with the corestriction map. Let k′ = k(P), X ′ = X×kk′ and ϕ : X ′→ X
the canonical map. For any sheaf of 2­torsion on X the trace map

Tr : ϕ∗ϕ
∗F → F

[SGA4, exposé XVII, théorème 6.2.3] yields a morphism

Tr :Hn(X ′ét,ϕ
∗(F))→Hn(Xét, F)

which is defined as the composite map

Hn(X ′ét,ϕ
∗(F)) can−→Hn(Xét,ϕ∗ϕ

∗(F)) Tr∗−→Hn(Xét, F)

Using the construction of the above spectral sequences (See [HS, chapter 8]) and
the fact that ϕ∗ preserves injectives and is exact since ϕ is finite, it is straightfor­
ward to show that the maps can and the corresponding morphisms for Speck(P)
and Speck(X) are induced by morphisms of spectral sequences. Moreover the
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Leray and Hochschild­Serre spectral sequences are functorial. Thus the mor­
phisms induced by Tr : ϕ∗ϕ∗F → F are also compatible with the spectral se­
quences. Therefore we get the commutative diagrams

⊕

ϕ(P′)=P
Hn−2(k′(P′)) −−−→ Hn(X ′ét)







y

Σ







y

Tr

Hn−2(k(P)) −−−→ Hn(Xét)

and
Hn(X ′ét) −−−→ Hn−2(k(P))







y

Tr







y

Cores

Hn(Xét) −−−→ Hn−2(k).
It is thus enough to prove the result for k = k(P). For n = 2, one has

H1(X,H n−1) →̃ PicX/2 →̃ Z/2Z

and the Bloch­Ogus spectral sequence gives an injection

Z/2Z→H2(Xét).

Let ξX be the non­zero element in its image. In this case, X is isomorphic to P1

and by proposition 1.2

Hn(k)→H0(X,H n)

is an isomorphism. Moreover the Hochschild­Serre spectral sequence gives a
short exact sequence

0→Hn(k)→Hn(Xét)→Hn−2(k)→ 0

and the composite map

Hn(k)→Hn(Xét)→H0(X,H n) →̃Hn(k)

is, by definition, the identity. Therefore the image of ξX by the map

H2(Xét)→H0(k) = Z/2Z

is non trivial and the result is proved for n = 2. Since both spectral sequences
are compatible with cup­products, the map Hn−2(k)→Hn(Xét) coincides with
∪ξX and the map Hn(Xét)→Hn−2(k) sends α∪ ξX on α for any α ∈Hn−2(k).



PRODUCTS OF SEVERI­BRAUER VARIETIES 11

Definition 2.1. — We define the morphism N as the morphism from
H0(X,H n) to Hn(k) which fits into the commutative diagram

0 → H1(X,H n−1) → Hn(Xét) −−−→ H0(X,H n) → 0
ց ↓ ↓N

Hn−2(k)
∪(a,b)−−−→ Hn(k)

Indeed by lemma 2.1 the composite map H1(X,H n−1)→Hn(k) is zero and
N is well defined.

Definition 2.2. — We denote by

τ :Ker(Hn(k)→Hn(M))→H1(X,H n−1)

the unique map fitting into the commutative diagram:

0 → Ker(Hn(k)→Hn(M)) → Hn(k)
↓ τ ↓ ցRes

0 −−−−→ H1(X,H n−1) −−−−→ Hn(Xét) → H0(X,H n) → 0.

Notation . — We consider the complex C2:

· · · →Hn−2(k)
∪(a,b)−−−→Hn(k)

Res−→Hn
nr/k(M)

N−→ Im(Hn−2(k)
∪(a,b)−−−→Hn(k))→

∪(−1)−−−→Ker(Hn+1(k)→Hn+1(M))
τ−→H1(X,H n)

⊕Coresk(P)
k−−−−−−→Hn−1(k)→ ·· ·

and denotes by Hn(i) for 1 6 i 6 6 and n ∈ N the homology group of this
complex at the 6n+ i­th term, with the convention that H l (k) = {0} if l < 0 (for

example Hn(1) =Ker(∪(a, b))/ Im(⊕Coresk(P)k )).

Proposition 2.2. — These homology groups verify the following properties
(1) Hn(i) = {0} if n6 3
(2) Hn(i) = {0} if i = 4,5 or 6
(3) Hn(1) →̃Hn(3).

Remark 2.1. — The fact that H2(2) = {0} is a particular case of Amitsur’s the­
orem, H3(2) = {0} is due to Arason (See [Ar, Satz 5.4]) and H3(1) = {0} is due
to Merkur′ev and Suslin (See [MS1, theorem 12.1]). The definition immediately
implies the triviality of H0(1), H0(2), H1(1), H1(2) and H2(1). Therefore it
is sufficient to prove assertions 2 and 3 of the proposition.
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Proof. — Let us first prove that Hn(4) = {0}. This is a direct consequence of
the commutativity of the diagram

Hn(Xét) −→ Hn−2(k)
∪(a,b,−1)−−−−−→ Hn+1(k)

↓ ↓
✏
✏
✏
✏✶

∪(−1)
H0(X,H n)

N−→ Hn(k)

and of the exactness of its line.
Let α ∈Ker τ. Since the diagram

Ker(Hn+1(k)→Hn+1(M))
ւτ ↓

H1(X,H n) → Hn+1(Xét)

commutes, α ∈ Ker(Hn+1(k)→Hn+1(Xét)) and we get

α ∈ Im(Hn−2(k)
(a,b,−1)−−−−→Hn+1(k)).

Thus Hn(5) = {0}.
The triviality of Hn(6) follows from a diagram chase in the commutative

diagram

0→ Ker(Hn+1(k)→Hn+1(M))→Hn+1(k)
Res−→ Hn+1(M)

↓ τ ↓ ↑
0−−−−−→ H1(X,H n)−−−−→Hn+1(Xét) →H0(X,H n+1)→ 0

P
P
P
Pq

⊕Cores ↓
Hn−1(k)

which has exact lines and column.
We now prove (3). The commutative diagram

Hn(k) → Hn(Xét) −→ Hn−2(k) → Hn+1(k)
ցRes ↓ ↓ ∪(a,b)ր∪(−1)

H0(X,H n)
N−→ Hn(k)

yields a surjective morphism

ψ :Ker(.∪ (a, b))→Hn(3).
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Let α ∈ Kerψ. Let β ∈ Hn(Xét) represent α. Then the image of β in Hn(M) is
equal to the restriction of β̃∈Hn(k). Thus we can assume that

β ∈Ker(Hn(Xét)→Hn(M)).

But in this case
β∈ Im(H1(X,H n−1)→Hn(Xét))

and α ∈ Im
(

⊕

P∈X (1)Cores
k(P)
k

)

. Thus

Kerψ ⊂ Im







⊕

P∈X (1)
Cores

k(P)
k





 .

The other inclusion is straightforward. Therefore ψ induces an isomorphism

Hn(1) →̃Hn(3).

Remark 2.2. — Let us assume that (a, b,−1) = 0. In this case, by [Su1],
Lemma 4 (a, b)∈ 2Brk. For example, if −1 is a square, −1 = i2 then

(a, b) = 2[Ai (a, b)]

where Ai (a, b) is the cyclic central algebra generated by two elements I and J
with the relations

I4 =−1, J4 =−1 and IJ = iJI.

Let D∈ Br(k) be such that 2D = (a, b) then the image DM of D in BrM belongs
to Br(M)(2) =H2(M) and is unramified over k. We then get a surjection

Hn−2(k)
.∪DM◦Res−−−−−→Hn

nr/k(M)/ KerN.

We shall give in remark 6.3 an other description of the morphism N in degree
2 or 3 when −1 is a square.

3. K ­theory of a product of Severi­Brauer varieties

3.1. K ­theory groups. — We now go back to the case of m Severi­Brauer va­
rieties Y1, . . . , Ym corresponding to elements [Y1], . . . , [Ym] in Brk. As above,
we denote by U the subgroup of Brk generated by [Y1], . . . , [Ym] and by M the
function field of the product of Y = Y1×k · · · ×k Ym. The purpose of this sec­
tion is to describe the K ­theory groups of Y and gather some information on
their topological filtration. The K ­theory of Y seems to be among the folklore
and can be seen as a particular case of a much more general result of Panin [Pa].
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The proof we give here for self­completeness follows the proof of Quillen (See
[Q, §8.4]) step by step.

Let S be a scheme and X
π−→S be a Severi­Brauer scheme over S of relative

dimension d− 1. Let A be the corresponding Azumaya algebra (See [Gr]) and
J be the canonical vector bundle on X (see [Q, §8.4]). If g : S′ → S is a
faithfully flat map such that the product X ′ = X ×S S′ is a projective bundle
P(E) over S′ then the inverse image of J is equal to O

X ′(−1)⊗S′ E. Let D
be an OS algebra. We denote by P(S,D) the category of vector bundles over X
which are left modules for D .

Proposition 3.1. — If S is quasi­compact then there is a canonical isomorphism
⊕

06i6d−1
K∗(P(S,A ⊗i ⊗OS

D)) →̃ K∗(P(X,D)).

This isomorphism is given by

(xi)16i6d−1 7→
d−1
∑

i=0

(J ⊗i ⊗
π∗(A ⊗i ) π

∗(.))∗(xi).

Corollary 3.2. — If Y1, . . . , Ym are Brauer­Severi schemes over a quasi­compact
scheme S of relative dimension d1−1, . . . , dm−1, if A1, . . . ,Am are the corresponding
Azumaya algebras and Ji the inverse image of the canonical vector bundle on Yi by
the projection πi : Y1× · · · ×Ym→ Yi then

⊕

(ki )16i6m
06ki6di−1

K∗(A
⊗k1
1 ⊗ · · · ⊗A

⊗km
m ) →̃ K∗(Y1×S · · · ×S Ym)

where the isomorphism is given by

(x(ki )
)06ki6di−1 7→

d1−1
∑

k1=0

. . .
dm−1
∑

km=0





m
⊗

i=1

J
⊗ki
i ⊗

π∗(A ⊗k11 ⊗···⊗A
⊗km
m )

π∗(.)



 (x(ki )
).

Proof of Proposition 3.1. — One has only to check that the constructions in [Q]
are compatible with the structure of left D­modules.

First the category P(X,D) is a full subcategory of the abelian category of left
D­modules and is closed by extensions. Moreover the forgetful functor f from
P(X,D) to P(X) is an exact functor.

Let S′ → S be a surjective étale morphism which splits X , X ′ = X ×S S′
and g̃ be the induced morphism X ′→ X . As in [Q] we define Rn(X,D) as the
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full subcategory of P(X,D) whose objects are the vector bundles F such that
g̃∗(f(F ))(n) is regular and Pn(X,D) as the full subcategory of P(X,D) whose
objects are the F such that, for any q > 0 and any l > n

Rqπ′∗
(

g̃∗(f(F ))(l)
)

= 0

where π′ : X ′→ S′ is the canonical morphism. By lemma 8.1.3 of [Q], one has

Rn(X,D)⊂Pn(X,D)⊂P(X,D).

As in [Q, §8.2] one gets

Lemma 3.3. — For all n the canonical maps

Kq(Rn(X,D))→ Kq(Pn(X,D))→ Kq(P(X,D))

are isomorphisms.

Proof. — For any object F of P(X,D) the sequence

0→F →F ⊗OX
J ∨→ ·· · →F ⊗OX

ΛrJ ∨→ 0

is an exact sequence in P(X,D) where J ∨ denotes the dual bundle of J . But
the functor

up :Pn(X,D)→Pn−1(X,D)

which sends F on F ⊗ΛpJ ∨ is exact and as in [Q, 8.2.2] we get a morphism
∑

p>0

(−1)p−1up : Kq(Pn(X,D))→ Kq(Pn−1(X,D))

and the canonical morphism

Kq(Pn−1(X,D))→ Kq(Pn(X,D))

is an isomorphism. By [Q, 8.1.12.a], P(X,D) is the union of the Pn(X,D) and
we get the second isomorphism. The proof of the isomorphisms for Rn(X,D) is
similar.

Lemma 3.4. — There exits a sequence of functors

Ti :R0(X,D)→P(S,A ⊗i ⊗D) for 06 i 6 d− 1
such that for any object F of R0(X,D), one has a canonical exact sequence

0→J ⊗d−1⊗
A ⊗d−1 Td−1(F )→ ·· · →OX ⊗OX

T0(F )→F → 0

in R0(X,D).
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Proof. — As in [Q, 8.4.2] we define by induction






Ti (F ) = f∗
(

HomX (J
⊗i ,Zi−1(F ))

)

Zi (F ) = Ker(J ⊗i ⊗
A ⊗i Ti(F )→Zi−1(F ))

with Z−1(F ) = F . These S­modules Ti (F ) have natural left A ⊗i ­module
and left D­module structures and they are compatible. The end of the proof is
then the same as in [Q, 8.4.2].

End of the proof of proposition 3.1. — As in [Q], one can show that these func­
tors Ti yield the inverse morphism for the canonical map

⊕

06i6d−1
K∗(P(S,A ⊗i ⊗OS

D))→ K∗(P(X,D)).

Notation . — From now on we take S = Speck for a field k. The Azumaya
algebras will be denoted by A1, . . . ,Am. We put Y = Y1×· · ·×Ym and denote by

gk1,...,km
the image in K0(Y ) of the canonical generator of K0(A

⊗k1
1 ⊗· · ·⊗A⊗kmm ).

In other words, if the tensor product A
⊗k1
1 ⊗ · · · ⊗A

⊗km
m is isomorphic to Ml(D)

for a skew­field D, then

gk1,...,km
=

[

Dl ⊗
A
⊗k1
1 ⊗···⊗A⊗kmm

J
⊗k1
1 ⊗Y · · · ⊗Y J

⊗km
m

]

.

We get

Corollary 3.5. — With notation as above,

K0(Y ) =
⊕

(ki )16i6m
06ki6di−1

Zgk1,...,km

and the canonical map

K0(Y )→ K0(Y ×k k)
is injective and sends gk1,...,km

to

ind(A
⊗k1
1 ⊗ · · · ⊗A

⊗km
m )

m
⊗

i=1

π∗i (OY i
(−1)⊗ki )

where πi : Y 1×k · · · ×k Y n→ Y i is the canonical projection.
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Proof. — It remains to show the last assertion. Let A = A
⊗k1
1 ⊗ · · · ⊗A

⊗km
m ,

D the corresponding skew­field and J =J
⊗k1
1 ⊗ · · · ⊗J

⊗km
m . We put r =

indA =
p
dimD and l =

∏m
i=1 d

ki
i /r. The pull­back of J over Y = Y ×k k̄ is

m
⊗

i=1

π∗i (OY i
(−1)⊗ki )d

ki
i =O

m
∏

i=1
d
ki
i

Y
⊗

m
⊗

i=1

π∗i (OYi
(−ki)).

Thus the image of gk1,...,km in K0(Y ) is the class of

π∗
(

Mr

(

k̄
)l ⊗

Mlr
(

k̄
) k̄lr

)

⊗
m
⊗

i=1

π∗i (OYi
(−ki ))

where π : Y → k̄ is the canonical morphism. But there are isomorphisms

Mr

(

k̄
)l ⊗Mlr

(

k̄
) k̄lr →̃

(

Mr

(

k̄
)

⊗k̄ k̄
l
)

⊗Mr
(

k̄
)⊗

k̄
Ml
(

k̄
)

(

k̄r⊗k̄ k̄
l
)

→̃
(

Mr

(

k̄
)

⊗Mr
(

k̄
) k̄r

)

⊗k̄
(

k̄l ⊗Ml
(

k̄
) k̄l

)

→̃ k̄r.

3.2. The topological filtration on K0. — Let us first give a complete descrip­
tion of the filtration by codimension of support in the split case. Let

Y = P
d1−1
k × · · · ×P

dm−1
k .

Let πi : Y → P
di−1
k be the canonical projection and Li = π∗i (O

P
di−1
k

(−1)). We

denote by ξi the first Chern class of Li in H1(Y,K1) and zi = [Li ] ∈ K0(Y ).

Proposition 3.6. — In the split case one has that
(1) the K ­cohomology groups are given by

H i (Y,Kj) =







































{0} if i > j or i >
m
∑

l=1
dl −m+1

⊕

m
∑

l=1
kl=i

06kl6di−1

(

m
∏

i=1
ξ
ki
i

)

Kj−i (F) otherwise.

(2) the i­th filtration group for the filtration by codimension of support is the ideal

K∗(Y )
i = (1− z1, . . . ,1− zn)

iK∗(Y ).
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The first statement is a direct consequence of the following lemma.

Lemma 3.7. — Let S be a scheme, E1, . . . , Em be m vector bundles over S of relative
dimension d1, . . . , dm. Let Yi = P(Ei) and Y = Y1×S · · · ×S Ym. Let πi : Y → Yi
be the canonical projection, Li be the line bundle π∗i (OYi

(−1)) and ξi be the Chern

class c1(Li) ∈H1(Y,K1). Then the bigraded ring H∗(Y,K∗) is a free H∗(S,K∗)­
module with a basis given by





∏

16i6n

ξ
ki
i





(ki )16i6n
16ki6di−1

Proof. — This lemma is given by a straightforward induction from theorem 8.2
in [Su2] or theorem 3.1 in [Sh].

Proof of the second assertion of proposition 3.6. — As in [Su2, proposition 9.1],
one can show that all differentials dr in the Brown­Gersten­Quillen spectral se­
quence

Hp(Y,K−q)⇒ Kp+q(Y )

are zero if r> 2. Indeed, for any (ki )16i6n, with 16 ki 6 di − 1 for 16 i 6m
and

∑m
i=1 ki = p,

∏

16i6m

ξ
ki
i ∈Hp(Y,Kp)

is in the kernel of dr. Since dr is K∗(F)­linear, dr = 0. On the other hand,

m
∏

i=1

(1− zi )
ki = (−1)

m
∑

i=1
ki




m
⊗

i=1

π∗i OZi
(−ki )





where Zi is a linear subspace of codimension ki in P
di−1
k . Thus

m
∏

i=1

(1− zi)
ki ∈ K0(Y )

p

where p =
∑m

i=1 ki . Moreover its class in K0(Y )
(p/p+1) = K0(Y )

p/K0(Y )
p+1 is

the image of
m
∏

i=1

ξ
ki
i ∈Hp(Y,Kp) →̃ K0(Y )

(p/p+1).

Therefore an induction on i shows that

K∗(Y )
i ⊂ (1− z1, . . . ,1− zm)

iK∗(Y ).
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In the non­split case, we have the following partial results:

Proposition 3.8. — Let Y1, . . . , Ym be m Severi­Brauer varieties corresponding to

Azumaya algebras A1, . . . ,Am over k. Let Y = Y1× · · · ×Ym, di = dimYi and k′
be a finite field extension of k which splits Y1, . . . , Ym. As in section 3.1, gk1,...,km
denote the canonical generators of K0(Y ). Then

(1) If we identify K0(Y ) with its image in K0(Yk′) we get

[k′ : k]K0(Yk′)
i⋂K0(Y )⊂ K0(Y )

i ⊂ K0(Yk′)
i⋂K0(Y ).

(2) The kernel of the canonical surjection CHi (Y )→ K0(Y )
(i/i+1) is killed by

[k′ : k] and (i − 1)!.
(3) The first step of the filtration is given by

K0(Y )
1 = K0(Y )

1⋂K0(Y )

=
⊕

(ki )16i6m
06ki6di−1

(

gk1,...,km
− ind

(

m
⊗

j=1
A
⊗kj
j

))

Z.

(4) K0(Y )
2 =K0(Y )

2⋂K0(Y ).
(5) One has

CH2(Y )tors = Ker(CH2(Y )→CH2(Yks))

and it is a finite group.

Proof. — (1). Since the morphism π : Y
k′ → Y is flat, π∗ preserves the topo­

logical filtration. Thus K0(Y )
i ⊂ K0(Yk′)

i . This morphism is also finite and
hence π∗ preserves the topological filtration. The map π∗ ◦π∗ coincides with the
multiplication by [k′ : k]. Thus the composite map

K0(Yk′)
π∗−→ K0(Y )

π∗−→ K0(Yk′)

coincides with the multiplication by [k′ : k] on the image of K0(Y ). But K0(Yk′)
is a free Z­module in which π∗(K0(Y )) has finite index. Thus π∗ ◦ π∗ is also the
multiplication by [k′ : k]. Therefore

[k′ : k]K0(Yk′)
i = π∗π∗(K0(Yk′)

i )⊂ K0(Y )
i .

(2). The first assertion of (2) is a consequence of the proof of proposition 3.6
(2). Indeed CHi (Y ) verifies

CHi (Y ) →̃H i (Y,Ki)։ K0(Y )
(i/i+1)
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and the morphisms dr are killed by [k′ : k]. The second one is a consequence of
[Su2, proposition 9.3], which asserts that the composite map

CH i (X)→ K0(X)
(i/i+1) ci−→CH i (Y )

coincides with the multiplication by (−1)i (i − 1)!.
(3). We have

K0(Y )
1 = Ker(K0(Y )

deg−→ Z)

=K0(Y )
⋂

Ker(K0(Y )
deg−→ Z)

=K0(Y )
⋂

K0(Y )
1.

The second equality only uses the fact that, by corollary 3.5

π∗gk1,...,km = ind





m
⊗

i=1

A
⊗ki
i





m
∏

i=1

z
ki
i .

(4). Since Y is smooth and proper and Y is integral, one has an injection

PicY→ PicY .

Hence the map K0(Y )
(1/2)→ K0(Y )

(1/2) is an injection and

K0(Y )
2 =K0(Y )

⋂

K0(Y )
2.

(5). If k′′ is a finite field extension of k then

Ker(CH2(Y )→CH2(Y
k′))

is killed by [k′′ : k]. Thus

Ker(CH2(Y )→CH2(Yks))⊂CH2(Y )tors.

The other inclusion follows from proposition 3.6 which implies that CH2(Y
k′)tors

is trivial. Since K0(Y )
2 is finitely generated,

CH2(Y )tors →̃ K0(Y )
(2/3)
tors

is finite.

As a corollary we give a result proved by Gabber in a letter to Colliot­Thélène
using a slightly different method. Here A0(Y ) denotes the kernel of the degree
map CH0(Y )→ Z.
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Corollary 3.9. — Let Y1 and Y2 be two conics. Then

A0(Y1×Y2) = CH2(Y1×Y2)tors = {0}.
Proof. — Here dim(Y ) = 2 and CH0(Y ) →̃ CH2(Y ). By proposition 3.6, the
group CH2(Y ) = Z. Hence

A0(Y ) = CH0(Y )tors =CH2(Y )tors.

But in this case K0(Y )
3 = {0}. Thus

K0(Y )
3 =K0(Y )

⋂

K0(Y )
3 = {0}

and Ker(CH2(Y )→CH2(Y )) = {0} which yields the second equality.

4. The complex C∞ and the second Chow group

4.1. The main tool. — We shall now prove the following theorem which is
the main tool in the rest of this text.

Theorem 4.1. — Let Y1, . . . , Ym be m­Severi­Brauer varieties. Let [Y1], . . . , [Ym]
be their classes in Brk and U ⊂ Brk the subgroup generated by these classes. Let

Y = Y1×k · · · ×k Ym and M be its function field. Then CH2(Y )tors is canonically
isomorphic to the homology group of the complex

k∗⊗U →H3(k,Q/Z(2))→H3(M,Q/Z(2)).

In particular this homology is finite.

Remark 4.1. — If U ⊂ Br(k)(n) and the characteristic of k does not divide n
then there is a commutative diagram

k∗⊗U −−−→ H3(k,Q/Z(2)) −−−→ H3(M,Q/Z(2))






y

x







x







H1(k,µn)⊗U −−−→ H3(k,µ⊗2n ) −−−→ H3(M,µ⊗2n )

By the main theorem of Merkur′ev and Suslin [MS1], if m and n are prime to
the exponent characteristic of k, the map H2(k,µ⊗2nm)→H2(k,µ⊗2m ) is surjective
and hence H3(k,µ⊗2n )→H3(k,Q/Z(2)) is injective. A diagram chase which uses
this injectivity and the surjectivity k∗ ⊗U → H1(k,µn)⊗U gives a canonical
injection from the homology of the second line to that of the first. We shall give
in section 6.2 an example where this injection is not surjective.

Theorem 4.1 is a consequence of the following theorem
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Theorem 4.2 (Kahn, [Kah2, corollaire 3.2]). — Let X be a geometrically integral
variety over a field E. We denote by G the absolute Galois group of E. Then there is
a canonical isomorphism

H1
(

G ,K2(E
s(X))/K2(E

s)
)

→̃Ker
(

H3(E,Q/Z(2))→H3(E(X),Q/Z(2))
)

.

Proof of theorem 4.1. — Let G be the absolute Galois group of k. According to
[CTR, proposition 3.6], one has an exact sequence

H1(Yks ,K2)
G →H1

(

G ,K2(k
s(Y ))/H0(Yks ,K2)

)

→
→Ker(CH2(Y )→CH2(Yks))→H1(G ,H1(Yks ,K2)).

By proposition 3.6, H0(Yks ,K2) →̃ K2(k
s) and H1(Yks ,K2) →̃ ks∗m. Therefore

H1(Yks ,K2)
G →̃ k∗m and by Hilbert’s theorem 90 H1(G ,H1(Yks ,K2)) = 0. By

proposition 3.8 (5),

CH2(Y )tors = Ker(CH2(Y )→CH2(Yks))

Thus we get an exact sequence

k∗m→H1(G ,K2(k
s(Y ))/K2k

s)→CH2(Y )tors→ 0.

It remains to prove the following lemma

Lemma 4.3. — The composite map

k∗m→H1 (G ,K2(k
s(Y ))/K2k

s)→H3(k,Q/Z(2))

fits into a diagram of the form

k∗m
↓ ց
ր∪

H3(k,Q/Z(2))
k∗⊗U

where the map k∗m→ k∗⊗U is surjective.

Proof. — Let us first recall the construction of the composite map

k∗m
f−→H1(Yks ,K2)

G g−→H1 (G ,K2(k
s(Y ))/K2(k

s)
) h−→H3(k,Q/Z(2)).

The map f is induced by the composite map

k∗m→ ks∗m→̃




m
⊕

i=1

ξiZ



⊗K1(k
s) →̃H1(Yks ,K1)⊗H0(Yks ,K1) →̃H1(Yks ,K2).
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The map g is the coboundary map for the short exact sequence of G ­modules

0→ K2k
s(Y )/H0(Yks ,K2)→Z →H1(Yks ,K2)→ 0

where Z is the kernel of the canonical map

⊕

x∈Y (1)
ks

k(x)∗→
⊕

x∈Y (2)
ks

Z.

Similarly there is a canonical map σ : Zm → H1(G ,K1(k
s(Y ))/K1k

s) defined
as the composite map

Zm →̃H1(Yks ,K1)
G →H1(G ,K1(k

s(Y ))/K1k
s)

where the second map is the coboundary map for the short exact sequence of
G ­modules

0→ ks(Y )∗/ks∗→DivYks→ PicYks→ 0.

Since H1(G ,DivYks) = {0} the map σ is surjective.
For the map h we need to recall some facts about Lichtenbaum complexes

Γ(i) = Γ(i,Ls) for i 6 2 and a fixed field L (See [Li1], [Li2], [Li3] and [Kah2]).
The complex Γ(0) is Z in degree 0 and Γ(1) is Ls∗ in degree 1. The complex Γ(2)
is acyclic outside [1,2]. As in [Kah2, §3], if i 6 2, we consider C•(L,Γ(i)) the
total complex for the bicomplex

⊕

j,l∈N

C j(Gal(Ls/L),Γ(i,Ls)l).

and for any extension of fields F/E such that E is algebraically closed in F , the
cokernel C(F/E,Γ(i)) of the morphism

C(E,Γ(i))[1]→ C(F,Γ(i))[1].

The homology of this complex is denoted by Hj(F/E,Γ(i)) and is called the
relative hypercohomology of F/E with value in Γ(i). One has a canonical long
exact sequence

· · · →Hj(E,Γ(i))→Hj(F,Γ(i))→Hj+1(F/E,Γ(i))→Hj+1(E,Γ(i)) · · ·
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which yields isomorphisms

Hj(F/E,Γ(i)) = 0 if j6 1 and i = 1 or 2,(4.1)

H2(F/E,Γ(1)) →̃ F∗/E∗,(4.2)

H3(F/E,Γ(1)) →̃ Ker(Br(E)→ Br(F)),(4.3)

H2(F/E,Γ(2)) →̃ K3(F)ind/K3(E)ind,(4.4)

H3(F/E,Γ(2)) →̃ K2(F)/K2(E)(4.5)

and

H4(F/E,Γ(2)) →̃ Ker
(

H3(E,Q/Z(2))→H3(F,Q/Z(2))
)

.(4.6)

If E′ is a Galois extension of E and F ′ = E′F then there is a Hochschild­Serre
spectral sequence

Hp
(

G,Hq(F ′/E′,Γ(i))
)

⇒Hp+q(F/E,Γ(i))

where G =Gal(E′/E). By (4.1) this spectral sequence for i = 1 yields a morphism

H1
(

G ,H2(ks(Y )/ks,Γ(1))
)

→H3(k(Y )/k,Γ(1))

which is an isomorphism, as Br(ks) = 0. By (4.4), since K3(k
s(Y ))ind/K3(k

s)ind is
uniquely divisible (See [MS2]), this spectral sequence also yields a morphism

H1
(

G ,H3(ks(Y )/ks,Γ(2))
)

→H4(k(Y )/k,Γ(2))

which by (4.5) and (4.6) gives the map

H1(G ,K2(k
s(Y ))/K2(k

s))→Ker
(

H3(k,Q/Z(2))→H3(k(Y ),Q/Z(2))
)

.
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For any a ∈ k∗, we have a commutative diagram

Z
a.−−−−−−−−−−−−−−−−−−→ k∗

↓ ξi ↓
H1(Yks ,K1)

G ∪a−−−−−−−−−−−−→ H1(Yks ,K2)
G

↓↓ ↓
H1(G ,K1(k

s(Y ))/H0(Yks ,K1))
∪a−−−−→H1(G ,K2(k

s(Y ))/H0(Yks ,K2))




y

≀




y

≀
H1

(

G ,H2(ks(Y )/ks,Γ(1))
) ∪a−−−−−−−−→H1

(

G ,H3(ks(Y )/ks,Γ(2))
)





y

≀ ↓
H3(k(Y )/k,Γ(1))

∪a−−−−−−−−−−→ H4(k(Y )/k,Γ(2))




y

≀




y

≀
Ker

(

H2(k,Q/Z(1))→H2(k(Y ),Q/Z(1))
) ∪a−→Ker

(

H3(k,Q/Z(2))→H3(k(Y ),Q/Z(2))
)

where a is respectively seen as an element of k∗, H0(Yks ,K1)
G , H0(G ,H1(ks,Γ(1))),

H1(k,Γ(1)) and H1(k, Ẑ(1)). But the column on the right side yields a surjective
morphism

Zm→Ker
(

H2(k,Q/Z(1))→H2(k(Y ),Q/Z(1))
)

=U.

4.2. First applications. — The following result was proved by Arason for a
quaternion algebra and by Colliot­Thélène using a result of Merkur′ev and Suslin
for a cyclic central simple algebra of prime index.

Proposition 4.4. — Let A be a central simple algebra over k such that the quotient
of the index of A by its exponent is squarefree and for any prime p dividing this quo­
tient the p­primary component of the corresponding division algebra is decomposable.
Denote by [A] its class in Brk and by Y the corresponding Severi­Brauer variety then

Ker
(

H3(k,Q/Z(2))→H3(k(Y ),Q/Z(2))
)

= [A]∪H1(k,Q/Z(1)).

Proof. — According to [Kar], K0(Y )
(2/3) →̃ Z and therefore CH2(Y ) has no

torsion. This result is then a direct consequence of theorem 4.1.
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Corollary 4.5. — If A is the product of two quaternion algebras over a field of
characteristic different from two, then the complex

(C2)
⊕

u∈U
A∗u

Nrd−−→H1(k)⊗U
∪−→H3(k)→H3(M)

is exact.

Proof. — In this case, ind(A)/ exp(A) 6 2 and A is decomposable. Therefore
proposition 4.4 gives the exactness at the second term of the complex. The
exactness at the first is due to Knus, Lam, Shapiro and Tignol [KLST].

5. The case of two conics

5.1. The result. — From now on k is a field of characteristic different from 2.
As before, we shall omit the coefficients in the cohomology groups when they are
equal to Z/2Z. The purpose of this section is to show the following result

Theorem 5.1. — Let k be a field of characteristic different from 2 and a1, b1, a2, b2
belong to k∗. We denote by Yi the conic defined by the homogeneous equations

X2
1 − aiX

2
2 − biX

2
3 = 0

for i = 1 or 2, Y = Y1×Y2, M the function field of Y and U the subgroup of H2(k)
generated by (a1, b1) and (a2, b2). For any u ∈U , let Au be a simple central algebra
which represents u. Then the complex

(C2)
⊕

u∈U
A∗u

Nrd−−→H1(k)⊗U
∪−→H3(k)→H3(M)

is exact.

5.2. Exactness of the first part of the complex. — If a1, . . . , an belong to k
then the corresponding Pfister form is defined by

≪a1, . . . , an≫ =< 1,−a1 >⊗· · ·⊗ < 1,−an > .

Lemma 5.2. — Let k be a field of characteristic different from 2 and let
a1, . . . , an−1, b1, . . . , bn−1 belong to k∗. Assume that for any c1, . . . , cn,d1, . . . , dn in
k∗ the equality

(c1, . . . , cn) = (d1, . . . , dn)

in Hn(k) implies that the Pfister forms ≪c1, . . . , cn≫ and ≪d1, . . . , dn≫ are iso­
morphic. Then for any x, y∈ k∗ such that

(a1, . . . , an−1, x) = (b1, . . . , bn−1, y)
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in Hn(k) there exists u ∈ k∗ such that

(a1, . . . , an−1, x) = (a1, . . . , an−1, u) = (b1, . . . , bn−1, u) = (b1, . . . , bn−1, y).

Remark 5.1. — By [AEJ, theorem 1] or [JR, page 554], the assumption is
verified for any field if n 6 4. This was proved by Merkur′ev for n = 3 and by
Arason, Elman and Jacob for n = 4.

Proof. — By assumption we have that

≪a1, . . . , an−1, x≫∼=≪b1, . . . , bn−1, y≫
as quadratic forms. Let q1 be the pure subform of≪a1, . . . , an−1≫. It is charac­
terized by the isomorphism

< 1 >⊕q1 ∼=≪a1, . . . , an−1≫.

Let q2 be the pure subform of the Pfister form≪b1, . . . , bn−1≫ and q the pure
subform of the form≪a1, . . . , an−1, x≫. Then one has the isomorphisms

−q∼= −q1⊕ x≪a1, . . . , an−1≫
∼= −q2⊕ y≪b1, . . . , bn−1≫.

Let Xi be coordinates corresponding to the first decomposition and Yi coor­
dinates corresponding to the second one. Let V be the subspace given by the
equations

X1 = · · · = X
2n−1−1 = Y1 = · · · = Y

2n−1−1 = 0

then dimV > 2n−1−2(2n−1−1) = 1. If q|V is isotropic then≪a1, . . . , an−1≫
is isotropic and≪a1, . . . , an−1≫ = 0 in W (k). By [Ar, Satz 1.6], (a1, . . . , an−1) =
0 and u = y verifies the conclusion of the lemma. Otherwise let v ∈ V − {0}
and u = −q(v). Then ≪a1, . . . , an−1≫ represents ux−1 and ≪b1, . . . , bn−1≫
represents uy−1. By [Lam, chapter 10, corollary 1.6], we get that

≪a1, . . . , an−1, ux
−1≫∼=≪b1, . . . , bn−1, uy

−1≫
∼= 0

in W (k) and therefore

(a1, . . . , an−1, x) = (a1, . . . , an−1, u) = (b1, . . . , bn−1, u) = (b1, . . . , bn−1, y).

Proof of the exactness of the first part of the complex. — Let

α ∈Ker
(

H1(k)⊗U
∪−→H3(k)

)

.



28 EMMANUEL PEYRE

Then α may be written as

α = x⊗ (a1, b1) + y⊗ (a2, b2)

with x, y∈H1(k) such that

(x, a1, b1) = (y, a2, b2).

By lemma 5.2, there exists u ∈ k∗ such that

(x, a1, b1) = (u, a1, b1) = (u, a2, b2) = (y, a2, b2).

By the theorem of Knus, Lam, Shapiro and Tignol [KLST], one has an exact
sequence

((

a1, b1
k

)

⊗
(

a2, b2
k

))∗
Nrd−−→H1(k)

∪((a1,b1)+(a2,b2))−−−−−−−−−−→H3(k).

Therefore

u ∈Nrd
(((

a1, b1
k

)

⊗
(

a2, b2
k

))∗)
.

By Merkur′ev and Suslin’s result [MS1, corollary 12.1]

x/u ∈Nrd
(

a1, b1
k

)∗
and y/u ∈Nrd

(

a2, b2
k

)∗

and we get

α ∈ Im




⊕

u∈U
A∗u

Nrd−−→H1(k)⊗U





as wanted.

5.3. Exactness of the second part of the complex. — This is a direct corollary
of corollary 3.9 and theorem 4.1. However using the Lichtenbaum complex in
this case is like shooting sparrows with cannons. Therefore we shall now give a
direct proof of 4.1 in this particular case.

Lemma 5.3. — With the notation of theorem 5.1 the sequence

H1(k)⊗U →H3(k)→H3(M)

is exact.
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Proof. — We denote by M1 the field k(Y1). Let α ∈ Ker(H3(k) → H3(M)).
By Arason’s theorem [Ar, Satz 5.4], the image αM1

of α may be written as

α = (a2, b2, y) with y ∈ M∗1 . But αM1
∈ H3

nr/k(M1). And by [CTO, proposi­

tion 13], for any P ∈ Y (1)
1 ,

∂P(α) = νP(y)(a2, b2)k(P).

Therefore νP(y) is even for all P ∈ Y (1)
1 such that (a2, b2)k(P) 6= 0. We have

CH0(Y1) = Pic(Y1) = Z

thus Ker(π1∗ : CH0(Y1×Y2)→CH0(Y1)) coincides with A0(Y1×Y2) and by
corollary 3.9 is trivial. We may then apply propositions 2.1 and 4.2 of [CTS]
and we get that

y ∈ k∗Nrd
(

a2, b2
M1

)∗
.

Thus there exists z ∈ k∗ such that αM1
= (a2, b2, z)M1

. Therefore

α− (a2, b2, z)∈Ker(H3(k)→H3(M1))

and applying Arason’s theorem once more, we get the result.

6. The case of three conics

6.1. Generalities

Proposition 6.1. — Let k be a field of characteristic different from 2 and let a1,
b1, a2, b2, a3 and b3 belong to k∗. As above Yi denotes the conic defined by the form
< 1,−ai ,−bi >, Y = Y1×Y2×Y3, M the function field of Y and U the subgroup

of H2(k) generated by the symbols (ai , bi), 1 6 i 6 3. Let Di =
(

ai ,bi
k

)

be the

corresponding algebra for 16 i 6 3. Then the homology of the complex

k∗⊗U →H3(k,Q/Z(2))→H3(M,Q/Z(2))

has order 1 or 2. It is equal to {0} if and only if the three algebras
(

ai ,bi
k

)

for

16 i 6 3 are split by a field extension of degree d0m where

d0 = lcm
i∈{0,1}3



ind





3
⊗

j=1

D
⊗ij
j









and m is an odd number.
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Proof. — By theorem 4.1, the homology of the complex is isomorphic to the
group CH2(Y )tors, which by proposition 3.8 (5) is equal to Ker(CH2(Y )→CH2(Y ))
and hence by proposition 3.8 (2) and (4) to

Ker(K0(Y )
(2/3)→ K0(Y )

(2/3)) →̃ K0(Y )
3⋂K0(Y )/K0(Y )

3.

But here, with the notation of section 3.2, K0(Y )
3 is generated by

(1− z1)(1− z2)(1− z3)

and by corollary 3.5 the image of gi1,i2,i3 in K0(Y ) is ind(
⊗3

j=1D
⊗ij
j )

∏3
j=1 z

ij
j .

Therefore, d0 being defined by the formula of the proposition, one has

K0(Y )
⋂

K0(Y )
3 = d0(1− z1)(1− z2)(1− z3)Z

=
∑

i∈{0,1}3

(−1)
3
∑

j=1
ij
d0

ind

(

3
⊗

j=1
D
⊗ij
j

)giZ.

Let D = D1⊗D2⊗D3. Let d = ind(D) and k′ be an extension of k of degree d
which splits D. Then over k′ we have

(a1, b1) + (a2, b2) = (a3, b3).

By [Lam, chapter 11, lemma 4.11], there exist t, x, y ∈ k′∗ such that (a1, b1) =
(t, x) and (a2, b2) = (t, y). Then k′(

p
t) splits D1, D2 and D3. By proposition 3.8

(1),
2d(1− z1)(1− z2)(1− z3) ∈K0(Y )

3

thus the order of the homology group divides 2d/d0 6 2.
It remains to show that the last assertion of the proposition is equivalent to

(∗)
∑

i∈{0,1}3

(−1)
3
∑

j=1
ij
d0

ind

(

3
⊗

j=1
D
⊗ij
j

)gi ∈ K0(Y )
3.

Let us first show that the last assertion of the proposition implies (∗). Let k′ be a
finite field extension which splits D1, D2 and D3. Then by proposition 3.8 (1)

[k′ : k](1− z1)(1− z2)(1− z3) ∈ K0(Y )
3.
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Since k(
p
a1,
p
a2,
p
a3) splits D1, D2 and D3, we have

8(1− z1)(1− z2)(1− z3) ∈ K0(Y )
3.

and the last assertion of the proposition implies

d0m(1− z1)(1− z2)(1− z3) ∈K0(Y )
3

Since m is odd, this implies (∗).
We now show the converse. Assume that (∗) is true. Since the composite map

CH3(Y )։K0(Y )
(3/4) →̃ K0(Y )

3

is surjective, we may take α in the inverse image of {d0(1− z1)(1− z2)(1− z3)}.
The degree of α is then d0. Thus there exists a closed point P in Y such that
[k(P) : k] = d0m for an odd number m. Let Pi be the projection of P on Yi for
i = 1,2 or 3. The field k(Pi ) is a subfield of k(P) and splits Di . Thus k(P) splits
the algebras D1, D2 and D3.

Corollary 6.2. — If ind(D1⊗D2⊗D3) = 8 or if a1 = a2 = a3 then the complex

k∗⊗U →H3(k,Q/Z(2))→H3(M,Q/Z(2))

is exact.

The cases ind(D1⊗D2⊗D3) = 8 and a1 = a2 = a3 may be seen as the extremal
ones.

Proof. — In the first case d0 = 8 and k(
p
a1,
p
a2,
p
a3) splits D1, D2 and D3.

In the second case, namely a1 = a2 = a3, either the three conics are split and the
result is trivial or d0 = 2 and k(

p
a1) splits D1, D2 and D3.

6.2. A counterexample for C∞. —

Proposition 6.3. — Let k be a field of characteristic different from 2 and containing
a fourth root of the unity. Let a, b, c belong to k∗ and assume that the symbol (a, b, c)
in H3(k) is not trivial. We use the notation of section 6.1 with

a1 = b3 = a, a2 = b1 = b and a3 = b2 = c.

then the homology group of the complex

k∗⊗U →H3(k,Q/Z(2))→H3(M,Q/Z(2))

is isomorphic to Z/2Z and generated by the class of an element of order 4 in

H3(k,Q/Z(2)).

Remark 6.1. — This also gives an example where CH2(Y )tors 6= {0}.
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Proof. — Let M1 = k(Y1). The conic Y1 is defined by the homogeneous equa­
tion

X2
1 − aX2

2 − bX2
3 = 0.

Let X =
X2
X1

, Y =
X3
X1

and α = (a,Y ) + (b,X). The only points where α may have
non trivial residues are

P1 : X1 = 0, P2 : X2 = 0 and P3 : X3 = 0.

But
∂P1

(α) = νP1(Y )(a) + νP1(X)(b) = (ab)

and k(P1) = k
(√

− a
b

)

= k(
p
ab) since there is a fourth root of unity i in k.

∂P2
(α) = νP2

(X)(b) = (b)

and k(P2) = k(
p
b). Similarly ∂P3(α) = (a) = 0. Therefore α ∈H2

nr/k(k(Y1)). Let

K = k
(

X2
X1

)

then

M =K







√

√

√

√

1

b
− a

b

(

X2
X1

)2






=K

(

X3
X1

)

.

We have the following formula

CoresMK (α) = CoresMK ((a,Y ))

= (a,−Y 2)

=



a,− 1

b
+
a

b

(

X2
X1

)2




Since i ∈ k, we get

CoresMK (α) =



− 1

b

a

b
,− 1

b
+
a

b

(

X2
X1

)2


 .

By [Lam, chapter 10, proposition 1.3]

CoresMK (α) =
(

− 1

b
,
a

b

)

= (a, b) 6= 0.
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Thus α does not belong to the image of H2(k). By remark 2.2, if we denote by
(a)4 the image of a in H1(k,µ4) and by (a, b)4 the cup­product (a)4 ∪ (b)4 in
H2(k,µ⊗24 ), which is isomorphic to H2(k,µ4) by the choice of i, we get that

α−Res((a, b)4) ∈ Im(H2(k)→H2(M1))

Therefore α is the image of an element α̃ of order four in H2(k,Q/Z(1)) and
such that α̃− (a, b)4 belongs to H2(k). Let β = α̃∪ (c)4 in H3(k,µ⊗24 ).

βM1
= α∪ (c)2 = (a,Y, c) + (b,X, c).

Therefore βM1
∈ Ker(H3(M1)→H3(M)) and

β ∈Ker
(

H3(k,Q/Z(2))→H3(M,Q/Z(2))
)

.

However β− (a, b, c)4 is of order at most two. Since (a)∪ (b)∪ (c) is not trivial,
β is of order four and does not belong to

Im
(

U ⊗ k∗ ∪−→H3(k,Q/Z(2))
)

.

Hence the order of the homology group is bigger than two and by corollary 6.1
is equal to two.

Remark 6.2. — This proof gives also that the homology is generated by an
element α in H3(k,µ⊗24 ) such that

α− (a, b, c)4 ∈H3(k).

Remark 6.3. — The image by the corestriction map of an element in Hn
nr/k(M1)

is in Hn
nr/k(K ) and by proposition 1.2 comes from a unique element in Hn(k).

Let N ′ be the induced morphism from Hn
nr/k(M1) to Hn(k). We put γ =

Res(a, b)4. By the preceding proof we see that N ′(γ) = (a, b) and N ′ is trivial
on the image of H2(k). therefore N ′ coincides with N in degree two if −1 is a
square. In degree 3, N ′ is trivial on ImRes = KerN and coincides with N on
γ∪ResH1(k) since both maps are compatible with cup­products by elements of
H1(k). By remark 2.2

γ∪ResH1(k)→H3
nr/k(M1)/ KerN

is surjective. Hence these maps coincide also in degree three if k contains a fourth
root of unity.
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