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Abstract. — The Manin conjecture is established for Châtelet surfaces over Q
arising as minimal proper smooth models of the surface

Y2 +Z2 = f (X)

in A3Q, where f ∈ Z[X] is a totally reducible polynomial of degree 3 without

repeated roots. These surfaces do not satisfy weak approximation.

Résumé. — Nous démontrons la conjecture de Manin pour les surfaces de Châ­
telet sur Q obtenues comme modèle minimal propre et lisse de la surface affine
d’équation

Y2 +Z2 = f (X)

où f ∈ Z[X] est un polynôme scindé à racines distinctes. Ces surfaces ne satisfont
pas l’approximation faible.
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1. Introduction

The purpose of this paper is to prove Manin’s conjecture about points of
bounded height for a family of Châtelet surfaces over Q. These surfaces have
been considered by F. Châtelet in [Ch1] and [Ch2], by V. A. Iskovskikh [?], by
D. Coray and M. A. Tsfasman [CoTs], and by J.­L. Colliot­Thélène, J.­J. Sansuc,
and P. Swinnerton­Dyer in [CTSSD1] and [CTSSD2], among others.

The surfaces considered here are smooth proper models of the affine surfaces
given in A3Q by an equation of the form

Y 2 +Z2 = X(a3X + b3)(a4X + b4),

for suitable a3, b3, a4, b4 ∈ Z.
It is important to note that the surfaces we consider do not satisfy weak ap­

proximation, the lack of which is explained by the Brauer­Manin obstruction, as
described in [CTSSD1] and [CTSSD2]. Up to now, the only cases for which
Manin’s principle was proven despite weak approximation not holding were ob­
tained using harmonic analysis and required the action of an algebraic group on
the variety with an open orbit. The method used in this paper is completely
different. Following ideas of P. Salberger [Sal], we use versal torsors introduced
by Colliot­Thélène and Sansuc in [CTS1], [CTS2], and [CTS3] to estimate
the number of rational points of bounded height on the surface. Such a com­
bination of descent methods with analytic number theory was used in [HBS]
to prove that the Brauer­Manin obstruction to weak approximation is the only
one for hypersurfaces related to norm forms. Therefore we can reasonably hope
that further developments of these techniques may be successful in proving the
refined conjectures of Manin for other such varieties.

This paper is organised as follows: in section 2, we recall some facts about the
geometry of the surfaces. In section 3, we define the height and state our main
result. Section 4 contains the description of the versal torsors we use. In sec­
tion 5, we describe the lifting of rational points to the versal torsors. This lifting
reduces the initial problem to the estimation of some arithmetic sums denoted
by U (T). The following sections contain the key analytical tools used in the
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proof. In section 7 we give a uniform upper bound for U (T) and in section 8
an asymptotic formula for it. The last section is devoted to an interpretation of
the leading constant.

Let us fix some notation for the remainder of this text.

Notation and conventions. — If k is a field, we denote by k an algebraic clo­
sure of k. For any variety X over k and any k­algebra A, we denote by XA
the product X ×Spec(k) Spec(A) and by X(A) the set HomSpec(k)(Spec(A),X).

We also put X = Xk. The cohomological Brauer group of X is defined as

Br(X) = H2
ét(X,Gm), where Gm denotes the multiplicative group. The pro­

jective space of dimension n over A is denoted by Pn
A and the affine space by An

A.
For any (x0, . . . , xn) ∈ kn+1 {0} we denote by (x0 : . . . : xn) its image in Pn(k).

2. A family of Châtelet surfaces

Let us fix a1, a2, a3, a4, b1, b2, b3, b4 ∈ Z such that

∆i,j =

∣∣∣∣∣
ai aj
bi bj

∣∣∣∣∣ 6= 0

for any i, j ∈ {1,2,3,4} with i 6= j. We then consider the linear forms Li defined
by Li (U,V ) = aiU + biV for i ∈ {1,2,3,4} and define the hypersurface S1 of
P2Q×A1Q given by the equation

X2 +Y 2 = T2
4∏

i=1
Li (U,1)

and the hypersurface S2 given by the equation

X ′2 +Y ′2 = T ′2
4∏

i=1
Li (1,V ).

Let U1 be the open subset of S1 defined by U 6= 0 and U2 be the open subset
of S2 defined by V 6= 0. The map Φ : U1 → U2 which maps ((X : Y : T),U )
onto ((X : Y : U2T),1/U ) is an isomorphism and we define S as the surface
obtained by glueing S1 to S2 using the isomorphism Φ. The surface S is a smooth
projective surface and is a particular case of a Châtelet surface. The geometry of
such surfaces has been described by J.­L. Colliot­Thélène, J.­J. Sansuc and P.
Swinnerton­Dyer in [CTSSD2, §7]. For the sake of completeness, let us recall
part of this description which will be useful for the description of versal torsors.
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The maps S1 → P1Q (resp. S2 → P1Q) which maps ((X : Y : T),U ) onto

(U : 1) (resp. ((X ′ : Y ′ : T ′),V ) onto (1 : V )) glue together to give a conic
fibration π : S → P1Q with four degenerate fibres over the points given by Pi =

(−bi : ai) ∈ P1(Q) for i ∈ {1,2,3,4}. In fact, the glueing of P2Q×A1Q to P2Q×A1Q
through the map

(2.1) ((X : Y : T),U ) 7→ ((X : Y :U2T),1/U )

gives the projective bundle (1) P = P(O2⊕O(−2)) over P1Q and S may be seen
as a hypersurface in that bundle.

Over Q(i), if ξ ∈ {−i, i}, the map AQ(i)→ S1Q(i) given by u 7→ ((ξ : 1 : 0),U )
extends to a section σξ of π. The surface SQ(i) contains 10 exceptional curves,
that is irreducible curves with negative self­intersection. Eight of them are given
in SQ(i) by the following equations

Dξ
j : Lj(π(P)) = 0 and X − ξY = 0

for ξ ∈ {−i, i} and j ∈ {1,2,3,4}; the last ones correspond to the section σξ and
are given by the equations

Eξ : T = 0 and X − ξY = 0.

Here X , Y and T are seen as sections of OP(1). Let us denote by G the Galois
group of Q(i) over Q and by z 7→ z the nontrivial element in G . Then we have

Eξ = Eξ and D
ξ
j =D

ξ
j

for ξ ∈ {−i, i} and j ∈ {1,2,3,4}. We shall also write D+
j (resp. D−j , E+, E−)

for Di
j (resp. D−ij , Ei , E−i). The intersection multiplicities of these divisors are

given by

(Eξ, Eξ) =−2, (Dξ
j ,D

ξ
j ) =−1, (Dξ

j ,D
−ξ
j ) = 1, (Eξ,Dξ

j ) = 1,

where ξ ∈ {−i, i}, and j ∈ {1,2,3,4}, all other intersection multiplicities being
equal to 0 (see [CTSSD2, p. 73]). The geometric Picard group of S, that is

1. We define here P(O2⊕O(−2)) as the projective bundle associated to the sheave of graded
commutative algebras Sym(O2 ⊕O(2)). In other words the fibre over a point is given by the
lines in the fibre of the vector bundle and not by the hyperplanes.
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Pic(S), is isomorphic to Pic(SQ(i)) and is generated by these exceptional divisors
with the relations

(2.2) [D+
j ] + [D

−
j ] = [D

+
k ] + [D

−
k ]

for j, k ∈ {1,2,3,4} and

(2.3) [E+] + [D+
j ] + [D

+
k ] = [E

−] + [D−l ] + [D
−
m]

whenever {j, k, l,m} = {1,2,3,4}. Using the fact that Pic(S) = (Pic(SQ(i)))
G it is

easy to deduce that Pic(S) has rank 2.
It follows from adjunction formula that the class of the anticanonical line

bundle is given by

ω−1S = 2E+ +
4∑

j=1
D+
j = 2E

− +
4∑

j=1
D−j .

Lemma 2.1. — Using the trivialisation described by (2.1), the 5­tuple of functions

(T,UT,U2T,X,Y )

gives a basis of Γ(S,ω−1S ).

Proof. — Let C be a generic divisor in |ω−1S |. Then C is a smooth irreducible
curve; let gC be its genus. According to the adjunction formula, we have that
2gC − 2 = ωS.(ωS− ωS) = 0. Thus gC = 1. The exact sequence of sheaves

0−→OS −→ ω−1S −→ ω−1S ⊗OC −→ 0

gives an exact sequence

0−→H0(S,OS)−→H0(S,ω−1S )−→H0(C,ω−1S |C)−→H1(S,OS).

But S is geometrically rational and H1(S,OS) = {0}. We get that

h0(S,ω−1S ) = 1+ h0(C,ω−1S |C).

Let D = ω−1S |C . We have that deg(D) = 4 and deg(ωC −D) =−4 since ωC = 0.

Applying Riemann–Roch theorem to C, we get that

h0(D) = deg(D) + 2gC − 2 = 4
and h0(S,ω−1S ) = 5. Since the sections T,UT,U2T,X and Y are linearly inde­
pendent, and extend to a section of OP(1), we get a basis of Γ(S,ω−1S ).
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Lemma 2.2. — The linear system |ω−1S | has no base point and the basis given in

lemma 2.1 gives a morphism from S to P4Q, the image of which is the surface S′ given

by the system of equations



X0X2−X2

1 = 0

X2
3 +X2

4 = (aX0 + bX1 + cX2)(a
′X0 + b′X1 + c′X2)

where

a = a1a2, b = a1b2 + a2b1, c = b1b2,

a′ = a3a4, b′ = a3b4 + a4b3, c′ = b3b4.

The induced map ψ : S→ S′ is the blowing up of the conjugate singular points of S′

given by Pξ = (0 : 0 : 0 : 1 :−ξ) with ξ2 =−1 and ψ−1(Pξ) = Eξ.

Proof. — This follows from the fact that the map from S to P4Q induces the
maps

((x : y : t), u) 7−→ (t : ut : u2t : x : y)

from S1 to P4Q and

((x′ : y′ : t′), v) 7−→ (v2t′ : vt′ : t′ : x′ : y′)

from S2 to P4Q.

Remark 2.3. — The surface S′ is an Iskovskikh surface [CoTs]; it is a singular
Del Pezzo surface of degree 4 with a singularity of type 2A1 and ψ : S→ S′ is a
minimal resolution of singularities for S′.

3. Points of bounded height

Over Q or even Q(i), the only geometrical invariant of S is the cross­ratio

α =

∣∣∣∣∣
a3 a1
b3 b1

∣∣∣∣∣

/∣∣∣∣∣
a3 a2
b3 b2

∣∣∣∣∣
∣∣∣∣∣
a4 a1
b4 b1

∣∣∣∣∣

/∣∣∣∣∣
a4 a2
b4 b2

∣∣∣∣∣

∈Q.

Indeed the automorphisms of P1Q sending the points P1, P2, P3 onto∞ = (0 :

1), 0 = (1 : 0) and 1 = (1 : 1) lifts to an isomorphism from S to the Châtelet
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surface with an equation of the form

X2 +Y 2 = βU (U − 1)(U − α)T2

where β ∈ Q. Over Q(i) we may further reduce to the case where β = 1. In
particular, without any loss of generality, we may assume that

(3.1) a1 = b2 = 1 and a2 = b1 = 0.

Hypothesis 3.1. — From now on we assume the relations (3.1), that we have
gcd(a3, b3) = gcd(a4, b4) = 1, and that a3b3a4b4(a3b4− a4b3) 6= 0.

Notation 3.2. — Let C =
√∏4

j=1(|aj|+ |bj|). We equip the projective space P4Q

with the exponential height H4 : P
4(Q)→ R defined by

H4(x0 : x1 : x2 : x3 : x4) = max

(
|x0|, |x1|, |x2|,

|x3|
C

,
|x4|
C

)

if x0, . . . , x4 are coprime integers. Using the morphism ψ : S→ S′, we get a height
H =H4 ◦ψ which is associated to the anticanonical line bundle ω−1S .

We denote by Val(Q) the set of places of Q. For any v∈ Val(Q), Qv is the cor­
responding completion of Q. As explained in [Pe1, §2], such a height enables us
to define a Tamagawa measure ωH on the adelic space S(AQ) =

∏
v∈Val(Q) S(Qv).

We also consider the constant α(S) defined in [Pe1, definition 2.4] which is equal
to 1 in our particular case and, following Batyrev and Tschinkel [BT], we also
put β(S) = ♯

(
coker(Br(Q)→ Br(S))

)
= 4 (see [Sk, prop. 7.1.2]). We then set

CH (S) = α(S)β(S)ωH (S(AQ)
Br)

where S(AQ)
Br is the set of points in the adelic space for which the Brauer­Manin

obstruction to weak approximation is trivial.
We are interested in the asymptotic behaviour of the number of points of

bounded height in S(Q), that is by the number

NS,H (B) = ♯{P ∈ S(Q), H(P)6 B}
for B ∈ R with B > 1.

We can now state the main result of this paper.

Theorem 3.3. — For any Châtelet surface as above, we have the asymptotic formula

(F) NS,H (B) = CH (S)B log(B) +O
(
B log(B)0.972

)
.
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Remarks 3.4. — (i) One may note that, as S(Q) is dense in S(AQ)
Br by

[CTSSD1, theorem B], this formula is compatible with the empirical formula
(F) described in [Pe4, formule empirique 5.1] which is a refinement of a
conjecture of Batyrev and Manin [BM].

(ii) Over R, the image of S(R) on P1(R) is the union of two intervals defined
by the conditions

∏4
j=1Lj(U,V ) > 0. Therefore we may choose j, k ∈ {1,2,3,4}

such that j 6= k and the sign of Lj(U,V )Lk(U,V ) is not constant on S(R). The
evaluation of the corresponding element (−1,Lj(U,V )/Lk(U,V )) ∈ Br(S) (see
[Sk, prop. 7.1.2]) is not constant on S(R). Therefore in all the cases we consider,
S(AQ)

Br 6= S(AQ).

4. Description of versal torsors

Versal torsors were first introduced by J.­L. Colliot­Thélène and J.­J. Sansuc in
[CTS1], [CTS2] and [CTS3] as a tool to prove that the Brauer–Manin obstruc­
tion to the Hasse principle and weak approximation is the only one. In [CTS3,
§2.6], these authors give a description of the versal torsors for Châtelet surfaces
up to birational equivalence. To be able to parametrise the points of S(Q) we in
fact need to construct the versal torsors themselves. Our construction is akin to
the one used by Colliot­Thélène and Sansuc but also to the constructions based
upon Cox rings.

We shall first introduce an intermediate versal torsor which corresponds to the
Picard group of S over Q, that is to the maximal split quotient of TNS.

Definition 4.1. — Let Tspl be the subscheme of A5Z = Spec(Z[X,Y,T,U,V ])
defined by the equation

(4.1) X2 +Y 2 = T2
4∏

j=1
Lj(U,V )

and the conditions

(X,Y,T) 6= 0 and (U,V ) 6= 0.
The split algebraic torus Tspl =G2

m,Z acts on Tspl via the morphism of tori

(λ,µ) 7→ (λ,λ,µ−2λ,µ,µ)

from G2
m,Z to G5

m,Z and the natural action of G5
m,Z on A5Z. Let Tspl be the

variety Tspl,Q. We have an obvious morphism πspl from Tspl to S which may
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be described as follows: for any extension K of Q and any point (x, y, t, u, v) of
Tspl(K), if v 6= 0, then the point ((x : y : tv2), u/v) belongs to S1(K)⊂ S(K). If

u 6= 0 then the point ((x : y : tu2), v/u) belongs to S2(K)⊂ S(K) and the points
obtained in S(K) coincide if uv 6= 0. The morphism πspl makes of Tspl a G2

m­
torsor over S.

We now turn to the construction of the versal torsors.

Notation 4.2. — We denote by ∆ the set of exceptional divisors in SQ(i) and

consider it as a G ­set. Let ∆Q be the set of G ­orbits in ∆. We put E = {E+, E−}
and Dj = {D+

j ,D
−
j } for j ∈ {1,2,3,4}. Then ∆Q = {E,D1,D2,D3,D4}. For

δ ∈ ∆Q, we may also write δ = {δ+, δ−}. We consider the affine space A∆,Z of
dimension 10 over Z

A∆,Z = Spec(Z[Xδ, Yδ, δ ∈∆Q])

and define A∆ = (A∆,Z)Q. For any δ ∈ ∆Q, we put Zδ+ = Xδ + iYδ and Zδ− =
Xδ− iYδ. We may then consider the algebraic torus

T∆ = Spec
(
(Q(i)[Zδ,Z

−1
δ , δ ∈ ∆])G

)

as an open subvariety of A∆. We shall also write Zεk (resp. Zε0) for ZDεk
(resp.

ZEε) and use similar conventions for the variables Xδ and Yδ.

We now wish to construct for each isomorphism class of versal torsors over S
with a rational point a representative of this class in A∆.

Notation 4.3. — Let n = (n1, n2, n3, n4) belong to (Z {0})4. We define Yn as
the subscheme of A∆,Z given by the equations

(4.2) ∆j,knl(X
2
l +Y 2

l ) +∆k,lnj(X
2
j +Y 2

j ) +∆l,jnk(X
2
k +Y 2

k ) = 0

if 1 6 j < k < l 6 4. The scheme Tn is the open subset of Yn given by the
conditions

(4.3) (Zδ1 ,Zδ2) 6= (0,0),
whenever δ1 ∩ δ2 =∅. We denote by Tn the variety (Tn)Q.

Remark 4.4. — The equations (4.2) define an intersection of two quadrics in
A8Q, upon which we will ultimately need to count integral points of bounded
height. As shown by Cook in [Co], the Hardy–Littlewood circle method can be
adapted to handle intersections of diagonal quadrics in at least 9 variables. Here
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we will need to deal with an intersection of diagonal quadrics in only 8 variables.
For this we will call upon the alternative approach based on the geometry of
numbers in [BB2].

It follows from [CTS2, proposition 2] that the set of isomorphism classes of
versal torsors over S with a rational point is finite. We introduce a finite set which
parametrises this set.

Notation 4.5. — Let S be the set of primes p such that p | ∏16j<k64∆j,k
(2).

For any j in {1,2,3,4}, we put

Sj = {p ∈ S, p≡ 3 mod 4 and p |
∏

k 6=j
∆j,k }

and

Σj =

{
(−1)ε−1

∏

p∈Sj
p
εp , (ε−1, (εp)p∈Sj) ∈ {0,1}× {0,1}

Sj

}
.

Finally, we define Σ to be the set of m = (mj)16j64 ∈
∏4
j=1Σj such that the

four integers are relatively prime, m1 is positive and
∏4
j=1mj is a square. For any

m ∈ Σ, we denote by αm the positive square root of
∏4
j=1mj.

Let m belong to Σ. We define a morphism πm : Tm→ S. In order to do this,
it is enough to define a morphism π̂m : Tm→ Tspl which is done as follows: for
any extension K of Q and any z = (zδ)δ∈∆ in Tm(K), the conditions (4.2) and
(4.3) ensure that there exists a pair (u, v) ∈K2 {0} such that

(4.4) Lj(u, v) =mjz
+
j z
−
j

for j ∈ {1,2,3,4}. Let (x, y, t)∈K3 {0} be given by the conditions

(4.5)





x+ iy = αm(z
+
0 )
2∏4

j=1 z
+
j ,

x− iy = αm(z−0 )2
∏4
j=1 z
−
j ,

t = z+0 z
−
0 .

Then we have the relation

x2 + y2 = t2
4∏

j=1

Lj(u, v).

2. Over Z/2Z, one of the ∆j,k has to be zero, and so 2 ∈ S.
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and (x, y, t, u, v) belongs to Tspl(K).
It remains to describe the action of the torus TNS associated to the G ­lattice

Pic(S) on Tm. The algebraic torus T∆ corresponds to the G ­lattice Z∆ and T∆
acts by multiplication of the coordinates on A∆. The natural surjective mor­
phism of G ­lattices

−pr : Z∆ −→ Pic(S)

induces an embedding of the algebraic torus TNS on T∆. (3)

Proposition 4.6. — Let m belong to Σ. The variety Tm is invariant under the
action of TNS on A∆ and the variety Tm equipped with the map πm : Tm→ S and
this action of TNS is a versal torsor above S.

Proof. — The description of the kernel of the morphism pr (see (2.2) and (2.3))
give the following equations for TNS:

(4.6) Z+j Z
−
j = Z+k Z

−
k

for j, k ∈ {1,2,3,4} and

(4.7) Z+0 Z
+
j Z

+
k = Z−0 Z

−
l Z
−
m

if {j, k, l,m} = {1,2,3,4}. The equations (4.2) are invariant under the action of
TNS thanks to (4.6) as are the inequalities (4.3). Therefore the action of TNS
on A∆ induces a natural action of TNS on Tm. This description of TNS also
implies that πm is invariant under the action of TNS on Tm. Indeed let K be
an extension of Q, let t belong to TNS(K) and z to Tm(K). We put z′ = tz. It
follows from (4.4) and (4.6) that z and z′ define the same point (u : v) ∈ P1(K)
and from (4.5), (4.6) and (4.7) that z and z′ give the same point (x : y : tv2)
(resp. (x : y : tu2) in P2(K)).

We may note that for any extension K of Q, if R ∈ Tm(K ) then π−1m (πm(R))
coincides with the orbit of R under the action of TNS. Indeed if R′ ∈ Tm(K )
satisfies πm(R

′) = πm(R), then there exists a unique z ∈ T∆(K) such that R′ = zR.
Let us write z = (zδ)δ∈∆. Using (4.4) and (4.5) and the description of the action
of Gm(K ) on Tspl, we get that z+i z

−
i = z+j z

−
j if 16 i < j6 4 and

z+0 z
−
0 (z

+
k z
−
k )

2 = (z+0 )
2
4∏

j=1
z+j = (z

−
0 )

2
4∏

j=1
z−j .

3. There is some question of convention in the definition of versal torsors which leads us to
use the opposite of the projection map.
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for k ∈ {1,2,3,4}. We deduce from these equations that z ∈ TNS(K ).
It is enough to prove the result over Q. By choosing square roots αj of mj such

that
∏4
j=1 αj = αm, and using a change of variable of the form Zεj

′ = αjZ
ε
j for

ε ∈ {+1,−1} and j ∈ {1,2,3,4} we may assume that m = (1,1,1,1). Note that
for any δ in ∆, the variety π−1m (E∆) is the subvariety of Tm defined by Zδ = 0. If
ε ∈ {+1,−1}, we consider the open subset

Uε = S−Eε−
4⋃

j=1
Eεj

of S and for j ∈ {1,2,3,4}, we put

Uj = S−E+−E−−
⋃

k 6=j
(E+k ∪E−k ).

The open subsets U1,U2,U3,U4,U+ and U− form an open covering of S. If
ε ∈ {+1,−1}, we may consider that X + εiY = 1 on Uε and we define a section
s1ε (resp. s2ε ) of π1 over Uε ∩ S1 (resp. Uε ∩ S2) by Zε0 = Zε1 = Zε2 = Zε3 = Zε4 = 1,
Z−ε0 = t and Z−εj = Lj(U,1) (resp. Z−εj = Lj(1,V )) for j ∈ {1,2,3,4}. Similarly,
for j ∈ {1,2,3,4}, fix k, l,m so that {j, k, l,m} = {1,2,3,4}. On Uj, we may
consider that Lk(U,V ) = 1 and T = 1. We may then define a section sj of π1
over Uj by Z+k = Z−k = Z+0 = Z−0 = Z+l = Z+m = 1 and

Z−l = Ll(U,V ), Z−m = Lm(U,V ), Z+j =
X + iY
∏
r 6=jZ

+
r

and Z−j =
X − iY
∏
r 6=jZ

+
r
.

The conditions (4.3) ensures that, for any point P ∈ T1(Q), the stabilizer of P
in TNS(Q) is trivial. Using the action of TNS on T1 we then get an equivariant
isomorphism from TNS×U to π−11 (U ) for each open subset U described above.
This proves that Tm is a TNS­torsor over S.

It remains to prove that the endomorphism of Pic(S) defined by this torsor is
the identity map. Let us first recall how this endomorphism may be defined. If L
is a line bundle over S, then the class of L defines a morphism of Galois lattices
Z→ Pic(S) and therefore a morphism of algebraic tori ϕL : TNS→ Gm and an
action of TNS on Gm. The restricted product T ×TNS Gm is a Gm­torsor over
S which defines an element of Pic(S). For any δ in ∆, the function Zδ on Tm
is invariant under the action of the kernel of the map ϕδ : TNS→Gm defined
by the class of δ in Pic(S). Therefore this function defines an antiequivariant
map from Tm×TNSGm to A1 which vanishes with multiplicity one over π−1m (δ).
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Thus the endomorphism defined by Tm on Pic(S) sends the class of δ to itself for
any δ ∈∆. This proves that Tm is a versal torsor over S.

To conclude these constructions it remains to prove that the set of rational
points S(Q) is the disjoint union of the sets πm(Tm(Q)) where m runs over the
set Σ.

Lemma 4.7. — For any P ∈ S(Q), we have

♯(π−1spl (P)∩Tspl(Z)) = ♯G2
m(Q)tors = 2

2.

Proof. — Let us start with a point P = ((x0 : y0 : t0), u0) in S1(Q). We then have
the relation

x20 + y20 = t20

4∏

j=1
Li (u0,1)

We may write u0 = u/v with u, v ∈ Z and gcd(u, v) = 1. Then we may find an
element λ of Q such that the rational numbers x = λx0, y = λy0 and t = λt0/v

2

are coprime integers and we have

x2 + y2 = t2
4∏

j=1
Lj(u, v).

The same construction works for any point of S2(Q) and if P belongs to S1(Q)∩
S2(Q) the elements of Z5 thus obtained coincide up to multiplication of the first
three or the last two coordinates by −1.

Remark 4.8. — Note that if we impose conditions like

t > 0, L1(u, v)> 0 and
4∏

j=2
Lj(u, v)> 0,

the lifting of P is unique.

Proposition 4.9. — Let P belong to S(Q). Then there exists a unique m in Σ such
that P belongs to πm(Tm(Q)).
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Proof. — Let Q = (x, y, t, u, v)∈Tspl(Z) be such that πspl(Q) = P. Without loss

of generality we may assume that Q = (x, y, t, u, v)∈ Z5 is such that

(4.8)





x2 + y2 = t2
∏4
j=1Lj(u, v),

gcd(x, y, t) = 1, gcd(u, v) = 1,

t > 0, L1(u, v)> 0, and
∏4
j=2Lj(u, v)> 0.

The fact that t2
∏4
j=1Lj(u, v) is the sum of two squares implies that

(4.9)
4∏

j=1
Lj(u, v)> 0

and, if
∏4
j=1Lj(u, v) 6= 0, for any prime p congruent to 3 modulo 4

(4.10)
4∑

j=1
vp(Lj(u, v))≡ 0 mod 2.

Let j belong to {1,2,3,4}. If Lj(u, v) 6= 0, we denote by εj ∈ {−1,+1} the sign
of Lj(u, v) and by Σj(Q) the set of prime numbers p which are congruent to 3

modulo 4 and such that vp(Lj(u, v)) is odd. We then put

mj = εj×
∏

p∈Σj(Q)
p.

If Lj(u, v) = 0 we define mj as the only integer in Σj such that
∏4
k=1mk is a

square. By construction, we have mj | Lj(u, v) and the quotient Lj(u, v)/mj is the
sum of two squares.

Let us now check that m = (m1,m2,m3,m4) belongs to Σ. According
to (4.10), if a prime number belongs to Σj(Q) for some j ∈ {1,2,3,4}, then
there exists k ∈ {1,2,3,4} with k 6= j such that p ∈ Σk(Q). In particular, p divides
both Lj(u, v) and Lk(u, v) as well as

∆j,ku = bkLj(u, v)− bjLk(u, v)

and ∆j,kv. Since gcd(u, v) = 1, we get that p |∆j,k. This proves that m ∈∏4
j=1Σj.

But combining (4.9), (4.10) and the definition of m we get that
∏4
j=1mj is a

square. If d divides all the mj, it divides gcd16j<k64(∆j,k) which is equal to 1
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since ∆1,2 = 1 under the condition (3.1). Finally m1 > 0 since L1(u, v) > 0 or
∏4
j=2Lj(u, v) > 0. Thus, m belongs to Σ.
We now wish to prove that Q belongs to π̂m(Tm(Q)). By construction of m,

for any j in {1,2,3,4}, the integer Lj(u, v)/mj is the sum of two squares. Moreover
if p is a prime number, congruent to 3 modulo 4, then p generates a prime ideal
of Z[i]. From the relations (4.8), if p | t, then p | (x+ iy)(x− iy). In that case we
have p | x and p | y, which contradicts the fact that gcd(x, y, t) = 1. As t > 0, we
get that t may also be written as the sum of two squares.

If
∏4
j=1Lj(u, v) 6= 0, we choose for j ∈ {1,2,3} an element z+j ∈ Z[i] such that

Lj(u, v)/mj = z+j z
+
j and an element z+0 ∈ Z[i] such that t = z+0 z

+
0 . Then we get

the relation

L4(u, v)/m4 =


 x+ iy

αm(z
+
0 )
2∏3

j=1 z
+
j




 x+ iy

αm(z
+
0 )
2∏3

j=1 z
+
j




and we put z+4 = (x + iy)/(αm(z
+
0 )
2∏3

j=1 z
+
j ) ∈ Q[i]. If

∏4
j=1Lj(u, v) = 0, we

choose z+1 , z
+
2 , z

+
3 , z

+ as above and z+4 ∈ Z[i] such that L4(u, v)/m4 = z+4 z
+
4 . In

both cases, we put z−j = z+j for j ∈ {1,2,3,4} and z−0 = z+0 .
The family so constructed satisfy the relations (4.5) and (4.8), from which it

follows that the corresponding family (zδ)δ∈∆ is a solution to the systems (4.2)
and (4.3). Thus we obtain a point R in Tm(Q) such that πm(R) = P.

Let m′ belong to Σ and assume that the point P belongs to the set
π
m′(Tm′(Q)) as well. Then by (4.8), we have for any prime number p

vp(m
′
j)− vp(m′k) = vp(Lj(u, v))− vp(Lk(u, v)) = vp(mj)− vp(mk)

for any j, k in {1,2,3,4} such that Lj(u, v)Lk(u, v) 6= 0. Similarly, denoting by
sgn(m) the sign of an integer m, we have

sgn(m′j)/ sgn(m
′
k) = sgn(mj)/ sgn(mk).

These relations between m and m′ remain valid if Lj(u, v)Lk(u, v) = 0 since the

products
∏4
j=1mj and

∏4
j=1m
′
j are squares. But, by definition of Σ, we have

m′1 > 0 and min
16j64

vp(m
′
j) = 0

for any prime number p, and similarly for m. We obtain that m =m′.
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5. Jumping up

Having constructed the needed versal torsors explicitly, we now wish to lift our
initial counting problem to these torsors. In order to do this, we shall define an
adelic domain Dm in the adelic space Tm(AQ) so that for any P ∈ πm(Tm(Q))

the cardinality of π−1m (P)∩Dm is ♯TNS(Q)tors.

5.1. Idelic preliminaries. — We first need to gather a few facts about the
adelic space TNS(AQ).

Notation 5.1. — Let A be a commutative ring. We may identify the A­points
of A∆ with the elements of the invariant ring

A∆ =
(∏

δ∈∆
A⊗Z Z[i]

)G

.

Let P be the set of prime numbers. Let p ∈P . We put Sp = Spec(Qp⊗Z Z[i])
which we may identify with the set of places of Q[i] above p. If a = (ap)p∈Sp
and b = (bp)p∈Sp belong to ZSp , we write a > b if ap > bp for p ∈ Sp and

min(a,b) = (min(ap, bp))p∈Sp . The valuations induce a map

v̂p :Qp⊗Z Z[i]−→ (Z∪ {+∞})Sp .
Thus we get a natural map

(Qp⊗Z Z[i])∆ −→ (Z∪ {+∞})Sp×∆.
The action of G on Sp and ∆ induces an action of G on the set on the right­hand

side so that the above map is G equivariant. Denoting by Γp the set of invariants

in (Z∪ {+∞})Sp×∆ and by Γp its intersection with ZSp×∆, we get a map

logp : A∆(Qp)−→ Γp

whose restriction to T∆(Qp) is a morphism from this group to the group Γp and
logp is compatible with the action of T∆(Qp) on the left and the action of Γp on
the right. We denote by Ξp the set of elements (rp,δ) of Γp such that rp,δ > 0 for
any p ∈ Sp and any δ ∈ ∆.

If T is an algebraic torus over Q which splits over Q(i), then X∗(T) denotes
the group of characters of T over Q(i) and X∗(T) = Hom(X∗(T),Z) its dual,
that is the group of cocharacters of T . We denote by 〈·,·〉 the natural pairing
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X∗(T)×X∗(T)→ Z. For any place v of Q, we denote by X∗(T)v the group of

cocharacters of T over Qv, which may be described as X∗(T)Gal(Qv/Qv). We also
consider the groups X∗(T)Q = X∗(T)G and X∗(T)Q = X∗(T)G . The group Γp
may then be seen as the group X∗(T∆)p. The restriction of logp from T∆(Qp) to
Γp is then the natural morphism defined in [Ono1, §2.1]. For any (rδ)δ∈∆ ∈ Γp,
we put r±j = r

D±j
for j ∈ {1,2,3,4} and r±0 = rE± . The group X∗(TNS)p is then

the subgroup of Γp given by the equations

r+j + r−j = r+l + r−l
for 16 j < l 6 4 and

r+0 + r+j + r+l = r−0 + r−m + r−n

if {j, l,m,n}= {1,2,3,4}.

Remarks 5.2. — (i) If p≡ 3 mod 4 or p = 2 then there exists a unique element p
in Sp. Thus Γp is canonically isomorphic to Z∆Q . If p≡ 1 mod 4, then choosing

an element p∈ Sp, we get an isomorphism from Z∆ to Γp.
(ii) We may note that an element Q ∈ Tm(Qp) belongs to Ym(Zp) if and only

if logp(Q) belongs to Ξp.

Lemma 5.3. — For any prime p the morphism logp induces an isomorphism from

the quotient TNS(Qp)/TNS(Zp) to X∗(TNS)p and there is an exact sequence

1−→ TNS(Q)tors −→ TNS(Q)−→
⊕

p∈P
X∗(TNS)p −→ 0.

Proof. — By [Dr, p. 449], the kernel of the map logp from TNS(Qp) to
X∗(TNS)p coincides with TNS(Zp) for any prime p. Let us prove that the map
⊕

p logp from TNS(Q) to
⊕

pX∗(TNS)p is surjective. We first assume that p 6= 2.
If p≡ 1 mod 4 we choose an element ϖ ∈ Z[i] such that p = ϖϖ and identify Sp

with {ϖ,ϖ}. If r ∈ Γp, we then define

expϖ(r) = (ϖ
rϖ,δϖrϖ,δ)δ∈∆.

If p ≡ 3 mod 4, then we put ϖ = p and for r ∈ Γp, we define expϖ(r) to be

(ϖ
rp,δ)δ∈∆. By construction, expϖ is a morphism from Γp to T∆(Q) and satisfies
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logp ◦ expϖ = IdΓp and logℓ ◦ expϖ = 0 for any prime ℓ 6= p. Moreover we have

(5.1) χ(expϖ(r)) = p〈χ,r〉

for any χ ∈ X∗(T∆)Q and any r ∈ Γp. Therefore, if r belongs to X∗(TNS)p,
then expϖ(r) belongs to TNS(Q). It remains to prove a similar result for p = 2,
although there is no morphism which satisfies (5.1). Let r belong to X∗(TNS)2.
Let us write rj = r+j = r−j for j in {0, . . . ,4}. Since r belong to X∗(TNS)2, we

have r1 = r2 = r3 = r4. We put z+j = (1 + i)
rj for j ∈ {0,1,2,3} and z+4 =

(−i)r0+2r1(1 + i)r0 and z−j = z+j for j ∈ {0, . . . ,4}. Then log2(z) = r and z

satisfies equation (4.6). Moreover if {j, k, l,m} = {1,2,3,4} one has

z+0 z
+
j z

+
k /(z
−
0 z
−
l z
−
m) =

(1+ i)r0+2r1

(1− i)r0+2r1 (−i)
r0+2r1 = 1

which proves that z satisfies (4.7).
If z belongs to the kernel of the map

⊕
p logp then its coordinates are invertible

elements in Z[i]. Thus z is a torsion element of TNS(Q).

5.2. Local domains. — To construct Dm, for any prime p and any m ∈ Σ
we shall define a fundamental domain in Tm(Qp) under the action of TNS(Qp)

modulo TNS(Zp). In other words, we want to construct an open domain Dm,p ⊂
Tm(Qp) such that

(i) The open set Dm,p is stable under the action of TNS(Zp);

(ii) For any t in TNS(Qp) TNS(Zp), one has t.Dm,p ∩Dm,p =∅;

(iii) For any x in Tm(Qp), there exists an element t in TNS(Qp) such that x
belongs to t.Dm,p.

Lemma 5.4. — For any prime number p, the domain Tspl(Zp) is a fundamental

domain in Tspl(Qp) under the action of Tspl(Qp) modulo Tspl(Zp).

Proof. — As in the proof of lemma 4.7, if P belongs to S(Qp), there exists a
point Q = (x, y, t, u, v)∈Tspl(Qp) such that πspl(Q) = P and

min(vp(x), vp(y), vp(t)) = min(vp(u), vp(v)) = 0.

The last condition is equivalent to Q ∈Tspl(Zp). The lemma then follows from
the facts that the action of Tspl(Qp) on Tspl(Qp) is given by

((λ,µ), (x, y, t, u, v)) 7→ (λx,λy,µ−2λt,µu,µv)
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and that theTspl(Qp)­orbits are the fibers of the projection πspl :Tspl(Qp)→ S(Qp).

Lemma 5.5. — Two elements of Tm(Qp) belong to the same orbit under the action

of TNS(Zp) if and only if they have the same image by πm and logp.

Proof. — According to proposition 4.6, two elements of Tm(Qp) belong to the
same orbit under the action of TNS(Qp) if and only if their image by πm coincide.
On the other hand, TNS(Zp) = TNS(Qp) ∩ T∆(Zp) is the set of elements of
A∆(Qp) which are sent to the origin of Γp by logp. Therefore if two elements

of Tm(Qp) belong to the same orbit for TNS(Zp) their image in Γp coincides.
Conversely, let x and y be elements of Tm(Qp) which have the same image by
πm and logp. Then there exists an element t ∈ TNS(Qp) such that y = tx. Since
logp(x) = logp(y), if a coordinate zδ of x is different from 0, the corresponding
component of logp(t) is 0. Taking into account the conditions (4.3) and the
equations (4.6) and (4.7) which define TNS, this implies that logp(t) is the unit
element and thus t ∈ TNS(Zp).

Remark 5.6. — The idea behind the construction of Dm,p is first to consider
the intersection

π̂−1m (Tspl(Zp))∩Ym(Zp),

which is stable under the action of TNS(Zp). For all primes p for which there is
good reduction, this intersection coincides with Tm(Zp). More generally, if p is
good or if p 6≡ 1 mod 4, this intersection satisfies the conditions (i) to (iii) and
yields the wanted domain. On the other hand, if p is a prime dividing one of the
∆j,k and such that p ≡ 1 mod 4, then for any Q ∈ Tspl(Zp)∩ π̂m(Tm(Qp)) the
intersection

π̂−1m (Q)∩Ym(Zp)

is the union of a finite number of TNS(Zp)­orbits. We then select a total order
on Γp and choose the minimal element in the image of the last intersection by
ϕp. In that way, we construct the wanted domain.

To better understand the construction, let us first describe the conditions sat­
isfied by logp(R) for a lifting R of a point Q ∈ Tspl(Qp). Let R = (zδ)δ∈∆ ∈
Tm(Qp) and let Q = (x, y, t, u, v) = π̂m(R). Let us denote by (rδ)δ∈∆ ∈ Γp the
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image of R by logp. We also put nj = v̂p(Lj(u, v)/mj) for j ∈ {1,2,3,4}, n0 = v̂p(t)

and n± = v̂p((x± iy)/αm). Then we have the relations

ni = r+i + r−i(5.2)

for j ∈ {0, . . . ,4}, and

n± = 2r±0 +
4∑

j=1
r±j .(5.3)

Lemma 5.7. — Let p be a prime number and let m belong to Σ. Let Q belong

to the intersection Tspl(Zp)∩ πm(Tm(Qp)) and let (nj)j∈{0,...,4} and n+,n− be the

corresponding elements of ZSp defined in remark 5.6.
a) One has nj > 0 for j ∈ {0, . . . ,4}, n+ > 0 and n− > 0.

b) If p 6∈ S, then min(ni ,nj) = 0 if 16 i < j6 4.

c) If p 6≡ 1 mod 4, then n0 = 0.

d) One has min(n0,n
+,n−) = 0.

e) There exists a solution in Ξp to the equations (5.2) and (5.3).

f ) The number of such solutions is finite.

g) There exists a unique solution to these equations in Ξp if p 6∈ S or if p 6≡
1 mod 4.

Proof. — We write m = (m1, . . . ,m4) and Q = (x, y, t, u, v). As Q belongs to the
set πm(Tm(Qp)), one has that p|mi if and only if p≡ 3 mod 4 and vp(Li (u, v)) is
odd. If these conditions are verified, vp(αm) = 1 and αm|Li (u, v). Similarly, using
the equation (4.1), we have that αm|x± iy and this concludes the proof of a).

We now assume that p 6∈ S. Let i, j be such that 1 6 i < j 6 4. Thus p
does not divide ∆i,j. This implies that min(vp(Li (u, v)), vp(Lj(u, v))) = 0 and so
min(ni ,nj) = 0.

We now prove assertion c). If p|t then by equation (4.1), it follows that p2|x2+
y2. If we assume that p = 2 or p ≡ 3 mod 4 this implies that p|x and p|y which
contradicts the fact that min(vp(x), vp(y), vp(t)) = 0.

Let p ∈ Sp. If p divides x + iy, x− iy and t, then p divides x, y and t. This
proves assertion d).

Since Q belongs to πm(T(Qp)), the equations (5.2) and (5.3) have a solution

in Γp. If p ≡ 3 mod 4 or p = 2, then the integers r±j ∈ Z are such that r+j = r−j
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for j ∈ {0, . . . ,4}. Therefore the equations (5.2) have a unique solution in Γp. By
a) the coordinates of this solution are positive. If p≡ 1 mod 4, then by choosing
an element p∈ Sp we are reduced to solving the equations

ni = r+i + r−i
for j ∈ {0, . . . ,4}, and

n± = 2r±0 +
4∑

j=1
r±j .

in Z∆, where nj > 0 for j ∈ {0, . . . ,4}, n+ > 0 and n− > 0. Since we have

the relation 2n0 +
∑4

j=1 nj = n+ + n−, we may write n+ = 2a+0 +
∑4

j=1 a
+
j where

06 a+j 6 nj for j ∈ {0, . . . ,4}. Then we put a−j = nj− a+j for j ∈ {0, . . . ,4} to get
a solution with nonnegative coordinates.

The assertion f ) follows from the fact that there is only a finite number of
nonnegative integral solutions to an equation of the form n = k+ + k−.

If p≡ 3 mod 4 or p = 2 we have already seen that the solution to the system of
equations is unique. If p 6∈ S and p≡ 1 mod 4, then it follows from the assertions
b) and d) that r±j =min(nj, n

±), which implies that the solution is unique.

Lemma 5.8. — If p is a prime number such that p ≡ 1 mod 4 or p 6∈ S, then

for m ∈ Σ, the set Ym(Zp)∩ π̂−1m (Tspl(Zp)) satisfies the conditions (i) to (iii) and

defines a fundamental domain in Tm(Qp) under the action of TNS(Zp).

Proof. — To prove the lemma it is sufficient to prove that the intersection of
any nonempty fiber of πm with Tm(Zp) is not empty and is an orbit under the
action of TNS(Zp). Let P belong to the set πm(Tm(Qp)). By lemma 5.4 we may
lift P to a point Q which belongs to Tspl(Zp). According to lemma 5.7, e), we
may find an element r ∈ Ξp which is a solution to the equations (5.2) and (5.3).

Let R′ be any lifting of P to Tm(Qp) and let r′ = logp(R). The difference r′− r
belongs to X∗(TNS)p. According to lemma 5.3, there exists t ∈ TNS(Qp) such

that logp(t) = r− r′. Then the point R = t.R′ ∈ Tm(Qp) satisfies logp(R) = r and

R belongs to Ym(Zp)∩ π̂−1m (Tspl(Zp)).

It remains to prove that if two element R and R′ of Tm(Zp) are in the same
fibre for πm then they belong to the same orbit under the action of TNS(Zp).
Their images in Tspl(Qp) belong to Tspl(Zp) and therefore are contained in the
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same orbit for the action of Tspl(Zp), which means that the equations described

in remark 5.6 for logp(R) and logp(R
′) are exactly the same. We then apply

assertion g) of lemma 5.7 and lemma 5.5.

Lemma 5.9. — If the prime number p does not belong to S, then for m ∈ Σ, we
have

Tm(Zp) =Ym(Zp)∩ π̂−1m (Tspl(Zp)).

Proof. — We keep the notation used in the proof of the previous lemma. Using
lemma 5.7, b) and d), and the positivity of the coefficients in r, we get that
min(rδ1 , rδ2) = 0 whenever δ1∩δ2 =∅, which means that R belongs to Tm(Zp).

Definition 5.10. — Let m belong to Σ. If p 6∈ S, we put Dm,p = Tm(Zp). If
p ∈ S and p 6≡ 1 mod 4, we put

Dm,p =Ym(Zp)∩ π̂−1m (Tspl(Zp)).

It remains to define the domain for the primes p ∈ S such that p≡ 1 mod 4.

Notation 5.11. — We put S′ = {p ∈ S, p≡ 1 mod 4}. For any p ∈ S′ we fix in
the remainder of this text a decomposition p = ϖpϖp for an irreducible element
ϖp ∈ Z[i]. We may then write Sp = {ϖp,ϖp}. The group Γp is isomorphic to

Z∆ through the map ϕp which applies a family (rp,δ)(p,δ)∈Sp×∆ onto the family

(rϖp,δ)δ∈∆. Let j 6= k be two elements of {1,2,3,4} such that p|∆j,k. We then

define f j,k = (fδ)δ∈∆ ∈ Z∆ by

fδ =




1 if δ ∈ {D−j ,D+

k },
0 otherwise.

We put ej,k = ϕ
−1
p (f j,k) and consider the set

(5.4) Λp = Ξp
⋃

{(j,k)∈{1,2,3,4}|j<k and p|∆j,k}
ej,k +Ξp.

Definition 5.12. — Let m belong to Σ. If p ∈ S and p ≡ 1 mod 4, then we
define Dm,p to be the set of R ∈ π̂−1m (Tspl(Zp)) such that logp(R)∈ Λp.

Remark 5.13. — In particular, one has Dm,p ⊂Ym(Zp) for any prime number
p.
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Lemma 5.14. — If p ∈ S and p≡ 1 mod 4, then for m ∈ Σ, the set Dm,p satisfies

the conditions (i) to (iii) and defines a fundamental domain in Tm(Qp) under the

action of TNS(Zp).

Proof. — According to lemma 5.5 and lemma 5.7 e), we have only to prove
that for any Q ∈ Tspl(Zp)∩ π̂m(Tp), there exist a unique solution of the equa­
tions (5.2) and (5.3) which belongs to Λp. Among the solutions in Ξp, there is

a unique solution such that if s = ϕp(r), the quadruple (s+1 , s
+
2 , s

+
3 , s

+
4 ) is maximal

for the lexicographic order. It remains to prove that the solution satisfies this last
condition if and only if r belongs to Λp. Let r be the solution for which the
above quadruple is maximal and r̃ be any solution in Ξp and s̃ = ϕp(r̃). If r 6= r̃,

then we consider the smallest j ∈ {1,2,3,4} such that s+j > s̃+j . With the notation

of remark 5.6, this implies that nj 6= 0, n+ 6= 0 and n− 6= 0. Therefore n0 = 0

and there exists k > j such that s+k < s̃+k . Since s−j < s̃−j , we may conclude that
r̃ ∈ ej,k +Ξp. Moreover p | ∆j,k. Conversely if r̃ belongs to ej,k + Ξp, for some
j, k ∈ {1,2,3,4} such that j < k, then r̃− ej,k + ek,j is another solution to system
of equations which gives a bigger quadruple for the lexicographic order.

5.3. Adelic domains and lifting of the points

Definition 5.15. — Let m ∈ Σ. We define the open subset Dm of Tm(AQ) as
the product Tm(R)×

∏
p∈P Dm,p.

Proposition 5.16. — The set Dm is a fundamental domain in Tm(AQ) under the

action of TNS(Q) modulo TNS(Q)tors. In other words
(i) The open set Dm is stable under the action of TNS(Q)tors;

(ii) For any t in TNS(Q) TNS(Q)tors, one has t.Dm ∩Dm =∅;

(iii) For any x in Tm(AQ), there exists an element t in TNS(Q) such that x
belongs to t.Dm.

Proof. — The assertion (i) follows from the fact that Dm,p is stable under
TNS(Zp) for any prime number p. If t belongs to TNS(Q) TNS(Q)tors, then,
by lemma 5.3, there exists a prime number p such that logp(t) 6= 0. Thus
t.Dm,p ∩Dm,p = ∅, which proves (ii). Let x belong to Tm(AQ). For any prime
number p, there exists an element tp ∈ TNS(Qp) such that tp.x ∈ Dm,p. By
lemma 5.3, there exists an element t ∈ TNS(Q) such that logp(t) = logp(tp) for
any prime number p and t.x ∈Dm.
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Corollary 5.17. — Let P belong to S(Q) and let m be the unique element of Σ
such that P ∈ πm(Tm(Q)). Then

♯(π−1m (P)∩Dm) = ♯TNS(Q)tors = 2
8.

Proof. — This corollary follows from the last proposition and the fact that
π−1m (x) is an orbit under the action of TNS(Q).

Let us now lift the heights to the versal torsors.

Definition 5.18. — As in notation 3.2 we put C =
√∏4

j=1 |aj|+ |bj|. Let w be

a place of Q. We define a function Hw on Q5
w by

Hw(x, y, t, u, v) =




max(
|x|w
C ,
|y|w
C ,max(|u|w, |v|w)2|t|w) if w =∞,

max(|x|w, |y|w,max(|u|w, |v|w)2|t|w) otherwise,

for any (x, y, t, u, v) ∈ Q5
w. If m ∈ Σ, we shall also denote by Hw : Tm(Qw)→ R

the composite function Hw ◦ π̂m. We then define H : Tm(AQ) → R by H =∏
w∈Val(Q)Hw.

Remarks 5.19. — (i) The line bundle ω−1S defines a character χω on the torus
Tspl =G2

m,Q simply given by (λ,µ) 7→ λ and we have the relation

(5.5) Hw(t.R) = |χω(t)|wHw(R)

for any t ∈ Tspl(Qw) and any R ∈ Tspl(Qw). A similar assertion is true on Tm

for m ∈ Σ.
(ii) As a point Q = (x : y : t : u : v) in Tspl(R) satisfies the equations (4.1), we

have that

max(|x|, |y|)2 6
4∏

j=1
(|aj|+ |bj|)max(|u|, |v|)4|t|2.

and it follows that

H∞(Q) = max(|u|, |v|)2|t|.

Proposition 5.20. — Let m ∈ Σ. For any R ∈ Tm(Q), one has

H(πm(R)) =H(R).
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Proof. — We may define a map ψ̂ : Q5→Q5 by (x, y, t, u, v) 7→ (v2t : uvt : u2t :
x : y). The restriction of the map ψ̂ from Tspl to A5Q {0} is a lifting of the map

ψ : S→ S′. On S′ the height H4 is given by

H4(x0 : · · · : x4) = max
(
|x0|∞, |x1|∞, |x2|∞,

|x3|∞
C

,
|x4|∞
C

)
×
∏

p∈P
max
06j64

(|xj|p)

for any (x0, . . . , x4) ∈Q5. This formula implies the statement of the lemma.

Corollary 5.21. — For any real number B, we have

N(B) =
1

♯TNS(Q)tors

∑

m∈Σ
♯{R ∈ Tm(Q)∩Dm, H(R)6 B}

Proof. — This corollary follows from propositions 4.9, 4.6, and 5.20 and corol­
lary 5.17.

Remark 5.22. — For any prime number p and any m ∈ Σ, we have Dm,p ⊂
π̂−1m (Tspl(Zp)). Therefore, for any R = (Rw)w∈Val(Q) belonging to Dm, we have
H(R) =H∞(R∞).

Notation 5.23. — For any real number B, and any m ∈ Σ, we denote by
Dm,∞(B) the set of R ∈ Tm(R) such that the point Q = (x, y, t, u, v) = π̂m(R)
satisfies the conditions

(5.6) H∞(Q)6 B and H∞(Q)>max(|u|, |v|)2 > 1.

We define Dm(B) as the product Dm,∞(B)×∏p∈P Dm,p.

Remark 5.24. — Let F be a fiber of the morphism π : S → P1Q. Then the

Picard group of S is a free Z­module with a basis given by the pair ([F], [ω−1S ]).
According to the formula (5.5), the function H∞ corresponds to [ω−1S ]. In a
similar way the map applying (x, y, t, u, v) to max(|u|, |v|) corresponds to [F]. On
the other hand, the cone of effective divisors in Pic(S) is the cone generated by
[F] and [E+]+[E−] = [ω−1S ]−2[F]. But, by the preceding remark, the function

Q = (x, y, t, u, v) 7−→ H∞(Q)

max(|u|, |v|)2

corresponds to [E+] + [E−]. Thus the lower bounds imposed in the definition
of Dm,∞(B) correspond to the condition (3.9) of [Pe3, p. 268].
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These lower bounds are automatically satisfied by any point R in Dm∩Tm(Q).
Indeed Q = π̂m(R) belongs to Tspl(Z) and writing Q = (x, y, t, u, v) we get that
max(|u|, |v|) > 1. Since (x, y, t) 6= 0, by equation (4.1), we also have that t 6= 0
and therefore |t|> 1 which yields the second inequality.

Corollary 5.25. — For any real number B, we have

N(B) =
1

♯TNS(Q)tors

∑

m∈Σ
♯(Tm(Q)∩Dm(B)).

Proof. — This follows from the last remark and the preceding corollary.

5.4. Moebius inversion formula and change of variables. — As is usual with
these type of problems, we now wish to use a Moebius inversion formula to
replace the coprimality conditions by divisibility conditions.

5.4.1. First inversion. — The first inversion corresponds to the conditions im­
posed at the places p ∈ S with p≡ 1 mod 4.

Notation 5.26. — Let N(a) = #(Z[i]/a) denote the norm of an ideal a of the
ring of Gaussian integers Z[i]. We define

D̂ = {b⊂ Z[i], N(b) ∈D},
where

(5.7) D = {d ∈ Z>0, p | d⇒ p≡ 1 mod 4}.
Let A be a commutative ring. Let b = (bδ)δ∈∆ be a family of ideals of A⊗ZZ[i]

such that bδ = bδ for any δ ∈∆. Then (
∏
δ∈∆ bδ)

G is an ideal of A∆ and for any

n ∈ Z4, we define

Yn(b) =Yn(A)∩
(∏

δ∈∆
bδ

)G

.

We define I∆(A) as the set of such families of ideals. For any p, the map logp
induces a map from I∆(Z) to Γp. If log2(a) = 0, then we define

λ(a) =
∏

p∈P {2}
expϖp

(logp(a)).

For any a ∈I∆(Z), we also put N(a) = (N(a+j ))16j64 ∈ Z4>0.

If λ = (λδ)δ∈∆ belongs to T∆(Q)∩ Z∆, then we put N(λ) = (λ+j λ
−
j )16j64 ∈

Z4>0 and define a morphism mλ :YN(λ)n→Yn using the action of the torus T∆
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on A∆. For any commutative ring A, we may define an element λA∆ ∈ I∆(A)
by taking the family of ideals (λδA)δ∈∆. If a ∈ I∆(Z) satisfies log2(a) = 0,
then a = λ(a)Z∆. For any a ∈ I∆(Z), we similarly define aA∆ as (aδA)δ∈∆ ∈
I∆(A).

Let m ∈ Σ and let a = (aj)16j64 ∈ D̂4. We may see a as an element of

I∆(Z) by putting a+j = aj and a−j = aj for j ∈ {1,2,3,4} and a+0 = a−0 = Z[i].
Let n = mN(a) = (mjN(aj))16j64. Recall that αm is the positive square root of
∏4
j=1mj. We put

αm,a = αm×
4∏

j=1
λ(a)+j .

Note that
∏4
j=1 nj =N(αm,a). We then define a map π̂m,a :Yn→ A5Z as follows:

thanks to equations (4.2) and the fact that, by (3.1), the family (aj, bj)16j64

generates Z2, the system of equations

(5.8) Lj(U,V ) = nj(X
2
j +Y 2

j )

in the variables U and V has a unique solution in the ring of functions on Yn.
We also define T = X2

0 +Y 2
0 and define X and Y by the relation

X + iY = αm,a(X0 + iY0)
2
4∏

j=1
(Xj + iYj).

The morphism π̂m,a is then defined by the family of functions (X,Y,T,U,V ).
Since these functions satisfy the relation

X2 +Y 2 = T2
4∏

j=1
Lj(U,V ),

the image of π̂m,a is contained in the Zariski closure Yspl of Tspl in A5Z.

Let m ∈ Σ and a ∈ D̂4. For any prime number p we define D
1
m,a,p as

Yn(Zp) ∩ π̂−1m,a(Tspl(Zp)) where n = mN(a). For any real number B, we also

define D
1
m,a,∞(B) as the set of R ∈ Yn(R) such that π̂m,a(R) satisfies the con­

ditions (5.6). We then put D
1
m,a(B) = D

1
m,a,∞(B) ×∏p∈P D

1
m,a,p. When

aj = Z[i] for j ∈ {1,2,3,4}, we shall forget a in the notation.
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Let S′ be the set of p ∈ S such that p ≡ 1 mod 4. For any p ∈ S′, we consider
the set Ep of subsets I of ∆ {E+, E−} such that

(i) if δ+j ∈ I then there exists k < j such that δ−k ∈ I ;
(ii) if δ−k ∈ I then there exists j > k such that δ+j ∈ I ;
(iii) if δ+j ∈ I and δ−k ∈ I with j 6= k then p | ∆j,k.

For any I ∈ Ep we define f I = (fδ)δ∈∆ ∈ Z∆ by

fδ =




1 if δ ∈ I ,
0 otherwise.

Using notation 5.11, we then consider eI = φ−1p (f I ) and Σ′p = { expϖp(eI ), I ∈
Ep }. We define Σ′ as the subset of I∆(Z) defined by

Σ′ =
{( ∏

p∈S′
λp

)
Z∆, (λp)p∈S′ ∈

∏

p∈S′
Σ′p

}

An element a ∈ Σ′ is determined by the quadruple (a+j )16j64 and we shall also

consider Σ′ as a subset of D̂4. For p ∈ S′ we define a map µp : Ep → Z by the
conditions

µp(∅) = 1 and
∑

J⊂I
µp(J) = 0 if I 6=∅.

The map µ : Σ′→ Z is defined by µ(a) =
∏
p∈S′ µp(Ip(a)).

We shall denote by Af,∞ the ring R×∏p∈P Zp.

Remarks 5.27. — (i) Let λ = (λδ)δ∈∆ ∈ T∆(Q)∩Z∆. Let A be a commutative
ring. Then mλ is a bijection from the set YN(λ)n(A) to the set Yn(λA∆).

(ii) With the same notation, for the ring A = Zp, the set Yn(d) is the inverse
image by logp of the set logp(λ) +Ξp.

Lemma 5.28. — Let p ∈ S′. For any subset K of Γp, we denote by 1K its charac­

teristic function. Then

1Λp
=
∑

I∈Ep
µp(I)1eI+Ξp .
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Proof. — For any j, k in {1,2,3,4} such that j < k and p | ∆j,k, we put Ij,k =

{δ−j , δ+k }. Let K be a subset of { (j, k) ∈ {1,2,3,4}2, j < k and p | ∆j,k }. Let
I =

⋃
(j,k)∈K Ij,k. Then we have

⋂

(j,k)∈K
(ej,k +Ξp) = eI +Ξp.

On the other hand, a subset I of ∆ belongs to Ep if and only if it is the union of
subsets Ij,k with j < k and p | ∆j,k. The lemma then follows from equation (5.4)
which defines Λp and the fact that the map I 7→ eI +Ξp reverses the inclusions.

Lemma 5.29. — Let a ∈ Σ′ and let B be a positive real number. The multiplica­

tion by λ(a) ∈ T∆(Q) maps D
1
m,a(B) onto D

1
m(B)∩Ym(a(Af,∞)∆).

Proof. — By remark 5.27 (i), the map mλ(a) is a bijection from the set
YN(a)m(Af,∞) onto the set Ym(a(Af,∞)∆). Let us now compare the maps
π̂m ◦mλ(a) and π̂m,a. The map π̂m,a is given by the relations





Lj(U,V ) = N(a+j )mi (X
2
j +Y 2

j ) for j ∈ {1,2,3,4},
T = X2

0 +Y 2
0 ,

X + iY = αm,a(X0 + iY0)
2∏4

j=1(Xj + iYj),

whereas π̂m ◦mλ(a) is given by




Lj(U,V ) = λ(a)
+
j λ(a)

−
j mi (X

2
j +Y 2

j ) for j ∈ {1,2,3,4},
T = X2

0 +Y 2
0 ,

X + iY = αm

(
∏4
j=1 λ(a)

+
j

)
(X0 + iY0)

2∏4
j=1(Xj + iYj).

Therefore π̂m ◦mλ(a) coincides with π̂m,a. This proves that for any prime num­

ber p, the map mλ(a) maps π̂−1m,a(Zp) onto π̂−1m (Zp). Moreover mλ(a) sends the

set D
1
m,a,∞(B) onto D

1
m,∞(B).

Proposition 5.30. — For any real number B, we have

N(B) =
1

♯TNS(Q)tors

∑

m∈Σ

∑

a∈Σ′
µ(a)♯(TN(a)m(Q)∩D

1
m,a(B)).

Proof. — This follows from lemma 5.28, the definition of Dm(B) and
lemma 5.29.
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5.4.2. Second inversion. — The inversion we shall now perform corresponds to
the condition gcd(x, y, t) = 1.

Notation 5.31. — The map µ : D̂→ Z is the multiplicative function such that

µ(pk) =





1 if k = 0,

−1 if k = 1,

0 otherwise.

for any prime ideal p in D̂ and any integer k> 0.
Let m ∈ Σ and a ∈ Σ′ ⊂ D̂4. Let b = (bj)j∈{1,2,3,4} ∈ D̂4. We put n =

N(ab)m and µ(b) =
∏4
j=1 µ(bj). Let B be a real number. Let p be a prime

number. If R belongs to Yn(Zp), we denote by X,Y,T,U and V the functions on

Yn which define π̂m,ab. The local domain D
2
m,a,b,p is then defined as follows:

— If p ≡ 3 mod 4 or p = 2, then D
2
m,a,b,p is the set of R ∈ Yn(Zp) such that

T(R)∈ Z∗p and min(vp(U (R)), vp(V (R))) = 0;

— If p≡ 1 mod 4 then D
2
m,a,b,p is the set of R = (zδ)δ∈∆ ∈Yn(Zp) such that

z−0 belongs to
⋂4
j=1 bj, such that min

(
vp(T(R)), vp

(∏4
j=1N(aj)

))
= 0 and

such that min(vp(U (R)), vp(V (R))) = 0.

We also put D
2
m,a,b,∞(B) =D

1
m,a,∞(B) and

D
2
m,a,b(B) =D

2
m,a,b,∞(B)×

∏

p∈P
D
2
m,a,b,p.

Proposition 5.32. — For any real number B, we have the relation

N(B) =
1

♯TNS(Q)tors

∑

m∈Σ

∑

a∈Σ′

∑

b∈D̂4

µ(a)µ(b)♯(TN(a)N(b)m(Q)∩D
2
m,a,b(B)).

Proof. — Let m ∈ Σ, let a ∈ Σ′ and let p be a prime number.
Let us first assume that p 6≡ 1 mod 4. By lemma 5.7 c), we have vp(t) = 0

for any (x, y, t, u, v) ∈ Tspl(Zp). Conversely, let R belong to YmN(a)(Zp). If
vp(T(R)) = 0, then min(vp(X(R)), vp(Y (R)), vp(T(R))) = 0.

We now assume that p ≡ 1 mod 4. For any R = (zδ)δ∈∆ ∈ YmN(a)(Qp) we
have the relations

T(R) = z+0 z
−
0 and X(R) + iY (R) = αm,a(z

+
0 )
2
4∏

j=1
z+j .
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Note that if ϖp|αm,a for any prime p ≡ 1 mod 4, then p|αm,a. Therefore we
have the relation gcd(X(R), Y (R),T(R)) = 1 in Zp if and only if R satisfies the
following two conditions:

(i) One has min(vp(T(R)), vp(N(
∏4
j=1 aj))) = 0;

(ii) There is no j ∈ {1,2,3,4} and no ϖ ∈ Sp such that z+j ∈ ϖ and z+0 ∈ ϖ.

We denote by b̂ the unique element of I∆(Z) such that b̂+j = bj for j ∈ {1,2,3,4}
and b̂−0 =

⋂4
j=1 bj. A classical Moebius inversion yields that the characteristic

function of the set of the elements R in YmN(a)(Zp) which satisfy condition (ii)
is equal to

∑

b∈D̂4

µ(b)1
YmN(a)

(
b̂(Zp)∆

).

By remark 5.27 (i), the multiplication map mλ(b) maps YmN(a)

(
b̂(Zp)∆

)

onto the set of (zδ)δ∈∆ in YmN(ab)(Zp) such that z−0 belongs to
⋂4
j=1 bj. The

rest of the proof is similar to the proof of lemma 5.29.

5.4.3. Third inversion. — The last inversion corresponds to the condition
gcd(u, v) = 1, in which it will prove nonetheless useful to retain the fact that u, v
cannot both be even.

Notation 5.33. — Let m ∈ Σ and a ∈ Σ′. Let b = (bj)j∈{1,2,3,4} ∈ D̂4. We put
n = N(a)N(b)m. Let ℓ be an odd integer. Let p be a prime number. The local
domain D

3
m,a,b,ℓ,p is then defined as follows:

— If p = 2, then D
3
m,a,b,ℓ,p is the set of R ∈Yn(Zp) such that T(R) ∈ Z∗p and

min(vp(U (R)), vp(V (R))) = 0;

— If p≡ 3 mod 4, then D
3
m,a,b,ℓ,p is the set of R ∈Yn(Zp) such that T(R) ∈

Z∗p and ℓ divides U (R) and V (R).

— If p ≡ 1 mod 4 then D
3
m,a,b,ℓ,p is the set of R = (zδ)δ∈∆ ∈ Yn(Zp) such

that z−0 belongs to
⋂4
j=1 bj, such that min

(
vp(T(R)), vp

(∏4
j=1N(aj)

))
= 0

and ℓ divides U (R) and V (R).
We define D

3
m,a,b,ℓ,∞(B) =D

2
m,a,b,∞(B) and

D
3
m,a,b,ℓ(B) =D

3
m,a,b,ℓ,∞(B)×

∏

p∈P
D
3
m,a,b,ℓ,p.
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Proposition 5.34. — For any positive real number B, we have that N(B) is equal
to

1

♯TNS(Q)tors

∑

m∈Σ

∑

a∈Σ′

∑

b∈D̂4

∞∑

ℓ=1
2∤ℓ

µ(a)µ(b)µ(ℓ)♯(TN(a)N(b)m(Q)∩D
3
m,a,b,ℓ(B)).

6. Formulation of the counting problem

We are now ready to begin the analytic part of the proof of theorem 3.3. Let
us recall that the linear forms that we are working with take the shape

L1(U,V ) =U, L2(U,V ) = V, L3(U,V ) = a3U+b3V, L4(U,V ) = a4U+b4V,

with integers a3, b3, a4, b4 such that gcd(a3, b3) = gcd(a4, b4) = 1 and

(6.1) ∆ = a3b3a4b4(a3b4− a4b3) 6= 0.
It is clear that the forms involved are all pairwise non­proportional. In this sec­
tion we will further translate our counting problem in terms of the familiar mul­
tiplicative arithmetic function

r(n) = ♯{(x, y) ∈ Z2, x2 + y2 = n} = 4
∑

d|n
χ(d),

where χ is the real non­principal character modulo 4. It is to this expression that
we will be able to direct the full force of analytic number theory.

In what follows we will allow the implied constant in any estimate to depend
arbitrarily upon the coefficients of the linear forms involved. Furthermore, we
will reserve j for an arbitrary index from the set {1,2,3,4}. Finally, many of
our estimates will involve a small parameter ε > 0 and it will ease notation if we
also permit the implied constants to depend on the choice of ε. We will follow
common practice and allow ε to take different values at different parts of the
argument.

Recall the definitions of Σ,Σ′ from section 4 and section 5 respectively. In
particular we have mjN(a+j ) = O(1) whenever m ∈ Σ and a ∈ Σ′.
Proposition 6.1. — For B> 1, we have

N(B) =
1

♯TNS(Q)tors

∑

m∈Σ
a∈Σ′

µ(a)
∞∑

ℓ=1
2∤ℓ

µ(ℓ)
∑

b∈D̂4

µ(b)
∑

t∈D
gcd(t,N(a))=1

N(
⋂
bj)|t

r
(

t

N(
⋂
bj)

)
U

(
B

t

)
,
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where

U (T) =
∑

(u,v)∈Z2∩
p
TRm

ℓ|u,v
2∤gcd(u,v)

mjN(a+j bj)|Lj(u,v)

4∏

j=1
r
( Lj(u, v)

mjN(a+j bj)

)

and

(6.2) Rm =
{
(u, v) ∈R2, 0 < |u|, |v|6 1, mjLj(u, v) > 0 for j ∈ {1,2,3,4}

}
.

Proof. — We apply proposition 5.34. Let m ∈ Σ, a ∈ Σ′ and b ∈ D̂
4. We

wish to express ♯(TN(a)N(b)m(Q)∩D
3
m,a,b,ℓ(B)) in terms of the function r. But

given (t, u, v) ∈ Z3, the number of elements R in that intersection such that
(T(R),U (R),V (R)) = (t, u, v) is 0 if (t, u, v) does not satisfy the conditions

gcd(t,N(a)) = 1, N(
⋂

bj)|t, ℓ|u, v, 2 ∤ t gcd(u, v) and mjN(a+j bj) | Lj(u, v)
and is equal to

r


 t

N(
⋂
bj)




4∏

j=1
r




Lj(u, v)

mjN(a+j bj)




otherwise.

Let us set

(6.3) dj =mjN(a+j )N(bj), Dj =




[dj, ℓ], if j = 1 or 2,

dj, if j = 3 or 4,

where [dj, ℓ] is the least common multiple of dj, ℓ. Then dj,Dj are odd positive
integers such that dj |Dj. We may write

(6.4) U (T) =
∑

(u,v)∈ΓD∩
p
TRm

2∤gcd(u,v)

4∏

j=1
r
(Lj(u, v)

dj

)
,

where

(6.5) ΓD = {(u, v) ∈ Z2, Dj | Lj(u, v)}.
Before passing to a detailed analysis of the sum U (T) and its effect on the

behaviour of the counting function N(B), we will first corral together some of
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the technical tools that will prove useful to us. It is clear that ΓD defines a
sublattice of Z2 of rank 2, since it is closed under addition and contains the
vector D1D2D3D4(u, v) for any (u, v) ∈ Z2. Let us write

(6.6) ρ(D) = detΓD,

for the determinant. It follows from the Chinese remainder theorem that there
is a multiplicativity property ρ(g1h1, . . . , g4h4) = ρ(g1, . . . , g4)ρ(h1, . . . , h4), when­
ever g1 · · · g4 and h1 · · ·h4 are coprime. Recall the definition (6.1) of ∆. Then
[HB, Eqn. (3.12)] shows that

(6.7) ρ(pe1 , . . . , pe4) = p
maxi<j{ei+ej},

for any prime p ∤ ∆. Likewise, when p |∆ one has

(6.8) ρ(pe1 , . . . , pe4)≍ p
maxi<j{ei+ej},

whence

(6.9) ρ(D)≍ [D1D2,D1D3,D1D4,D2D3,D2D4,D3D4],

where the symbol ≍ means that the two quantities involved have the same order
of magnitude.

7. Estimating U (T): an upper bound

Our goal in this section is to provide an upper bound for U (T), which is
uniform in the various parameters. This will allow us to reduce the range of
summation for the various parameters appearing in our expression for N(B).
Our main tool will be previous work of the first two authors [BB1], which is
concerned with the average order of arithmetic functions ranging over the values
taken by binary forms.

Throughout this section we continue to adhere to the convention that all of
our implied constants are allowed to depend upon the coefficients of the forms
Lj. Recall the expression for U (T) given in (6.4), with dj,Dj given by (6.3). We
then have the following result.

Lemma 7.1. — Let ε > 0, let T > 1 and write d = d1d2d3d4. Then we have

U (T)≪ (dℓ)ε
(

T

[D1D2, . . . ,D3D4]
+
T1/2+ε

ℓ

)
.
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Proof. — Since we are only concerned with providing an upper bound for
U (T), we may drop any of the conditions in the summation over (u, v) that we
care to choose. Thus it follows that

U (T)6
∑

(u,v)∈ΓD∩(0,
p
T]2

4∏

j=1
r
( |Lj(u, v)|

dj

)
,

where ΓD is the lattice defined in (6.5).
Let e1,e2 be a minimal basis for ΓD. This is constructed by taking e1 ∈ ΓD to

be any non­zero vector for which |e1| is least, and then choosing e2 ∈ ΓD to be
any vector not proportional to e1, for which |e2| is least. The successive minima
of ΓD are the numbers si = |ei |, for i = 1,2. We claim that s1 >min{D1,D2}>
ℓ. For this we recall the definition (6.3) of D1,D2 and note that ΓD ⊆ Λ =
{(u, v) ∈ Z2, D1 | u, D2 | v}, where Λ ⊆ Z2 is a sublattice of rank 2, with
smallest successive minimum min{D1,D2}. The desired inequalities are now
obvious and we conclude that

(7.1) ℓ 6 s1 6 s2, s1s2≪ ρ(D)6 s1s2,

where ρ is defined in (6.6).
Write Mj(X,Y ) for the linear form obtained from d−1j Lj(U,V ) via the change

of variables (U,V ) 7→ Xe1 + Y e2. Each Mj has integer coefficients of size
O(ρ(D)). Furthermore, it follows from work of Davenport [Da, lemma 5] that
x≪max{|u|, |v|}/s1 and y≪max{|u|, |v|}/s2 whenever one writes (u, v) ∈ ΓD as
(u, v) = xe1 + ye2, with x, y ∈ Z. Let T1 = s−11

p
T and T2 = s−12

p
T , so that in

particular T1 > T2 > 0. Then we may deduce that

U (T)6
∑

x≪T1,y≪T2

4∏

j=1
r(|Mj(x, y)|).

Suppose that Mj(X,Y ) = aj1X + aj2Y , with integer coefficients aji =O(ρ(D)).
We proceed to introduce a multiplicative function r1(n), via

r1(p
ν) =

{
1+ χ(p), ν = 1 and p ∤ 6dℓ

∏
aji ,

(1 + ν)4, otherwise,

where d = d1d2d3d4. Then r(n1)r(n2)r(n3)r(n4) 6 28r1(n1n2n3n4), and one
checks that r1 belongs to the class of non­negative arithmetic functions consid­
ered previously by the first two authors [BB1]. An application of [BB1, corollary
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1] now reveals that

U (T)≪ (dℓ)ε(T1T2 +T1+ε
1 )≪ (dℓ)ε

(
T

s1s2
+
T1/2+ε

s1

)
,

for any ε > 0. Combining (7.1) with (6.9) we therefore conclude the proof of the
lemma.

The main purpose of lemma 7.1 is to reduce the range of summation of the
various parameters appearing in proposition 6.1. Let us write E0(B) for the
overall contribution to the summation from values of bj, ℓ such that

(7.2) maxN(bj) > log(B)
D or ℓ > log(B)L,

for parameters D,L > 0 to be selected in due course. We will denote by N1(B)
the remaining contribution, so that

(7.3) N(B) =N1(B) +E0(B).

Henceforth, the implied constants in our estimates will be allowed to depend on
D and L, in addition to ε and the coefficients of the linear forms Lj. We have the
following result.

Lemma 7.2. — We have E0(B)≪ B log(B)1−min{D/4,L/2}+ε, for any ε > 0.

Proof. — We begin observing that U (B/t) = 0 in E0(B), unless Dj 6
p
B/t, in

the notation of (6.3). But then it follows that we must have

t6
B√

D1D2D3D4

6
B
√
gcd(N(b1), ℓ) gcd(N(b2), ℓ)

ℓ
√

N(b1) · · ·N(b4)
= B0,

say, in the summation over t. Here we have used the fact that mjN(a+j ) = O(1)

whenever m ∈ Σ and a ∈ Σ′. It will be convenient to set K =N(b1) · · ·N(b4).
We now apply lemma 7.1 to bound U (B/t), giving

E0(B)≪
∑

m∈Σ
a∈Σ′

∑

ℓ

ℓε
∑

b1,...,b4

K ε ∑

t6B0
N(
⋂
bj)|t

r
(

t

N(
⋂
bj)

)(
B

t[D1D2, . . . ,D3D4]
+
B1/2+ε

t1/2+εℓ

)
,
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for any ε > 0, where the summations over ℓ and bj are subject to (7.2). In view
of the elementary estimates

(7.4)
∑

n6x

r(n)

nθ
≪



log(2x) if θ> 1,

x1−θ if 06 θ < 1,

we easily conclude that

E0(B)≪
∑

m∈Σ
a∈Σ′

∑

ℓ

ℓε
∑

b1,...,b4

K ε

N(
⋂
bj)

(
B log(B)

[D1D2, . . . ,D3D4]
+
B1/2+εB1/2−ε0

ℓ

)
.

The second term in the inner bracket is

≪ B · gcd(N(b1), ℓ)
1/4 gcd(N(b2), ℓ)

1/4

ℓ3/2−εK 1/4−ε .

Similarly rapid consultation with (6.3) reveals that the first term in the inner
bracket is

≪ B log(B)

(D1D2)
3/4(D3D4)

1/4
≪ B log(B) · gcd(N(b1), ℓ)

1/4 gcd(N(b2), ℓ)
1/4

ℓ3/2K 1/4
.

Bringing these estimates together we may now conclude that

E0(B)≪ B log(B)
∑

ℓ

∑

b1,...,b4

1

N(
⋂
bj)
· gcd(N(b1), ℓ)

1/4 gcd(N(b2), ℓ)
1/4

ℓ3/2−εK 1/4−ε ,

where the sums are over ℓ ∈ Z>0 and b1, . . . ,b4 ⊆ D̂ such that (7.2) holds.
For fixed ℓ ∈ Z>0 and ε > 0 we proceed to estimate the sum

Sℓ(T) =
∑

b1,...,b4⊆Z[i]
maxN(bj)>T

gcd(N(b1), ℓ)
1/4 gcd(N(b2), ℓ)

1/4

N(
⋂
bj)K

1/4−ε .
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This is readily achieved via Rankin’s trick and the observation that N(a) |N(a∩b)
for any a,b⊆ Z[i]. Thus it follows that N(

⋂
bj)> [N(b1), . . . ,N(b4)], whence

Sℓ(T)6
1

Tδ

∑

b1,...,b4⊆Z[i]

gcd(N(b1), ℓ)
1/4 gcd(N(b2), ℓ)

1/4

[N(b1), . . . ,N(b4)]
1−δK 1/4−ε

≪ 1

Tδ

∞∑

b1,...,b4=1

gcd(b1, ℓ)
1/4 gcd(b2, ℓ)

1/4

[b1, . . . , b4]
1−δb1/4−ε1 · · ·b1/4−ε4

≪δ ℓ
εT−δ,

provided that δ < 1/4, as is obvious from the corresponding Euler product.
Armed with this we see that the overall contribution to the above estimate for

E0(B) arising from ℓ,b1, . . . ,b4 for which ℓ > log(B)L is

≪ B log(B)
∑

ℓ>log(B)L
ℓ−3/2+εSℓ(1)≪ B log(B)1−L/2+ε,

which is satisfactory. In a similar fashion the overall contribution arising from
ℓ,b1, . . . ,b4 for which maxN(bj) > log(B)

D is

≪ B log(B)
∑

ℓ

ℓ−3/2+εSℓ(log(B)
D)≪ B log(B)1−D/4+ε,

which is also satisfactory. The statement of lemma 7.2 is now obvious.

8. Estimating U (T): an asymptotic formula

In view of our work in the previous section it remains to estimate N1(B),
which we have defined as the contribution to N(B) from values of bj, ℓ for which
(7.2) fails. Thus

N1(B) =
1

♯TNS(Q)tors

∑

m∈Σ
a∈Σ′

µ(a)
∑

ℓ6log(B)L

2∤ℓ

µ(ℓ)
∑

b1,...,b4∈D̂
N(bj)6log(B)

D

4∏

j=1
µ(bj)

∑

t∈D∩[1,B]
gcd(t,N(a))=1

N(
⋂
bj)|t

r
(

t

N(
⋂
bj)

)
U

(
B

t

)
.

Here we have inserted the condition t 6 B in the summation over t, since the
innermost summand is visibly zero otherwise. Whereas the previous section was
primarily concerned with a uniform upper bound for the sum U (T) defined in
(6.4), our work in the present section will revolve around a uniform asymptotic
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formula for U (T). The error term that arises in our analysis will involve the real
number

(8.1) η = 1− 1+ log(log(2))

log(2)
,

which has numerical value 0.086071 . . ..
Before revealing our result for U (T), we must first introduce some notation

for certain local densities that emerge in the asymptotic formula. In fact estimat­
ing U (T) boils down to counting integer points on the affine variety

(8.2) Lj(U,V ) = dj(S
2
j +T2

j ), (16 j6 4),

in A10Q , with U,V restricted to lie in a lattice depending on D. Thus the expected
leading constant admits an interpretation as a product of local densities. Given a
prime p > 2 and d,D as in (6.3), let

Nd,D(p
n) = ♯

{
(u, v, s, t)∈ (Z/pnZ)10,

Lj(u, v)≡ dj(s
2
j + t2j ) mod p

n

Dj | Lj(u, v)
}
.

The p­adic density on (8.2) is defined to be

(8.3) ωd,D(p) = lim
n→∞p−6n−λ1−···−λ4Nd,D(p

n),

when p > 2, where

(8.4) λ =
(
vp(d1), . . . , vp(d4)

)
, µ =

(
vp(D1), . . . , vp(D4)

)
.

When d,D are as in (6.3) and p > 2, we will set

(8.5) σp(d,D) = ωd,D(p).

Turning to the case p = 2, we define

(8.6) σ2(d,D) = lim
n→∞2−6nNd,D(2

n)

where

Nd,D(2
n) = ♯

{
(u, v, s, t)∈ (Z/2nZ)10,

Lj(u, v)≡ dj(s
2
j + t2j ) mod 2

n

2 ∤ gcd(u, v)

}
.

Finally, we let ωRm
(∞) denote the usual archimedean density of solutions to the

system of equations (8.2), with (u, v, s, t) ∈ Rm ×R8 and Rm defined in (6.2).
We are now ready to record our main estimate for U (T).
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Lemma 8.1. — Let d,D be as in (6.3). Then for any ε > 0 and T > 2 we have

U (T) = cd,D,Rm
T +O

(
(d1d2d3d4ℓ)

εT

log(T)η−ε
)
,

where

(8.7) cd,D,Rm
= ωRm

(∞)
∏

p∈P
σp(d,D).

Proof. — Our primary tool in estimating U (T) asymptotically is the subject of
allied work of the first two authors [BB2]. We begin by bringing our expression
for U (T) into a form that can be tackled by the main results there. Accord­
ing to (6.1) we may assume that the binary linear forms Lj are pairwise non­

proportional and primitive. Furthermore, it is clear that the region Rm ⊂ R2

defined in (6.2) is open, bounded and convex, with a piecewise continuously
differentiable boundary such that mjLj(u, v) > 0 for each (u, v) ∈Rm.

A key step in applying the work of [BB2] consists in checking that the “nor­
malisation hypothesis” NH2(d) is satisfied in the present context. In fact it is easy
to see that Lj,Rm will satisfy NH2(d) provided that

L1(U,V )≡ d1U (mod 4), L2(U,V )≡ V (mod 4).

The second congruence is automatic since L2(U,V ) = V . Recalling that
L1(U,V ) = U , we therefore conclude that NH2(d) holds if d1 ≡ 1 mod 4.
Alternatively, if d1 ≡ 3 mod 4, we make the unimodular change of variables
(U,V ) 7→ (−U,V ) to place ourselves in the setting of NH2(d). We leave the
reader to check that this ultimately leads to an identical estimate in the ensuing
argument. Thus, for the purposes of our exposition here, we may freely assume
that Lj,Rm satisfy NH2(d) in U (T).

We proceed by writing

(8.8) U (T) =U1(T) +U2(T) +U3(T),

where U1(T) denotes the contribution to U (T) from (u, v) such that 2 ∤ uv,
U2(T) denotes the contribution from (u, v) such that 2 ∤ u and 2 | v, and finally
U3(T) is the contribution from (u, v) such that 2 | u and 2 ∤ v. For each 16 i 6 3
we will establish an estimate of the form

(8.9) Ui(T) = ciT +O
(

(dℓ)εT

log(T)η−ε
)
,

where d = d1d2d3d4.



MANIN’S CONJECTURE FOR CHÂTELET SURFACES 41

Beginning with the case i = 1, we observe that U1(T) = S1(
p
T,d,ΓD), in the

notation of [BB2, eq. (1.9)]. An application of [BB2, theorems 3 and 4] with
(j, k) = (1,2) therefore reveals that (8.9) holds with

c1 = ωRm
(∞)ω1,d(2)

∏

p>2
ωd,D(p).

Here ωd,D(p) is given by (8.3) for p > 2 and ωRm
(∞) is defined prior to the

statement of the lemma. Finally for i ∈ {0,1} the corresponding 2­adic density
is given by

ωi,d(2) = lim
n→∞2−6n♯

{
(u, v, s, t)∈ (Z/2nZ)10,

Lj(u, v)≡ dj(s
2
j + t2j ) mod 2

n

u≡ 1 mod 4, v≡ i mod 2

}
.

Note that the notation introduced in [BB2] involves an additional subscript in
ωi,d(2) whose presence indicates which of the various normalisation hypotheses
the Lj,Rm are assumed to satisfy. Since we have placed ourselves in the context
of NH2(d) in each case, we have found it reasonable to suppress mentioning this
here. Let us now shift to a consideration of the sum U2(T) in (8.8), for which
one finds that U2(T) = S0(

p
T,d,ΓD). Applying [BB2, theorems 3 and 4] with

(j, k) = (0,2) therefore yields (8.9) with i = 2 and

c2 = ωRm
(∞)ω0,d(2)

∏

p>2
ωd,D(p).

Finally we turn to the sum U3(T) in (8.8). Making the unimodular change of
variables (U,V ) 7→ (V,U ), one now sees that U3(T) = S0(

p
T ;d,ΓD), where the

underlying region is Rm = {(u, v) ∈ R2, (v, u) ∈ Rm} and ΓD is defined as for
ΓD, but with the linear forms Lj(U,V ) replaced by Lj(V,U ). Thus an application
of [BB2, theorems 3 and 4] with (j, k) = (0,2) produces (8.9) with i = 3 and

c3 = ωRm
(∞)ω0,d(2)

∏

p>2
ωd,D(p) = ωRm

(∞)ω0,d(2)
∏

p>2
ωd,D(p).

Here the superscripts indicate that the local densities are taken with respect to
the linear forms Lj(V,U ).

We are now ready to bring together our various estimates for U1(T),U2(T)
and U3(T) in (8.8). This leads to the asymptotic formula in the statement of the
lemma, with leading constant

cd,D,Rm
= ωRm

(∞)
(
ω1,d(2) + ω0,d(2) + ω0,d(2)

)∏

p>2
ωd,D(p).
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The statement of the lemma easily follows with recourse to the definitions (8.5),
(8.6) of the local densities σp(d,D).

We will need to consider the effect of the error term in lemma 8.1 on the
quantity N1(B) that was described at the start of the section. Accordingly, let us
write

(8.10) N1(B) =N2(B) +E1(B),

where N2(B) denotes the overall contribution from the main term in lemma 8.1
and E1(B) denotes the contribution from the error term.

Lemma 8.2. — We have E1(B)≪ B log(B)1+L−η+ε, for any ε > 0.

Proof. — Inserting the error term in lemma 8.1 into our expression for N1(B),
we obtain

E1(B)≪ B log(B)ε
∑

ℓ6log(B)L

∑

b1,...,b4∈D̂
N(bj)6log(B)

D

∑

t6B
N(
⋂
bj)|t

r
(

t

N(
⋂
bj)

)
· 1

t log(2B/t)η

≪ B log(B)L+ε
∑

b1,...,b4∈D̂
N(bj)6log(B)

D

1

N(
⋂
bj)

∑

t6B1

r(t)

t log(2B1/t)
η ,

where we have written B1 = B/N(
⋂
bj), for ease of notation. Combining the

familiar (7.4) with partial summation, we therefore conclude that

E1(B)≪ B log(B)1+L−η+ε
∑

b1,...,b4∈D̂
N(bj)6log(B)

D

1

N(
⋂
bj)
≪ B log(B)1+L−η+ε.

This concludes the proof of the lemma.

Let ε ∈ {−1,+1} and |z| < 1. To proceed further we will need to calculate
expressions for the geometric series

(8.11) Sε(z) =
∑

n∈Z4
>0

εn1+n2+n3+n4zm(n),
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where m(n) = maxi 6=j{ni + nj}. We claim that

(8.12) S−1(z) =
(1− z)2

(1 + z)2(1 + z2)
, S+1(z) =

1+ 2z+6z2 +2z3 + z4

(1− z)4(1 + z)2
.

A similar calculation can be found in [HB, §8] and so we shall be brief. The key
idea is to observe that

Sε(z) = Sε0(z) + 2S
ε
1(z) + z2Sε(z),

where for any ε ∈ {−1,+1}, Sε0(z) (resp. Sε1(z)) denotes the contribution
from n such that min{n1, n2} = min{n3, n4} = 0 (resp. min{n1, n2} > 1 and
min{n3, n4} = 0). The calculation of Sε0(z) and Sε1(z) is straightforward and
readily confirms the expressions for Sε(z) in (8.12).

We now have the tools in place with which to produce a uniform upper bound
for the constant (8.7) appearing in lemma 8.1. This is achieved in the following
result.

Lemma 8.3. — Let ε > 0. Then we have

cd,D,Rm
≪ (D1D2D3D4)

ε

[D1D2, . . . ,D3D4]
,

where d,D are given by (6.3).

Proof. — Now it follows from [BB2, theorem 4] that ωRm
(∞) = π4Vol(Rm)≪

1. Similarly, it is easy to see that σ2(d,D)6 24, since for any A ∈ Z there are at
most 2n+1 solutions of the congruence s2 + t2 ≡ Amod 2n by [BB2, eq. (2.5)].
Thus we have

cd,D,Rm
≪
∏

p>2
|σp(d,D)|,

where σp(d,D) is given by (8.5). For p > 2 a further application of [BB2, theo­
rem 4] yields

σp(d,D) =
(
1− χ(p)

p

)4 ∞∑

ν1,...,ν4=0

χ(p)ν1+ν2+ν3+ν4

ρ(pmax{µ1,λ1+ν1}, . . . , pmax{µ4,λ4+ν4})
,

where ρ is the determinant given in (6.6) and λ,µ are given by (8.4). Using the
multiplicativity of ρ we may clearly write

∏

p>2
|σp(d,D)| = 1

ρ(D)

∏

p>2
|σ′p(d,D)|,
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where now

σ′p(d,D) =
(
1− χ(p)

p

)4 ∞∑

ν1,...,ν4=0

χ(p)ν1+ν2+ν3+ν4ρ(pµ1 , . . . , pµ4)

ρ(pmax{µ1,λ1+ν1}, . . . , pmax{µ4,λ4+ν4})
.

In view of (6.9), it will suffice to show that

(8.13)
∏

p>2
|σ′p(d,D)| ≪ (D1D2D3D4)

ε,

in order to complete the proof of the lemma.
Recall the definition (6.1) of ∆ and write D = D1D2D3D4. For any n ∈ Z4>0

let m(n) = maxi 6=j{ni + nj}. Then for p ∤ ∆D it follows from (6.7) that

σ′p(d,D) =
(
1− χ(p)

p

)4 ∞∑

ν1,...,ν4=0

χ(p)ν1+ν2+ν3+ν4

pm(ν)
.

In the notation (8.11) we deduce from (8.12) that

σ′p(d,D) =
(
1− 1

p

)4
S+1(1/p) =

1+ 2/p+6/p2 +2/p3 +1/p4

(1 + 1/p)2
,

if p≡ 1 mod 4, and

σ′p(d,D) =
(
1+

1

p

)4
S−1(1/p) =

(1− 1/p2)2
(1 + 1/p2)

,

if p≡ 3 mod 4. Thus σ′p(d,D) = 1+O(1/p2) for p ∤ ∆D.
Suppose now that p |∆D. Then (6.8) implies that

σ′p(d,D)≪
∞∑

ν1,...,ν4=0

1

pm(n)−m(µ)
≪ 1

where n = (max{µ1,λ1+ν1}, . . . ,max{µ4,λ4+ν4}). Putting this together with our
treatment of the factors corresponding to p ∤ ∆D, we are easily led to the desired
upper bound in (8.13). This therefore concludes the proof of the lemma.

9. The dénouement

Let ε > 0. Take D = 4 and L = 2η/3 in lemmas 7.2 and lemma 8.2. We
therefore deduce that

N(B) =N2(B) +O
(
B log(B)1−η/3+ε

)
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via (7.3) and (8.10), where N2(B) is equal to

B

♯TNS(Q)tors

∑

m∈Σ
a∈Σ′

µ(a)
∑

ℓ6log(B)2η/3

2∤ℓ

µ(ℓ)
∑

b1,...,b4∈D̂
N(bj)6log(B)

4

4∏

j=1
µ(bj)cd,D,Rm

∑

t∈D∩[1,B]
gcd(t,N(a))=1

N(
⋂
bj)|t

r(t/N(
⋂
bj))

t
.

Here cd,D,Rm
is given by (8.7), with d,D being given by (6.3) and Rm given by

(6.2). The following simple result is classical and allows us to carry out the inner
summation over t. The proof follows from a routine analysis of the correspond­
ing Dirichlet series and will not be presented here.

Lemma 9.1. — Let m ∈ Z>0 and let T > 1. Then for any ε > 0 we have

∑

t∈D∩[1,T]
gcd(t,m)=1

r(t)

t
= Cm log(T) +O(mε),

where

Cm = 2L(1,χ)
∏

p≡3 mod 4

(
1− 1

p2

) ∏

p|m
p≡1 mod 4

(
1− 1

p

)2
.

Making the obvious change of variables it now follows from lemma 9.1 that

∑

t∈D∩[1,B]
gcd(t,N(a))=1

N(
⋂
bj)|t

r(t/N(
⋂
bj))

t
=
ca,b log(B)

N(
⋂
bj)

+O(1),

where

ca,b =




CN(a) if gcd(N(

⋂
bj),N(a)) = 1,

0 otherwise.

In particular it is clear that ca,b =O(1). Applying lemma 8.3 it is easy to conclude
that the overall contribution to N2(B) from the error term in this estimate is

≪ B
∑

ℓ6log(B)2η/3
ℓε

∑

N(bj)6log(B)
4

(N(b1) · · ·N(b4))
ε

[N(b1)N(b2), . . . ,N(b3)N(b4)]

≪ B log(B)2η/3+ε
∏

p6log(B)4

S+1(1/p),
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in the notation of (8.11). This is therefore seen to be O(B log(B)2η/3+ε) via
(8.12).

In conclusion, we may write

N(B) =N3(B) +O
(
B log(B)1−η/3+ε

)
,

where now

N3(B) =
B log(B)

♯TNS(Q)tors

∑

m∈Σ
a∈Σ′

µ(a)
∑

ℓ6log(B)2η/3

2∤ℓ

µ(ℓ)
∑

b1,...,b4∈D̂
N(bj)6log(B)

4

ca,bcd,D,Rm

N(
⋂
bj)

4∏

j=1
µ(bj).

Here we have used (8.1) to observe that 1− η/3 > 2η/3. Finally, through a
further application of lemma 8.3, it is now a trivial matter to re­apply the proof
of lemma 7.2 to show that the summations over ℓ and bj can be extended to

infinity with error O(B log(B)1−η/3+ε). This therefore leads to the final outcome
that

N(B) = cB log(B) +O
(
B log(B)1−η/3+ε

)
,

for any ε > 0, where if cd,D,Rm
is given by (8.7) and d,D are given by (6.3), then

(9.1) c =
1

♯TNS(Q)tors

∑

m∈Σ
a∈Σ′

µ(a)
∞∑

ℓ=1
2∤ℓ

µ(ℓ)
∑

b1,...,b4∈D̂

ca,bcd,D,Rm

N(
⋂
bj)

4∏

j=1
µ(bj).

10. Jumping down

We shall now relate the constant c defined by equation (9.1) with the one
expected, as required to complete the proof of theorem 3.3.

10.1. Expression in terms of volumes. — Let us first recall that the adelic
set Tn(AQ) comes with a canonical measure which is defined as follows. The
canonical line bundle on ωTn is trivial [Pe3, lemme 3.1.12] and the invertible
functions on Tn are constant. Therefore up to multiplication by a constant there
exists a unique section ω̆Tn of ωTn which does not vanish. By [We, §2], this
form defines a measure ωTn,v

on Tn(Qv) for any place v of Q. According to
[Pe3, lemme 3.1.14], the product

∏
vωTn,v

converges and defines a measure on
Tn(AQ). By the product formula, this measure does not depend on the choice of
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the section ω̆Tn . Let us now describe explicitly how to construct such a section
ω̆Tn.

Notation 10.1. — Let Xn be the subscheme of A8Z = Spec(Z[Xj, Yj,16 j6 4])

defined by the equations (4.2). Then Yn is the product Xn × A2Z. We denote
by X

◦
n the complement of the origin in Xn. For three distinct elements j, k, l of

{1,2,3,4}, let us denote by Pj,k,l the quadratic form

∆j,knl(X
2
l +Y 2

l ) +∆k,lnj(X
2
j +Y 2

j ) +∆l,jnk(X
2
k +Y 2

k ).

Then we have the relations

ajPk,l,m + akPl,m,j + alPm,j,k + amPj,k,l = 0

bjPk,l,m + bkPl,m,j + blPm,j,k + bmPj,k,l = 0

whenever {j, k, l,m}= {1,2,3,4}. Since∆1,2 = 1, the scheme X
◦
n is the complete

intersection in A6Z {0} of the quadrics defined by P1,2,3 and P1,2,4. Therefore
the corresponding Leray form is a nonzero section of the canonical line bundle

ω
X ◦n,Q

. On A2Z, we may take the natural form ∂
∂X0
∧ ∂

∂Y0
. The exterior product

of these forms gives a form on an open subset of Yn, and by restriction a form
ω̆Tn on Tn which does not vanish. We denote by ωn,v the corresponding measure
on Yn(Qv) for v ∈ Val(Q).

Lemma 10.2. — Let m ∈ Σ and a ∈ Σ′. Let b = (bj)j∈{1,2,3,4} belong to D̂4.

Let ℓ be an odd integer. Let dj and Dj be defined by formula (6.3). Then for any

prime number p we have

ωn,p(D
3
m,a,b,ℓ,p) = βpp

−vp
(

N
(⋂

j bj

))
lim

n→+∞p−6nNd,D(pn),

where

βp =





1
2 if p = 2,

1− 1

p2
if p≡ 3 mod 4,

(
1− 1

p

)2
if p |∏j N(a+j ) and p≡ 1 mod 4,

0 if p |∏j N(a+j ) and p |∏j N(bj),

1 otherwise.
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Proof. — In the product XN(ab)m×A2Z, the domain D
3
m,a,b,ℓ,p decomposes as

a product. The projection on the eight coordinates Xj, Yj, where j ∈ {1,2,3,4},
gives an isomorphism from the complete intersection in A10Z −{0} given by the
equations

Lj(U,V ) = nj(X
2
j +Y 2

j )

for j ∈ {1,2,3,4} to the scheme X
◦
n . Moreover this isomorphism map

is compatible with the respective Leray forms. Since the measure defined
by the Leray measure coincides with the counting measure (see, for exam­
ple, [Lac, proposition 1.14]), the volume of the first component is equal to
limn→+∞ p−6nNd,D(pn). The measure on A2Z is the standard Haar measure.
On the other hand, the image of the domain in Z2p may be described as follows:

— It is Z[i]1+i (1 + i)Z[i]1+i if p = 2;
— It is Z2p pZ2p if p≡ 3 mod 4;

— It is the set of (x, y) ∈ Z2p such that p does not divide N(x + iy) if p |
∏
j N(a+j ), the prime p does not divide N(

⋂
j bj) and p≡ 1 mod 4;

— It is empty if p |∏j N(a+j ) and p |∏j N(bj);
— It is (

⋂
j bj)Zp[i] otherwise.

Therefore βpp
−vp

(
N
(⋂

j bj

))
is the volume of this component.

Lemma 10.3. — Let m ∈ Σ and a ∈ Σ′. Let b = (bj)j∈{1,2,3,4} belong to D̂4.

We put n = N(ab)m. Let ℓ be an odd integer. For any real number B, we have

ωn,∞(D3
m,a,b,ℓ,∞(B)) =

4L(1,χ)π4
∏4
j=1 nj

Vol(Rm)f (B),

where f (B) =
∫ log(B)
0 ueu du = B log(B)−B+1.

Proof. — The functions U and V on Yn = Xn×A2 are induced by functions
on Xn which we shall also denote by U and V . Let HF,∞ : Xn(R)→ R and
HE,∞ : R2→ R be defined by

HF,∞(R) = max(|U (R)|, |V (R)|) and HE,∞(x0, y0) = x20 + y20.

Then the domain D
3
m,a,b,ℓ,∞(B) is the set of (R, (x0, y0)) ∈Xn(R)×R2 such

that

HF,∞(R)> 1, HE,∞(x0, y0)> 1, and HF,∞(R)2HE,∞(x0, y0)6 B.
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Let us denot by vn,1(t) (resp. v2(t)) the volume of the set of R ∈Xn(R) (resp.
(x0, y0) ∈ R2) such that HF,∞(R) 6 t (resp. HE,∞(x0, y0) 6 t). Then the
functions vn,1 and v2 are monomials of respective degrees 2 and 1. Therefore the
volume of the domain D

3
m,a,b,ℓ,∞(B) is given by

vn,1(1)v2(1)
∫
t>1,u>1
t2u6B

2t dudt = vn,1(1)v2(1)f (B).

To compute the value of vn,1(1), we may use the change of variables x′j =
√
|nj|xj

and y′j =
√
|nj|yj. Since the Leray form may be locally described as

∣∣∣∣∣∣∣

∂P1,2,3
∂X1

∂P1,2,3
∂X2

∂P1,2,4
∂X1

∂P1,2,4
∂X2

∣∣∣∣∣∣∣

−1

dX3 dX4
4∏

j=1
dYj = (4∆3,4X1X2)

−1 dX3 dX4
4∏

j=1
dYj

we get that vn,1(1) = vε,1(1)
∏4
j=1 n
−1
j , where εj = sgn(nj) = sgn(mj). It follows

that vn,1(1) = (
∏4
j=1 nj)

−1π4Vol(Rm). We conclude the proof with the equali­
ties v2(1) = π = 4L(1,χ).

Proposition 10.4. — Let m ∈ Σ and a ∈ Σ′. Let b = (bj)j∈{1,2,3,4} belong to

D̂4. Let ℓ be an odd integer. Then

ca,bcd,D,R

N(
⋂
bj)

f (B) = Vol(D3
m,a,b,ℓ(B)),

where f (B) = B log(B)−B+1.

Proof. — This follows from lemmata 10.2 and 10.3: indeed, by [BB2, (2.8)],
we have ωRm

(∞) = π4Vol(Rm) and

∏

p∈P
σp(d,D) =

1
∏4
j=1 nj

∏

p∈P
lim

k→+∞
p−6kNd,D(pk)

where n =N(ab)m.

10.2. Moebius reversion

Proposition 10.5. — Let B be a real number and m belong to Σ. Then

Vol(Dm(B)) =
∑

a∈Σ′

∑

b∈D̂4

∑

ℓ odd

µ(a)µ(b)µ(ℓ)Vol(D3
m,a,b,ℓ(B)).
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Proof. — For any λ ∈ T∆(Q)∩Z∆, and any n ∈ Z4, the multiplication by λ de­
fines an isomorphism from YN(λ)n to Yn. Therefore it sends the canonical form
on the adelic set YN(λ)n(AQ) onto the canonical form on Yn(AQ). Therefore

the volume of D
3
m,a,b,ℓ(B) coincides with the volume of its image in Ym(AQ).

The formula then follows from lemma 5.28 and the proofs of propositions 5.32
and 5.34.

10.3. The constant

Proposition 10.6. — We have

CH (S)B log(B) =
1

♯TNS(Q)tors

∑

m∈Σ
Vol(Dm(B)) +O(B).

Proof. — The following proof is based upon the ideas of Per Salberger [Sal] as
described in [Pe3, §5.3].

We may identify ω−1S with O
S′(1) (see lemma 2.2). This enables us to define

an adelic metric on ω−1S by

‖y‖v =





min
(∣∣∣∣

y
X0(x)

∣∣∣∣ ,
∣∣∣∣

y
X1(x)

∣∣∣∣ ,
∣∣∣∣

y
X2(x)

∣∣∣∣ ,C
∣∣∣∣

y
X3(x)

∣∣∣∣ ,C
∣∣∣∣

y
X4(x)

∣∣∣∣
)

if v =∞,

min06i64

(∣∣∣∣
y

Xi (x)

∣∣∣∣
v

)
otherwise.

for x ∈ S′(Qv) and y in the corresponding fiber O
S′(1)x⊗Qv, with the constant

C defined in notation 3.2. This adelic metric defines the height used throughout
the text. Let v be a place of Q. We denote by ωH,v the measure on S(Qv)

corresponding to the adelic metric on ω−1S (see [Pe1, §2]). Let us recall that on
a split torus Gn

m, the form
∧n
j=1 ξ
−1
j dξj, where (ξj)16j6n is a basis of X∗(Gn

m),
up to sign does not depend on the choice of the basis. Therefore there is a
canonical Haar measure on TNS(Qv) which we shall denote by ωTNS,v

. Let m
be an element of Σ. The functions Hw defined in definition 5.18 may been seen
as the composite of the metrics on ω−1S with the natural morphism from the
universal torsor Tm to the line bundle ω−1S . Let U 6= ∅ be an open subset of
πm(Tm(Qv)). According to [Pe3, lemme 3.1.14] and [Pe2, §4.4], if s : U →
Tm(Qv) is a continuous section of πm, then the measure ωm,v is characterised by
the relation

(10.1)
∫

π−1m (U )
f (y)ωm,v(y) =

∫

U

∫

TNS(Qv)
f (t.s(x))Hv(t.s(x))ωTNS,v

(t)ωH,v(x)

for any continuous function f on π−1m (U ) with compact support.
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By lemmata 5.8 and 5.14, for any prime number p, Dm,p is a fundamental
domain in Tm(Qp) under the action of TNS(Qp) modulo TNS(Zp). Moreover,

by definition, we have that Dm,p is contained in π̂−1m (Tspl(Zp)) and thus Hp is
equal to 1 on Dm,p. Using (10.1), we get that

ωm,p(π
−1
m (U )∩Dm,p) = ωTNS,p

(TNS(Zp))ωH,v(U )

for any open subset U of πm(Dm,p).

The maps log ◦HF and log ◦HE define a map log∞ : Tm(R)→ Pic(S)∨⊗Z R
and using log∞×πm we get a homeomorphism

Tm(R)→ Pic(S)∨⊗Z R× πm(Tm(R)).
Let

T1
NS(R) = { t ∈ TNS(R), ∀χ ∈ Pic(S), |χ(t)| = 1}.

Then for any real number B and any open subset U of πm(Dm,∞(B), we get

ωm,∞(π−1m (U )∩Dm,∞(B))

=
∫

{ y∈Ceff(S)
∨, 〈ω−1S ,y〉6log(B)}

e〈ω
−1
S ,y〉 dy× ωTNS(T

1
NS(R))ωH,∞(U )

= α(S)ωTNS,∞(T1
NS(R))ωH,∞(U )f (B),

where Ceff(S)
∨ is the dual to the closed cone in Pic(S)⊗Z R generated by the

effective divisors.
Taking the product over all places of Q, we get the formula

(10.2)

ωm(Dm(B)) = α(S)ωTNS,∞(T1
NS(R))ωH,∞(πm(Tm(R)))

∫ log(B)

0
ueu du

×


∏

p∈P
Lp(1,Pic(S))ωTNS,p(TNS(Zp))




×


∏

p∈P
Lp(1,Pic(S))

−1ωH,p(πm(Tm(Qp)))


 .

By lemma 5.3, the map from TNS(Q) to
⊕

p∈P X∗(TNS)p is surjective. It
follows that

T1
NS(AQ) = (T1

NS(R)×
∏

p∈P
TNS(Zp)).TNS(Q)
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and we get an exact sequence

1−→ TNS(Q)tors −→ T1
NS(R)×

∏

p∈P
TNS(Zp)−→ T1

NS(AQ)/TNS(Q)−→ 1.

Combining this with formula (10.2) and the definitions of the adelic measures,
we get the formula

ωm(Dm(B)) = ♯TNS(Q)torsα(S)τ(TNS)ωH (πm(Tm(AQ)))
∫ log(B)

0
ueu du,

where τ(TNS) denotes the Tamagawa number of TNS. By Ono’s main theo­
rem [Ono2, §5], τ(TNS) is equal to ♯H1(Q,Pic(S)/♯X 1(Q,TNS) and using
Salberger’s argument [Sal, proof of lemma 6.17] and prop. 4.9, any point in
S(AQ)Br belongs to exactly ♯X 1(Q,TNS) sets of the form πm(Tm(AQ)). This
concludes the proof of the proposition.
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