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Abstract. — The distribution of rational points of bounded height on algebraic
varieties is far from uniform. Indeed the points tend to accumulate on thin subsets
which are images of non-trivial finite morphisms. The problem is to find a way to
characterise the points in these thin subsets. The slopes introduced by Jean-Benoît
Bost are a useful tool for this problem. These notes will present several cases in
which this approach is fruitful. We shall also describe the notion of locally accu-
mulating subvarieties which arises when one considers rational points of bounded
height near a fixed rational point.

Résumé. — La distribution des points rationnels de hauteur bornée sur les varié-
tés algébriques est loin d’être uniforme les points peuvent s’accumuler sur l’image
de variétés formant un ensemble mince. La difficulté est de pouvoir caractériser
les points de ces ensembles accumulateurs. Les pentes de la géométrie d’Arakelov
forment un outil utile pour attaquer cette problématique. Ces notes présente-
ront différents exemples où cette approche est efficace. On évoquera également
la question des sous-variétés localement accumulatrices qui apparaissent lorsqu’on
considère les points de hauteur bornée au voisinage d’un point rationnel.
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1. Introduction

For varieties with infinitely many rational points, one may equip the variety
with a height and study asymptotically the finite set of rational points with a
bounded height. The study of many examples shows that the distribution of
rational points of bounded height on algebraic varieties is far from uniform.
Indeed the points tend to accumulate on thin subsets which are images of non-
trivial finite morphisms. It is natural to look for new invariants to characterise
the points in these thin subsets. First of all, it is natural to consider all possible
heights, instead of one relative to a fixed line bundle. But the geometric analogue
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described in section 5 suggests to go beyond heights to find a property similar to
being very free for rational curves. The slopes introduced by Jean-Benoît Bost
give the tool for such a construction. In section 6, we describe the notion of
freeness which measures how free a rational point is. This section will present
several cases in which this approach is fruitful. In section 7, we also describe
its use in connection with the notion of locally accumulating subvarieties which
arises when one considers rational points of bounded height near a fixed rational
point.

The author thanks D. Loughran for a discussion which led to a crucial im-
provement of this paper.

2. Norms and heights

2.1. Adelic metric. — In this chapter, I am going to use heights defined by
an adelic metric, which I use in a more restrictive sense than in the rest of the
volume. In fact, an adelic metric will be an analogue of the notion of Riemannian
metric in the adelic setting. Let me fix some notation for the remaining of this
chapter.

Notation 2.1. — The letter K denotes a number field. The set of places of K
is denoted by Val(K), and its set of finite places by Val(K)f . Let w be a place of
K. We denote by Kw the completion of K at w. For an ultrametric place, Ow is
the ring of integers of Kw and mw its maximal ideal. Let v ∈ Val(Q) denote the
restriction of w to Q. We consider the map | · |w : Kw→ R>0 defined by

|x|w = |NKw/Qv
(x)|v

for x ∈ Kw, where NKw/Qv
denotes the norm map. The Haar measure on the

locally compact field Kw is normalized as follows:

a)
∫
Ow

dxw = 1 for a non-archimedean place w;

b) dxw is the usual Lebesgue measure if w is real;

c) dxw is twice the usual euclidean measure for a complex place.

Remark 2.2. — The map | · |w is an absolute value if w is ultrametric or real,
it is the square of the modulus for a complex place. This choice of notation
is motivated by the fact that |λ|w is the multiplier of the Haar measure for the
change of variables y = λx:

dyw = |λ|wdxw
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and we have the product formula: ∏
w∈Val(K)

|x|w = 1

for any x ∈K∗.

Terminology 2.3. — The varieties we consider are integral separated schemes
of finite type over a field. We shall say that a variety V is nice if it is smooth,
projective, and geometrically integral.

Notation 2.4. — Let X be a variety over K.. For any commutative K-algebra A,
we denote by XA the product X ×Spec(K) Spec(A) and by X(A) the set of A-
points which is defined as MorSpec(K)(Spec(A),X). For any place w of K, we
equip X(Kw) with the w-adic topology.

For the rest of this chapter, we denote by V a nice variety on the number
field K. The Picard group of V , denoted by Pic(V ), is thought as the set of
isomorphism classes of line bundles on V . A line bundle L is said to be big if a
multiple of its class may be written as a sum of an ample class and an effective
one.

Definition 2.5. — Let π : E→ V be a vector bundle on V . For any extension L
of K and any L-point P of V , we denote by EP ⊂ E(L) the L-vector space
corresponding to the fiber π−1(P) of π at P. In this text, a classical adelic norm
on E is a family (‖ · ‖w)w∈Val(K) of continuous maps

‖ · ‖w : E(Kw)→ R>0
such that:

(i) If w is non-archimedean, for any P ∈ V (Kw), the restriction ‖ · ‖w|EP is an

ultrametric norm with values in im(| · |w);
(ii) If Kw is isomorphic to R, then, for any P in V (Kw), the restriction ‖ · ‖w|EP

is a euclidean norm;

(iii) If Kw is isomorphic to C, then, for any P in V (Kw), there exists a positive
definite hermitian form ϕP on EP such that

∀y ∈ EP, ‖y‖w = ϕP(y, y);

(iv) There exists a finite set of places S ⊂ Val(K) containing the set of
archimedean places and a model E → V of E → V over OS such that for any
place w in Val(K) S and any P ∈ V (Ow)

EP = { y ∈ EP | ‖y‖w 6 1},
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where EP denotes the Ow-submodule of EP defined by E .

In the rest of this chapter, we shall say adelic norm for classical adelic norm.
An adelically normed vector bundle is a vector bundle equipped with an adelic
norm. We call adelic metric an adelic norm on the tangent bundle TV .

The point of using this type of norms is that you can do all the usual con-
structions:

Examples 2.6. — a) If E and F are vector bundles equipped with classical adelic
norms, then we can define adelic norms on the dual E∨, the direct sum E⊕ F
and the tensor product E⊗ F .

b) If E is a vector bundle equipped with a classical norm, then we define a
classical norm on the exterior product ΛmE in the following manner (see also
chapter II, §2.2). Let P ∈ V (Kw). If w is an ultrametric space, then let

EP = { y ∈ EP | ‖y‖w 6 1}.

The set EP is a Ow-submodule of EP of maximal rank. Then we take on ΛmEP
the norm defined by the module ΛmEP. In the archimedean case, we choose
the norm on ΛmEP so that if (e1, . . . , er) is an orthonormal basis of EP then the
family (ek1 ∧ ek2 ∧· · ·∧ ekm)16k1<k2<···<km6r is an orthonormal basis of ΛmEP.

c) It is possible to define pull-backs for morphisms of nice varieties over K.
d) If V = Spec(K), then we may consider a vector bundle on V as a K-vector

space. Let E be a K vector space of dimension r equipped with an adelic norm
(‖ · ‖)w∈Val(K). Then

E = { y ∈ E | ∀w ∈ Val(K)f ,‖y‖w 6 1}

is a projective OK module of constant rank r.
If r = 1, by the product formula, the product∏

w∈Val(K)
‖y‖w

is constant for y ∈ E {0}. So we can define

d̂eg(E) =−
∑

w∈Val(K)
log(‖y‖w).

Let P̂ic(Spec(K)) be the set of isomorphism classes of line bundles with an adelic
norm on Spec(K). Let r1 be the number of real places and r2 the number of
complex places. Let Val(K)∞ ⊂ Val(K) be the set of archimedean places. Let
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H ⊂ RVal(K)∞ be the hyperplane given by the equation
∑

w∈Val(K)∞ Xw = 0.
Then the map

x 7→ (log(|x|w))w∈Val(K)∞
induces a map from O∗K to H . Let T be the quotient of H by the image of this
map. The group T is a compact torus of dimension r1 + r2 − 1 and we get an
exact sequence

0−→ T −→ P̂ic(Spec(K))−→ Pic(Spec(OK))×R−→ 0

where a line bundle E equipped with an adelic norm (‖ · ‖w)w∈Val(K) is sent on

the pair ([E ], d̂eg(E)) where [E ] is the class of E in the ideal class group of OK.
For arbitrary rank r, we may define:

d̂eg(E) = d̂eg(Λr(E)).

2.2. Arakelov heights

Definition 2.7. — For any vector bundle E over V equipped with an adelic
norm, the corresponding logarithmic height is defined as the map hE : V (K)→ R
given by P 7→ d̂eg(EP), where EP is the pull-back of E by the map P : Spec(K)→
V . The corresponding exponential height is defined by HE = exp◦hE.

Remark 2.8. — If r = rk(E), we have that hE = hΛrE = hdet(E). Therefore we
do not get more than the heights defined by line bundles.

Example 2.9. — For any w ∈ Val(K), we may consider the map ‖·‖w : KN+1
w →

R defined by
‖(y0, . . . , yN )‖w = max

06i6N
|yi |w.

This does not define a classical norm on KN+1
w in the sense above, however it

defines a norm on the tautological line bundle as follows. Let w ∈ Val(K). The
fibre of the tautological OPNK

(−1) over a point P ∈ PN (Kw) may be identified

with the line corresponding to the point. By restricting ‖ · ‖w to these lines, we
obtain an adelic norm (‖ · ‖w)w∈Val(K) on OPNK

(−1) and by duality on OPNK
(1).

If (y0, . . . , yN ) ∈ KN+1 {0}, let P, also denoted by [y0 : . . . : yN ], be the cor-
responding point in PN (K). Then y = (y0, . . . , yn) ∈ O(−1)P and we get the
formula

HO(−1)(P) =
∏

w∈Val(K )
‖y‖−1w .
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Thus HO(1)(P) =
∏
w∈Val(K) ‖y‖w. In the case where K = Q and y0, . . . , yN are

coprime integers, we have ‖(y0, . . . , yN )‖v = 1 for any finite place v and the height
may be written as

HO(1)(P) = max
06i6N

|yi |

which is one of the naïve heights for the projective space.

Notation 2.10. — For any function H : V (K)→ R, any subset W ⊂ V (K) and
any positive real number B, we consider the set

WH6B = {P ∈ V (K) |H(P)6 B}.

Our aim is to study such sets for heights H as B goes to infinity. Let us
motivate this study with a few pictures of such sets.

Examples 2.11. — Figure 1 represents rational points of bounded height in the
projective plane. More precisely this drawing represents

{ (x, y) ∈Q2 |HO(1)(x : y : 1) < 40, |x|6 1 and |y|6 1}.

Figure 2 represents rational points of bounded height in the one-sheeted hyper-
boloid defined by the equation xy = zt in P3

Q:

{P = (x, y) ∈Q2 |HO(1)(xy : 1 : x : y)6 50, |x|6 1 and |y|6 1}.

This quadric is the image of the Segre embedding

([u1 : v1], [u2 : v2]) 7−→ [u1u2 : v1v2 : u1v2 : v1u2]

and therefore isomorphic to the product P1
Q × P1

Q. The last picture represents

F 1. Projective plane F 2. Hyperboloid
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rational points of bounded height on the sphere:

{P = [x : y : z : t] ∈ P3(Q) |HO(1)(P)6 B and x2 + y2 + z2 = t2 }.

F 3. The sphere

Proposition 2.12. — If L is a big line bundle and H a height relative to L, then
there exists a dense open subset U ⊂ V for Zariski topology such that for any B ∈
R>0, the set U (K)H6B is finite.

Proof. — It is enough to prove the result for a multiple of L. Thus we may
assume that we can write L as E+A where E is effective and A very ample. Tak-
ing U as the complement of the base locus of E, and choosing a basis (s0, . . . , sN )
of Γ(V,L), we get an embedding

φ :U −→ PN
K .

Using the height of example 2.9 on PN
K , we get that

H(φ(x))
H(x)

=
∏

w∈Val(K)
max

06i6N
‖si (x)‖w.

Thus there exists a constant C ∈ R>0 such that

∀x ∈ V (K), H(φ(x))6 CH(x).

Using Northcott theorem (see [No1], [No2]), the set of points of bounded height
in the projective space is finite. A fortiori, the set U (K)H6B is finite.

The height depends on the metric, but in a bounded way:
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Proposition 2.13. — Let H and H ′ be heights defined by adelic norms on a line
bundle L then the quotient H/H ′ is bounded: there exist real constants 0 < C < C′
such that

∀P ∈ V (K), C 6
H ′(P)
H(P)

< C′.

Proof. — The quotient of the norms ‖·‖
′
w

‖·‖w
induces a continuous map from the

compact set V (Kw) to R>0. Thus it is bounded from below and above. Moreover
the adelic condition imposes that the norms coincide for all places outside a finite
set.

3. Accumulation and equidistribution

In this chapter, I shall first consider the distribution of rational points of
bounded height on the variety.

3.1. Sandbox example: the projective space. — First, I have to explain what
I mean by distribution. Let us for example consider the picture in figure 4.
We have selected a “simple” open subset W in Pn(R), which is drawn in grey.P2

Q

Emmanuel Peyre (Institut Fourier) Diophantine statistics 19/6/2017 5 / 6

F 4. Open subset

We may then study asymptotically the proportion of rational points of bounded
height in this open set. More precisely, one may formulate the following ques-
tion:
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Question 3.1. — Does the quotient

](W ∩Pn(Q))H6B
]Pn(Q)H6B

.

have a limit as B goes to +∞ and how can we interpret its value?

Similarly, let us fix some integer M > 0 and consider the reduction modulo
M of the points. More precisely, let A be a commutative ring. The set of A-
points of the projective space, denoted by Pn(A), is the set of morphisms from
Spec(A) to Pn

Z. This defines a covariant functor from the category of rings to
the category of sets. A (n + 1)-tuple (a0, . . . , an) in An+1 is said to be primitive
if the generated ideal (a0, . . . , an) is A itself; this is equivalent to the existence
of (u0, . . . , un) ∈ An+1 such that

∑n
i=0 uiai = 1. The group of invertible ele-

ments acts by multiplication on the set of primitive elements in An+1. Then
the Z/MZ points of the projective space Pn

Z may be described as the orbits for
the action of (Z/MZ)∗ on the set of primitive elements in (Z/MZ)n+1. For any
point P in Pn(Q), we may choose homogeneous coordinates [y0 : . . . : yn] so
that y0, . . . , yn are coprime integers. The reduction modulo M of P, is the point
of Pn(Z/MZ) defined by the primitive element (y0, . . . , yn), where y denotes the
reduction modulo M of the integer y. This define a map

rM : Pn(Q)−→ Pn(Z/MZ).

This description of the reduction map generalises easily to any quotient of a
principal ring. Then for any subset W of Pn(Z/MZ), we may consider the
question

Question 3.2. — Does the quotient

](r−1M (W ))H6B
]PN (Q)H6B

converges as B goes to infinity?

With the adelic point of view, we can see questions 3.1 and 3.2 as particular
cases of the following more general question:

Question 3.3. — Let K be a number field. Let

PN (AK) =
∏

w∈Val(K)
Pn(Kw)
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be the adelic projective space and let f : PN (AK) → R be a continuous function.
Does the quotient

SB(f ) =
1

]Pn(K)H6B

∑
P∈Pn(K)H6B

f (P)

have a limit as B goes to infinity?

The answer is positive and we shall state it as a proposition:

Proposition 3.4. — With the notations introduced in question 3.3,

SB(f )−−−−→B→+∞

∫
PnK(AK)

f µPn

where µPn is the probability measure given as the product
∏
w∈Val(K) µw where µw is

the borelian probability measure on Pn(Kw) defined by:
— If w is a non-archimedean place, let πk : Pn(Kw) → Pn(Ow/m

k
w) be the

reduction modulo mk
w then we equip Pn(Kw) with the natural probability

measure:

µw(π
−1
k (W )) =

]W
]Pn(Ow/m

k
w)

for any subset W of Pn(Ow/m
k
w);

— If w is archimedean, let π : Kn+1
w {0}→ Pn(Kw) be the natural projection.

Than µw is defined by

µw(U ) =
Vol(π−1(U )∩B‖·‖w(1))

Vol(B‖·‖w(1))
,

for any borelian subset U in Pn(Kw), where B‖·‖w(1) denotes the ball of radius
1 for ‖ · ‖w.

As a consequence, we may give a precise answer to questions 3.1 and 3.2:

Corollary 3.5. — If W is an open subset of Pn(AK) such that µPn(∂W ) = 0 then

](W ∩Pn(K))H6B
]Pn(K)H6B

−−−−→
B→+∞

µPn(W ).

Sketch of the proof of proposition 3.4 for K = Q. — Take an open cube C =∏n
i=0]ai , bi [ where ai and bi are real numbers with ai < bi for i ∈ {0, . . . , n}, an

integer M > 1 and an element P0 ∈ Pn(Z/MZ). We imbed Rn in Pn(R) and
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consider C as an open subset of the projective space. We choose a primitive
element y0 in (Z/MZ)n+1 representing P0. We then want to estimate

]{P ∈ Pn(Q) |H(P)6 B,P ∈ C and πM (P) = P0 }

=
1
2

∑
λ∈(Z/MZ)∗

]{ y ∈ Zn+1 | y primitive,‖y‖∞ 6 B, y ∈ π−1(C )

and y≡ λy0 [M]}

=
1
2

∑
d>0

λ∈Z/MZ∗

µ(d)]{ y ∈ (dZ)n+1 {0} | ‖y‖∞ 6 B, y ∈ π−1(C )

and y≡ λy0 [M]}

where µ : N {0}→ {−1,0,1} denotes the Möbius function. As y0 is primitive,
the set we obtained in the sum is empty if M and d are not coprime. Otherwise
it is the intersection of the translation of a lattice of covolume (dM)n+1, the cone
π−1(C ) and the ball B‖·‖∞(B). Thus its cardinal may be approximated by

Vol(π−1(C )∩B‖·‖∞(1))Bn+1

(dM)n+1

with an error term which is bounded up to a constant by
(
B
d + 1

)n
. Up to an

error term left to the reader, we get that the sum is equivalent to

1
2
Vol(π−1(C )∩B‖·‖∞(1))× φ(M)

Mn+1∏
p|M

(
1− 1

pn+1

) × 1
ζQ(n+1)

Bn+1.

In this product, the term

φ(M)

Mn+1∏
p|M

(
1− 1

pn+1

)
is ](Pn(Z/MZ))−1. In particular, this implies that

1
2
Vol(B‖·‖∞(1))/ζQ(n+1)

is the limit of ]Pn(Q)H6B/B
n+1 as B goes to infinity.
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3.2. Adelic measure. — By choosing different norms on the anticanonical line
bundle, and thus different heights on a variety, one realizes that the measure
which gives the asymptotic distribution as B goes to infinity may be directly
defined from the adelic norm on ω−1V , exactly as a Riemannian metric defines a
volume form. This construction in fact applies to any nice variety equipped with
an adelic metric.

Construction 3.6. — Let V be a nice variety with a rational point. We fix an
adelic norm (‖ · ‖w)w∈Val(K) on ω−1V = det(TV ). The formula for the change of
variables (see [We, §2.2.1]) proves that the local measures

(1)

∥∥∥∥∥ ∂
∂x1
∧ ∂
∂x2
∧ · · · ∧ ∂

∂xn

∥∥∥∥∥w dx1,w dx2,w . . .dxn,w ,

where (x1, . . . , xn) :Ω→ Kn
w is a local system of coordinates defined on an open

subset Ω of V (Kw), does not depend on the choice of coordinates; therefore
by patching together these measures, we get a measure ωV,w on V (Kw), which
induces a probability measure

µV,w =
1

ωV,w(V (Kw))
ωV,w.

Then the product
µV =

∏
w∈Val(K)

µV,w

is a probability measure on the adelic space V (AK).

Remark 3.7. — For the projective space, this construction gives the right
asymptotic distribution for the points of bounded height. So it is natural to try
to generalise to other varieties. To state precisely our question, we introduce the
counting measure defined by the set of points of bounded height.

Definition 3.8. — For any non-empty subset W ⊂ V (K) we define, for B a real
number bigger than the smallest height of a point of W ,

δWH6B
=

1
]WH6B

∑
P∈WH6B

δP,

where δP denotes the Dirac measure at P on the adelic space.

Naïve equidistribution 3.9. We shall say that the naïve equidistribution (NE)
holds if the measure δV (K)H6B converges to µV as B goes to infinity for the weak
topology.
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Remark 3.10. — In other words, the naïve equidistribution holds if for any
continuous function f : V (AK)→ R, one has the convergence∫

V (AK)
f δV (K)H6B −−−−→B→+∞

∫
V (AK)

f µV .

This equidistribution may seem to be overoptimistic and one may wonder
whether there exists any case besides the projective space for which it is valid.

Theorem 3.11. — If V is a generalized flag variety, that is a quotient G/P where G
is a linear algebraic group over K and P a parabolic subgroup of G, then (NE) is
true.

Example 3.12. — Grassmannian are examples of such flag varieties. Any
smooth quadric with a rational point is a generalized flag variety for the orthogo-
nal group. Therefore any smooth quadric with a rational point satisfies the naive
equidistribution.

Tools of the proof of theorem 3.11. — To prove this result one may use harmonic
analysis on the adelic space G/P(AK) and apply Langland’s work on Eisenstein
series (see [Pe1, corollaire 6.2.17], [Lan]).

So we have solved the case of hypersurfaces of degree 2. In higher degrees,
the equidistribution, when the number of variables is large enough, is an easy
consequence of the very general result of Birch [Bir] based on the circle method.
His result implies the following theorem:

Theorem 3.13. — Let V ⊂ Pn
Q be a smooth hypersurface of degree d such that

V (AQ) 6=∅ with n > (d− 1)2d , then V satisfies (NE).

Remark 3.14. — In fact, it applies to all the cases considered by Birch, that
is for smooth complete intersection of m hypersurfaces of the same degree d if
n > m(m+1)(d− 1)2d−1.

3.3. Weak approximation. — The first indications of the naïveté of (NE) ap-
pear when one considers obvious consequences of it. Let us recall the definition
of weak approximation:

Definition 3.15. — A nice variety V satisfies weak approximation if the rational
points of V are dense in the adelic space V (AK).
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Remarks 3.16. — a) Let V be a nice variety with a rational point. If it satisfies
the naïve equidistribution, then it satisfies weak approximation and therefore
V (K) is dense for Zariski topology.

This follows from the fact that for any real number B, the support of the mea-
sure δV (K)H6B in V (AK) is contained in the closure V (K) of the set of rational

points. But the support of the measure µV is the whole adelic space. Thus (NE)
implies that V (K) = V (AK). Let then U be a non-empty open subset for Zariski
topology. If V has an adelic point, the implicit function theorem ensures that
for any place w, the set U (Kw) is a non-empty open subset of V (Kw). If V (K)
is dense in V (Kw), it follows that U contains a rational point and the rational
points are Zariski dense.

b) So (NE) has to fail for any variety in which the rational points are not
Zariski dense. In that case, one may consider the desingularisation of the closure
of the rational points for Zariski topology and ask wether the principle holds
for that variety. But even such a modified question fails because examples are
known where rational points are dense for Zariski topology but the variety does
not satisfy weak approximation.

Convention 3.17. — From now on, we assume that V is a nice variety in which
the set of rational points V (K) is Zariski dense.

About weak approximation, we are going to give a quick overview of the
Brauer–Manin obstruction, which was introduced by Y. Manin in [Ma] to ex-
plain the previously known counterexamples to weak approximation (see also
[Pe3] for a survey).

Construction 3.18. — For a nice variety V , we define its Brauer group as the
cohomology group

Br(V ) =H2
ét(V,Gm)

which defines a contravariant functor from nice varieties to the category of
abelian groups. In the case of the spectrum of a field of characteristic 0, we get
the Brauer group of L, which is defined in terms of Galois cohomology by

Br(L) =H2(Gal(L/L),Gm),

where L is an algebraic closure of L. Class field theory gives for any place w an
injective morphism

invw : Br(Kw)−→Q/Z
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which is an isomorphism if w is not archimedean, so that the sequence

(2) 0→ Br(K)→
⊕

w∈Val(K)
Br(Kw)

∑
w invw−−−−→Q/Z→ 0

is an exact sequence. Therefore we may define a pairing

Br(V )×V (AK)−→Q/Z

(α, (Pw)w∈Val(K)) 7−→
∑

w∈Val(K)
invw(α(Pw))

where α(Pw) denotes the pull-back of α by the morphism Spec(Kw)→ V defined
by Pw. Let us denote by Br(V )∨ the group Hom(Br(V ),Q/Z) then the above
pairing may be seen as a map

η : V (AK)−→ Br(V )∨.

If P ∈ V (K) then the fact that (2) is a complex implies that∑
w∈Val(K)

invw(α(P)) = 0;

in other words, η(P) = 0. By arguments of continuity, one gets that

V (K)⊂ V (AK)
Br = {P ∈ V (AK) | η(P) = 0}.

The element η(P) is called the Brauer–Manin obstruction to weak approximation
at P.

Remark 3.19. — Let K be an algebraic closure of K and V = VK. Since we
assume V to have a rational point, there is an exact sequence

0→ Br(K)→ ker(Br(V )→ Br(V ))→H1(Gal(K/K),Pic(V ))→ 0.

Also the exponential map gives an exact sequence

H1(VC,OV )→ Pic(V )→H2(V (C),Z)→
H2(VC,OV )→ Br(V )→H3(V (C),Z)tors

Thus assuming that H i (V,OV ) = {0} for i = 1 and i = 2, which is automatic
for Fano varieties by Kodaira’s vanishing theorem, we get first that the geometric
Picard of the variety is finitely generated. Thus the action of the Galois group on
the Picard group is trivial over a finite extension of the ground field. Therefore,
in this case, the groups H1(Gal(K/K),Pic(V )) and Br(V ) are finite. Hence the



BEYOND HEIGHTS 17

cokernel of the morphism Br(K)→ Br(V ) is finite, which implies that V (AK)
Br

is open and closed in the adelic space.

If one hopes that the Brauer–Manin obstruction to the weak approximation is
the only one, then it is natural to define the measure induced by the probability
measure µV on the space on which the obstruction is 0. Since we assume that the
variety V has a rational point, the space V (AK)

Br is not empty. In that setting,
we may give the following definition:

Definition 3.20. — The measure µBrV is defined as follows: for any Borelian
subset W of V (AK)

µBrV (W ) =
µV (W ∩V (AK)

Br)
µV (V (AK)

Br)
.

The following question then takes into account the Brauer–Manin obstruction
to weak approximation:
Global equidistribution 3.21. We shall say that global equidistribution holds if
the measure δV (K)H6B converges weakly to µBrV as B goes to infinity.

Potential counterexamples to global equidistribution have been known for
quite a long time (see for example [Se2]), but Y. Manin was the first to con-
sider accumulating subsets, which we will study at length in the next section.

3.4. Accumulating subsets. — In fact, the support of the limit of the measure
δV (K)H6B is, in general, much smaller than the closure V (K) of the set of rational

points. Let me give a few examples.

3.4.1. The plane blown up in one point. — The blowing up of the projective
plane at the point P0 = [0 : 0 : 1] may be described as the hypersurface V in the
product P2

Q×P1
Q defined by the equation XV = YU , where X,Y,Z denote the

coordinates on the first factor and U,V the coordinates on the second one. Let π
be the projection on the first factor. Then E = π−1(P0) is an exceptional divisor
on V and the second projection pr2 defines an isomorphism from E to P1

Q.
Let U be the complement of E in V . The projection π induces an isomorphism
from U to P2

Q {P0}. As an exponential height, we may use the map

H : V (Q)−→ R>0

(P,Q) 7−→HO
P2Q

(1)(P)
2HO

P1Q
(1)(Q).
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This example as been used as a sandbox case for the study of rational points of
bounded height by many people, including J.-P Serre [Se2, §2.12], as well as
V. V. Batyrev and Y. I. Manin [BM, proposition 1.6] and the results may be
summarized as follows:

Proposition 3.22. — On the exceptional line, the number of points of bounded
height is given by

]E(Q)H6B ∼
2

ζQ(2)
B2

as B goes to infinity, whereas on its complement it is given by

]U (Q)H6B ∼
8

3ζQ(2)2
B log(B)

as B goes to infinity.

Remark 3.23. — Thus there are much more rational points on the exceptional
line E than on the dense open subset U . In fact, since the points on the excep-
tional line are distributed as on P1

Q, we get that the measure δV (Q)H6B converges

to µE for the weak topology.

On the other hand, if we only consider the rational points on the open set U ,
we get the right limit:

Proposition 3.24. — The measure δU (Q)H6B converges to µV for the weak topol-
ogy as B goes to infinity.

Remarks 3.25. — a) Let W be an infinite subset of V (K). If the measure
δWH6B

converges to µV for the weak topology, then, for any strict closed subva-

riety F in V , we have that

](W ∩F(Q))H6B = o(]WH6B)

since we have µV (F(AK)) = 0. Thus any strict closed subset with a strictly
positive contribution to the number of points has to be removed to get equidis-
tribution.

b) It may seem counterintuitive that by removing points, we get a measure
with a larger support. But this comes from the fact that we divide the counting
measure on U by a smaller term. From this example, it follows that it is natural
to consider only the points outside a set of “bad” points. The problem is that
this set of bad points might be quite big.



BEYOND HEIGHTS 19

3.4.2. The principle of Manin. — The principle suggested by Manin and his
collaborators in the founding papers [BM] and [FMT] is that, on Fano varieties,
there should be an open subset on which the points of bounded height behave
as expected. Let us give a precise expression for this principle, in a slightly more
general setting. Since this principle deals with the number of points of bounded
height rather than their distribution, we have to introduce another normalisation
of the measures to get a conjectural value for the constant, which is defined as a
volume.

Notation 3.26. — Let NS(V ) be the Néron-Severi group of V , that is the
quotient of the Picard group by the connected component of the neutral ele-
ment. We put NS(V )R =NS(V )⊗Z R and denote by Ceff(V ) the closed cone in
NS(V )R generated by the classes of effective divisors. We write Ceff(V )∨ for the
dual of the effective cone in the dual space NS(V )∨R:

Ceff(V )∨ = { y ∈NS(V )∨R | ∀x ∈ Ceff(V ), 〈y, x〉> 0}.

To construct the constant, we shall restrict ourselves to a setting in which the
local measures can be normalized using the action of the Galois group of K on
the Picard group. Therefore, we make the following hypothesis:

Hypotheses 3.27. — From now on, V is a nice variety, which satisfies the fol-
lowing conditions:

(i) A multiple of the class of ω−1V is the sum of an ample divisor and a divisor
with normal crossings;

(ii) The set V (Q) is Zariski dense;

(iii) The groups H i (V,OV ) are {0} if i ∈ {1,2};
(iv) The geometric Brauer group Br(V ) is trivial and the geometric Picard

group Pic(V ) has no torsion;

(v) The closed cone Ceff(V ) is generated by the classes of a finite set of effective
divisors.

Remark 3.28. — The first four conditions are satisfied by Fano varieties, that is
varieties for which ω−1V is ample. The fifth has been conjectured by V. V. Batyrev
for these varieties [Ba].

Construction 3.29. — We choose a finite set S of places containing the
archimedean places and the places of bad reduction for V . Let L be a finite
extension of K such that the Picard group Pic(VL) is isomorphic to the geometric
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Picard group Pic(V ). We assume that S contains all the places which ramify
in the extension L/K. With this assumption, for any place w ∈ Val(K) S,
let Fw be the residual field at w. The Frobenius lifts to an element (w,L/K) in
Gal(L/K) which is well defined up to conjugation (see [Se1, §1.8]). Then we
can consider the local factors of the L function defined by the Picard group:

Lw(s,Pic(V )) =
1

det(1− ]F−sw (w,L/K)|Pic(V ))
,

where s is a complex number withℜ(s) > 0. If the real part of s satisfiesℜ(s) > 1,
then a theorem of Artin [Art, Satz 3] implies that the eulerian product

LS(s,Pic(V )) =
∏

w∈Val(K) S
Lw(s,Pic(V ))

converges. For w ∈ Val(K), we define λw = Lw(1,Pic(V ))−1 if w does not belong
to S and λw = 1 otherwise. We put t = rk(Pic(V )). It follows from the Weil’s
conjecture proven by P. Deligne [Del] that the product of measures

(3) ωV =
lims→1(s− 1)tLS(s,Pic(V ))√

dK
dim(V )

∏
w∈Val(K)

λwωV,w

converges (see [Pe1, §2.1]), where dK denotes the absolute value of the discrim-
inant of K. We may then define the Tamagawa–Brauer–Manin volume of V as

τBr(V ) = ωV (V (AK)
Br).

We also introduce the constant

α(V ) =
1

(t− 1)!

∫
C1

eff(V )∨
e−〈ω

−1
V ,y〉dy

which is a rational number under the hypothesis 3.27 (v), and the integer

β(V ) = ](Br(V )).
Then the empirical constant associated to the chosen metric on V is the constant

C(V ) = α(V )β(V )τBr(V ).

Batyrev–Manin principle 3.30. Let V be a variety which satisfies the condi-
tions 3.27. We say that V satisfies the refined Batyrev–Manin principle if there
exists a dense open subset U of V such that

(4) ]U (K)H6B ∼ C(V )B log(B)t−1

as B goes to infinity.
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For equidistribution, we may introduce the following notion
Relative equidistribution 3.31. Let W be an infinite subset of V (K), we say that
the points of W are equidistributed in V if the counting measure δWH6B

converges
to µV .

Remark 3.32. — The relation between the Batyrev-Manin principle as stated
here and the equidistribution may be described as follows: if the principle holds
for a given open subset U for any metric on V , then the points of U (K) are
equidistributed on V . Conversely if the principle holds for a particular choice of
the metric and an open subset U and if the points of U (K) are equidistributed,
then the principle holds for any choice of the metric (see [Pe1, §3]).

3.4.3. The counterexample of V. V. Batyrev and Y. Tschinkel. — This example
was described in [BT1]. We consider the hypersurface V in P3

Q×P3
Q defined by

the equation
3∑
i=0

XiY
3
i = 0.

We denote by OV (a, b) the restriction to V of the line bundle pr∗1(OP3Q
(a))⊗

pr∗2(OP3Q
(b)) Then the anticanonical line bundle on V is given by OV (3,1) and

therefore the function H : V (Q)→ R defined by

H(P,Q) =HO
P3Q

(1)(P)
3HO

P3Q
(1)(Q)

defines a height relative to the anticanonical line bundle on V . Let π be the
projection on the first factor and for any P ∈ P3(Q), let VP = π−1(P) the fibre
over P. If P = [x0 : x1 : x2 : x2] with

∏3
i=0 xi 6= 0, then the fibre VP is a smooth

cubic surface which contains 27 projective lines. The complement UP of these
27 lines is defined over Q. For cubic surfaces, it is expected that the Batyrev-
Manin principle holds for any dense open subset contained in UP. For any P as
above, let tP = rk(Pic(VP)) be the rank of the Picard group of the cubic surface
corresponding to P. Thus, according to (4), one expects that for any U ⊂ UP,
one has

]U (Q)H6B ∼ C(VP)B log(B)
tP−1

as B goes to infinity. One can show that tP ∈ {1,2,3,4} and that tP = 4 if all
the quotients xi /xj are cubes, that is if P is in the image of the morphism c from

P3
Q to P3

Q defined by [x0 : x1 : x2 : x3] 7→ [x30 : x31 : x32 : x33]. But, on the
other hand, by Lefschetz theorem, the application (a, b) 7→ OV (a, b) induces an
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isomorphims of groups from Z2 to Pic(V ). Therefore, the principle of Batyrev
and Manin would be satisfied for V if and only if there existed an open subset U
of V such that

]U (Q)H6B ∼ C(V )B log(B)
as B goes to infinity. Since the rational points in the image of c are dense for
Zariski topology, the open set U has to intersect an open set UP for some P.
Thus the principle can not hold for both the cubic surfaces and V itself.

Remarks 3.33. — a) In fact, V. V. Batyrev and Y. Tschinkel proved in [BT1]
that any dense open set of V contains too many rational points over Q(j), where
j is a primitive third root of unity. More recently, C. Frei, D. Loughran, and
E. Sofos proved in [FLS] that it is in fact the case over any number field.

b) One may look at the set

T = {P ∈ P3(Q) | rk(Pic(VP)) > 1}
that is the set of points for which the rank of the Picard group is bigger than the
generic one. As we are about to explain,

]TH6B = o(]P3(Q)H6B)

which means that most of the fibers have a Picard group of rank one.

This example led to the introduction of a new kind of accumulating subsets,
namely thin subsets (see J.-P. Serre [Se3, §3.1]).

Definition 3.34. — Let V be a nice variety over the number field K. A subset
T ⊂ V (K) is said to be thin, if there exists a morphism of varieties φ : X → V
which satisfies the following conditions:

(i) The morphism φ is generically finite;

(ii) The morphism φ has no rational section;

(iii) The set T is contained in the image of φ.

Remarks 3.35. — a) If E is an elliptic curve, the group E(K)/2E(K) is a finite
group. Let (Pi )i∈I be a finite family of points of E(K) containing a representant
for each element of E(K)/2E(K). Then the morphism φ :

∐
i∈I E → E which

maps a point P in the i-th component to Pi +2P gives a surjective map onto the
sets of rational points. This shows that E(K) itself is thin.

b) In the example of Batyrev and Tschinkel, as T is a thin subset in P3(Q), it
follows from [Se2, §13, theorem 3] that

]TH6B = o(]P3(Q)H6B).
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The set

VT =
⋃
P∈T

VP(Q)

is itself a thin subset of V (Q). Conjecturally we may hope that

](V (Q) VT )H6B ∼ CH (V )B log(B)

as B goes to infinity. In other words, the points on the complement of the accu-
mulating subset should behave as expected. We shall explain below how a result
of this kind was proven by C. Le Rudulier for a Hilbert scheme of the projective
plane [Ru]. More recently, T. Browning and D.R. Heath-Brown [BHB] proved
that for the hypersurface of P3

Q×P3
Q defined by the equation

3∑
i=0

XiY
2
i

the number of points on the complement of an accumulating thin subset behaves
as expected.

c) The work of B. Lehmann, S. Tanimoto and Y. Tschinkel [LTT] shows how
common varieties with accumulating thin subsets probably are.

d) We may assume that φ is a proper morphism. Then φ(X(AK))⊂ V (AK) is
a closed subset. Under mild hypotheses, T. Browning and D. Loughran proved
in [BL] that

µV (φ(X(AK))) = 0.

Thus the existence of such a thin subset with a positive contribution to the
asymptotic number of points is an obstruction to the global equidistribution
of points.

3.4.4. The example of C. Le Rudulier. — C. Le Rudulier considers the Hilbert
scheme V which parametrizes the points of degree 2 in P2

Q [Ru]. To describe this
scheme, let us consider the scheme Y defined as the second symmetric product
of P2

Q:

Y = Sym2(P2
Q) = (P2

Q)2/S2.

More precisely, we may define it as the projective scheme associated to the ring
of invariant polynomials Q[X1,Y1,Z1,X2,Y2,Z2]

S2 . Let us denote by ∆Y the
image of the diagonal ∆ in Y . The scheme Y is singular along this diagonal and
V may be seen as the blowing up of Y along the diagonal ∆Y . From this point
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of view, the variety V is a desingularization of Y . Let us define P as the blowing
up of (P2

Q)2 along the diagonal. We get a cartesian square

P //

π̃
��

(P2
Q)2

π
��

�

V
b
// Y

We put ∆V = b−1(∆Y ) and U0 = V ∆V . Then the set

T = π̃(P(Q))∩U0(Q)

is a Zariski dense thin accumulating subset. More precisely, C. Le Rudulier
proves the following theorem:

Theorem 3.36 (C. Le Rudulier). — a) Asymptotically the points of T give a
positive contribution to the total number of points:

]TH6B
]U0(Q)H6B

−−−−→
B→+∞

c

for a real number c > 0. But for any strictly closed subset F ⊂ V , one has

](F(Q)∩T)H6B = o(U0(Q)H6B).

b) On the complement of T , one has

](U0(Q) T)H6B ∼ C(V )B log(B)

as B→ +∞.

Remarks 3.37. — a) It follows from this theorem that the set T is a thin subset
which is not the union of accumulating subvarieties but which gives a positive
contribution to the total number of points of bounded height on the variety. In
the adelic space the closure of the points of T are contained in a closed subset F
with a volume µV (F) equal to 0. Therefore this thin accumulating subset is an
obstruction to the equidistribution of the points on V .

b) Hopefully, in general, if ω−1V is “big enough”, there should be a natural
“small” subset T such that the points of bounded height on W = V (K) T
should behave as expected. The problem is to describe this subset T .

c) W. Sawin recently proved that, in the example described in theorem 3.36,
the empiric formula [Pe4, formule empirique 6.13] is false [Sa]. However the
approach described below involving several heights might still be correct.
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d) In these notes, so far, we did not go into the distribution of the rational
points of bounded height for a height associated to an ample line with a class
which is not a multiple of ω−1V . The description in that case requires to introduce
more complicated measures and we refer the interested reader to the work of V. V.
Batyrev and Y. Tschinkel (see [BT2]).

4. All the heights

4.1. Heights systems. — A natural approach to select the points we wish to
keep is to introduce more invariants. The rest of this chapter is devoted to such
invariants. Let us start by considering other heights. Traditionally, most authors
in arithmetic geometry consider only one height given by a given ample line
bundle. However there are no reason to do so, and we may consider the whole
information given by heights. In order to do this, let us introduce the notion of
family of heights.

Definition 4.1. — Let L and L′ be adelically normed line bundles on a nice
variety V . Let (‖ · ‖w)w∈Val(K) be the adelic norm on L. We say that L and L′

are equivalent if there is an integer M > 0, a family (λw)w∈Val(K) in R(Val(K))
>0 ,

such that its support {w ∈ Val(K) | λw 6= 1} is finite and
∏
w∈Val(K) λw = 1, and

an isomorphism of adelically normed line bundles from the line bundle L⊗M

equipped with the adelic norm (λw‖ · ‖
⊗M
w )w∈Val(K) to the adelically normed line

bundle L′⊗M . We denote by H (V ) the set of equivalence classes of adelically
normed line bundles. It has a structure of group induced by the tensor product
of line bundles, we call this group the group of Arakelov heights on V .

Remark 4.2. — The height introduced in definition 2.7 depends only on the
equivalence class of the adelically normed line bundle det(E). From that point
of view, the group H (V ) does parametrize the heights on V . If V satisfies weak
approximation and has an adelic point, then two distinct elements of H (V )
define heights which differ at least at one rational point.

Example 4.3. — If V is a point, that is the spectrum of a field, then the height
defines an isomorphism from H (V ) to R>0. Indeed, it is surjective and if we
take a representative L of an element of H (Spec(K)) of height 1, then let y be
an nonzero element of L. The unique morphism of vector spaces from K to L
which maps 1 to y then induces an isomorphism from K equipped with the adelic
norm (‖y‖w | · |w)w∈Val(K) to L.
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Definition 4.4. — A system of Arakelov heights on our nice variety V is a section
s of the forgetful morphism of groups

o :H (V )−→ Pic(V ).

Such a system defines a map

h : V (K)→ Pic(V )∨R

constructed as follows: for any P ∈ V (K) and any L ∈ Pic(V ), the real number
h(P)(L) is the logarithmic height of the point P relative to the Arakelov height
s(L) (see definition 2.7). We shall call h(P) the multiheight of the point P. By
abuse of language, a function of the form P 7→ exp(〈u,h(P)〉) for some u ∈
Pic(V )R will also be called an exponential height on V .

Since Pic(V ) is finitely generated, we may fix a system of Arakelov heights on
our nice variety V . We still assume that V satisfies the hypotheses 3.27. Then
one can study the multiheights of rational points.

Lemma 4.5. — Under the hypotheses 3.27, there is a dense open subset U of V and
an element c ∈ Pic(V )∨R such that

∀P ∈U (K), h(P) ∈ c+Ceff(V )∨.

Proof. — Let L1, . . . ,Lm be line bundles the classes of which generate the effec-
tive cone in Pic(V )R. We may assume that they have nonzero sections. Let U be
the complement of the base loci of these line bundles. Let i ∈ {1, . . . ,m}. Then
choosing a basis (s0, . . . , sNi

) of the space of sections of the line bundle Li , we

get a morphism from U to a projective space P
Ni
K . For any place w, there exist a

constant cw such that ‖sj(x)‖w 6 cw for any x ∈ V (Kw) and any j ∈ {0, . . . ,Ni}.
Moreover we may take cw = 1 outside a finite set of places. Therefore there exists
a constant C such that for any x ∈U (K) there is an j ∈ {0, . . . ,Ni} with

0 <
∏

w∈Val(K)
‖sj(x)‖6 C.

It follows that there exists a constant ci ∈ R such that hi (P) > ci for any P ∈
U (K). The statement of the lemma follows.

Remark 4.6. — Let C◦eff(V )∨ be the interior of the dual cone Ceff(V )∨. This
lemma shows that it is quite natural to count the number of rational points in
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V (K ) such that h(P) ∈DB for some compact domain DB ⊂ C◦eff(V )∨ depending
on a parameter B ∈ R>0. In the following, we shall consider domains of the form

DB =D1 + log(B)u

where u ∈ C◦eff(V )∨ and D1 is a compact polyhedron in Pic(V )∨R. In other
words, we get a finite number of conditions of the form

aB6H(P)6 bB
where H is an exponential height on V , in the sense of definition 4.4, and a, b ∈
R>0.

Notation 4.7. — We define the measure ν on Pic(V )∨R as follows: for a compact
subset D of Pic(V )∨R,

ν(D) =
∫
D
e〈ω
−1
V ,y〉dy ,

where the Haar measure dy on Pic(V )∨R is normalised so that the covolume of
the dual of the Picard group is one.

For any domain D ⊂ Pic(V )∨R, we define

V (K)h∈D = {P ∈ V (K) | h(P) ∈D }

With these notations, we may ask the following question:

Question 4.8. — We assume that our nice variety V satisfies the conditions of the
hypothesis 3.27. Let D1 be a compact polyhedron of Pic(V )∨R and u be an element
of the open cone C◦eff(V )∨. For a real number B > 1, let DB = D1 + log(B)u. Can
we find a “small” subset T so that we have an equivalence of the form

(5) ](V (K)−T)h∈DB
∼ β(V )ν(D1)ωV (V (AK)

Br)B〈ω
−1
V ,u〉

as B goes to infinity?

Remarks 4.9. — a) One may note that in the right hand side of (5), one may

use ν(DB) = ν(D1)B
〈ω−1V ,u〉.

b) One can easily imagine variants of this question. For example, some meth-
ods from analytic number theory give much better error terms if ones use smooth
functions instead of characteristic functions of sets. So it would be natural to
consider a smooth function φ : Pic(V )∨R → R with compact support and ask
whether we have∑

P∈V (K)
φ(h(P)−Bu)∼ β(V )

∫
Pic(V )∨R

φdνωV (V (AK)
Br)B〈ω

−1
V ,u〉
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as B goes to infinity.
c) Let us compare formula (5) with formula (4). First we may note that

ν({y ∈ Ceff(V )∨ | 〈y,ω−1V 〉6 log(B)})∼ α(V )B log(B)t−1

Thus using remark 4.9 a), formula (4) may be seen as integrating formula (5)
over

DB = {y ∈ Ceff(V )∨ | 〈y,ω−1V 〉6 log(B)}.

In this context in which we consider all the possible heights, we may consider
again the question of the global equidistribution.
Global equidistribution 4.10. We shall say that the global equidistribution holds
for h if, for any compact polyhedron D1 in Pic(V )∨R and any u in the open cone
C◦eff(V )∨, the measure δV (K)h∈DB

converges weakly to µBrV as B goes to infinity.

Note that the expected limit probability measure is the same as before and
does not depend on u.

4.2. Compatibility with the product. — A positive answer to question 4.8 is
compatible with the product of varieties in the following sense:

Proposition 4.11. — Let V1 and V2 be nice varieties equipped with system of
heights which satisfy the conditions 3.27. If the sets V1(K)−T1 and V2(K)−T2
satisfy the equivalences (5) for any compact polyhedra, then this is also true for the
product

(V1(K)−T1)× (V2(K)−T2),
equipped with the induced system of heights.

If these varieties satisfy the global equidistribution 4.10, then so does their product.

Proof. — We put Wi = Vi (K) − Ti for i ∈ {1,2}. Let W be the product
W1 ×W2. For i ∈ {1,2}, we denote by hi the multiheight on Vi , and fix a
compact polyhedron Di,1 in Pic(Vi )

∨
R, as well as an element ui ∈ C◦eff(Vi )

∨. Let
us first note that by [Ha, exercise III.12.6], the natural morphism induced by
pull-backs Pic(V1)×Pic(V2)→ Pic(V ) is an isomorphism which maps the prod-
uct Ceff(V1)×Ceff(V2) onto Ceff(V ) and (ω−1V1

,ω−1V2
) on ω−1V (see [Ha, exercise

II.8.3]). Therefore we identify these groups and consider D1 = D1,1 ×D2,1
as a subset of Pic(V )∨R and u = (u1, u2) as an element of C◦eff(V )∨. If we put
DB = log(B)u+D1, we have

]Wh∈DB
= ](W1)h1∈D1,B

× ](W2)h2∈D2,B
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and the result follows from the compatibility of equivalence with products. To
extend the result to an arbitrary polyhedra D , we find domains D ′ and D ′′

which are finite unions of products of polyhedra with disjoint interiors such that
D ′ ⊂ D ⊂ D ′′ and use the fact that the equivalence is valid for such a finite
union.

Similarly for the equidistribution, it is enough to count the points in open
subsets U of V (AK)

Br which are of the form U = U1×U2 for open subsets U1
and U2 such that ωV1(∂U1) = 0 and ωV2(∂U2) = 0. But in that case,

](W ∩U )h∈DB
= ](W1 ∩U1)h1∈D1,B

× ](W2 ∩U2)h2∈D2,B

and we may conclude in the same way.

It is worthwile to note that this proof is much simpler than the proof of the
compatibility of the principle of Batyrev and Manin for products (see [FMT,
§1.1]). It illustrates the fact that in question 4.8 we cut out the “spikes” where
the heights of the components of the points are very different.

4.3. Lifting to versal torsors. — Following Salberger [Sal], we shall now ex-
plain how the question lifts naturally to versal torsors (see also [Pe2]). Let us
start by a quick reminder on versal torsors. In our setting, the geometric Picard
is supposed to be without torsion, thus we shall restrict ourselves to torsors under
algebraic tori.

Definition 4.12. — Let L be a field and Ls be a separable closure of L. For any
scheme X over L, we write X s for the product X ×Spec(L) Spec(Ls).

An algebraic group G over a field L is said to be of multiplicative type if there
exists an integer n such that Gs is isomorphic to a closed subgroup of Gn

m,Ls . A
torus T over L is an algebraic group T over L such that Ts is isomorphic to a
power Gn

m,Ls of the multiplicative group.
The group of characters of an algebraic group G, denoted by X∗(Gs) is the

group of group homomorphisms from Gs to Gm,Ls . If G is of multiplicative
type, it is a finitely generated Z-module. If G is a torus, it is a free Z-module of
rank n. In both cases, it is equipped with an action of the absolute Galois group
of L, that is GL =Gal(Ls/L), which splits over a finite separable extension of L.

Conversely, let us define a Galois module L over L (resp.a Galois lattice L over L)
as a finitely generated Z-module (resp.a free Z-module of finite rank) equipped
with an action of the Galois group GL which splits over a finite extension. To
a Galois module L, we may associate the monoid algebra Ls[L] and thus the
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algebraic variety

T = Spec(Ls[L]GL)

equipped with the algebraic group structure induced by the coproduct ∇ on
Ls[L] defined by∇(λ) = λ⊗ λ for any λ ∈ L. This algebraic group is an algebraic
group of multiplicative type, which we shall say to be associated to L.

Example 4.13. — As a basic example, the group of characters of Gn
m,L is Zn

with a trivial action of the Galois group and the torus associated with Zn is
isomorphic to Gn

m,L.

Remark 4.14. — These constructions are functorial and we get a contravariant
equivalence of categories between the category of tori (resp. groups of multi-
plicative type) over L and the category of Galois lattices (resp. Galois modules)
over L.

Notation 4.15. — We shall denote by TNS the torus associated to the Galois
lattice Pic(V ).

We are going to use pointed torsors, that is torsors in the category of pointed
schemes.

Definition 4.16. — Let G be an algebraic group over a field L and let X be
an algebraic variety over L. A G-torsor T over X is an algebraic variety T over L
equipped with a faithfully flat morphism π : T→ X and an action µ :G×T→ T
of G such that π ◦ µ = π ◦ pr2 and the morphism given by (g, y) 7→ (gy, y) is an
isomorphism from G×T to T ×X T .

A pointed variety over L is a variety X over L equipped with a chosen rational
point x ∈ X(L). A pointed torsor over the pointed variety X is a torsor T over X
equipped with a rational point t ∈ T(L) such that π(t) = x.

Example 4.17. — For any line bundle L over X , we can define a Gm,L torsor
by considering L× which is the complement of the zero section in L. Conversely
for a nice variety X , given a Gm torsor T , we get a line bundle by considering
the contracted product T×Gm,L A1

L which is the quotient (T×A1
L)/Gm,L where

Gm,L acts by t.(y, a) = (t.y, t−1.a). We get in that way the equivalence of category
between the line bundles and the Gm,L-torsors over X .
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4.3.1. Versal and universal torsors. — The versal torsors were introduced by J.-
L. Colliot-Thélène and J.-J. Sansuc in the study of the Brauer-Manin obstruction
for Hasse principle and weak approximation (see [CTS1], [CTS2], and [CTS3])
. For a survey on versal torsors, the reader may also look at [Pe3].

In topology, universal coverings for an unlaceable pointed space X answers a
universal problem for coverings: it is a pointed covering E over X such that for
any pointed covering C→ X there exists a unique morphism E→ C of pointed
spaces over X (see [Bki, TA IV, §1, no3]). We could in fact restrict ourselves
to Galois coverings, that is connected coverings with an automorphism group
which acts transitively on the fibre over the marked point of X . Fixing a point in
the space X is necessary to guarantee the unicity, up to a unique isomorphism,
of the universal covering. The universal torsor is the answer to a similar problem
for torsor under groups of multiplicative type.

Definition 4.18. — Let L be a field and L be an algebraic closure of L. Let X be
a smooth and geometrically integral variety over L with a rational point such that
all invertible functions on X are constant: Γ(X,Gm) = L∗. We see X as a pointed
space by fixing a rational point x ∈ X(L). Then a universal torsor is a pointed
torsor Tu over the pointed space X under a group of multiplicative type Tu such
that for any pointed torsor T over X under a group of multiplicative type T, there
is a unique morphism of group φ : Tu→ T and a unique morphism ψ : Tu→ T
over X , compatible with the actions of Tu and T and the marked points.

Remarks 4.19. — a) If such a torsor exists it is by definition unique up to a
unique isomorphism.

b) Using the cohomological characterisation of universal torsors [CTS3, §2],
one may show that the extension of scalars of a universal torsor is also a universal
torsor.

c) Let us assume that there exists a universal torsor Tu. Let x be the chosen
point of X . For any line bundle L over X , we can consider the Gm-torsor L× and
fix a point in its fibre over x. Thus there exists a unique morphism of pointed
torsors from Tu to L× compatible with a morphism Tu → Gm. By duality, it
corresponds to a homomorphism of groups from Z to the group of characters of
Tu. Moreover if L⊗n is isomorphic to the trivial line bundle, the image of n ∈ Z
in X∗(Tu) is trivial. Therefore, over Ls, we get a homomorphism of groups from
Pic(X s) to X∗(Ts

u), which is compatible with the Galois actions.
Conversely, for any torsor T under a multiplicative group T and any group

character χ : T→Gm, the contracted product T ×T Gm,L is a Gm torsor over
L. We get a homomorphism of groups from X∗(Ts) to Pic(X s). It is possible
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to deduce from such arguments that the character group of Tu over Ls has to be
isomorphic to Pic(X s).

Construction 4.20. — Let us now explain how it is possible to construct such
universal torsors. We shall assume again hypothesis 3.27, and fix a rational point
x ∈ V (K). In that case the group Tu is canonically isomorphic to the Néron-
Severi torus TNS. Over K, the construction of remark 4.19 c) gives an isomor-
phism of TNS-torsor from a universal torsor Tu to the product L×1 ×V · · ·×V L×t
where ([L1], . . . , [Lt]) is a basis of Pic(V ). But the unicity of the universal torsor
shows that, by marking Tu with a point in the fibre of x, there exists no non-
trivial automorphism of Tu as a pointed torsor over X . By descent theory, Tu
comes from a unique pointed TNS-torsor Tu over X .

Remark 4.21. — In particular, as a non-pointed TNS-torsor over V , the torsor
Tu does not depend on the choice of the point x in V (K). This is not true
over K.

Definition 4.22. — A versal torsor over V is a K-form of the TNS-torsor Tu.

Remark 4.23. — The automorphisms of Tu as a TNS-torsor over V are given
by the action of TNS(K). It follows that if we fix a rational point, and there-
fore a universal torsor Tu, the versal torsors are classified by the group of Galois
cohomology H1(K,TNS) and we get a map from V (K) to H1(K,TNS) which
maps a point to the class of the corresponding universal torsor. In general this
cohomology group is infinite. But Colliot-Thélène and Sansuc proved in [CTS2,
proposition 2] that the image of the map is finite. In other words, there exists
a finite family (Ti )i∈I of non-isomorphic versal torsors over V with a rational
point such that

V (K) =
∐
i∈I

πi (Ti (K)),

where πi : Ti → V is the structural morphism.

4.3.2. Structures on versal torsors. — Let Tu be a universal torsor over V . By
definition of the torsors, there is a natural isomorphism

Tu×V Tu −̃→ TNS×Tu

which shows that the pull-back of Tu to Tu is trivial. But from the universality
of Tu it is possible to show that the pull-back of any pointed torsor under a group
of multiplicative type is trivial [CTS3, proposition 2.1.1]. By this proposition,
we also have that invertible functions on Tu are constant: Γ(Tu,Gm) = K∗.
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Moreover, by [Pe2, lemme 2.1.10], ωTu is isomorphic to the pull-back of ωV .
We get the following assertion concerning volume forms, that is non-vanishing
sections of ωTu .

Proposition 4.24. — Let T be a versal torsor over V . Then up to multiplication
by a constant there exists a unique volume form on T .

Construction 4.25. — Let T be a versal torsor on V with a rational point. By
the proposition, we may take a non-vanishing section ω of ωT . For any place w
of K, the expression∣∣∣∣∣

〈
ω,

∂
∂x1
∧ ∂
∂x2
∧ · · · ∧ ∂

∂xn

〉∣∣∣∣∣w dx1,w dx2,w . . .dxn,w ,

defines a local measure, which, like in construction 3.6, we may patch together
to get a measure ωTu,w on Tu(Kw).

We then choose a finite set S of places containing all the places of bad re-
duction for V , the archimedean places, as well as the ramified places in a exten-
sion splitting the action of the Galois group on the Picard group of V . More-
over, we may assume that any isomorphism class of versal torsors with a rational
point has a model over the ring of S-integers OS and that the projection maps
T(Kw) → V (Kw) are surjective for w 6∈ S ([CTS3, lemme 3.2.3]). Let us fix
such a model T of our versal torsor T . Then for any place w outside a finite set
of places, one can prove (see the proof of theorem 4.33 below) that

ωT,w(T (Ow)) = Lw(1,Pic(V ))−1ωV,w(V (Kw)).

Using the arguments of construction 3.29, it follows that we can define the prod-
uct of the measures

ωT =
1√

dK
dimT

∏
w∈Val(K)

ωT,w.

on the adelic space T(AK). By the product formula, this measure does not
change if we multiply ω by a nonzero constant. Thus we may call ωT the canon-
ical measure on the adelic space of the versal torsor T .

Example 4.26. — For a smooth hypersurface V of degree d in PN
K , with N > 4,

any versal torsor is isomorphic to the cone over the hypersurface in AN+1
K {0},

and the canonical measure is given by the Leray form [Le, chapter IV, §1]. If F
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is a homogeneous equation for V , then locally the measure may be defined as

ωT,w =
1

|F(1, x1, . . . , xN )|w
dx1,w . . .dxN,w .

Let us now turn to the lifting of heights to versal torsors. We have to take into
account that the rank of the Picard group at a place w depends on w.

Construction 4.27. — We choose a system of representants (Ti )i∈I of the iso-
morphism classes of versal torsors over V which have a rational points over K.
For each i ∈ I , we also fix a point yi ∈ Ti (K). Let L be a Galois extension of K
which splits the Picard group of V . Let sL : Pic(VL)→H (VL) be a system of
heights over L. We also fix a place w0 of K. Let i ∈ I . For any line bundle L
over Pic(VL) there exists a morphism ϕL : Ti → L× over V , which is compatible
with the character χL : (TNS)L→Gm,L defined by L. This morphism is unique
up to multiplication by a constant. Let us choose a representant (‖ · ‖v)v∈Val(L)
of sL([L]) defining the exponential height HL on V (L). For any v ∈ Val(L), we
may then consider the map from Ti (Lv) to R given by

y 7−→ ‖y‖Lv =


‖ϕL(y)‖v
‖ϕL(yi )‖v

if v 6 | w0
‖ϕL(y)‖v
‖ϕL(yi )‖v

HL(πi (yi ))
−
[Lv:Kw0]
[L:K] otherwise.

This map does not depend on the choice of ϕL nor on the choice of the repre-
sentant of sL([L]) and satisfies

∀y ∈ Ti (L), HL(πi (y)) =
∏

v∈Val(L)
(‖y‖Lv )

−1.

Moreover it satisfies the formula ‖t.y‖Lv = |χL(t)|v‖y‖Lv , for t ∈ TNS(Lv) and y in
Ti (Lv). We get a map

h̃v : Ti (Lv)−→ (Pic(VLv
))∨R

defined by the relations

‖y‖Lv = q
−〈h̃v(y),[L]〉
v

for y ∈ Ti (Lv) and [L] ∈ Pic(VLv
), with qv the cardinal of the residue field Fv

if v is ultrametric, qv = e for a real place and qv = e2 for a complex one. Let
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us now write Vw for VKw
. Using the inclusion Ti (Kw)→

∏
v|wTi (Lv) and the

projection pr :
∏
v|wPic(VLv)

∨
R→ Pic(Vw)

∨
R, we define a map

h̃w : Ti (Kw)−→ Pic(Vw)
∨
R.

so that the diagram

(6)

∏
v|wTi (Lv) // ∏v|wPic(VLv

)∨R
1

[L:K] pr
��

Ti (Kw)

OO

h̃w // Pic(VKw
)∨R

commutes.
If L is line bundle over X and if (‖ · ‖v)v∈Val(L) is an adelic norm for the

extension of scalars LL, then it induces an adelic norm on L defined by

∀w ∈ Val(K),∀y ∈ L(Kw),‖y‖w =

∏
v|w
‖y‖v


1

[L:K]

.

Therefore the system of heights sL induces a system of heights s : Pic(V ) →
H (V ). For any point y ∈ Ti (K) we have the formula

h(πi (y)) =
∑

w∈Val(K)
log(qw)h̃w(y).

These construction enables us to lift a system of heights to versal torsors with
a rational point.

4.3.3. Lifting of the asymptotic formula. — We now wish to express the asymp-
totic formula (5) at the torsor level. The fibre of the projection map πi : Ti (K)→
V (K) is either empty or a principal homogeneous space under TNS(K). There-
fore we now need to use the description of the rational points of the torus TNS,
as described in the work of Ono ([Ono1] and [Ono2]).

Definition 4.28. — Let T be an algebraic torus over K. We denote by W (T)
the torsion subgroup of T(K). By an abuse of notation, for any place w of K,
we denote by T(Ow) the maximal compact subgroup of T(Kw). Let us put
KT =

∏
w∈Val(K)T(Ow) which is a compact subgroup of T(AK). We also have

that W (T) = KT ∩ T(K) For any place w, there is an injective morphism of
groups

logw : T(Kw)/T(Ow)−→ X∗(Tw)
∨
R
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so that for any t ∈ T(Kw) and any χ ∈ X∗(Tw), we have q〈logw(t),χ〉w = |χ(t)|w. For
almost all places w the image of logw coincide with X∗(Tw)

∨. In fact, by [Ono1,
theorem 4] and [Ono2, §3] there exists a finite set of places ST such that the
induced map gives an exact sequence

(7) 1−→ T(OST )−→ T(K)−→
⊕

w∈Val(K)−ST
X∗(T)∨w −→ 0

and there is an exact sequence

(8) 1−→W (T)−→ T(OST )−−−→logST

⊕
w∈ST

X∗(Tw)
∨
R,

where logST is the map defined by taking logw for w ∈ ST . For any w ∈ ST ,

the extension of scalars defines a linear map πw : X∗(Tw)
∨
R→ X∗(T)∨R. We then

consider the linear map π =
∑

w∈ST log(qw)πw:⊕
w∈ST

X∗(Tw)
∨
R −→ X∗(T)∨R.

By the product formula, the image of T(OST ) is contained in ker(π). The image
M = π(T(OST

)) is a lattice in the R-vector space ker(π). Let (e1, . . . , em) be a
basis for this lattice and let

∆ =
{ m∑
i=1

ti ei , (ti )16i6m ∈ [0,1[
m
}
.

By construction, ∆ is a fundamental domain for the action of T(OST
) on ker(π).

Construction 4.29. — By increasing the finite set of places S introduced in
construction 3.6, we assume that we may take STNS

= S for the finite set of
places considered in the last definition. In particular, we get that outside of S,
the map

TNS(Kw)−→ Pic(Vw)
∨

is surjective. For each of the chosen torsors we may also fix models Ti over OS.
We may further assume that, for a family of line bundles which generates Pic(VL)
and is invariant under the action of the Galois group Gal(L/K), the heights are
given by models of the corresponding line bundles and that the maps ϕL from
the chosen versal torsors to a line bundle L of the family are defined over OS. We
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may also assume that the adelic metrics outside S are compatible with the action
of the Galois group. For any i in I , we define the set ∆(Ti ) as

{ y ∈ Ti (AK) | pr((h̃w(yw))w∈S) ∈ ∆ and ∀w 6∈ S, yw ∈Ti (Ow)},
where pr is a linear projection on ker(π).

Lemma 4.30. — For any place w 6∈ S, the projection map Ti (Ow)→ V (Kw) is
surjective and the map h̃w is characterized by the following two conditions:

(i) We have the relation h̃w(t.y) = − logw(t) + h̃w(y) for any t ∈ TNS(Kw) and
any y ∈ Ti (Kw);

(ii) The integral points of Ti are given by

Ti (Ow) = { y ∈ Ti (Kw) | h̃w(y) = 0}.

Proof. — Relation (i) follows from the formula for ‖t.y‖Lw and the description in
(ii) from the fact that all maps are compatible with the models. By the choice
of S, for any place w 6∈ S, the projection πi : Ti (Kw) → V (Kw) is surjective.
Moreover the functions ‖·‖Lw are compatible with the action of the Galois group.
By the diagram (6), it follows that h̃w(y) belongs to Pic(Vw)

∨. Since the map
logw is surjective, we may find in any fibre an element y such that h̃w(y) = 0. By
(ii), this element is an integral point. Since the map πi : Ti (Ow)→ V (Kw) is
surjective, conditions (i) and (ii) characterize h̃w.

Theorem 4.31. — The set ∆(Ti )∩Ti (K) is a fundamental domain for the action
of TNS(K) modulo W (TNS). In other words, it satisfies the following conditions:

(i) We have Ti (K) = ∪t∈TNS(K)t.
(
∆(Ti )∩Ti (K)

)
;

(ii) For any t ∈ TNS(K), we have(
∆(Ti )∩Ti (K)

)
∩ t.

(
∆(Ti )∩Ti (K)

)
6=∅

if and only if t ∈W (TNS).
(iii) For t ∈W (TNS), we have

t.
(
∆(Ti )∩Ti (K)

)
= ∆(Ti )∩Ti (K).

Proof. — Let y ∈ Ti (K). By the lemma, for any w 6∈ S, h̃w(y) ∈ Pic(Vw)
∨.

Thus, using the exact sequence (7), we get an element t ∈ TNS(K) such that
t.y ∈ Ti (Ow) for w 6∈ S. Using the exact sequence (8) and the definition of ∆,
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there is an element t′ in TNS(OS) such that (t′t).y ∈ ∆(Ti ). Assertions (ii) and
(iii) follow from the definition of ∆.

Notation 4.32. — For any i ∈ I , we define the map

h̃ : ∆(Ti )−→ Pic(V )∨R

by the relation h̃(y) = π
(
(h̃w(yw))w∈S

)
.

Theorem 4.33. — We assume conditions 3.27. Let W be a borelian subset of
V (AK). Let D be a borelian subset of Pic(V )∨R. Then

β(V )ν(D)ωV (W ∩V (AK)
Br)

=
1

W (TNS)
∑
i∈I

ωTi ({ y ∈ ∆(Ti )∩ π
−1
i (W ) | h̃(y) ∈D }).

Proof. — This proof follows the ideas of Salberger [Sal] (see also [Pe2, §3.5] for
more details). If (ξ1, . . . , ξr) is a basis of X∗(TNS) = Pic(VL), then

∧r
i=1 ξ

−1
i dξi

is a section of ωTNS
, which, up to sign, does not depend on the choice of the

basis. This defines a canonical Haar measure ωTNS,w on TNS(Kw) for any place w
of K. Let w ∈ Val(K) S. Locally for w-adic topology, we may choose a section of
πi : Ti (Ow)→ V (Kw) and the measure ωTi ,w on Ti (Kw) is locally isomorphic
to the measure

Lw(1,X
∗(TNS))|ωV (t)|wωTNS,w× λwωV,w.

where ωV is seen as a character of TNS. Let us also consider the groups
TNS(AK)

1, defined as{
(tw)w∈Val(K) ∈ TNS(AK)

∣∣∣∣ ∀ξ ∈ X∗(TNS),
∏

w∈Val(K)
|ξ(tw)|w = 1

}
,

and TNS(KS)
1, defined as{

(tw)w∈S ∈
∏
w∈S

TNS(Kw)
∣∣∣∣ ∀ξ ∈ X∗(TNS),

∏
w∈S
|ξ(tw)|w = 1

}
.

The lattice X∗(TNS)
∨ normalises the Haar measure on X∗(TNS)

∨
R and therefore

on the quotient
∏
w∈S TNS(Kw)/TNS(KS)

1. Using the measure
∏
w∈S ωTNS,w
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on the product, we get a normalised Haar measure ωT1 on TNS(KS)
1. We

consider the fibration

h̃× πi :
∏
w∈S

Ti (Kw)−→ Pic(V )∨R×
∏
w∈S

V (Kw),

which, over its image, is a principal homogeneous space under TNS(KS)
1. By

choosing a local adequate section of this fibration, we get that the measure∏
w∈S ωTi ,w on

∏
w∈STi (Kw) is the measure induced by the product measure

ν×∏w∈S ωV,w on the image and the measure ωT1 on TNS(KS)
1. Taking the

product over all places, and multiplying by the normalisation terms, we get that

1
]W (TNS)

ωTi ({ y ∈ ∆(Ti )∩ π
−1
i (W ) | h̃(y) ∈D })

= τ(TNS)ν(D)ωV (πi (Ti (AK))∩W ),

where τ(TNS) is the Tamagawa number of TNS, that is the normalized volume
of the compact quotient TNS(AK)

1/TNS(K) which is isomorphic to the product

TNS(KS)
1/TNS(OS)×

∏
w 6∈S

TNS(Ow).

By Ono’s theorem ([Ono3, §3]), the Tamagawa number of TNS is given by

τ(TNS) =
]H1(K,X∗(TNS))
]X1(K,TNS)

where X1(K,TNS) = ker(H1(K,TNS)→
∏
w∈Val(K)H

1(Kw,TNS)). By defini-

tion, β(V ) = ]H1(K,X∗(TNS)). To conclude the proof, we use the crucial fact,
first proven by Salberger [Sal], that for any x ∈ V (AK)

Br, the number of i ∈ I
such that x ∈ πi (Ti (AK)) is precisely equal to ]X1(K,TNS).

Remarks 4.34. — a) Using theorems 4.31 and 4.33, we see that the equivalence
formula (5) of question 4.8, reduces to an equivalence of the form

]{ y ∈ Ti (K)∩∆(Ti ) | h̃(y) ∈DB }
∼ ωTi ({ y ∈ ∆(Ti ) | h̃(y) ∈DB })

as B→ +∞.
b) The conditions y ∈ Ti (Ow) for w ∈ Val(K) S correspond to an in-

tegrality condition combined with a gcd condition. For example, if V is a
smooth complete intersection of dimension > 3 in the projective space PN

Q ,
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then the unique versal torsor T is the corresponding cone in AN+1
Q {0} and

the condition (y0, . . . , yN ) ∈ T(Zp) corresponds to (y0, . . . , yN ) ∈ ZN+1
p and

gcd(y0, . . . , yN ) = 1. Therefore to reduce to counting integral points in a bounded
domain, the next step is to use a Moebius inversion formula to remove the gcd
condition. Such an inversion formula is described in [Pe2, §2.3].

c) In the preceding description, we were not very careful about the choice of
the finite set S of bad places. For practical reasons, to use this method, it is in
fact more efficient to use a small set of bad primes.

d) The lifting to the versal torsors has been used in many cases, see for ex-
ample [Bre] or [BBP]. For practical reasons, it is often simpler to consider an
intermediate torsor corresponding to the Picard group Pic(V ) (see for example
the work of K. Destagnol [Des]). The main difference in the new approach
described in this section is that the domain obtained after lifting does not have
“spikes”. In other words, the area of the boundary has a smaller rate of growth,
which should remove some of the problems encountered when using a single
height relative to the anticanonical line bundle.

4.4. Varieties of Picard rank one. — If the rank of Pic(V ) is one, then with-
out loss of generality formula (5) is reduced to estimating a difference of the
form

(9) ](V (K)−T)H6bB− ](V (K)−T)H6aB
as B goes to infinity, where H is a height relative to the anticanonical line bundle
and a, b are real numbers with 0 < a < b. Therefore, in that case, a positive
answer to question 4.8 is true if the principle of Batyrev and Manin is valid
for V (K)−T . Similarly the global equidistribution in the sense of 4.10, follows
from global equidistribution 3.21. However the knowledge of estimates for the
difference (9) does not gives an estimate for (V (K)−T)H6B, unless we have a
uniform upper bound for the error term.

But several examples of Fano varieties of Picard rank one with acccumu-
lating subvarieties are known in dimension > 3 (see the list given in [BL]).
For example, if we consider a cubic volume, the projective lines it contains are
parametrized by the Fano surface, which is of general type. Each of these ratio-
nal lines has degree 2 and as we shall explain in section 6.4.1, these lines give
a non negligible contribution to the total number of points thus contradicting
the global equidistribution. In the case of a smooth complete intersection of two
quadrics in P5, the situation is even worse since the projective lines it contains
may be Zariski dense.
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This shows that in higher dimension, even in the case of varieties with a Picard
group of rank one, there might be accumulating subvarieties of codimension> 2
which are not detected by heights on line bundles. Thus one needs to go beyond
heights. To help us in that direction we shall first consider the geometric analogue
of this problem.

5. Geometric analogue

The geometric analogue of the study of rational points of bounded height is
the study of rational curves of bounded degree. This is a very active subject in
algebraic geometry, and we are going to give a very superficial survey of some
particular aspects of this subject in this section. In fact, there is a very classi-
cal dictionary between number fields, global fields of positive characteristic and
function fields of curves. To simplify the description, we shall mostly restrict
ourselves to morphisms from P1

k to a variety V defined over k.

Notation 5.1. — Let k be a field and let C be a smooth geometrically integral
projective curve over k. In this section, we denote by K = k(C ) the function
field of C . Let V be a nice variety over k. The image of the generic point gives
a bijection between the set of rational point V (K) and the set of morphisms
f : C → V . From now on, we shall identify these sets. Let f : C → V be a point
of this space. Then the pull-back map is a morphism of groups f ∗ : Pic(V )→
Pic(C ). The composition deg ◦f ∗ is an element of Pic(V )∨, which we call the
multidegree of f and denote by deg(f ).

The constructions of Grothendieck [Gr, §4.c] prove that for any d ∈ Pic(V )∨,

there exists a variety Homd(C ,V ) defined over k, which parametrizes the mor-
phisms from C to V of multidegree d.

In that geometric setting, we want to describe asymptotically the geometric

properties of the variety Homd(C ,V ) as the distance from d to the boundary of
the dual of the effective cone goes to infinity. The problem is to give a framework
for the asymptotic study of a variety. We shall use the framework given by the
ring of integration which was introduced by Kontsevich (see also [DL]).

5.1. The ring of motivic integration. — Of course, the dimension of the va-

riety Homd(C ,V ) goes to infinity as the multidegree d grows. But, as suggested
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by the work of J. Ellenberg [Ell], we could consider the stabilisation of cohomol-
ogy groups. The ring of motivic integration enables us to consider the limit of a
class associated to the variety.

Construction 5.2. — We denote by Mk the Grothendieck ring of varieties
over k: as a group it is generated by the isomorphism classes of varieties over k,
where the class of a variety V is denoted by [V ], with the relations

[V ] = [F] + [U ]

for any closed subvariety F of V , with U = V F . We can then extend the
definition of a class to non reduced schemes. Then Mk is equipped with the
unique ring structure such that

[V1]× [V2] = [V1×k V2],

for any varieties V1 and V2 over k. We define the Tate symbol as L = [A1
k] and

consider the localized ring Mk,loc = Mk[L
−1]. We then introduce a decreasing

filtration on this ring where, for i ∈ Z,

F iMk,loc

is the subgroup of Mk,loc =Mk[L
−1] generated by symbols of the form [V ]L−n

if dim(V )− n6−i . We have the inclusion

F iMk,loc.F
jMk,loc ⊂ F i+jMk,loc,

for i, j ∈ Z. Thus the inverse limit M̂k = lim←−i Mk,loc/F
iMk,loc comes equipped

with a structure of topological ring so that the natural map Mk,loc → M̂k is a
morphism of rings.

Remark 5.3. — The morphism Mk→Mk,loc is not injective (see [Bo]), so we

loose information by looking at classes in M̂k.

With this ring we may formulate the analogue of question 4.8:

Question 5.4. — We assume that the nice variety V over k is rationally connected,
satisfies conditions (i) and (iii) to (v) of hypotheses 3.27 and that the rational points
over k(T) are Zariski dense. Does the symbol[

Homd(P1
k ,V )

]
L−〈ω

−1
V ,d〉

converges in M̂k for d ∈ Pic(V )∨ ∩C◦eff(V )∨ as dist(d,∂Ceff(V )∨) goes to infinity
and can we interpret the limit as some adelic volume?



BEYOND HEIGHTS 43

5.2. A sandbox example: the projective space. — In the case of the projective
space, it turns out that the symbol in fact stabilizes, and thus converges:

Proposition 5.5. — If d > 1, then[
Homd(P1

k ,P
n
k)
]
L−(n+1)d =

Ln+1− 1
L− 1

(1−L−n).

Proof. — In this proof, we shall describe the sets of k-points of our varieties
and gloss over the description of the varieties themselves. So if we consider
the set Wd(k) of (P0, . . . , Pn) ∈ k[T]n+1 such that gcd06i6n(Pi ) = 1 and

max06i6n(deg(Pi )) = d then Wd is a Gm torsor over the space Homd(P1
k ,P

n
k)

which is locally trivial for Zariski topology. Hence

(10) (L− 1)
[
Homd(P1

k ,P
n
k)
]
= [Wd].

But if we consider the space of (n + 1)-tuples of polynomials (P0, . . . , Pn) such
that max06i6n(deg(Pi )) = d, then it is naturally isomorphic to A(n+1)(d+1) −
A(n+1)d and we may decompose it as a disjoint union according to the degree
of the gcd of the polynomials. The piece corresponding to the families with
deg(gcd06i6n(Pi )) = k is isomorphic to [Wd−k]×Ak where Ak parametrizes the
gcd which is a unitary polynomial of degree k. We get the formula

L(n+1)(d+1)−L(n+1)d =
d∑

k=0
Lk[Wd−k].

We may introduce formal series in M̂k[[T]] to get the formula∑
d>0

(Ln+1− 1)L(n+1)dTd =
(∑
k>0

LkTk
)(∑

d>0
[Wd]T

d
)
.

From which we deduce∑
d>0

[Wd]T
d = (1−LT)(Ln+1− 1)

∑
d>0

L(n+1)dTd .

Therefore, if d > 1, we get

[Wd] = (Ln+1− 1)(L(n+1)d −LL(n+1)(d−1))

= (Ln+1− 1)L(n+1)d(1−L−n).

Combining with formula (10) gives the formula of the proposition.
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Remarks 5.6. — a) Let us quickly explain how the constant obtained might be
interpreted as an adelic volume. First, for the projective space the L function
associated to the Picard group coincide with the usual zeta function. This has a
motivic analogue decribed by M. Kapranov in [Ka]:

ZC(T)(U ) =
∑
d>0

[(P1
k)
(d)]Ud

where (P1
k)
(d) is the symmetric product (P1

k)
d/Sd and is isomorphic to Pd

k . The
parameter U should be understood as L−s. The residue of the zeta function at
s = 1 corresponds to(

(1−LU )ZC(T)(U )
)
(L−1)

=
(
(1−LU )

∑
d>0

Ld+1− 1
L− 1

Ud
)
(L−1)

=
1

L− 1

(
(1−LU )

( L
1−LU

− 1
1−U

))
(L−1)

=
1

L− 1

( L− 1
1−U

)
(L−1)

=
1

1−L−1
.

By translating the formula (3), the expected constant should formally have the
form

C =
Ln

1−L−1
∏

P∈P1k

(1−L−deg(P))[Pn
κ(P)]L

−ndeg(P),

where L−1 plays the rôle of the square root of the discriminant. The term ap-
pearing in the product may be simplified as 1− L−(n+1)deg(P). However this
formal constant involves a product over a possibly uncountable set P1

k . Never-
theless, in this very particular case, we may consider the inverse of this product.
Then, we get ∏

P∈P1k

∑
m>0

L−(n+1)mdeg(P),

where the product is taken over closed points of P1
k . If we admit that it makes

sense to develop this product, we get, noting that we get a sum over all divisors
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of P1
k , ∑

m>0

∑
P∈(P1k)

(m)(k)

L−(n+1)m.

But we may now interpret each interior sum as a motivic integral and get, using
the fact that (P1

k)
(m) is isomorphic to the projective space Pm

k ,

∑
m>0

[Pm
k ]L
−(n+1)m =

∑
m>0

1−Lm+1

1−L
L−(n+1)m

=
1

1−L

(
1

1−L−n−1
− L

1−L−n

)

=
1

1−L
× 1−L

(1−L−n)(1−L−n−1)

Finally we get

C =
Ln+1− 1
L− 1

(1−L−n)

as wanted.
b) This type of result is compatible with products and we get a result for

products of projective spaces for free. D. Bourqui has more general results for
toric varieties [Bou].

c) M. Bilu in [Bil] has defined an Euler product giving a precise meaning for
the expected constant in this setting (1).

5.3. Equidistribution in the geometric setting. — In the geometric setting
equidistribution may be described as follows.

Construction 5.7. — Let S be a subscheme of dimension 0 of C , then we may
consider the moduli space Hom(S ,V ) which parametrizes the morphisms from
S to V . For any subvariety W of Hom(S ,V ), we may then consider the set of
morphisms f : P1

k→ V of multidegree d such that the restriction f|S belongs to

W . This is parametrized by a variety Homd
W (C ,V ) contained in Homd(C ,V ).

1. The construction of M. Bilu and the work of D. Bourqui suggest that the filtration de-
scribed here is not the correct one to get the expected limit. In fact, one may need a filtration

such that if X and Y are geometrically irreducible varieties then [L−dim(X)X]− [L−dim(Y )Y ]
belongs to F1Mk,loc.
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Naïve geometric equidistribution 5.8. We shall say that naïve equidistribution
holds for V if for any subscheme S of dimension 0 in C and any subvariety W of
Hom(S ,V ), the symbol([

Homd
W (C ,V )

][
Hom(S ,V )

]
−
[
Homd(C ,V )

]
[W ]

)
L−〈ω

−1
V ,d〉

converges to 0 in M̂k for d ∈ Pic(V )∨ ∩ C◦eff(V )∨ as the distance from d to
∂Ceff(V )∨ goes to infinity.

Remark 5.9. — This statement gives a precise meaning to the idea of a conver-
gence [

Homd
W (C ,V )

]
[
Homd(C ,V )

] −→ [W ][
Hom(S ,V )

] .
5.4. Crash course about obstruction theory. — Obstruction theory gives a
sufficient condition for the moduli spaces to have the expected dimension. Let
us give a very short introduction to these tools, the interested reader may turn to
the book of O. Debarre [De] for a more serious introduction to this subject.

let f : P1
k → V be a morphism of multidegree d then we may consider the

tangent space at f and the dimension at f . There is a natural isomorphism

Tf Homd(P1
k ,V ) −̃→ H0(P1

k , f
∗(TV ))

and
dimf

(
Homd(P1

k ,V )
)
> h0(P1

k , f
∗(TV ))− h1(P1

k , f
∗(TV )).

On the other hand, on P1
k , any vector bundle splits into a direct sum of line

bundles. In other words, there exists an isomorphism

f ∗(TV ) −̃→
n⊕
i=1

OP1k
(ai )

with a1 > a2 > · · ·> an and (a1, . . . , an) is uniquely determined. If an > 0, then
we get that h1(P1

k , f
∗(TV )) = 0 and

dimf
(
Hom(P1

k ,V )
)
= h0(P1

k , f
∗(TV )) =

n∑
i=1

h0(OP1k
(ai ))

=
n∑
i=1

ai +1 = n+ 〈d,ω−1V 〉,
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which is the expected dimension. Thus a sufficient condition to get the expected
dimension is an > 0.

But let us now add some conditions related to equidistribution. Let S be
a subscheme of P1

k of dimension 0. Then S corresponds to a divisor D =∑
P∈I nPP on P1

k and may described as Spec(×P∈IOP1k ,P
/mnP

P ), where mP is

the maximal ideal of the local ring OP1k ,P
. Let s be the degree of D, that is∑

P∈I nP[κ(P) : k]. Then Hom(S ,V ) has dimension ns; therefore if we fix

φ : S → V , the expected dimension of Homd
{φ}(P

1
k ,V ) ought to be n(1− s) +

〈d,ω−1V 〉. But obstruction theory in that setting relates the deformation at f
to the vector bundle f ∗(TV )⊗O(−D) therefore a sufficient condition for the

dimension of the moduli space Homd
{φ}(P

1
k ,V ) at f to be the correct one is an−

s > 0. In particular a curve is said to be very free if an > 0. Therefore if one
wishes to have geometric equidistribution, then one ought to look at the limit as
an goes to +∞.

One should note that the counter-examples introduced in section 4.4, like the
intersection of two quadrics, also show the necessity to go beyond degrees in the
geometric setting.

6. Slopes à la Bost

Following the geometric analogue, we need a notion which is the arithmetic
translation of the notion of very free curves. This analogue, introduced in [Pe4],
is given by Arakelov geometry and is based upon the slopes as they are considered
by J.-B. Bost.

6.1. Definition. — In this section, we again consider a nice variety V over a
number field K.

6.1.1. Slopes of an adelic vector bundle over Spec(K). — The following defini-
tion is a variant of the definition described in chapter II, §3.2 of this volume.

Definition 6.1. — Let E be a K-vector space of finite dimension n equipped
with

— A projective OK-submodule ΛE of rank n;
— For any complex place w ∈ Val(K), a map

‖ · ‖w : Ew = E⊗K Kw −→ R>0
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such that there exists a positive definite hermitian form ϕ on Ew so that
‖y‖w = ϕ(y, y);

— For any real place w ∈ Val(K) a euclidean norm

‖ · ‖w : Ew −→ R>0.

Let F be a vector subspace of E. We equip it with ΛF =Λ∩F and the restrictions
of the norms. The Newton polygon, which we denote by P(E) is defined as the
convex hull of the set of pairs (dim(F), d̂eg(F)) where F describes the set of vector
subspaces of E.

Remark 6.2. — Let us assume that K = Q. If we consider the subspaces F of
dimension 1, then d̂eg(F) is given as − log(‖y0‖∞) where y0 is a generator of
Λ∩ F . Thus we get the points (1,− log(‖y‖∞)) where y goes over the primitive
elements of the lattice Λ. In particular, there is an upper bound for the possible
values of the second coordinate. More generally P(E) is bounded from above.
In the figure 5, we represented how the points (dim(F), d̂eg(F)) and the upper
part of the convex hull may look like.

(dim(E), d̂eg(E))

F 5. Convex hull

Construction 6.3. — Since the set P(E) is bounded from above, we may define
the function mE : [0, n]→ R by

mE(x) = max{ y ∈ R | (x, y) ∈P(E)}.
This function is concave and affine in each interval [i−1, i] for i ∈ {1, . . . ,dim(E)}.
The slopes of E are then given as

µi (E) =mE(i)−mE(i − 1)

for i ∈ {1, . . . ,dim(E)}.

Remarks 6.4. — a) By construction, we have the inequalities

µ1(E)> µ2(E)> · · ·> µdim(E)(E).
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These inequalities might not be strict. Moreover

d̂eg(E) =
dim(E)∑
i=1

µi (E).

Therefore the slope of E, which is defined as µ(E) = d̂eg(E)
dim(E) is the mean of the

slopes:

µ(E) =
1

dim(E)

dim(E)∑
i=1

µi (E).

b) The value of mE(i) may differ from maxdim(F)=i (d̂eg(F)). However, fol-
lowing E. Gaudron [Ga, definition 5.18], we may define the successive minima
of the arithmetic lattice E as follows: for i ∈ {1, . . . ,dim(E)}, the i-th minima
λi (E) is the infimum of the numbers θ ∈ R>0 such that there exists a family of
strictly positive real numbers (θw)w∈Val(K) and a free family (x1, . . . , xi ) in E such
that

(i) The set {w ∈ Val(K) | θw 6= 1} is finite;

(ii) The product
∏
w∈Val(K) θw is equal to θ;

(iii) We have the inequalities

‖xj‖w 6 θw

for j ∈ {1, . . . , i} and w ∈ Val(K).
Then Minkowski’s theorem gives an explicit constant CK such that

06 log(λi (E)) + µi (E)6 CK

for i ∈ {1, . . . ,dim(E)}. Other definitions of successive minima are given in
chapter II, §3.1 and are similarly related to slopes.

c) In this chapter, the slopes are not invariant under field extensions since we
did not normalise them by 1

[K:Q] . This conforms to the usual convention for
heights in Manin’s program, which has been chosen to get a formulation of the
expected estimate which does not depend on the degree of the field.

6.1.2. Slopes on varieties, freeness. — We now apply the constructions of last
paragraph to vector bundles on varieties.

Definition 6.5. — Let E be a vector bundle on the nice variety V of dimen-
sion n. We assume that E is equipped with an adelic norm (‖ · ‖w)w∈Val(K) then
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for any rational point P ∈ V (K), the fibre EP is an adelic vector bundle over
Spec(K) and we may define

µEi (P) = µi (EP).

In particular, if V is equipped with an adelic metric (see definition 2.5), we
may define the slopes of a rational point P ∈ V (K) as

µi (P) = µi (TPV )

for i ∈ {1, . . . , n}.

Remarks 6.6. — a) From remark 6.4 (i), we deduce that for any rational point
P ∈ V (K), we have

µn(P)6 µn−1(P)6 · · ·6 µ1(P)

and d̂eg(TPV ) =
∑n

k=1 µi (P). But we may interpret this degree d̂eg(TPV ) =
d̂eg((ω−1V )P) as the logarithmic height of P, that is h(P) = log(H(P)), where the
height H is defined by the induced metric on the anticanonical line bundle.

b) From the previous remark we deduce the inequalities

µn(P)6
h(P)
n
6 µ1(P)

for any rational point P ∈ V (K).

Definition 6.7. — The freeness of a rational P ∈ V (K) is defined by

l(P) =

n
µn(P)
h(P) if µn(P) > 0,

0 otherwise.

Remarks 6.8. — a) By definition the freeness of a point l(P) belongs to the
interval [0,1].

b) We have the equality l(P) = 0 if and only if the minimal slope µn(P)6 0.
c) The equality l(P) = 1 occurs if and only if the lattice TPV is semi-stable,

that is µ1(P) = · · · = µn(P) and h(P) > 0. In other words this means that µ(F)6
µ(TPV ) for any subspace F of TPV . This is, for example, the case if the lattice
is the usual lattice Zn in Rn equipped with its standard euclidean structure. Up
to scaling, this occurs for a point (P, . . . ,P) on the diagonal of (P1

K)
n. Another

example of a semi-stable lattice in dimension 2 is the classical hexagonal lattice
Z[j] generated by a primitive third root of 1, as shown in figure 6. More generally
for two dimensional lattices we may consider that Λ is isomorphic to the lattice
a(Z+Zτ)⊂C, where a is some positive real number,ℜ(τ) ∈ [−1/2,1/2], |τ|> 1
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F 6. Hexagonal lattice

and ℑ(τ) > 0. Then a lattice is semistable if and only if ℑ(τ)6 1, which is drawn
in grey on figure 7.

F 7. Semi-stable lattices

d) For any rational point on a curve, we have l(P) = 1.
e) For a surface S over Q, an adelic metric define two invariants, namely the

height H and a map S(Q)→ H/ PSL2(Z), where H denotes the Poincaré half-
plane {z ∈ C | ℑ(z) > 0} which sends a point P to the class of τP such that the
lattice in TPS is isomorphic to aP(Z+ZτP) with aP ∈ R>0. Then, taking τP in
the usual fundamental domain, the freeness of P is given by

l(P) =


1 if ℑ(τP)6 1 and h(P) > 0,
1− log(ℑ(τP))

h(P) if 1 < ℑ(τP) <H(P),
0 otherwise.

Indeed, in that case, we have h(P) =−2 log(ap)− log(ℑ(τP)) and, since |τP|> 1,
the first slope is given by

µ1(P) = max
(
− log(aP),

h(P)
2

)
We get that µ1(P) = µ2(P) if and only if ℑ(τP)6 1 and

µ2(P) =− log(ap)− log(ℑ(τP)) =
h(P)− log(ℑ(τP))

2
otherwise.
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f ) By definition, the freeness l(P) is invariant under field extensions. Thus a
condition of the form l(P) > ε does not depend on the field of definition and
makes sense for algebraic points in V (K). On the other hand the defining condi-
tion for a thin subset, namely P ∈ φ(X(K)) for a morphism φ as in definition 3.34
does not make sense for algebraic points.

6.2. Properties. — Let us first describe how the freeness depends on the choice
of the metric.

Proposition 6.9. — Let φ : E → F be a morphism of vector bundles and let
(‖ · ‖w)w∈Val(K) ( resp.(‖ · ‖′w)w∈Val(K)) be an adelic norm on E ( resp.F) then there
exists a family (λw)w∈Val(K) such that

(i) For any w ∈ Val(K), any P ∈ V (Kw), and any y ∈ EP, we have

‖φ(y)‖′w 6 λw‖y‖w;

(ii) The set {w ∈ Val(K) | λw 6= 1} is finite.

Proof. — Let P(E) be the projective bundle of the lines in E and E× be the
complement of the zero section in E. Then for any place w of K, we may define

a map fw : E×(Kw)→ R>0 by fw(y) =
‖φ(y)‖′w
‖y‖w

. This map is constant on the lines

and induces a continuous map P(E)(Kw) → R>0. Since the space P(E)(Kw)
is compact, this function is bounded from above by a constant λw. Moreover
for almost all w ∈ Val(K) the norms on E and F are defined by model and the
morphism φ is defined over Ow. For such a place w, for any P ∈ V (Kw), we get
that

φ({ y ∈ EP | ‖y‖w 6 1})⊂ { y ∈ FP | ‖y‖
′
w 6 1},

therefore we may take λw 6 1.

Remark 6.10. — From this proposition, it follows that, if we consider norms

(‖ · ‖w)w∈Val(K) and (‖ · ‖′w)w∈Val(K) on a vector bundle, then the quotient ‖·‖
′
w

‖·‖w
is bounded from above and from below by a strictly positive constant. Moreover,
by definition the norms are equal for almost all places. This implies the existence
of a constant C such that, for any rational point P ∈ V (K) and any subspace F
of TPV ,

| d̂eg(F)− d̂eg
′
(F)|6 C.

where d̂eg
′

is the degree corresponding to the second norm.
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Corollary 6.11. — Let µi and µ′i be the slopes defined by two different metrics on V
and let l and l′ be the corresponding freeness, then

(i) The difference |µi − µ′i | is bounded on V (K);

(ii) There exists C ∈ R>0 such that

|l(P)− l′(P)| < C
h(P)

for any P ∈ V (K) such that h(P) > 0.

We now wish to describe a strong link between the geometric and arithmetic
settings. Let us first define the freeness in the geometric setting.

Definition 6.12. — Let φ : P1
K→ V be a morphism of varieties. The pull-back

of the tangent bundle φ∗(TV ) is isomorphic to a direct sum
⊕n

i=1OP1K
(ai ) with

a1 > a2 > · · ·> an. The slopes of φ are the integers µi (φ) = ai . We may consider
degω−1V

(φ) =
∑n

i=1 µi (φ) and the freeness of φ is defined by

l(φ) =


nan

deg
ω−1V

(φ) if an > 0,

0 otherwise.

Remark 6.13. — By construction l(φ) ∈ [0,1]∩Q and l(φ) > 0 if and only if φ
is very free, that is an > 0.

Proposition 6.14. — Let φ : P1
K → V be a non constant morphism of varieties

and assume that V is equipped with an adelic metric. Then

l(φ(P))−→ l(φ)

as hO(1)(P)→ +∞.

Proof. — Let us fix an isomorphism from φ∗(TV ) to a direct sum
⊕n

i=1OP1K
(ai )

with a1 > a2 > · · · > an. On φ∗(TV ) we consider the pull-back of the adelic
metric on V and we equip the sum

⊕n
i=1OP1K

(ai ) with the direct sums of

the norms induced by a norm on OP1K
(1). Using the corollary 6.11, we get

that the differences |µi (φ(P))− aihO(1)(P)| is bounded, as well as |h(φ(P))−
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∑n
i=1 aihO(1)(P)|. If an > 0, then the sum

∑n
i=1 ai is strictly positive since the

morphism is not constant and we get∣∣∣∣∣l(φ(P))− ann∑n
i=1 ai

∣∣∣∣∣ < C
hO(1)(P)

.

If an < 0, then we get that l(φ(P)) = 0 except for a finite number of P ∈ P1
K.

6.3. Explicit computations

6.3.1. In the projective space. — Let us compute the freeness for points of the
projective space. We denote by H the usual height on PN

K relative to ω−1
PNK

=

OPNK
(N +1) and write h = log ◦H .

Proposition 6.15. — Let P ∈ Pn(K), then

l(P) =
n

n+1
+min

F

 −n d̂eg(F)
codim(F)h(P)


where F goes over the subspaces F ( Kn+1 such that P ∈ P(F).

Proof. — Let D ⊂ E be the line in E corresponding to the projective point P.
There is a canonical isomorphism from the tangent space TPPn

K to the quotient
D∨ ⊗ E/D∨ ⊗D where D∨ is the dual of D. This gives a bijection from the
set of subspaces F of E such that D ⊂ F ( E to the strict subspaces of TPPn

K
which maps the subspace F to the quotient D∨⊗ F/D∨⊗D. Since D∨⊗D is
canonically isomorphic to K, the arithmetic degree of the subspace of TPPn

K is
given by

d̂eg(D∨⊗ F/D∨⊗D) = d̂eg(D∨⊗ F)− d̂eg(K)

= d̂eg(F)− dim(F) d̂eg(D).

On the other hand, by the description of the tangent space,

h(P) =−(n+1) d̂eg(D).

We get that the smallest slope is given by

µn(P) =− d̂eg(D) +min
F

 − d̂egF
codimE(F)
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and the freeness by

l(P) =
n

n+1
+min

F

 −n d̂eg(F)
codimE(F)h(P)

 .

Corollary 6.16. — For any point P ∈ Pn(K), we have

l(P)>
n

n+1
.

Remarks 6.17. — a) If we take a fixed projective subspace F in E, then l(P)
converges to n

n+1 as h(P) goes to +∞ with P ∈ F .
b) One can show that for any η > 0, there exists a constant C > 0 such that,

for B > 1,

]{P ∈ Pn(K) |H(P)6 B and l(P) < 1− η} < CB1−η.

Since we have an equivalence

]{P ∈ Pn(K) |H(P)6 B} ∼ C(Pn
K)B

as B goes to infinity, this means that the number of points P with a freeness
l(P) < 1− η is in fact asymptotically negligible.

6.3.2. Products of lines. — Despite the previous example, the freeness of points
can be very small even on a homogeneous variety. Let us prove that for (P1

K)
n.

We equip (P1
K)

n with the product of the adelic metrics. We denote by H the
usual height on P1

K relative to ω−1
P1K

= OP1K
(2) and write h = log ◦H . We shall

also use h (resp.H) to denote the logarithmic (resp exponential) height on (P1
K)

n.

Proposition 6.18. — For any P = (P1, . . . , Pn) ∈ P1(K)n, one gets

l(P) =
n min16i6n(h(Pi ))∑n

i=1 h(Pi )
.

Proof. — The tangent space TP(P
1
K)

n is canonically isomorphic to
⊕

TPiP
1
K

and, by construction, this isomorphism is compatible with the norms. Let us
choose a permutation σ ∈Sn such that

h(Pσ(1))> h(Pσ(2))> · · ·> h(Pσ(n)).

Then we get that µi (P) = h(Pσ(i)), since the the subspace of dimension i with

the biggest arithmetic degree is given by
⊕i

j=1TPσ(j)
P1

K.
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Corollary 6.19. — For any ε > 0,there exist a constant Cε such that

]{P ∈ P1(K)n |H(P)6 B and l(P) > ε}
]{P ∈ P1(K)n |H(P)6 B}

−→ Cε

as B→ +∞. Moreover 1−Cε =O(ε).

Proof. — Let us consider the map h : P1(K)n → Rn
>0 given by (Pi )16i6n 7→

(h(Pi ))16i6n and, for t = (ti )16i6n, write |t| = ∑n
i=1 ti . The height of point

P in P1(K)n is given by h(P) = |h(P)|. By proposition 6.18, we only have to
estimate the cardinal of the set (Pi )16i6n ∈ P1(K)n

∣∣∣∣∣∣
n∑
i=1

h(Pi )6min
(
log(B),

n
ε

min
16i6n

(h(Pi ))
)  .

Let us introduce the compact simplex ∆ε(B) in Rn
>0 defined by

|t|6min
(
log(B),

n
ε

min
16i6n

(ti )
)
.

Then we may write the above set as

{P ∈ P1(K)n | h(P) ∈ ∆ε(B)}.
Using the estimate of S. H. Schanuel [Sc, theorem 1], we get

]{P ∈ P1(K) |H(P)6 B} = C(P1
K)B+O(B1/2 log(B)),

we get that, for real numbers η,δ with 0 < η < 1 and 0 < δ < 1/2 and any
t = (t1, . . . , tn) ∈ Rn

>0, we have

(11)

]

P ∈ P1(K)n
∣∣∣∣∣∣h(P) ∈

n∏
i=1

[ti , ti + η]


= C(P1

K)
ne|t|(eη− 1)n +O(e|t|−δmin16i6n(ti ))

= C(P1
K)

ne|t|ηn +O(e|t|ηn+1) +O(e|t|−δmin16i6n(ti )).

Covering ∆ε(B) with cubes with edges of length η, the number of such cubes
meeting the boundary of the simplex is bounded by O((log(B)/η)n−1). There-
fore comparing sum and integral, we get the following estimate for the cardinal
of our set:

C(P1
K)

n
∫
∆ε(B)

e|t|dt +O(B(log(B))nη) +O
((

log(B)
η

)n
B1−δε/n

)
.
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We may take η = B−δε/(2n
2) to have a sufficiently small error term. The compu-

tation of the integral gives BPε(log(B)) where Pε is a polynomial of degree n− 1
and leading coefficient 1

(n−1)! + O(ε). To conclude, we note that C((P1
K)

n) =
1

(n−1)!C(P
1
K)

n.

Remarks 6.20. — a) The proof shows that the number of points with freeness
< ε is not negligible in this case!

b) If we consider as in section 4 the points P in P1(K)nh∈DB
where DB =

D1 + log(B)u, with u = (ui )16i6n, then

l(P)−→
nmin16i6n(ui )∑n

i=1 ui
as B goes to infinity. Thus, in this case, the set

{P ∈ V (K) | h(P) ∈DB, l(P) < ε}
is empty for B big enough.

6.4. Accumulating subsets and freeness. — We are now going to show that
the freeness gives valuable information about points related to accumulating phe-
nomena.

6.4.1. Rational curves of low degree. — Conjecturally the accumulating subsets
on projective surfaces are rational curves of low degree. More precisely, the num-
ber of points on a rational curve L in a nice variety V for a height given by an

adelic metric is equivalent to C(L)B2/〈L,ω
−1
V 〉. Therefore such a curve would be

accumulating if 〈L,ω−1V 〉 < 2 and could be weakly accumulating if 〈L,ω−1V 〉 = 2
and the rank of the Picard group of the variety is 1. On a surface S, by the
adjunction formula,

−2 = deg(ωL) = 〈L,L〉+ 〈L,ωS〉.
If the rank of the Picard group Pic(V ) is one, any effective divisor is ample since
S is projective, in that case 〈L,L〉 > 0, hence 〈L,ω−1S 〉 > 2 which excludes the last
case for a surface. The remaining cases are covered by the following proposition.

Proposition 6.21. — Let V be a nice variety on the number field K, and let L be
a rational curve in V such that 〈L,ω−1V 〉 < 2. Then the set

{P ∈ L(K) | l(P) > 0}
is finite.
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Proof. — Choose a morphism φ : P1
K → L which is birational and an isomor-

phism φ∗(TS) −̃→⊕n
i=1OP1K

(ai ) with a1 > a2 > · · ·> an. Then µi (φ) = ai and∑n
i=1 µi (φ) = 〈L,ω

−1
V 〉 < 2. We have a natural morphism TP1

K→ φ∗(TV ) which
implies that a1 > 2. Therefore a2 < 0 and we may apply proposition 6.14.

Remarks 6.22. — a) If we consider only the rational points which satisfy the
condition l(P) > ε(B) for some decreasing function ε with values in R>0, then we
exclude all points of L outside a finite set.

b) In dimension > 3, if 〈L,ω−1V 〉 = 2, then we get that the freeness l(P) goes
to 0 on L. This applies to the projective lines in cubic volumes or complete
intersections of two quadrics in P6.

6.4.2. Fibrations. — We remind the reader that, in the counter-example of
Batyrev and Tschinkel [BT1], the accumulating subset is the reunion of fibers
of a fibration. We are now going to explain that the freeness also detects such
abnormality.

Proposition 6.23. — Let φ : X → Y be a dominant morphism of nice varieties.
Then there exists a constant C such that for any P ∈ X(K) such that the linear map
TPφ is onto,

µdim(X)(P)6 µdim(Y )(φ(P)) +C.
If, moreover, the logarithmic height of P is strictly positive, we get the inequality:

l(P)6
mh(φ(P))
nh(P)

l(φ(P)) +
mC
h(P)

with m = dim(X) and n = dim(Y ).

Proof. — The linear map TPφ induces a dual map TPφ
∨ : Tφ(P)Y

∨ → TPX
∨

which is injective. Using |||·||| to denote the usual operator norm, we get an
inequality

µ1(Tφ(P)Y
∨)6 µ1(TPX

∨) + max
16k6dim(Y )

 log
(∣∣∣∣∣∣∣∣∣∧kTPφ

∨
∣∣∣∣∣∣∣∣∣)

k


6 µ1(TPX

∨) +C.

We conclude with the duality formula for slopes.

Corollary 6.24. — Let Q ∈ Y (K) be a non critical value of φ, then l(P) converges
to 0 as h(P) goes to +∞ with P in the fibre XQ (K).
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Remark 6.25. — In particular, this detects bad points in the counter-example
of Batyrev and Tschinkel. Of course this result applies to (P1

K)
2 as well. In fact

it is the very property which makes freeness efficient to detect bad points in the
counter-example of Batyrev and Tschinkel which implies that the proportion of
rational points in (P1

K)
2 with small freeness is not negligible. Section 7 will show

how the freeness reveals subvarieties which are locally accumulating even if they
are not globally accumulating.

6.5. Combining freeness and heights. — To conclude this part, let us suggest
a formula which takes into account both the freeness and all the heights.

Definition 6.26. — Let D1 be a compact polyhedron in Pic(V )∨R and let u ∈
C◦eff(V )∨. For any B > 1 we define DB = D1 + log(B)u. Let ε ∈ R>0 be small
enough, relatively to the distance from u to the boundary of Ceff(V )∨. Then we
define

V (K)l>εh∈DB
= {P ∈ V (K) | h(P) ∈DB, l(P) > ε}.

Instead of using a constant ε, we could also consider a slowly decreasing func-
tion in B as in [Pe4]. With these notations, we can present our final problematic:

Question 6.27. — We assume that our nice variety V satisfies the conditions of the
hypothesis 3.27. Do we have an equivalence

(12) ]V (K)l>εh∈DB
∼ β(V )ν(D1)ωV (V (AK)

Br)B〈ω
−1
V ,u〉

as B goes to infinity?

Equidistribution 6.28. We shall say that free points are equidistributed for h if
the measure δV (K)l>εh∈DB

converges weakly to µBrV as B goes to infinity.

7. Local accumulation

The rational points on P2
K and (P1

K)
2 are equidistributed in the sense of naïve

equidistribution 3.9. But if one looks at figures 1 and 2, we see lines, which are
all projective lines for the projective plane and the fibres of the two projections
for the product of two projective lines. To interpret these lines, we need to go
beyond the global distribution.
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7.1. Local distribution. — Let us assume that K = Q to simplify the discus-
sion. Instead of looking at the proportion of points in a fixed open subset U in
the adelic space, we may look at the rational points of bounded height in a open
subset UB depending on B and ask the very broad question

Question 7.1. — For which families (UB)B>1 of open subsets in V (AQ) can we
hope to have

]UB ∩V (Q)h∈DB
]V (Q)h∈DB

∼ µBrV (UB)

as B goes to infinity?

A particularly interesting case is the distribution around a rational point. Fix
P0 ∈ V (Q) and choose a local diffeomorphism ρ : W → W ′, where W is an
open subset in V (R) and W ′ is an open subset of TP0VR, which maps P0 to
0 and such that the differential at P0 is the identity map. Then we may try to
zoom in on the point P0 with some power of B. More precisely, let us consider
the ball

B(0,R) = { y ∈ TP0VR | ‖y‖∞ 6 R}.
We may then introduce the probability measure on B(0,R) defined by

δαR,B =
1

](V (Q)H6B ∩ ρ−1(B(O,RB−α)))
∑

P∈V (Q)H6B
ρ(P)∈B(0,RB−α)

δBαρ(P).

Remarks 7.2. — a) Let us assume that P0 belongs to a Zariski open subset of V
on which the rational points of bounded height are equidistributed in the sense
of 3.31. For α = 0, we get the measure induced on B(0,R) by ρ∗(µ∞).

b) Under the same hypothesis, if α is small, corresponding to a small zoom,
we may expect that the points are evenly distributed: the measure converges to
the probability measure induced by the Lebesgue measure.

c) If α is big enough, diophantine approximation tells us that there is no ra-
tional point that near to the rational point P0. In other words, for α big enough
the above measure is the Dirac measure at P0.

We are interested in the critical values of α, that is those for which the asymp-
totic behaviour of the measure δαR,B changes. In particular, we can consider the
smallest value of α for which the measure is not the Dirac measure at P0, which
is the biggest of the critical values. This is directly related to the generalisation of
the measures of irrationality introduced by D. McKinnon and M. Roth in [MR].
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In our context, with a height defined by an adelic metric on V , the archimedean
metric defines a distance d∞ on V (R). Then if W is a constructible subset of V
containing P0, we define in this text αW (P0) as the infimum of the set of α ∈ R>0
such that for any C ∈ R the set{

Q ∈W (Q)
∣∣∣∣∣d∞(Q,P0) <

C
H(Q)α

}

is finite. Since ρ is a diffeomorphism, αV (P0) corresponds to the biggest critical
value.

Remark 7.3. — In this text, we take the inverse of the constant defined by
D. McKinnon and M. Roth in their paper (loc. cit.), since it better expresses the
power appearing in the zoom factor.

In [Mc], D. McKinnon suggests that there should exist rational curves L in V
such that αV (P0) = αL(P0). In other words the best approximations should come
from rational curves. On the other hand D. McKinnon and M. Roth [MR,
theorem 2.16] give the following formula for αL(P0): let φ : P1

K → L be a
normalisation of the curve L

αL(P0) = max
Q∈φ−1(P0)

rQmQ
d

where d = deg(φ∗(ω−1V )), mQ is the multiplicity of the branch of L through x
corresponding to Q and rQ corresponds to the approximation of Q by rational

points in P1
Q and is given by Roth theorem [Ro]:

rQ =


0 if κ(Q) 6⊂ R,
1 if κ(Q) = Q,
2 otherwise.

On the other hand, if we take a sequence of rational points (Qn)n∈N on L(Q)
which converges to P0 then (H(Qn))n∈N goes to +∞ and therefore, by propo-
sition 6.14, we have that (l(Qn))n∈N converges to l(φ). In the case where there
exists a branch of degree 1 through P0, if the deformations of the morphism φ are
contained in a strict subvariety, this means that all the tangent vectors in TP0V
can not be obtained by a deformation of φ and thus φ can not be very free. Un-
der these assumptions, we get that l(φ)6 0 and therefore (l(Qn))n∈N converges
to 0. Therefore, if the locally accumulating subvarieties are dominantly covered
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by rational curves, we may expect that the freeness of the points on these locally
accumulating subvarieties tends to 0.

In [Hu1], [Hu2], and [Hu3],黄治中 studies the local distribution of points
on various toric surfaces, exhibiting phenomena like local accumulating subvari-
eties, and locally accumulating thin subsets.

8. Another description of the slopes

Construction 8.1. — For any vector bundle E of rank r on V , we may define
the frame bundle of E, denoted by F(E), as the GLr-torsor of the basis in E: for
any extension L of K and any point P ∈ V (L), the fibre of F(E) at P is the set of
basis of the fibre EP. For a line bundle L, the frame bundle F(L) is equal to L×.

Let us now assume that the vector bundle E is equipped with an adelic norm
(‖ · ‖w)w∈Val(K). Then for any place w, any point P ∈ V (Kw) and any basis
e = (e1, . . . , er) ∈ F(E)P we get an element Mw in GLr(Kw)/Kw where

Kw =


GLr(Ow) if w is ultrametric,
Or(R) if w is real,

Ur(R) if w is complex.

which is the class of the matrix of the coordinates of (e1, . . . , er) in a basis of the
Ow lattice (resp. orthonornal basis) defined by ‖ · ‖w if w is ultrametric (resp.
non-archimedean). We get a map

F(E)(AK)−→GLr(AK)/K,

where K is the compact subgroup
∏
w∈Val(K)Kw. Taking the quotient by GLr(K)

for the rational points we get a map

V (K)−→GLr(K)\GLr(AK)/K.

Let us denote by Qr the biquotient on the right, we get a map

τE : V (K)−→Qr.

The determinant composed with product of the norms gives a morphism of
groups from the adelic group GLn(AK) to R>0 which is invariant under the
action of K on the right and the action of GLn(K) on the left, this gives a map
|det | : Qr → R>0. The composition |det | ◦ τE coincides with the exponential
height HE defined by E with its adelic norm.

Similarly, since the slopes µEi are defined in terms of the OK-module de-
fined by the norms at the ultrametric places equipped with the non-archimedean
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norms, we may factorise the slopes through Qr, and the freeness of a rational
point P may also be computed in terms of τTV (P).

Remarks 8.2. — a) In Qr, we may consider the subset Q1
r of points P

such that |det |(P) = 1. The determinant map then defines a map Q1
r →

K∗\Gm(AK)
1/KGm

where KGm
is the product over the places w of the max-

imal compact subgroup in Gm(Kw). We get a map c : Q1
r → Pic(OK); the

composition map c ◦ τE maps a rational point P onto the class of the projective
OK-module defined by the ultrametric norms in EP. As an example, for the pro-
jective space Pn

K, with E = TV , this maps a point P = [y0 : . . . : yn] with integral
homogeneous coordinates to (n+1) times the class of the ideal (y0, . . . , yn).

b) For surfaces, as described in remark 6.8 e), the slopes, and thus the freeness,
measures the deformation of the lattice or the proximity to the cusp in the mod-
ular curve X(1). The above construction generalises this description in higher
dimension.

c) The frame bundle would enable GLn descent on varieties for which the
lifting to versal torsors is not sufficient. In fact we may extend this and consider
bundles giving geometric elements in the Brauer group. This may provide a
method to generalise the construction of Salberger [Sal] in the case the geometric
Brauer group is not trivial.

9. Conclusion and perspectives

In these notes we made a quick survey of the various directions to upgrade the
principle of Batyrev and Manin to include the cases of Zariski dense accumulat-
ing subsets. Let me summarize these options:

1. Remove accumulating thin subsets. This method has been successful in
several cases. However, this notion depends on the ground field and we
could imagine situations in which there are infinitely many thin subsets to
remove, similar to the situation of K3-surfaces containing infinitely many
rational lines which are all accumulating.

2. Consider all heights. This method may apply to fibrations and other cases
in which the accumulating subsets come from line bundles. However,
as shown by examples of Picard rank one, this is not enough to detect
accumulating subsets of higher codimension.

3. As in [Pe4], we could use a height defined by an adelic metric and the
freeness. But the freeness condition tends to remove too many points as
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shown by the product of projective lines. A recent example by W. Sawin
[Sa] indicates this is not enough.

4. Combine all heights and freeness. This combination is inspired by the
geometric analogue.

This list is far from exhaustive. In fact, we could consider the slopes given by
norms on any vector bundle on our variety which gives a profusion of probably
redundant invariants. Arakelov geometry is a very natural tool to attack this
question of redundancy and look for a minimal set of slopes controlling the
distribution of points.

The freeness, which is in part suggested by the analogy with the geometric
setting, is very efficient to detect local adelic deformations which correspond to
local or global accumulation. However this invariant is particularly difficult to
compute efficiently. Indeed its explicit computation is related to the finding of
a non-zero vector of minimal length in a lattice which is known to be computa-
tionally difficult. At the time of writing, the following question is still open (2):

Question 9.1. — Let V be a smooth hypersurface of degree d in PN
Q , with d > 3

and N > (d− 1)2d . Is the cardinal of points x ∈ V (Q) with l(x) < ε and H(x) < B
negligible as B goes to infinity?

In other words, the author is still lacking methods giving lower bounds for the
smallest slope, but again we may hope that the techniques of Arakelov geometry
may provide the necessary tools.
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