26／6／2015 VII Counter－excamples
Sn my talk at capital normal univasity， 3 －bacibed the counter－excample of B ATYREV \＆TSCHINKEL．
dot me give you a variant pit
1）Variation on $B M>R E V$－ 1 ISCHINKEL escample Let $V \subset \mathbb{P}_{\mathbb{K}}^{3} \times \mathbb{P}_{\mathbb{K}}^{3}$ be defined by
the equation

$$
\sum_{i=0}^{d i} x_{i} y_{i}^{2}=0
$$

Again we io consider the find projection
$\pi: V \longrightarrow \mathbb{P}_{\mathbb{K}}^{3}$ and，for $x \in \mathbb{P}^{3}(\mathbb{K})$ ，

$$
v_{x}=\pi^{-1}(\{x\})
$$

$\operatorname{Let} U_{0}^{x}: \prod_{i=0}^{3} x_{i} \neq 0 \subset \mathbb{T}_{\mathbb{Q}}^{3} \quad U=\pi^{-1}\left(U_{0}\right)$
If $x \in U_{0}(\mathbb{Q}), V_{x}$ is a mort diagonal quachic given by

$$
V_{x} \text { by } \quad \sum_{i=0}^{3} x_{i} Y_{i}^{2}=0
$$

But (F) is known for quachias：
There are 3 cases：
1）$V_{x}\left(\mathbb{T}_{\mathbb{1}}\right)=\phi$ no rational pints
2］$V_{x}\left(\mathbb{I}_{\mid K}\right) \neq \phi$ but $\quad \operatorname{rk}\left(\operatorname{Pic}\left(V_{x}\right)\right)=1$
Then $\# V_{x}(\mathbb{K})_{H \leq B} \sim C_{H}\left(V_{x}\right)_{B}$
3］V_{x} is oft：$r k\left(P_{i c}\left(V_{x}\right)\right)=2$
which means ltd $V_{o k} \approx P_{\mathbb{K}}^{1} \times P_{\mathbb{K}}^{7} / \mathbb{K}$

$$
\text { Then } \# V_{x}(\mathbb{K})_{H \leqslant B} \sim C_{H}\left(V_{x}\right) B \log (B)
$$

When does case 3 occur？Praccurs escadly when Q_{x} contains rational lines on equivalently The quadrate form $\sum x_{i} Y_{i}{ }^{2}$ may be written as $T_{0}^{2}-T_{1}^{2}+T_{2}^{2}-T_{3}^{2}$ after a change of basis

But since we assume that the quarrel has a rational point，that is the quadratic form $\sum x_{i} x_{1}^{2}$ is isotropic and thus isomorphic to

$$
T_{0}^{2}-T_{1}^{2}+b_{1} T_{2}^{2}+b_{2} T_{3}^{2}
$$

So it is oflit if and only if it discriminant is a square，that is

$$
\prod_{i=0}^{3} x_{i} \text { is a square }
$$

Let us consider
$\psi \mathbb{P}^{3}(\mathbb{K}) \longrightarrow \mathbb{K}^{*} / \mathbb{K}^{*^{2}} \cup_{\{0\}}$ this map is

$$
\left[x_{0}:-: x_{2}\right] \longmapsto\left[\prod_{i=0}^{3} x_{i}\right]
$$ wed deferred

and let

$$
\mathbb{P}^{3}(\mathbb{K})^{0}=\psi^{-1}(1)
$$

This ser is zariski dense in $P^{3}(Q)$ ．
Prof
Let H_{1} be the height on \mathbb{P}^{3}（a）given by

$$
\begin{aligned}
& \left\|\left(x_{0},-x_{i}\right)\right\|_{\infty}=\operatorname{masc}_{0 \leq i \leq n}\left|x_{i}\right| \\
& \text { live } i=G(1)
\end{aligned}
$$

Ix is relative $t=6(1)$
Then

$$
\mathbb{P}^{3}(Q)_{H_{1} \leq B}^{D}=O\left(B^{\frac{7}{2}}\right)
$$

For this height

$$
\mathbb{P}^{3}(\mathbb{Q})_{H_{1}} \leqslant B \sim C_{H_{1}}\left(\mathbb{P}_{Q}^{n}\right) B^{4} .
$$

Proof
Pick up $x_{0}, x_{1}, x_{2},\left|x_{i}\right| \leq B$
then let $\delta=\operatorname{sgn}\left(x_{1} x_{2} x_{3}\right) \times \pi P$

$$
\left\{P \mid v_{p}\left(x_{1} x_{2} x_{3}\right) \circ o d\right\}
$$

Then $\frac{x_{3}}{\delta}$ has 18 be a square
There are B^{3} possibilities for x_{0}, x_{1}, x_{2} at most $B^{1 / 2} \cdots x_{3} \square$
Why is V a counter－escample to the formula (F) ？
By sefschetz theorem，since dim $(V) \geqslant 3$ ， the restivition map

$$
\rho: \operatorname{Pic}\left(\mathbb{P}_{\mathbb{K}}^{3} \times \mathbb{P}_{1 K}^{3}\right) \rightarrow \operatorname{Pic}(V)
$$

is an is omoyhism．Therefore

$$
r k\left(P_{k}(V)\right)=2
$$

and（F）for V open in V would be

$$
\# U(\mathbb{K})_{H \leq B} \sim C_{B \rightarrow+\infty} C_{H}(V) B \log (B) \text {. }
$$

But，since the set $\mathbb{P}^{n}(\mathbb{K})^{\square}$ is Zariski dense，

$$
\exists x \in \mathbb{P}^{n}(\mathbb{K})^{\square}, Q_{x} \cap U \neq \phi
$$

So \＃$\left(U \cap Q_{x}(I K)_{H \leqslant B}\right)_{B \rightarrow+\infty^{h}}^{\sim}\left(Q_{x}\right) B \log (B)$
This is known（remember．（F）is true for quachics）
Reminder
（F）for all choice of norms on ω_{V}^{-1}
$\Rightarrow(E) \Rightarrow$ for any closed $F q V$ ，

$$
\# F(\mathbb{K})_{H \leq B}=\sigma\left(\# U(\mathbb{K})_{H \leq B}\right)
$$

Conclusion
There are many choices of the norm for which (F) is not true！
For this particular case，we have a very precise idle of what should be the corned formula
Conjecture（open）

$$
\# U(\mathbb{K})_{H \leqslant B} \underset{B \rightarrow+\infty}{\sim}\left(C_{H}(v)+\sum_{x \in \mathbb{P}^{3}(K)^{\square}} C\left(Q_{x}\right)\right) B \log (B)
$$

This formula seems to be out of reach，for now． The problem is that we have a bad control of the error term．

If we consider this escample and the excomple given by BATYREV \＆TSCHINKEL，They have in common that there are too many points in a subset which is dense for Zonski topology but not dense for a telic top pogy．In fad in both cases they are thin subsets．Let me explain this notion：

2）Thin subsets
Definition（Reminder）
set V be a nice varicty／IK number field A subset $W \subset V(\mathbb{K})$ is said to be thin if there esaists a moyhism $\psi: X \rightarrow V$ such that
（i）ψ is generically finite；
$\left(\eta: \mathbb{K}(V) \rightarrow V\right.$ generic point，$\left.\quad \operatorname{dim}\left(x_{\eta}\right)=0\right)$
（ii）ψ has no rational section；
（iii）$W \subset \psi(V(\mathbb{K}))$
Remarks
1）If ψ had a rational sedion

$$
\Delta: U \longrightarrow x
$$

then U（IK）$\stackrel{\cap}{\vee} \underset{\sim}{\subset} \psi(x(\mathbb{K}))$
and，in our setting，we do not wont
the rational points of an open subset to be thin．

2）（2）Let E be an ollific curve（or an abelian varidy）／K．By Mordell－Weil＇s theorem，the quationt $A(I K) / 2 A(I K)$ is finite Ret $P_{1},-P_{m} \in A[\mathbb{K}]$ be such that

$$
A[\mathbb{K}] / 2 A[\mathbb{K}]=\left\{\left[P_{1}\right],=\left[P_{m}\right]\right\}
$$

Then we may consider the map
$\psi \frac{\prod_{i=1}^{m} A}{} A \longrightarrow P$

$$
\underset{n}{a} \longmapsto P_{i}+2 a
$$

i－th component
Then $\psi: \prod_{i=1}^{m} A(\mathbb{K}) \rightarrow A(\mathbb{K})$ is suyjedive but It has in no rational sedition！
so $A(\mathbb{K})$ is thin according to the definition y gave．

Also if $V(\mathbb{K})$ is not Zoiski dense in V VCIK is thin，because a closed immersion Satisfies the condition of the－ifinition

Examples
1）$\left\{\left[x_{0}:-: x_{3}\right] \in \mathbb{P}^{3}(a) \mid \forall i f x_{i} / x_{j}\right.$ is a aube $\}$ is thin．Indeed it is the image of the moyhisom

$$
\begin{aligned}
\mathbb{P}_{3}^{3} & \longrightarrow \mathbb{P}^{3} \\
{\left[x_{0}:-: x_{3}\right] } & \mapsto\left[x_{1}^{3}:-: x_{3}^{3}\right]
\end{aligned}
$$

2］ $\mathbb{P}^{3}(\mathbb{K})^{D}$ is thin in $\mathbb{P}^{3}(\mathbb{K})$ ．The moyhism is slightly more difficult to describe． Consider in $\mathbb{A}^{5}-\{0\}$ the equation

$$
W: x_{0} x_{1} x_{2} x_{3}=y^{z}
$$

There is an adion $G_{m} G W$ given by

$$
\lambda\left(x_{i}, y\right)=\left(\lambda x_{i}, \lambda^{2} y\right)
$$

$X=W / \mathbb{G m}_{\mathrm{m}}$ is a singular doric varidy
$\psi: X \rightarrow \mathbb{P}_{1}^{3} \quad$ it is a map of degree 2

$$
\left[\left(x_{1}, y\right)\right] \mapsto\left[x_{0}:-: x_{3}\right]
$$

and $\left.\mathbb{P}^{3}(\mathbb{K})^{0}=\psi(x \backslash \mathbb{K})\right)$ ．
Using

$$
\underset{Q_{t} \text { th et }}{\mathbb{T}_{\text {at }}} \times \xrightarrow{\widetilde{\psi}} V
$$

we gat th ot $\bigcup_{\left.x \in \mathbb{P}^{3}(\mathbb{})\right)^{D}} V_{x}(I K)$ is also $t t_{n n}$ ．
Theorem［COHEN－SERRE］

$$
\begin{aligned}
& \text { Ser T be a thin set in } \mathbb{P}_{\mathbb{K}}^{m} l^{\text {then }} \\
& \quad \# T_{H \leqslant B}=G\left(B^{(+1 / 2)} \log (B)^{\gamma}\right) \\
& \text { with } \gamma<1
\end{aligned}
$$

Method
It is an oplication of sieve method．using the following lemma：
Lemma
Assume we have a morphim $\psi: x \rightarrow V$
which satisfies（ i ）$-(\dot{\mu} i)$ with X ineducable
then there exists a finite Galois extension L IIK and a constant $\in \in] 0,1[$ so that for any prime ideal ps of $G_{1 /}$ which spits completely in \mathbb{L}（ie $\mu G_{\mathbb{L}}=\prod_{i=1}^{\infty} F_{i}$ with $\#\left\{F_{1},-, A_{d}\right\}=d$ and $d=[u: \mathbb{K}])$

$$
\frac{\# \operatorname{red}_{p}(T)}{\# \mathbb{R}^{n}\left(F_{p}\right)}<C
$$

Remark
D．Lovahran announced a move general result using similar techniques：
If V satisfies (E) for an open set U ，
then for any shin set T

$$
\#(U(\mathbb{K}) \cap T)_{H \leq B}=\theta\left(\# U(\mathbb{K})_{H \leq B}\right)
$$

General pidūre
For a variety Vil is not enough to consider subvorictíe．We have to consider non trioial moghisms

$$
\begin{aligned}
& x_{1} \xrightarrow[\varphi_{1}]{\varphi_{1}} \text { with } x_{1},-x_{m} \text { nice } \\
& x_{2} \xrightarrow[\varphi_{2}]{\varphi_{3}} v\left(a\left(\varphi_{1}^{*}\left(\omega_{v}^{-1}\right)\right), b\left(\varphi_{i}^{\neq}\left(\omega_{v}^{-1}\right)\right)\right) \geqslant(1, t) \\
& x{ }_{3}(a \text { shat }
\end{aligned}
$$

for sescucographic order
This geves accumulating thin sets．So now the best we can hope is that we only have to consider a finite number of such moyhisms．
Refined heuristic
Does there escast a thin subset $T \subset V(\mathbb{K})$ such that
$(F) \quad \#(V(\mid K)-T)_{H \leqslant B} \sim C_{H}(V) B \log (B)^{t-1}$ and

$$
(E)
$$

$$
\delta_{(V(K)-T)_{H \leqslant \beta}}^{\stackrel{w}{B \rightarrow+\infty}} N
$$

Remark
En the joactive side，no counter－excample is known En the otter hand，for a long time，no example
was known where there was a dense accumulating thin subset，and（F）was proven for the complement．The 1 St example of such a result is due to C．LE RUDULIEK who was a student of A CHAMBERT－LOIR and I would like To ojend Some time on her results．

3）Hilbert schemes
Let me start by explaining
a）Northiott theorem
dorthcott theorem instead of considering rational points consider algebraic joins that is pouts on some ferrite extension
Definition
－Let $P \in \mathbb{P}^{n}(\bar{Q}) \quad P=\left[x_{0}:-: x_{n}\right], x_{0}, \gamma_{n} \in \bar{Q}, x_{i} \neq 0$
$\mathbb{K}(P)=\mathbb{Q}\left[x_{0} / x_{i},>x_{n} x_{i}\right]$ number field
it does not depend on the choice of i ：
$\mathbb{K}(P)$ is the intersection of the field $\mathbb{H} \subset \bar{Q}$
such that $P \in \operatorname{im}\left(\mathbb{P}^{n}(\mathbb{L}) \stackrel{\mathbb{P}^{n}}{ }(\overline{\mathbb{Q}})\right)$ $d(P)=[\mathbb{K}(P): Q]$ is the degree of P / \mathbb{Q}
（In fact，this corrosjonds to the residue field of a dosed point）
－If \mathbb{U} is a number field
the normalized height $\bar{H}_{\mathbb{L}} \mathbb{P}^{n}(\mathbb{U}) \rightarrow \mathbb{R}>0$ ，

$$
\max _{H_{L}}\left(\left[x_{0}:-: x_{n}\right]\right)=\left(\prod_{w \in P l}\left|x_{1}\right|_{w}\right)^{\left.\frac{11}{E^{1 L}:(k]}\right]}
$$

If $\mathbb{U} \mathbb{K}$ is an extension of number fields and $L_{\mathbb{L}} \mathbb{K}: \mathbb{P}^{n}(\mathbb{K}) \rightarrow \mathbb{P}^{n}(\mathbb{L})$
the incluced mop

$$
\bar{H}_{\mathbb{L}} \text { oiw/K} 1
$$

So we con elefine

$$
\bar{H}: \mathbb{P}^{n}(\overline{\mathbb{Q}}) \rightarrow \mathbb{R}_{>0}
$$

（2）Escomple

$$
\frac{\text { coomple }}{F([1: \sqrt[n]{2}])=\left(\prod_{n}|3 \sqrt[n]{2}|\right)^{\frac{1}{n}}=\sqrt[n]{2} \rightarrow 1} \underset{n \rightarrow+\infty}{ }
$$

So $\left\{P \in \mathbb{P}^{n}(\bar{Q}) \mid \bar{H}(P) \leqslant B\right\}$ is not finite
Theorem（NORTHCOTT）Let $B>0, d \geqslant 1$
$\left\{p \in \mathbb{P}^{n}(\mathbb{Q}) \mid F(P) \leqslant B\right.$ and $\left.d(P) \leq d\right\}$ is a finite ser．

Reference
SERRE Ledure on Mordill－Weil theorem
$\frac{\text { Sketch of the proof }}{\text { Def }}$
Def

$$
f_{S^{d}} \mathbb{P}_{\mathbb{R}}^{n}=\left(\mathbb{P}_{\mathbb{Q}}^{n}\right)^{d} / S_{d} \in \mathbb{P}_{\mathbb{Q}}^{N}
$$

where $N+1$ is the dimension of the vector space of $P \in \mathbb{Q}\left[X_{i j}, 15 i \leq d, 0 \leq j \leq n\right] F_{d}$ which are homogeneous of degree 1 $\operatorname{in}\left(X_{i, 0},-X_{i}, n\right)$ for $i \in\{1,-1, d)$ ．
But ike rational joints of $S^{d}\left(P^{n} Q^{n}\right.$ ave

$$
\begin{aligned}
& \left.=\left\{f: \mathbb{P}^{n}(\bar{a}) \rightarrow \mathbb{N}\left|\sum_{p \in \mathbb{P} r(a)} f(p)=d \quad \& \forall r \in G_{\alpha}(\bar{a})\right| a\right), f \cdot r=f\right\}
\end{aligned}
$$ subsets of d elements，with multiplicities，

$$
\supset\left\{1 \operatorname{gal}(\bar{a} / a) \cdot x, \quad x \in \mathbb{P}^{n}(\bar{a}) \mid d(x)=d\right\}
$$

So $\left\{x \in \mathbb{P}^{n}(\bar{Q}) \mid d(x)=d\right\} \xrightarrow{d i 1} S^{d} \mathbb{P}^{n}(\mathbb{Q})$ Now it remains to compare the normalized Baigh of a point of degree \sqrt{O} the height of its image in \mathbb{P}_{α}^{N}
But the yull－back of $G(1)^{2} N$ to $\left(p^{n}\right)^{d}$ is $G(1,-1)$
So the theorem of couth colt follows from the finiteness of the number of points of bovended height in $P^{N}(Q)$ ．
Example

$$
\begin{aligned}
& S^{d} \mathbb{P}^{1}=\mathbb{P}^{d}(Q) \\
& \left.\left[\left(u_{i}: v_{i}\right)\right] \stackrel{\square}{\longrightarrow} \prod_{\text {in }}^{d}\left(u_{i} v-v_{i} v\right)\right]
\end{aligned}
$$

homogeneous polynomial of degree d vamahing at the given d points．
So it is quite natural to consider the asymptote behowioin of joints of fisced degree in the projedive apace
Pomark
For \mathbb{P}_{Q}^{1} we get

$$
\begin{aligned}
& \#\left\{P \in P^{1}(\bar{Q}) \mid d(P)=d \& \bar{H}(P) \leqslant B\right\} \\
& \sim d C_{H}\left(\mathbb{P}_{a}^{d}\right) B^{d(d+1)}
\end{aligned}
$$

and we have equidishibution on $\mathbb{P}_{\mathbb{Q}}^{d}$
The number of points in P_{a}^{d} coming from $\left(\mathbb{P}^{1}\right)^{d}(\mathbb{Q})$ is $\ll B^{2 d}$ and is neghgible if $d \geqslant 2$ ．
So everything is fire for $\mathbb{P}_{\mathbb{Q}}^{1}$ ，let us tum to the case of surfaces
b）Ah aleut schemes and symmchíc produd for surfaces Inn higher dimensions the symmetric product is singular lout for surfaces we have a nice way ta get a desingularization：
Definition
For a nice variety V oven K ，and $d \geqslant 1$ ， the hilbert scheme tiled（V）satisfies for any extension IL of（K），

Hill $^{d}(V)(11)=\{$ subschomes of dimension 0 and degree of in $\left.V_{H L}\right\}$
where，for $S \subset V_{11}$ of dimension $0, S=$ Sec (A) we have $\operatorname{deg}(S)=\operatorname{dim}_{\mathbb{H}}(A)$ ．

Example
，$d=1$ ，$H_{l} b^{1} V 工$
．$d=2$ ，Hill ${ }^{2} V(K)$ contains 3 types of points．
a）the pains $\left\{P_{1}, P_{2}\right\}$ with $P_{1}, P_{2} \in V(\mathbb{K}), P_{1} \neq P_{2}$
b）the closed points $P \in V_{(0)}$ such $\left|t_{a}\right|-$ $\operatorname{deg}([K(P): \mathbb{K}])=2$
\subset rescue field at P
c）The fairs (P, D) with $P \in V(\mathbb{K})$
$D \in \mathbb{P}\left(T_{P} V\right)$ corresponding T＇o subscheres is omophu to

$$
S_{\text {pec }}\left[\mathbb{K}[T] /\left(T^{2}\right)\right.
$$

There is a natural map（Hilbert－Samucl map）

$$
\sigma: H i l b^{d} V \longrightarrow S^{d} V
$$

$S \longmapsto|S|$ support of S
where $|S|=\sum_{P \in V_{(0)}} \operatorname{dim}_{\mathbb{K}(P)}\left(G_{S} \otimes G_{V} G_{V, P}\right) P$

Remarks
1）For a curve c ，Hill $c \leadsto S^{d} c$ ，
2）Let $U \subset S^{d} V$ be the open set image of $\left\{C P_{1},-, P_{d}\right) \in V^{d} \mid P_{i} \neq P_{j}$ for $\left.i \neq j\right\}$ then $\sigma_{1 \sigma^{-1}(U)}$ is an isomorphism and σ is binational

Fad
If V is a surface then

$$
\sigma: H i l b^{d} V \longrightarrow s^{d} v
$$

is a desingularization of $S^{d} \mathrm{~V}$ ．
dotation
We now assume that V is a smooth Del Pezfo surface，

$$
\begin{aligned}
& \text { enface, } V^{d} \rightarrow s^{d} v \\
& \pi: \text { Hill }^{d} V \rightarrow s^{d} V \\
& \text { Let } E=\text { Hill }^{d}(v)-U
\end{aligned}
$$

For $\frac{L}{d}$ is a line bundle／V
and therefore there escort a lime bundle τ on $S^{d} V$ such that $\pi^{*}(L)=\sum_{i=1}^{\infty} p_{n} *(L)$ We get a moyhism

$$
\begin{aligned}
& \rho: P_{i c}(V) \longrightarrow P_{i c}\left(H_{i l} b^{d} V\right) \\
& L \longmapsto \varepsilon^{*}(\Sigma)
\end{aligned}
$$

Proposition
（l）$P_{i c}\left(V^{d}\right)=P_{i c}(V)^{d}$
（ii）$P_{i c}(v) \oplus \notin E \approx P_{i c}\left(\right.$ Hill $\left.^{d} v\right)$

$$
L \longmapsto \rho(L)
$$

（iii）$\omega_{\text {thin }^{-1}(v)}^{-1}=\rho\left(\omega_{v}^{-1}\right)$
This means that if H is a height on V relative to a_{v}^{-1} ，on $H_{i} b^{d} V$ the height which satisfies on U

$$
\text { adifiof on } U
$$

is a height relative to $\omega_{n}^{i=1}$

$$
\omega_{\text {Hill }}=1(v)^{\prime}
$$

c）Counter example to（F）on open subsets
If the formula is the for 5 ，since it is compatible wish product，me would get that

$$
\begin{aligned}
& \text { \# }\left[\varepsilon^{-1}\left(\pi^{(}\left(V^{d}(Q)\right)\right) \cap \cup(Q)\right]_{H \leq B} \\
& \sim \frac{C(V)^{d}}{d!} \times \frac{(R-1)!^{d}}{(d t-1)!} B \log (B)^{d t-1}
\end{aligned}
$$

For any open $U C+$ Will $^{d} V-E$ ，where $K=n k($ Pic $(V))$ and the esgeded formula for Hill $n V$ is

$$
\begin{aligned}
& \text { (F) } \quad U(Q)_{H \leq B} \\
& \frac{\text { inclusion }}{\text { rake }} \quad d \geqslant 2
\end{aligned}
$$

（i）If $t \geqslant 2$ or $d \geqslant 3$ contradiction $\operatorname{with}(F)$
（ii）If $t=1$ not negligible contradids (E)
$T=\varepsilon^{-1}\left(\pi\left(V^{d}(L L)\right)\right.$ is an accumulating thin

Subset．
d）（F）on complement of thin subsets
Theorem［C．LERUDULIER］
If $V=\mathbb{P}_{a}^{2}$ or $\mathbb{P}_{Q^{1}}^{1} \mathbb{P}_{\mathbb{Q}}^{1}$ ，then inhere escisto a non empty open subset $U \subset$ Hill $^{2} V$ such chat

$$
(F) \#(U(Q)-T)_{H \leq B} \sim C\left(H_{i l} b^{2} V\right) B \log (B)^{t}
$$

$$
\text { where } t=\pi k\left(l_{i}(v)\right)=r k\left(P_{i c}\left(H_{i l} b^{2} v\right)\right)-1
$$

$\frac{\text { Tools }}{\text { SH uses results of W．SCHMIPT on points }}$ of bounded height and degree．

29／6／2016 Remarks
1）For $V=\mathbb{P}_{Q}^{2}$ only the constant is wrong， a ，the power of B and b ，the power of $\log (B)$ are connect
2）．For BatyREV \＆T－Sc＋1，NKEL

$$
\operatorname{dim}(V)=5
$$

Here dem $\left(H i l b^{2} V\right)=4$
－For surfaces the formula is aggected to work on an open subset What of dimension 3

4 Fan volumes（varieties of dimension 3）
Those varieties have been closified by Mori \＆MUKAI There are 105 deformation types

This dassification has been investigated by
LEHMANN，TANIMOTO，TSCHINKEL to find examples similar to the ascample of BATYREV \＆
Tschinkel．
The point is that we are reduced to a geometric problem：
Definition
－Let V be nice over a field \mathbb{K} with ω_{V}^{-1} extra big Let $L \in \operatorname{Pic}(V) \cap C_{c}$ of (V)
－Let Y © X be an in ducible proper subvariety and $\tilde{y} \rightarrow Y$ a desingularization of Y（Given by ghironaka＇s theorem）
We get $\varepsilon_{y}: \widetilde{y} \rightarrow X ; \quad a_{y}^{g}(L)=a^{g}\left(\varepsilon_{y}^{*}(L)\right)$

$$
b^{y}(l)=b^{g}\left(\varepsilon \frac{y}{y}(l)\right)
$$

－Lis balanced for y y［Lehmann－Tammoto
－TSCHINKEL］if

$$
\left(a_{y}^{g}(L), b_{y_{p}}(L)\right)<\left(a^{g}(L), b^{g}(L)\right) \text {; }
$$

for lesacoogryhic order
$-L$ is weakly balanced for Y
of

$$
\left(a_{y}^{g}(L), b_{y}^{g}(L)\right) \leqslant\left(a^{g}(L), b^{g}(L)\right)
$$

－Y is［geometrically］strongly accumulating for l

$$
\text { if } a_{y}^{g}(L)>a^{g}(L)
$$

－Y is［geometrically］accumulating for L

$$
\text { of }\left(a^{g}(L), b^{g}(L)\right)>\left(a^{g}(L), b^{g}(L)\right)
$$

－Y is［geometrically］weakly accumulating for L

$$
\text { if }\left(a_{y}^{g}(L), b_{y}^{g}(v)\right) \geqslant\left(a g(L), b^{g}(L)\right)
$$

This covers more or lass all cases．
－L is said tó be balanced（resjedurely weakly
balanced）if there excises a non empty open subset $U \subset V$ such that for any $Y<V$ such that $Y \cap U \neq \varnothing$ ，L is balanced（respectively weakly balanced for Y）．I shall bay that L is unbalanced（rest．weakly unbalanced） if L is not weakly balanced（resp．not balanced）．Invent hat unbalanced implies weakly unbalanced

Remark
L is unbalanced（rest weakly unbalanced） if and only of the accumulating（ness weakly accumulating subvarieties）are Zariski dense．
Question
For which V is ω_{V}^{-1} senbalanced or weakly unbalanced？

Let me describe a few invariants of $\tan \theta 3$－folds： citation

Let V be a smooth Fino 3－fold／ \mathbb{K} ．

$$
-\rho(V)=r k\left(p_{i c}(V)\right)
$$

$-r(v)=$ the largest $r \geqslant 1$ such that

$$
\left[\omega \omega_{j}^{-1]}=r[L] \text { for some }[L]=p_{i c}(V)\right.
$$

$$
-d(v)=\left(\omega_{v}^{-1}\right)^{3}=\omega_{v}^{-1} \cdot \omega_{v}^{-1} \cdot \omega_{v}^{-1}
$$

c intersection product
est is the degree of V
V is called primitive if it is not the blowing up of another Gan 3 －fold along a smooth
ineducable ave．（It in automatic if $\rho(V)=1$ ）
Theorem［LEhMANN，TANIMOTO \＆TSCHINKEL］
Let V be a primitive Fans 3 －fold with $\rho(V)=2$ ；
－If $d(V)=12,14,30,48,54,56,62, \quad w_{v}^{-1}$ is bolanced
－if $d(V)=24$ then $W_{V} 1$ is weakly balanced and unbalanced
－fd $(v)=6$ then ω_{V}^{-1} is unbalanced． If $\rho(v)=1$ ，we hove the table

$r(v)$	$d(v)$	balanced	weak	unbalanced
4,3	$*$	V		
2	$\geqslant 15$		\checkmark	
1	8			
1	$\geqslant 10$		V	
1	$8, \sigma$			V
	4			V if w_{v}^{-1} vary
ample				

So this shows that even in dimension 3 there are many examples with thin accumulating sulesets．But the situation is even worse that that：
（2）Even if ω_{v}^{-1} is balanced，there might esciot dense accumulating thin subset：
For escample，C．LE RUDVLIER proved that

$$
\begin{aligned}
& \text { For any y } \subset H i l l^{2}\left(\mathbb{P}_{Q}^{2}\right) \\
& \quad \#(\forall \cap \cup(Q))_{H \leqslant B}=\sigma\left(U(Q)_{H \leqslant B}\right) .
\end{aligned}
$$

Problem
SHow can you characterize the accumulating thin subsets？

Of course，as y esqlained，given a moyhism from X to V ，you have a lest using geomdtuc invariants 12 say whether it may give an accumulating subset．And，if you can prove equidistubution on the complement of a thin subset，you know that you have found all accumulating thin subsets．
But it is mot satisfying in the sense that it does not give you a dear procedure $\sqrt{\sigma}$ find the moyhisms．If y give you a joint in a variety how da you know if you have to remove it．Thu problem was the topic of my talk at capital dermal univorsety and in the lox chapter es want to aeghain why I think the concept of slopes may help．

VIII dew perse chives，slopes
1）Quick reminder
Again，V is a nice voricty／IK number field which satefies H ．$n=\operatorname{dim}(V)$
Definition
We equip V with an adelic metric，that is a classical arbelic norm $\left(\|.\|_{w}\right)_{w}$ \＆POCIK）
on TV
－This defines an adelic norm on $\omega_{V}^{-1}=\operatorname{det}(V)$ and therefore a height H on V ．
－For any $x \in V(\mathbb{K})$ we get an G_{K}－lattice in $T_{x} V$

$$
\Lambda_{x}=\left\{\left.y \in T_{x} \cup\right|_{\mu} \in \mathbb{R}(\mathbb{K})_{f},\|y\|_{N} \leqslant 1\right\}
$$

and a euclickon strudine on

$$
T_{x} \vee \otimes \mathbb{Q}_{\mathbb{Q}} \mathbb{R} \rightarrow \underset{w \notinfty}{\oplus} T_{x} \vee \mathbb{K}_{\mathbb{K}} \mathbb{K}
$$

given by $\left\|\left(y_{w}\right)_{w \mid \infty}\right\|=\sqrt{\sum_{w \mid \infty}\|y\|_{w}^{\left[む: \mathbb{K}_{w}\right]}}$
For $F \mathbb{K}$－subspace of $T_{x} V$

$$
\operatorname{otog}(F)=-\log (V o l(F / \Lambda \cap F))
$$

τ for the induced eudidean shüdine．

$$
P\left(T_{x} V\right)=\text { Convex shall of }\left\{(\operatorname{sk}(F) \text {, deg }(F)), F \subset T_{x} V\right\}
$$

$$
h=\log 0 H
$$

$$
\begin{aligned}
& \text { For } t \in[0, n] \\
& m_{T l} T_{T} V=\sup \left\{y \mid(t, y) \in P\left(T_{x} V\right)\right\} \\
& \operatorname{slog}_{\text {of }}(x)=m_{T_{x}, V}(i)-m_{T_{x} V}(i-1) \text { for } i \in\{1,1, n\} \\
& \mu_{i}(x)
\end{aligned}
$$

Remarks

$$
\begin{aligned}
& \frac{\mu_{1}(x)}{\mu_{1}} \geqslant \mu_{n}(x) \quad \sum_{i=1}^{n} \mu_{i}(x)=h(x) \\
& \text { and the slope of } T_{x} v
\end{aligned}
$$

and the slope of $T_{x} V$

$$
\mu\left(T_{x} V\right)=\frac{\operatorname{cag}\left(T_{x} V\right)}{\operatorname{dim}\left(T_{x} V\right)}=\frac{1}{n} h(x)
$$

which also is the mean of the slopes
An easy example
For $V=\mathbb{P}^{1} x$

$$
\begin{aligned}
& F_{Q r} V=\mathbb{P}_{Q}^{1} \times \mathbb{P}^{1} \\
& T_{(P, Q)} \mathbb{P}^{1} \times \mathbb{P}^{1}=\frac{Q}{T_{p}} \mathbb{P}^{1} \oplus T_{Q} \mathbb{P}^{1} \\
& \Lambda_{p}
\end{aligned} \Lambda_{a}
$$

Take F of dimension 1 in $T_{(P, Q)} \mathbb{P}^{1} \times \mathbb{P}^{1}$

Covol $\left(\Lambda_{(p, \alpha)} \cap F\right)=\min \left\{\|x\|_{,} x \in \Lambda_{(l, 0)} \cap F-\{0)\right\}$ But by Pyitagoras theorem

$$
S_{Q} \widehat{\operatorname{dog}}(F) \leqslant \max \left(-\log _{\prime_{p}}\left(l_{p}\right),-\log \left(l_{Q}\right)\right)
$$

So，in that case Newton＇s polygon is

$$
\begin{aligned}
& \mu_{1}(P, Q)=\max (h(P), h(Q)) \\
& \mu_{2}(P, Q)=\min (h(P), h(Q)) \\
& \text { and their sum is } h(P)+h(Q)=h(P, Q) .
\end{aligned}
$$

Definition
The freeness of x is

$$
l(x)=\left\{\begin{array}{l}
0 \text { if } \mu_{n}(x) \leq 0 \\
\mu_{n}(x) / \mu(x) \text { otherwise }
\end{array} \in[0,1]\right.
$$

Remark

$$
\begin{aligned}
& l(x)=0 \Leftrightarrow \mu_{n}(x) \leqslant 0 \\
& l(x)=1 \Leftrightarrow \mu_{1}(x)=\mu_{2}(x)=\cdots=\mu_{n}(x) \\
& =\mu(x)
\end{aligned}
$$

$\Leftrightarrow T_{x} V$ is semi－stable this defines the notion
Examples
－ $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$ is semi－stable
but it is nor the only one
－the bescayonal lattice

$$
\because \because \quad \Lambda=\mathbb{Z} \oplus \mathbb{Z} e^{i z \pi / 3} \subset \mathbb{}
$$ is semi stable

Remark
cloregenerally if E is an adelic vedor bundle on V one con consider the slopes

$$
\mu_{i}\left(E_{x}\right) \text { for } 1 \leq i \leq r k(E)
$$

2）Slopes and successive minima
There is another notion which is natursul for lattices in eudidean spaces，namely successive minima which generalizes so number fields：
Definition
If E is $I K$ vedor space equiped with dassical nouns $\left(11 \cdot\left\|\|_{w}\right) w_{\sigma} \in P Q C(K)\right.$ such that there eosin a basis $\left(C_{1},>P_{R}\right)$ of E so that

$$
\left\|\sum_{i=1}^{n} x_{i} e_{i}\right\|_{w}=\max _{1 \leq i \leq n}\left(\mid x_{i} \|_{w}\right. \text { for }
$$

almost all w ，then w ，$i \leq r$
$\lambda_{i}(E)=\ln f\left\{\theta \in \mathbb{R}_{>0} \mid \exists\right.$ a linearly indegendont－
$\left\{\begin{array}{l}\text { family } \\ \left.\forall j \in u_{1},-, u_{i}\right) \in E^{i} \text { such that } \\ \|u \cdot\| \leq \theta\}\end{array}\right.$

$$
\left.\forall j \in\{1,-i\rangle \prod_{w \in P(k)}\left\|u_{j}\right\| \leq \theta\right\} .
$$

Proposition（E．GAVDRON using MiNKOWSKI hm）

$$
0 \leqslant \log \left(\lambda_{i}(E)\right)+\mu_{i}(E) \leqslant C_{\mathbb{K}}
$$

Remark
There is also a duality formula

$$
\mu_{i}(E)=-\mu \text { form }\left(E^{v}\right)
$$

combining this with the i position，we yet

$$
\left|\mu_{n}(E)-\log \left(\min _{y \in E^{v}-\{u)^{w}}^{H}\|y\|_{w}\right)\right|<G_{K}
$$

In other words，

$$
\begin{aligned}
& \text { then words, } \min _{\text {or }}\left(h_{1}\left(\mathbb{P}\left(E^{v}\right)\right)\right) \mid<C_{I K} \\
& \text { ourtiation }
\end{aligned}
$$

So for or situation

$$
\left|\mu_{n}(x)-\min \left(h_{1}\left(\mathbb{P}\left(T_{x}^{v}\right)\right)\right)\right|<C_{\mathbb{K}}
$$

But this is vary hard $1 \frac{1}{2}$ compute in general！
3）Slopes and change of metrics
Proposition
If we denote by μ_{i} and μ_{i}^{\prime} ．the slopes conesonding to trio adelic metics on V there esast $\subset>0$ such that

$$
\left|\mu_{i}(x)-\mu_{i}^{\prime}(x)\right|<C
$$

for any $x \in V(\mathbb{K})$ ．Therefore

$$
\left|l(x)-l^{\prime}(x)\right|=G\left(\frac{1}{h(x)}\right)
$$

Proof
This reduce to

$$
0<C_{1}<\frac{\|-\|_{w}^{\prime}}{\|\cdot\|_{w}}<C_{2}
$$

and $\|\cdot\|_{w}=\|\cdot\|_{w}$ for almost all w ．
4．Freeness and moyhisms
Definition
Let $\varphi: \mathbb{P}_{\mathbb{K}}^{1} \rightarrow V$ be a non constant moyhism Write $\varphi^{x}(T V)$ as $\bigoplus_{i=1}^{n} G\left(a_{i}\right)$ with $a_{1} \geqslant \ldots \geqslant a_{n}$ and define

$$
l(\varphi)=\left\{\begin{array}{l}
0 \text { if } a_{n} \leq 0 \\
n \quad a_{n} / \sum_{i=1}^{n} a_{i} \text { otherwise }
\end{array}\right.
$$

Remark

$$
\sum_{i=1}^{n n} a_{i}=\operatorname{deg}_{\omega_{v}-1}(\varphi)
$$

$\frac{\text { Proposition } 1}{\ell(\varphi(x))}$

$$
l(\varphi(x))=l(\varphi)+O_{\varphi}\left(\frac{1}{h(x)}\right) \text { for } x \in \mathbb{P}^{1}(\mathbb{K})
$$

Proposition 2
Let Che a rigid rational awe on a suffice S ，then

$$
\{x \in(C \|) \mid f(x)>0\} \text { is finite }
$$

Proof
from the decomposition

$$
\varphi^{*}(T V) \leftrightarrows \& G\left(a_{i}\right)
$$

we get that $\left|\mu_{i}^{1-1}(\varphi(x))-a_{i} h_{1}(x)\right|<C_{\varphi}$ ．
For proposition 2，we use the fact that $a_{n}<0$ ．
$\frac{\text { Proposition } 3}{}$
Let $4: X \rightarrow Y$ be a moyhtian of nice varieties Then there exist $c>0$ so that for any $x \in X(\mathbb{K})$ in which $J_{x} \varphi: T_{x} X \rightarrow T_{\varphi_{(x)}} y$ is sujective，we have

$$
\mu_{\text {min }}(x) \leqslant \mu_{\text {min }}(\varphi(x))+c
$$

In partacum，if $y \in Y(K)$ is not a critical value of 4 ， $l(x)=O\left(\frac{1}{h(x)}\right)$ on the fibre $X_{y}(\mathbb{K})$ ．
Proof
under the hypothesis $T_{y} Y^{v} \longrightarrow T_{x} X^{v}$
and thus $\min H_{1}\left(\mathbb{P}\left(T X^{v}\right)\right) \leq \min +H_{1}\left(\mathbb{P}\left(T Y^{v}\right)\right)+C \square$
Remark
For the counter－excumples like the one of BATY REV \＆TSCHINKEL whir are given by a moyhirm the fires of which are accumulating we get also that

$$
l(x) \longrightarrow 0
$$

in each of these accumulating aubvaricty
Tho gives some support for ike slogan
Slogan
＂Bad point have a small freeness．＂
Like en politics slogan do not need ló le true． Moreover for the freeness to be useful we also need it to be big for good points
5）The case of the pojedive pace
$\frac{\text { Proposition }}{\text { Let } P}$

$$
\begin{aligned}
& \operatorname{Let} P \in \mathbb{P}^{n}(\mathbb{K}) \\
& \quad l(P)=\frac{n}{n+1}+\min _{F}\left(\frac{-n \operatorname{deg}(F)}{\operatorname{codem}(F) h(P)}\right)
\end{aligned}
$$

where F goes over the subspaces of E such that $P \in \mathbb{P}(F)$ and $F \neq E$ ．

Proof
Remember that if P corresponds to a vector subspace $L \subset \mathbb{K}^{n+1}=E$ of dem ension 1，

$$
T_{p} \mathbb{Q}^{n} \approx \operatorname{Ham}(L, E / L) \cong L^{v} \otimes E / v \otimes L
$$

So each subspace $F^{\prime} \subset T_{r} \mathbb{R}^{n}$ is isomorphic $18 L^{V} \otimes F / L^{V} \otimes L$ for come subspace F such that

$$
L \in F q E
$$

and

$$
\operatorname{deg}(F)=\operatorname{deg}(F)+\operatorname{dim}(F) \operatorname{seg}(L)
$$

Indeed we have the general formula

$$
\operatorname{deg}(E / F)=\operatorname{deg}(E)-\operatorname{deg}(F)
$$

$$
\text { and } \operatorname{deg}(L \otimes E)=\operatorname{ceg}(E)+\operatorname{dem}(E) \operatorname{deg}(L)
$$

an the other hand

$$
h(P)=(n+1) \operatorname{deg}\left(L^{v}\right)
$$

$$
\mu\left(T_{p} T^{n} / F^{\prime}\right)=\frac{\operatorname{cockim}_{E}(F) \operatorname{deg}\left(L^{v}\right)-\operatorname{dec}(F)}{\operatorname{codlim}_{E}(F)}
$$

$$
=-\operatorname{cog}(L)-\frac{\operatorname{deg}(t)}{\operatorname{coshos}_{t}(F)}
$$

and

$$
\ell(P)=\frac{n \mu_{\min }\left(T_{p} P^{n}\right)}{-(n+1) \operatorname{Ceg}(L)}
$$

$\frac{\text { Corollary }}{\text { For each }}$
For each $P \in \mathbb{P}^{n}(\mathbb{K})$ ，one has

$$
l(P) \geqslant \frac{n}{n+1}
$$

Proof

$$
F_{\text {deg }}(F)=-\log \left(\operatorname{covol}\left(G_{K}^{n+1} \cap F\right)\right)
$$

and cool $\left(G_{1 k}^{n+1} \cap F\right) \geqslant 1$ ．
Pamank
In fact，we have something somewhat more striking

$$
\lim _{B \rightarrow+\infty} \frac{\Lambda}{\# \mathbb{P}^{n}(K)_{H \leqslant B}} \sum_{p \in \mathbb{P}^{\prime}(K)_{H \leqslant B}} l(p) \overrightarrow{B \rightarrow+\infty} 1
$$

6 A new formula？
Let $\varepsilon:] 1,+\infty[\longrightarrow \mathbb{R}>0$ be a deoveasing fundion such that
（i）$\varepsilon(1) \underset{t \rightarrow+\infty}{\longrightarrow}$
（ii） $\log (k)^{2} \in(x) \longrightarrow+\infty$ if $\alpha>0$
So a slowly decreasing fundion
Let $\quad V(\mathbb{K})_{H \leq B}^{\varepsilon-l}=\{P \in V(K) \mid H(P) \leq B \& l(P) \geqslant \varepsilon(B)\}$

$$
\begin{aligned}
& \left(F_{\varepsilon}\right) \quad V(\mathbb{K})_{H \leq B}^{\varepsilon-2} \sim C_{H}(V) B \log (B)^{t \cdot 1} \\
& \left(E_{\varepsilon}\right) \quad \delta_{V(\mathbb{K})_{H \leqslant B}^{\varepsilon-2}} \rightarrow \mathbb{N}
\end{aligned}
$$

Proposition
$\left(F_{E}\right)$ and $\left(E_{\varepsilon}\right)$ are compatible with the procknd of varieties．
$\frac{2}{1}$
Because $\ell(P)$ is hard to compute I can not yet dam that this works better than removing a thin subject．
There is still much to be done It works for quadrics but

Gyen question
For a smooth hypersurfoce of degree $d \geqslant 3$
$N+1>2^{d}(d-1)$ is $(F$ conect？ $N+1>2^{d}(d-1)$ is $\left(F_{E}\right)$ conrect？
$22 / 4 / 2015$
北京

Curve statislics
cts you probably know, to determine if a variety is rational (that is binational $10\left(P^{n}\right)$ is excramdy hand. On the other hand, we know that Ganovarictice are rationally conneded. Sa it is quite natural to see how we can strengthen the notion of rational connedivity.
Drop
Let V/I be a smooth, projedive, geometicicly integral variety which is Rationally Conneded then for any subsdiome $S \subset \mathbb{P}^{1}$ of dem 0 and any $\psi: S \rightarrow V$, thew exaits $\varphi: \mathbb{P}^{1} \rightarrow V$ such that $\varphi_{15}=\psi$.
Of course, such a φ may be of very high degree. A slightly less well knonvrn fat, but which has been noticed several times is the occurrence of stabilisation phonornena as the degree goes to os. It was probably first noted by 6 . Sacyel. Id me explain it on 1) Sand bose escomple. $V=\mathbb{p}^{n}$

I reed to introduce the ring of:
ts a group

- generated by [V] V variety /C
- relations

$$
\begin{aligned}
& {[V]=\left[V^{\prime}\right] \text { if } V \rightarrow V^{\prime}} \\
& \cdot[V]=[V]-[F]
\end{aligned}
$$

if $F \subset V$ dosed subvariety $u=V-F$

- ring sturdure given by $[V]\left[V^{\prime}\right]=\left[V \times V^{\prime}\right]$ Then we consider

$$
M_{d}=\left[M_{\sigma_{d}}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)\right] \in M_{k} . \quad U=\left[\mathbb{A}_{q}^{1}\right]
$$

On the other hand, there is a very elementary description of this space

> But if we define
> we ger a map $(d \geqslant 0)_{k}$
of degree k of max. deg d
In Me $[C T]]$ we get
 and $\left[W_{d}\right] \mathbb{L}^{-(n+1) d}=\left(\mathbb{L}^{n+1}-1\right)\left(1-\mathbb{L}^{-n}\right)$ if $d \geqslant 1$ Thus

$$
M_{d} \mathbb{U}^{-(n+1) d}=\frac{\mathbb{L}^{n+1}-1}{\psi-1}\left(1-\mathbb{L}^{-n}\right) \text { for } d \geqslant 1
$$

Tote that intersection cohomology factors though the sing M_{a} sosuch a formula desouves 1 cohomology The generality of this phomena is dill unknown but let me explain the fromenvork for this generalisation: Fist of all in general we do not such a simple stable formula but only a limit in a topological ring conshüded using motives. 2) General Framework
a) Topological K_{0} of vorictios

- We con define a fietration by dimensions on $M_{k}\left[L^{-1}\right]$

$$
F^{k}\left(M_{\mathbb{C}}[k+]\right)=\left\langle\mathbb{L}^{-i}[v], \quad i-\operatorname{dim}(V) \geqslant k\right\rangle
$$

$$
\hat{u}_{\Sigma}=\lim _{c} u_{c}\left[\psi^{-1}\right] / F^{2} d_{a}\left[\psi^{-1}\right]
$$

which is a topological ring where something goes to 0 if its dimension goes to - ∞
vote $M_{\mathbb{C}} \rightarrow \widehat{M}_{G}$ is not ing dur whit means a notinjectuves $\mu_{4}\left[\mathbb{L}^{-1}\right]$
loss of information
It twins out that this ring is still not flesitle enough Let me introduce a variant of it
$K_{0}\left(M_{c}^{\text {ch }}\right)$ Groitendieck group
for the category of Chow movies /(

$$
\begin{aligned}
& \text { we get a mop } \\
& \psi \text {. } \mu_{a}\left[L^{-1}\right] \rightarrow K_{0}\left(M_{a}^{c h}\right)\left[L^{-1}\right] \\
& \tilde{\mu}_{c}=\lim \psi\left(\mu_{\mathbb{c}}^{c}\left[\mathbb{k}^{-1}\right]\right) / \psi\left(F_{k} \mu_{\mathbb{C}}\left[\mathbb{U}^{-}\right]\right)
\end{aligned}
$$

So ur loose even more information
b) Culnidegree

$$
\begin{aligned}
& \text { deg: } \operatorname{Mor}(\mathbb{P} 1, V) \rightarrow P_{i c}(V)_{R}^{V}=\operatorname{Hom}\left(P_{i c}(V) \mathbb{R}\right) \\
& \varphi^{\prime} \mapsto\left(f \mapsto \operatorname{dog}\left(\varphi^{*}(L)\right)\right)^{\prime} \\
& C_{\text {af }}(V)_{v}^{v}=\left\{v \in P_{i c}(V)_{\mathbb{R}} \mid \forall D \text { effective }\langle v, D) \geqslant 0\right\}
\end{aligned}
$$

$\partial C_{\text {of }}(v)^{v}$ is boundary
Space:

$$
\begin{aligned}
& d \in C_{\text {eff }}(v)^{v} \\
& \text { oort (} \left.\mathbb{P}^{1}, V\right)=\text { space of vary free moyhism } \\
& \text { from 那 } \sqrt{0} V \text { of multiclegree } d
\end{aligned}
$$

(vary free: $Y^{*}\left(T_{V}\right)=\oint_{i=1} 6\left(a_{i}\right) \quad a_{1} \geqslant \cdots \geqslant a_{n}>0$)

Folloving ickas of V. BATYREV, ELLENBERO, D.BOURQUI

$$
\begin{aligned}
& \frac{\text { Question }}{\text { whan is }\left[M_{o r}\right.}\left(\underline{d}\left(\mathbb{P}^{1}, V\right)\right] \mathbb{U}^{-\left(\underline{d}, w_{V}^{-1}\right\rangle} \xrightarrow[\substack{d \in C_{\text {of }}(v)}]{\longrightarrow \text { eoglicit }} \xrightarrow{C(V)} \\
& \text { in } \tilde{M}_{\mathbb{C}} \text { ? }
\end{aligned}
$$

I will give lata turn back to the meaning of $C(V)$
3) Evidence

- True for \mathbb{P}^{n}
- compatible with result of Kapranov on motivic Eisenstain serios for splut $V=G / P \quad G$ redultive tincar olg group P masainal porabolic subgroup.
- True for splt toric varuely (D'. B OUR QUI) using desconv met ho Similar to the cose of \mathbb{P}^{n}
- Lome evicence for equivartan compacificalion of affine spoces (CHAMBERT-LUTR, LOESER) ueing a motivic Polsson formula
Gjen but might be doable
hypersurface in $\mathbb{P}^{n} \quad n \gg d e g$ via a motivic circle metherl (using poisson formula).

4) About the constant C(V)
a) Equidistribution primajle

This is related to the proposition I stated at the very beginning of the talk Equidistribution question

Take $S \subset \mathbb{P}^{1}$ subscome of $\operatorname{dim} 0$. and $F \subset \operatorname{Mor}(S, V)$ dosed Mordvin (\mathbb{P}, V, F) esctia condition: $\varphi_{/ S} \in W$

$$
\begin{aligned}
& \left(\left[\operatorname{Mor}_{\underline{d}}^{i e} v f\left(\mathbb{P}_{1}^{1}, V, F\right)\right][\operatorname{Mor}(S, V)]-\left[\operatorname{Mor}_{\underline{d}} v t(\mathbb{P}, V)\right][F]\right) \|^{-\left\langle\underline{d}, w_{v}^{1}\right\rangle} \xrightarrow{\rightarrow} 0
\end{aligned}
$$

It move or less says that the germs condition at different points are totally independowt...
b) Back to (CV)

What we would like to do

$$
\text { What we would like to do } \quad \prod^{C(V)=\text { something simple }} \times \prod_{P \in \mathbb{P}_{(0)}^{1}}\left[V_{\mathbb{C}}(P)\right] \mathbb{L}^{-d i n} V_{\mathbb{C}(P)}
$$

but it can't work like that
Problems

1) Product oven uncountable set

Use formal formula

$$
\prod_{p \in \mathbb{P}^{1}} f(p)=\exp \left(\int_{\mathbb{P}_{1}} \log (f(p))\right)
$$

meaning through motivic
2) This can not convene with $f(P)=\left[V_{\mathbb{C}(p)}\right] \mathbb{I}^{-\operatorname{dim}\left(V_{\mathbb{C}()}\right)}$
even for $\mathbb{P}^{n}!f(P)=1+\mathbb{L}^{-\operatorname{deg}(p)}+\cdots+\mathbb{L}^{-n \operatorname{deg}(p)}$ $\left.\frac{\text { Easy computation }}{2(-\lambda)=[\pi}\left(1-1 L^{\lambda \operatorname{dog}(p)}\right)\right]^{-2}=\sum \sum_{d} \|^{\lambda d}$

(like $\left.\left[\begin{array}{l}p \\ p\end{array}\left(1-p^{-5}\right)\right]^{-1}=\sum_{n} \frac{1}{n^{5}}\right) \|$

$$
\begin{aligned}
& =\sum_{d}^{n}\left[p^{d}\right] \mathbb{L}^{\lambda d} \\
& =\sum_{d} \frac{\mathbb{L}^{d+1}-1}{\mathbb{L}-1} \mathbb{L}^{\lambda d}
\end{aligned}
$$

whit diverges if $\lambda=-1$
But if $\lambda<-1$

$$
=\frac{1}{\mathbb{L}-1}\left(\frac{\mathbb{U}}{1-\mathbb{U}^{\lambda}+1}-\frac{1}{1-\frac{\mathbb{L}^{\lambda}}{}}\right.
$$

$$
=\frac{1}{\left(1-L^{\perp}\right)\left(1-L^{\lambda+1}\right)}
$$

In general, for a variety V / \mathbb{C} with

$$
H^{1}\left(v, G_{v}\right)=H^{2}\left(v, G_{v}\right)=0 \text {, Pic }(V) \text { (orcionfree }
$$

(automatic if V Fans).
There exists a versal torso $\tau \rightarrow V$ under

$$
\|_{\text {dod }} T_{N S}=S_{\mu e}\left(\mathbb{C}\left[P_{i c}(v)\right]\right) \simeq \mathbb{\sigma}_{m}^{t}
$$

"Def"

$$
C(v)=\frac{1}{(l-1)^{t} \underline{\nu}^{\operatorname{dim}(v)}} \prod_{P \in \mathbb{R}_{(0)}^{1}} \operatorname{Nol}\left(\sigma\left(O_{p}\right)\right)
$$

(a) Extensions: loose less information? ${ }^{\downarrow} \subset$: $\left(\hat{\mu}_{K}\right.$ intern $\left.\mid \tilde{H}_{k}\right)$

$$
\begin{aligned}
& \text { beget } C\left(\mathbb{P}^{n}\right)=\frac{1}{(\mathbb{L}-1) \mathbb{L}^{n}} \geq(n+1)^{-1} \\
& =\frac{1}{(1-1) \mathbb{U}^{n}} \times \prod_{P \in P_{(0)}^{\prime}}\left(1-\mathbb{U}^{\operatorname{dg}(P)}\right) f(P) \text {. }
\end{aligned}
$$

(3) vf onough? $a_{n} \rightarrow+\infty$?
(4) Fano biso strict $\omega_{v}^{-1}=$ ample $+d_{n} c$?
(morethon big).

